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Abstract

While large language models (LLMs) now excel at code generation, a key aspect of
software development is the art of refactoring: consolidating code into libraries of
reusable and readable programs. In this paper, we introduce LILO, a neurosymbolic
framework that iteratively synthesizes, compresses, and documents code to build
libraries tailored to particular problem domains. LILO combines LLM-guided
program synthesis with recent algorithmic advances in automated refactoring
from STITCH: a symbolic compression system that efficiently identifies optimal \-
abstractions across large code corpora. To make these abstractions interpretable, we
introduce an auto-documentation (AutoDoc) procedure that infers natural language
names and docstrings based on contextual examples of usage. In addition to
improving human readability, we find that AutoDoc boosts performance by helping
LiLO’s synthesizer to interpret and deploy learned abstractions. We evaluate
L1LO on three inductive program synthesis benchmarks for string editing, scene
reasoning, and graphics composition. Compared to existing methods—including
the state-of-the-art library learning algorithm DreamCoder—LILO solves more
complex tasks and learns richer libraries that are grounded in linguistic knowledge.

1 Introduction

Large language models (LLMs) are growing highly adept at programming in many settings: complet-
ing partially-written code [1-3], conversing with programmers [4, 5], and even solving competition-
level programming puzzles [6-9]. However, human software engineers are principally concerned with
building libraries that can be applied to entire problem domains. To this end, a key aspect of software
development is the art of refactoring [10, 11]: identifying abstractions that make the codebase more
concise, reusable, and readable. Solving this multi-objective optimization will require broadening the
scope of existing code completion tools to the longer-horizon setting of library learning.

In this paper, we combine LLMs with recent algorithmic advances in automated refactoring from the
programming languages (PL) literature to learn libraries of reusable function abstractions. Our ap-
proach draws inspiration from DREAMCODER [12], an iterative Wake-Sleep algorithm that alternates
between searching for solutions to programming tasks (Wake) and refactoring shared abstractions
into a library (Sleep) that in turn helps to guide search. Unlike standard deep learning approaches,
DreamCoder can make strong generalizations from just a handful of examples, and the model’s con-
ceptual knowledge is represented symbolically. However, DreamCoder is extremely computationally
intensive, requiring more than two CPU-months to learn a single domain (see Ellis et al., Apx. J).
Much of this search time is spent discovering a basic set of abstractions that human programmers
typically already know, or might be able to grok quickly based on having solved problems in other
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Figure 1: Overview of the LILO learning loop. (A) LILO synthesizes programs based on natural language
task descriptions using a dual-system search model. To refactor a set of program solutions, LILO integrates
a compression algorithm called STITCH (B) with LLM-generated auto-documentation (C) to produce an
interpretable library of A-abstractions. This search-compress-document loop simplifies the structure of program
solutions (A vs. D), making it easier to solve more complex tasks on future iterations.

domains. Moreover, DreamCoder libraries are not necessarily interpretable, requiring both domain
expertise and knowledge of lambda calculus to decipher.

To address these issues, we introduce LILO, a neurosymbolic program synthesis framework that
leverages LLMs in two novel ways: (1) to expedite the discovery of program solutions during search,
and (2) to improve the interpretability of learned libraries through auto-documentation. We evaluate
L1LO against a language-guided DreamCoder variant and an LLM baseline on three challenging
program synthesis domains: string editing (REGEX) [13], scene reasoning (CLEVR) [14], and
graphics composition (LOGO) [15]. On all three domains, LILO solves more tasks than both models
and learns abstractions that are intractable to discover with existing methods.

2 LILO: Library Induction with Language Observations

L1LO builds on a long line of work in inductive program synthesis, which we review in Apx. A.
Algorithmically, L1LO (Alg. 1) has a similar structure to existing approaches [12, 16—18] that alternate
between search and refactoring. To complete the loop, we introduce an auto-documentation procedure
(AutoDoc) that infers names for these abstractions, rendering them legible to LLM-guided synthesis.

Dual-system program search (Fig. 1A). Inspired by dual process theories of cognition [19-21],
LiLo is equipped with two kinds of search procedures. As in DreamCoder and LAPS [22], we use a
task-conditioned PCFG to perform “slow” enumerative search in program space. Additionally, we
introduce a “fast” approximate search model in string space that leverages LLMs. We procedurally
construct few-shot prompts (Apx. B.2) consisting of three parts: (1) A library specification, (2) a
set of task solutions, and (3) a linguistic description of the target task. For each completion, we run
parsing, type inference, and execution checks to identify valid programs that solve the target task.

Refactoring via Stitch compression (Fig. 1B). As the learner solves more tasks, the solution set
will grow to contain many recurring program fragments that we wish to refactor. In library learning
systems that rely on enumeration, refactoring improves search efficiency by avoiding the need to
rediscover key building blocks for each new task. Analogously, in LILO, refactoring makes the
generation task easier: a LLM equipped with a library of abstractions can deploy entire blocks of



code with just a few tokens. We leverage recent algorithmic advances from STITCH [23]: a symbolic
compression system that identifes reusable abstractions in large datasets of lambda calculus programs
and achieves 100-10000x efficiency improvements over existing methods.

Library auto-documentation (Fig. 1C). Unlike traditional program synthesis methods, LLMs (like
human programmers) are sensitive to function names [24—26]. However, PL tools are typically not
equipped to write human-readable function names, instead outputting anonymous lambda abstractions
(e.g., fn_0, Fig. 1B). In early experiments, we observed that naively providing a LLM with Stitch
abstractions measurably degraded its ability to solve tasks (§3). Motivated by these findings, as part
of L1LO, we introduce a library auto-documentation (AutoDoc) procedure inspired by ideas from
code deobfuscation [27-29]. During AutoDoc, we sequentially prompt a LLM to produce a name
and docstring for each abstraction in the library (Fig. 6). In §3, we explore how AutoDoc benefits
downstream synthesis performance, yielding both richer and more interpretable libraries.

3 Experiments and Results

Experiment setup. Our experiments are designed to simulate a “lifelong learning” setting where
the learner must generalize a small set of seed examples to a broader space of tasks that range in
complexity. We sequentially perform two experiments that test different aspects of models’ learning.
First, in online synthesis, each model runs for a fixed number of iterations, continually updating its
library (if applicable) and attempting to solve test tasks. Next, in offline synthesis, we freeze the
final library £ from each online synthesis run and perform enumerative search with no language
guidance for a fixed time budget. We hold the hyperparameters of the search fixed so that performance
depends entirely on £ and not on the original model. Thus, the offline synthesis evaluations provide
a controlled comparison of the off-the-shelf utility of different learned libraries.

Models and metrics. We compare LILO against two baselines: a language-guided DreamCoder
variant [22] and a non-library learning baseline (LLM Solver). For LLM-guided search, we queried
OpenAI’s Codex model (code-davinci-002) with up to 4 prompts per task, sampling 4 completions
per prompt. For AutoDoc, we found that OpenAI’s newer instruction-tuned models (gpt-3.5-turbo
and gpt-4) better adhered to the AutoDoc task and schema. Further implementation details can be
found in Apxs. B.4-B.5. To study the effects of the different LILO components, we introduce ablated
variants that remove the enumerative search and/or AutoDoc steps. Tab. 1 gives the full breakdown
of our experimental results. Throughout, comparisons between models are expressed in terms of
absolute percentage point changes in mean solve rates on an i.i.d. test set.

REGEX CLEVR LOGO
MODEL mar mean std  max mean std  maxr mean std
DreamCoder 45.60 43.93 1.53 97.09 94.50 2.44 36.94 28.53 13.79
LLM Solver 90.00 76.13 12.04 90.29 88.67 1.48 41.44 32.13 8.07

LLM Solver (+ Search) 91.20 76.60 13.02 97.09 96.44 0.56 45.05 37.84 6.80
LILO (¢< Search/ AutoDoc)  59.40  53.20 538 93.20 85.76 9.72 45.05 21.02 20.88

LILO (¢< Search) 63.80 62.93 1.50 94.17 88.03 8.26 30.63 21.02 9.46
LiLo 9320 77.07 14.14 99.03 96.76 3.12 73.87 48.95 22.15
Base DSL 22.00 22.00 0.00 29.13 29.13 0.00 0.90 0.90 0.00
DreamCoder 42.00 41.60 0.40 94.17 91.59 297 36.04 30.63 7.85
LLM Solver* 48.60  43.00 517 91.26 89.64 2.02 36.04 27.33 7.56

LLM Solver (+ Search)* 63.40  55.67 7.51 91.26 89.00 3.92 28.83 27.63 1.04
LILO (s< Search / AutoDoc) ~ 60.80  50.73 8.85 9515 93.85 224 5135 30.63 18.22
LILO (s< Search) 57.60  56.20 2.25 96.12 9579 056 28.83 26.13 3.25
LiLo 71.40  64.27 6.31 96.12 9256 6.17 50.45 41.14 8.66

Table 1: Task solution rates for online (upper) and offline (lower) synthesis experiments. We report the best
(max), average (mean), and standard deviation (std) test solve rates across model runs. In each mean column,
results within 1o of the best (bold) result are underlined. *Asterisk indicates £ computed post-hoc.

L1L0 achieves the strongest overall performance in online synthesis. As observed in Fig. 2, LILO
significantly outperforms DreamCoder on REGEX (4-33.14) and LOGO (420.42). It also achieves
small improvements on CLEVR (4-2.26), though DreamCoder is already quite strong on this domain.
L1Lo also improves on the LLM Solver baseline by 4-0.94-16.82, thanks in part to its ability to
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Figure 2: Learning curves during online synthesis. Within each plot, the x-axis tracks the experiment iteration
and the y-axis shows the percent of tasks solved (top = test, bottom = train). Error bars show standard deviation
across 3 randomly-seeded runs.
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Figure 3: Evaluating library quality via offline synthesis. We run a timed enumerative search (x-axis; note
the log-scale) with the final library £ learned by each model in online synthesis or inferred post-hoc. In this
setting, LILO’s L expedites discovery of test task solutions (y-axis) even without language guidance.

discover novel program structures via enumerative search. To isolate the effects of search, we ran an
ablation [LILO (s< Search)] as well as an augmented baseline [LLM Solver (+ Search)]. We find that search
is most helpful on LOGO, which requires certain domain-specific program structures (e.g., how to
draw a “snowflake” or “staircase”; see Fig. 4) that are difficult to infer from language alone.

Auto-documentation unlocks effective contextual usage of abstractions. Early experiments
revealed a puzzling finding: providing the LLM with abstractions did not help—and in some cases,
hurt—online synthesis performance [Tab. 1, LILO (¢< Search / AutoDoc)]. Relative to the LLM Solver
baseline, we observed solution rate changes of —30.60 (REGEX), —2.91 (CLEVR), and —11.11
(LOGO) after introducing Stitch compression [Tab. 1, LILO (< Search / AutoDoc)]. Qualitative inspection
found that Codex struggled to deploy anonymous abstractions in context. After introducing AutoDoc,
we saw mean improvements of +9.73 (REGEX) and +-2.27 (CLEVR) over the naive condition.

Li1vLo libraries generalize well even in the absence of language. In our offline synthesis experi-
ments, we tested each model’s final library £ in an off-the-shelf enumerative search with no language
guidance (Fig. 3). As the baseline for each domain, we measure synthesis performance in Ly (Base
DSL). As expected, we can significantly outperform Ly using library learning: DreamCoder’s Ly
improves on Ly by +-19.6-62.5 and LILO’s L adds +1.0-22.7 over DreamCoder. LILO’s L also
outperforms libraries derived post-hoc from the two LLM Solver baselines, highlighting the benefits
of performing compression and documentation in-the-loop. As these results demonstrate, LILO learns
high-quality libraries that generalize well to downstream synthesis tasks even when no language
annotations are available at test time.



(fn_27) :: turtle -> int -> tlength -> turtle 3 4 5 6
Repeatedly move the turtle forward and rotate it by a specified angle, creating a loop of a specific - a o (0] O asmall triangle
number of sides with a given line length.
3 4 5 6
4 (fn_34) double_length_loop_move_rotate :: int -> turtle -> turtle
K X Moves and rotates the turtle in a loop, with each iteration doubling the length of the turtle's A O Q O “amedium square”
S movement.
3 5
(fn_31) turtle_snowflake_with_arms :: turtle -> int -> int -> turtle 36 37 38 57 . .
X Drawsasnowflake shape with given number of arms,each made up of aline of specifed ength % % % “6-sided snowflake with
that is rotated at a specific angle. medium triangles as arms”
, creating an intricate snowflake pattern.
N
(fn_28) turtle_staircase :: turtle -> int -> turtle 3 4 7
 Creates a staircase pattern by repeatedly moving the turtle forward and rotating it at a specific - _,J"J “a 4-stepped staircase”
angle. The number of steps in the staircase is determined by the function argument.
(fn_29) turtle_loop_draw_pentagon_spiral :: turtle -> int -> turtle 3 4 6 .
Creates a spiral of pentagons by repeatedly drawing a pentagon and Incrementing the angle of @ an oy 6 small 5-gons
each side on each iteration. The number of pentagons in the spiral is determined by the function inarow”

argument.

Figure 4: Qualitative inspection of learned LOGO library. Highlights indicate ambiguities (orange) and
errors (red) in naming and documentation that may affect code comprehension, which we discuss below.

Libraries learned by L1LO exhibit examples of hierarchical reuse. For instance, in the LOGO
library (Fig. 4 and Apx. C.2.3), the top abstraction is a general method for drawing polygons that is
invoked by several higher-level abstractions. Similarly, in the CLEVR library (Fig. 1 and Apx. C.2.2),
a set of learned filter operations over color, shape, material, etc. supports a higher layer of more
specialized abstractions. These examples showcase how LILO builds on one of the main strengths of
DreamCoder—the ability to bootstrap hierarchies of learned concepts—while improving the richness
and interpretability of libraries through documentation.

AutoDoc occasionally struggles to infer semantics. For instance, in LOGO (Fig. 4), fn_27 and
fn_34 are assigned relatively uninformative names that emphasize their implementation (looping
move and rotate) but not their behavior (drawing polygons). Moreover, AutoDoc occasionally
“doubles down” on particular statements that may be correct in one context but not another. For
example, it correctly notes that fn_27 works by “incrementing the angle of each side on each
iteration,” but this idea is ambiguous in fn_31 (which angle?) and incorrect in fn_34 (the length is
constant, not doubling). In addition to affecting interpretability, these semantic errors may also impact
downstream synthesis performance in LLM-guided search. Future work could adopt self-consistency
and verification techniques [30, 31] to improve the quality of AutoDoc generations.

4 Discussion and Conclusion

While LILO improves on prior library learning approaches, notably, the LLM-only baseline also
demonstrates the ability to bootstrap its performance over time. This result aligns with recent
successes in automated prompting [32, 33], suggesting that transformer attention can be viewed as
implementing a form of non-compressive library learning where information is accumulated in the
prompt. However, it is unclear whether this approach will scale to large software libraries: as context
length grows, key information may be ignored due to ordering effects [34-36]. Accordingly, an
important line of research looks to equip LLMs with long-term memory through retrieval [37, 38],
self-reflection [39], or combinations of both that enable learning libraries of programmatic skills in
embodied environments [40]. Currently, these approaches face the common challenge of determining
what information to preserve, leading to a large space of ad hoc heuristics.

L1Lo offers a principled approach to the consolidation of knowledge in a lifelong learning setting,
adding compression to a growing toolkit of LLM integrations with symbolic computation [41, 42].
Moreover, given Stitch’s algorithmic generality, extending LILO to imperative languages (e.g.,
Python) reduces to a tractable and compelling PL research problem. Thus, LILO offers a blueprint
for collaboration between the ML and PL communities towards the longstanding goal of learning
interpretable software libraries that enable solutions to novel problem domains.
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A Background: Program Search and Library Learning

Program synthesis. In inductive program synthesis [43], we are given a library of primitives
L = {f1, f2,...} that forms a domain-specific language (DSL). For a given programming task
t = {(x;,y;)} specified as a set of input-output pairs, the goal is to find a program = : V;7(x;) = y;
that correctly maps all inputs to outputs, denoted 7 - ¢t. However, a typical task admits many such
solutions that will not necessarily generalize (for instance, a simple lookup table). To address this
inherent under-specification, concern is given to finding an optimal program 7 F ¢ with respect
to descriptive complexity [44—46]. This optimization is naturally framed in terms of probabilistic
inference:

arg maxlog p(w | t, L) = argmax [logp(t | m) + log p(7 | £)] (1

In a typical setting, the likelihood p(t | 7) = 14 is computed via program execution, while the prior
p(r | L) 2] e P(f | £) is defined under a probabilistic context free grammar (PFCG; 47) that
assigns a weight 0 < 6¢ < 1 to each primitive f € L. This is equivalent to a weighted description
length prior, where longer programs have lower probability.

This formulation highlights the central challenge of program synthesis: historically, approaches to
Eq. 1 have inevitably involved enumerative search through a combinatoral space of programs. A range
of techniques have been proposed to improve search tractability, including type-directed synthesis
[48], Monte Carlo approximation [49-51], and neural network guidance [52-56, 12]. However, even
with these methods, traditional program synthesis hinges critically on DSL design. Omission of key
primitives can make complex tasks unsolvable, while inclusion of extraneous primitives can make
search intractable. Consequently, DSL engineering is a painstaking process that requires significant
expertise to anticipate common patterns across tasks in a domain.

Library learning. While classical approaches focus on synthesizing the best program for a task
specification given a fixed DSL (as in Eq. 1), programmers in the wild are typically concerned with
solving entire problem domains. Given the difficulty of manual DSL engineering, a natural evolution
is to include L itself as part of the optimization problem. This is the main intuition behind library
learning methods [49, 17, 57, 51, 18, 58, 12], which start with a collection of tasks 7 = {¢1,t2,...}
and a base library Lo, and jointly infer an expanded library £ = Lo U {f7, ..., fi} that includes
additional abstractions f* built from £y (Fig. 1B) and programs IT = {71, 72, ...} written in terms
of L:

argmaxlogp(II, £ | T, Lo) = argmax | Y logp(t | m¢) +logp(m | £)| +logp(L | Lo) (2)
ILC teT

This objective carries over the program prior and likelihood from Eq. 1, but introduces a distribution
over libraries p(L | Lg), typically also defined in terms of description length. Intuitively, Eq. 2 is
optimized by inventing abstractions that are both reusable, simplifying the solutions to multiple
tasks in 7; and concise, ideally building on one another hierarchically so as to share logic. [12]
approximate Eq. 2 via coordinate ascent, alternating between a search step, which holds the library
fixed and searches for task solutions II, and a refactoring step, which extracts common structure
from the solution set to update £. The tractability of this approach hinges critically on the ability to
do efficient refactoring, which we discuss further in §2.

Refactoring and compression. Various algorithms for refactoring have been proposed using combi-
natory logic [49], tree substitution grammars [59, 50, 51], version spaces [60, 12], and e-graphs [61].
In LILO, we cast refactoring as a compression problem over a corpus of programs

f* = coMPRESS(II) = argmin | f| + REWRITE(7 3)
press(T) = axgmin| ] + 3 [RepvRye(r)|

where the goal is to identify abstractions with minimal description length | f| that facilitate efficient
rewriting of II. However, performing even a single round of compression as in Eq. 3 necessitates
an efficient search strategy. In LILO, we leverage recent algorithmic advances from STITCH [23]: a
symbolic compression system that uses branch-and-bound search to identify reusable abstractions in
large datasets of lambda calculus programs. As Bowers et al. demonstrate, Stitch is 1000—10000x
faster and 100x more memory efficient than DreamCoder’s compression algorithm. Nevertheless,
prior analyses were limited to static program corpora; in LILO, we perform the first experiments
using Stitch as part of a program synthesis loop. We find Stitch similarly performant on our domains,
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typically running in seconds on a single CPU. These efficiency improvements enable us to re-derive
the entire library from £ at every iteration (Alg. 1 line 9). While many abstractions remain stable
across iterations, this “deep refactoring” allows LILO to discard suboptimal abstractions discovered
early in learning.

Leveraging language guidance. Given the size of the search space, generic priors such as description
length are not always sufficient to solve Eq. 1; for this reason, a line of work considers natural language
task descriptions d; as an additional source of learning signal [62, 63, 51]. Traditionally, making use
of such descriptions has required learning a domain-specific semantic parsing model [64—66]. More
recent work [67—69] uses LLMs, which excel when £ resembles a common programming language
that is well-represented in pretraining.

In library learning settings—where £ is novel by construction—it is currently less clear how to
leverage language. In LAPS (Language for Abstraction and Program Search), [22] generalize Eq. 2
to condition on d; by fitting an inverted “program-to-language” translation model. However, learning
this mapping from scratch necessitates the use of a small alignment model (IBM Model 4; 70) that
makes strict token-to-token decomposition assumptions. In LILO, we take the opposite approach:
we start with a large model that already has strong priors over the joint distribution of language and
code; then, we adapt the library to resemble this distribution by building up contextual examples
and documentation. In contrast to simply picking a more common L (e.g., Python) to work in, this
procedure enables us to learn a new L on-the-fly that is both optimized for the domain and grounded
in natural language.
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B Methods
B.1 LILO Algorithm

Algorithm 1 Library learning loop with LILO

1: function LILOLEARNING(Lq, T)

2: L+ Lo > Initialize library with base DSL
3 M« {t:0|teT} > Initialize task solution set
4: fori=1,...,N do

5: fort € T do > Run LLM Solver
6: | II: < II; ULLM(TaskPrompt (L, II, d¢))

7 IT < IT U SEARCH(L;, T) > Run enumerative search (skipped in < Search)
8 {ff,-.., [r} + COMPRESS(L,II, k) > Generate new abstractions
9: L LoU{fT, .., fa}
10: IT < REWRITE(L, IT)
11: forac {ff,...,fi} do > Document abstractions (skipped in < AutoDoc)
12: D <+ LLM(AutoDocPrompt (L, II, «))
13: N L L <+ add_docs(L, a, D)
14: | return £, II > Return final library and task solutions

B.2 LLM Solver Prompt

We introduce a “fast” approximate search model in string space that leverages the strong inductive
biases learned by LLMs. Formally, we write prpm(y | «) to denote the distribution over strings y
produced by a language model prompted with string . Then, for some target task £, our goal is to
approximate the conditional distribution over programs

p(my | £,11,dp) = pum((my) | {f | [ € £) o ((dy,m) | m ~ 1) 0 (d}) ©)
library functions program examples task desc.

where (.. .) and o denote string serialization and concatenation, respectively. To sample from the
distribution in Eq. 4, we procedurally construct few-shot prompts consisting of three parts: (1) A
library description that enumerates the available primitives and any learned abstractions, (2) a set of
exemplars consisting of description-solution pairs (d;, ;) ~ IT sampled from the set of solved tasks,
and (3) a description of the target task d;. For each completion, we run parsing, type inference, and
execution checks to identify valid programs that solve the target task. Fig. 5 (below) illustrates the
composition of a typical prompt; Apx. C.5 contains additional details on how examples are sampled.
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You are an expert programmer working in a language based on A calculus. Your goal is to
write programs that accomplish the tasks specified by the user. This is a domain-specific
Language for Logo turtle graphics. Write programs using the available functions:

logo_unit_angle :: tangle
logo_unit_line :: tlength
logo_zero_angle :: tangle

Domain logo_zero_line :: tlength

oma logo_divide_angle :: tangle -> int -> tangle
header & logo_multiply angle :: tangle -> int -> tangle
library “ logo_divide_line :: tlength -> int -> tlength
functions logo_multiply line :: tlength -> int -> tlength

logo_add_angles :: tangle -> tangle -> tangle

logo_subtract_angles :: tangle -> tangle -> tangle

logo_lift_pen :: (turtle -> turtle) -> turtle -> turtle
logo_move_pen_forward_rotate :: tlength -> tangle -> turtle -> turtle
logo_get_set_function_pen :: (turtle -> turtle) -> turtle -> turtle
logo_IFTY :: int

logo_epsilon_angle :: tangle

logo_epsilon_line :: tlength

logo_for_loop :: int -> (int -> turtle -> turtle) -> turtle -> turtle

Here are some example programs:

-- a small 8 gon

(A (logo_for_loop 9 (A (A (logo_move_pen_forward_rotate logo_unit_line (logo_divide_angle
logo_unit_angle 8) $0))) $0))

-- a medium 6 gon (N (logo_for_loop 6 (A (A (logo_move_pen_forward_rotate

Examp]e (logo_multiply_line logo_unit_line 2) (logo_divide_angle logo_unit_angle 6) $0))) $0))
taSkI -- 5 small squares in a row

program Ii (A (logo_for_loop 5 (A (A (logo_move_pen_forward_rotate logo_zero_line (logo_divide_angle
pairs logo_unit_angle 4) (logo_for_loop 7 (A (A (logo_move_pen_forward_rotate logo_unit_line

(sampled from (logo_divide_angle logo_unit_angle 4) $0))) $0)))) $0))

solved tasks,
) -- a vertical short Line

(A (logo_move_pen_forward_rotate logo_zero_line (logo_divide_angle logo_unit_angle 4)
(logo_move_pen_forward_rotate logo_unit_line logo_epsilon_angle $0)))

-- a small 9 gon
(A (logo_for_loop logo_IFTY (A (A (logo_move_pen_forward_rotate logo_unit_line
L (logo_divide_angle logo_unit_angle 9) $0))) $0))

Task

description -- 5 small triangles in a row

(unsolved)
a (M (logo_for_loop 7 (A (A (logo_move_pen_forward_rotate logo_zero_line
(logo_divide_angle logo_unit_angle 3) (logo_for_loop 3 (A (A (logo_move_pen_forward_rotate
logo_unit_line (logo_divide_angle logo_unit_angle 3) $0))) $0)))) $0))
X (N (logo_for_loop 5 (A (A (logo_for_loop 7 (A (A (logo_move_pen_forward_rotate

LLM logo_unit_line (logo_divide_angle logo_unit_angle 3) $0))) $0)))) $0))

completions [] T (A (logo_for_loop 5 (A (A (logo_move_pen_forward_rotate logo_zero_line
(logo_divide_angle logo_unit_angle 3) (logo_for_loop 5 (A (A (logo_move_pen_forward_rotate

P _ solution logo_unit_line (logo_divide_angle logo_unit_angle 3) $0))) $0)))) $0))
= valid
X:;/navlahd a (N (logo_for_loop 5 (A (A (logo_move_pen_forward_rotate logo_zero_line

(logo_divide_angle logo_unit_angle 4) (logo_for_loop 7 (A (A (logo_move_pen_forward_rotate
logo_unit_line (logo_divide_angle logo_unit_angle 3) $0))) $0)))) $0))

Figure 5: Anatomy of an LLM solver prompt. (A) Each prompt begins with a short domain description
followed by an autogenerated list of the DSL primitives and their type signatures. (B) We randomly sample task
solutions and their language descriptions to construct the prompt body. (C) The final line of the prompt contains
a target task description for an unsolved task. (D) We sample and parse N = 4 completions from the LLM, filter
out invalid programs, and check for task solutions.
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(A) Anonymous abstractions from Stitch

11 tsubstr
(or 'a' (or 'e' (or

'i' (or 'o' 'u'))))
¢t tfullstr -> tsubstr -> tsubstr -> tfullstr
(A (A (N (flatten (map (A (if (match $ $°) $° $)) (split empty_string $2))))))

t: tsubstr -> tsubstr -> tfullstr -> tfullstr
[N $0 ( $0 81 $7) (not )))))

Please write a human-readable name and description for (fn_42) vowel_regex :: tsubstr
fn_42. Here are some examples of its usage: . Regular expression that matches any (‘a','e",'i',"'0', 'u'). Used in various
o functions to identify and modify word ed on vowel presence and position
-- 1f there 1is vowel replace that with
(A (fn_43 $0 's' fn_42)) e R R OO0
-- if there is consonant add s after that (fn_43) replace_substr :: tfullstr -> tsubstr ->
(A (fn_49 's' (not fn_42) $0)) tsubstr —> tfullstr
if e word starts with vowel replace that with u ¢ » Replacesallinstances of a given substring $1in a full string $0 with another
(A (fn_46 $0 (fn_44 $0 'c' 'u') fn_42)) substring 32.
(A (A (A (flatten (map (A (if (match $1 $0) $2 $0)) (split
Please write a human-readable name and description for empty_string $2))))))
fn_43. Here are some examples of its usage:
(fn_44) replace_first_occurrence
-- if there is d replace that with y
(A (fn_43 $0 'y' 'd’)) (fn_47) replace_if_match_substring
-- if there is 1 re ce that with k t
(A (fn_43 $0 (concat 'k' 't') 'i’)) (fn_51) replace_consonant_with_substring :: tsubstr ->

tsubstr -> tfullstr -> tfullstr
Replaces the first occurrence of a consonant at the beginning of a given full
string with a specified substring...

(A (A (A (repla

if ere is consonant replace

(A (fn_43 $0 'p' (not vowel_regex)))

f_match_substring $0 (replace_first_occurrence

_regex)))))

Please write a human-readable name and description. 3 $0 $1 $2) (not
(B) LILO AutoDoc prompt sequence % (C) Human-readable library

Figure 6: L1LO library auto-documentation (AutoDoc) workflow in the REGEX domain. For each Stitch
abstraction (A), we prompt an instruction-tuned LLM with usage examples from solved tasks (B) to generate a
human-readable name and description (C). The chat-style structure of AutoDoc allows naming choices to cascade
sequentially; e.g., replace_consonant_with_substring (fn_51) refers back to vowel_regex (fn_42) and
other named abstractions in a consistent and interpretable manner.

B.3 Auto-Documentation Prompt

In this prototypical example in the REGEX domain, the LLM has solved some problems that require

[ [

vowel substitutions. During compression, Stitch pulls out the expression (or 'a' (or 'e' (or
"i' (or 'o' 'u')))) for occurring commonly in the solution set and defines it as an anonymous
arity-0 function (i.e., a constant). Subsequently, AutoDoc names this abstraction vowel_regex,
which forms the basis for more complex expressions. For instance, consonant is expressed as (not
vowel_regex), which in turn is used to define an abstraction for consonant replacement. In §3, we
explore how AutoDoc benefits downstream synthesis performance, yielding both richer and more

interpretable libraries.

For reproducibility, we provide an example of the full text of an AutoDoc prompt sequence for
the REGEX domain below. The prompt is composed of multiple pieces that are sent in serial as
messages to the ChatGPT interface. The sequence begins with a header message describing the
DSL. For pedagogical clarity, we consider the case where every abstraction except the final one have
already assigned names. Thus, the header contains a mostly-documented library with the final fn_51
remaining anonymous.

You are writing software documentation. Your goal is to write human-readable names for
the following library functions:

vowel_or :: tsubstr
(regex_or 'a' (regex_or 'e' (regex_or 'i' (regex_or 'o' 'u'))))
{- Matches any single vowel character ('a', 'e', 'i', 'o', 'u') using 'regex_or'

function. -}

replace_and_flatten :: tfullstr -> tsubstr -> tsubstr -> tfullstr

(lambda (lambda (lambda (regex_flatten (regex_map (lambda (regex_if (regex_match $2 $0)
$1 $0)) (regex_split $1 $2))))))

{- Replaces all instances of a given substring with another substring, and returns the
resulting string flattened into one string. The first argument is the input string, the
second argument is the substring to be replaced, and the third argument is the
substring to use instead of the replaced Sﬂgftring. -3}



. <fn_44 - fn_50 omitted for concision> ...

fn_51 :: tfullstr -> tsubstr -> tsubstr -> tfullstr
(lambda (lambda (lambda (regex_flatten (regex_cons $0 (regex_cons $1 (regex_cdr
(split_string_into_list $2))))))))

We then send a message prompting the LLM to document fn_51. At the end of the message, we
request that the LLM encode the reply into a particular JSON format to facilitate downstream parsing.

Consider the following anonymous function:

fn_51 :: tfullstr -> tsubstr -> tsubstr -> tfullstr
(lambda (lambda (lambda (regex_flatten (regex_cons $0 (regex_cons $1 (regex_cdr
(split_string_into_list $2))))))))

Here are some examples of its usage:

-- if the word starts with consonant any letter replace that with v d
(lambda (regex_if (regex_match (regex_not vowel_or) (regex_car (split_string_into_list
$0))) (fn_51 (regex_flatten (regex_cdr (split_string_into_list $0))) 'd' 'v') $0))

-- if the word starts with any letter vowel add q before that
(lambda (regex_if (regex_match vowel_or (regex_car (regex_cdr (split_string_into_list
$0)))) (fn_51 $0 (regex_car (split_string_into_list $0)) 'q') $0))

-- if the word starts with vowel replace that with u ¢
(lambda (regex_if (regex_match vowel_or (regex_car (split_string_into_list $0))) (fn_51
(regex_flatten (split_string_into_list $0)) 'c' 'u') $0))

. <additional usage examples omitted for concision> ...

Please write a human-readable name and description for “fn_51" in the JSON format shown
below.

Your “readable_name should be underscore-separated and should not contain any spaces.
It should also be unique (not existing in the function library above).

If you cannot come up with a good name, please set “readable_name™ to “null~.

{
"anonymous_name": "fn_51",
"readable_name": TODO,
"description”: TODO

3

We encountered difficulties in coaxing Codex to perform the AutoDoc task: the resulting function
names were variable in quality, did not reliably capture the function semantics, and were embedded in
generations that did not always adhere to the desired output specification. Instead, we take advantage
of OpenAl’s instruction-tuned gpt-3.5-turbo and gpt-4 models, which we found adhered to the
desired output JSON schema 100% of the time and never chose to return null for readable_name.
We experimented with both gpt-3.5-turbo and gpt-4 for AutoDoc and found both resulted in
comparable synthesis performance on REGEX. However, GPT-4 was significantly slower: whereas
gpt-3.5-turbo averaged 10-20 seconds for one iteration of AutoDoc, gpt-4 averaged upwards of 2
minutes per iteration. We therefore chose to use gpt-3.5-turbo in the experiments reported in §3.

Unlike for the LLM Solver, we do not provide any few-shot examples of the desired transformations;
all of this behavior is zero-shot, making AutoDoc an extremely domain-general technique that is easy
to implement across a variety of settings.
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B.4 Implementation Details

We provide a brief summary of key implementation details relevant to the experiments that are not
reported in §3. We ran all experiments on AWS EC2 instances with machine specs tailored to suit the
computational workload of each experiment.

Enumerative search. For experiments involving enumerative search, which is an embarrassingly
parallel workload that scales linearly with the number of available CPUs, we ran on 96-CPU
c5.24x1arge instances. These machines have the highest CPU count in the ¢5 machine class. To
take maximal advantage of the CPU parallelism, we set batch_size=96 for these experiments (i.e.,
each iteration searches for solutions for a subset of 96 tasks). A convenient consequence of this
implementation choice is that each task is allocated to a single, dedicated CPU, so the overall wall
clock runtime of a single search iteration is equal to the per-task enumeration time budget. We set the
enumeration budget on a per-domain basis using the timeouts from [22] (REGEX = 1000s, CLEVR
= 600s, LOGO = 1800s). We ran DreamCoder until convergence on all domains. For CLEVR and
LOGO, we performed 10 iterations of search, while for REGEX, we observed that the solve rate was
still increasing at iteration 10, so we used a higher search budget of 16 iterations for this domain.
Following [22] and based on a common practice in machine learning, we limited evaluation of the
test set to every 3 iterations due to the computational cost of enumerative search.

GPT language models. For experiments in which GPT LLMs perform program search, the bulk
of the computational workload is effectively offloaded to OpenAl’s servers. Locally, the only
requirements are that our machine is able to make API queries, process the results, and run com-
pression. Accordingly, these experiments are run on c5. 2x1arge machines with 8 CPUs each. (For
experiments involving combinations of GPT queries and DreamCoder search, we use the larger
c5.24xlarge machines.) To ensure comparability in solver performance between LLM-based and
enumerative search-based experiments, we also run the LLM experiments with batch_size=96 so
that the learning timelines are aligned.

Our use of Codex for LLM-guided search was strongly motivated by resource considerations: we
accessed Codex through OpenAl’s free beta program for researchers, which saved thousands of
USD over the project lifetime (see Apx. C.6 for a cost analysis) and afforded higher rate limits
than paid GPT models. To preserve reproducibility, we make all Codex generations available at:
github.com/gabegrand/lilo.

Stitch. For compression, we make use of the Stitch Python bindings, which interface with a fast
backend written in Rust (https://stitch-bindings.readthedocs.io/en/stable/). Stitch
exposes various hyperparameters, the most important of which are iterations, which governs the
number of abstractions produced, and max-arity, which governs the maximum number of arguments
that each abstraction can take. For all experiments, we set these to a constant iterations=10 and
max-arity=3. We note that Stitch will only produce an abstraction if it is compressive; i.e., it
appears in multiple programs, and rewriting the corpus in terms of the abstraction reduces the overall
description length. For this reason, in rare cases early on in learning, when only a handful of solved
programs are available, the actual library size can be smaller than iterations. This behavior is
beneficial in that it avoids introducing abstractions that have no utility and that might potentially
negatively affect performance.

A summary of hyperparameters can be found in Apx. B.5. For further implementation details, we
refer to our codebase: github.com/gabegrand/lilo.
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B.5 Hyperparameters

We provide a summary of all key hyperparameters used in each component of LILO.

DreamCoder

Batch size: 96 tasks

Global iterations: 10 (CLEVR, LOGO), 16 (REGEX)

Search timeouts: 600s (CLEVR), 1000s (REGEX), 1800s (LOGO)
Neural recognition model: 10K training steps / iteration

Stitch

Max iterations: 10 (Controls max library size)

Makx arity: 3 (Controls max arity of abstractions)

LiLo: LLM Synthesizer

Prompts per task: 4

Samples per prompt: 4

GPT Model: code-davinci-002
Temperature: 0.90

Max completion tokens 5:  4.0x (Multiplier w/t/t the final prompt program.)
LILO: AutoDoc

Max usage examples: 10

GPT Model: gpt-3.5-turbo-0301 / gpt-4-0314
Top-P: 0.10

Max completion tokens: 256
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C Experiments and Results

C.1 Domain Details

Language-annotated program synthesis domains
REGEX string editing CLEVR scene reasoning LOGO turile graphics

followers > follwowersw

privater = prwivater 8o ‘ *
. ' ¥ L metal

add a w whenever a consonant is

N-sided snowflake with small n-gon as arms
followed by another consonant &

pavings > pavings . . m m m

enterprises > bnterprises ‘* N small pentagons in a row

. . . (%) & o rubber

ifthe word begins with a vowel

replace that with b JJJJ ‘H_,-"F'J II_,J"JJ
There is another thing that is the same color as the

large rubber thing; what is it made of? N-stepped staircase

Figure 7: Overview of domains. We evaluate LILO on three language-annotated program synthesis domains:
string editing with regular expressions, scene reasoning on the CLEVR dataset, and graphics composition in the
2D Logo turtle graphics language.

#Tasks Description length String length

Domain  Train  Test Train Test Train Test

REGEX 491 500 38.95+£26.11 41.03+£27.02 276.47+£179.92 262.74 +172.69
CLEVR 191 103 32.95+15.78 30.82+15.49 361.624182.06 387.44 £184.19
LOGO 200 111 24.65 £8.71 27.79 £8.19 250.98 £ 92.75 287.17 £ 89.65

Table 2: Summary statistics for the domains used in this paper. Description length is the number of terminals,
lambda-abstractions and applications necessary to uniquely describe the ground truth program for each task;
string length is the length of each program in terms of characters. Both are reported as the mean over the entire
dataset plus/minus one standard deviation.

REGEX: String editing. We evaluate on a domain of structured string transformation problems—a
classic task in inductive program synthesis [60]. The dataset, originally introduced in [13], contains
procedurally-generated regular expressions that implement transformations on strings (e.g., if the word
ends with a consonant followed by “s”, replace that with b). Task examples consist of input/output
pairs where the inputs are strings randomly sampled from an English dictionary and the outputs are
the result of applying a particular string transformation. Following prior work [12, 22], the base
DSL in this domain contains functional various programming primitives for string manipulation (map,
fold, cons, car, cdr, length, index) and character constants. Each example comes with a synthetic
language description of the task, which was generated by template based on human annotations [13].

CLEVR: Scene reasoning. We extend our approach to a visual question answering (VQA) task
based on the CLEVR dataset [14]. Following successful efforts in modeling VQA as program
synthesis [71, 72], each synthesis task is specified by a structured input scene and a natural language
question. Outputs can be one of several types, including a number (how many red rubber things
are there?), a boolean value (are there more blue things than green?), or another scene (what if
all of the red things turned blue?). The dataset, designed by [22], uses a modified subset of the
original CLEVR tasks and introduces new task types that require imagining or generating new scenes
(e.g., how many metal things would be left if all the blue cylinders were removed?) that require
learning new abstractions. The base DSL includes functional programming primitives similar to the
regular expression domain, with domain-specific query functions and constants (e.g., get_color(x);
get_shape(x); blue; cube). Input scenes are specified symbolically as scene graphs consisting of
an array of structured objects defined as a dictionary of their attributes, and programs are designed
to manipulate these structured arrays. Synthetic language annotations were generated based on the
original high-level templates in [14] and human annotations were collected by [22].
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LOGO: Turtle graphics. Following in a long tradition of modeling vision as inverse graphics,
[73-81] we evaluate on a domain of compositional drawing problems. The dataset, originally
introduced in [22] and based on a simpler dataset from [12], contains programs that generate shapes
and designs in a vector graphics language. The DSL is based on Logo Turtle graphics [15], which
originated from early symbolic Al research. Program expressions control the movement and direction
of a pen (classically represented as a Turtle) on a canvas and can involve complex symmetries and
recursions (e.g., a seven sided snowflake with a short line and a small triangle as arms; a small
triangle connected by a big space from a small circle). The base DSL includes for loops, a stack
for saving/restoring the pen state, and arithmetic on angles and distances [12]. Synthetic language
annotations were generated with high-level templates over the objects and relations in each task;
human annotations were collected by [22].
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C.2 Learned Libraries and Graphical Maps

We generated graphical visualizations of the libraries learned by the best LILO model for each domain.
Each graph includes the DSL primitives, the learned and named abstractions, and a random sample
of 3 solved tasks that invoke each abstraction. Arrows indicate direction of reference; i.e., fn_1 ->
fn_2 indicates that fn_1 invokes fn_2, and analogously for the tasks.
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C.2.1 Library for REGEX

REGEX Library

if the word starts with vowel replace that with j |

if the word starts with vowel replace that with | a if there is any letter add I before that

Primitives
o
regex_car

regex_not
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regex_cdr

regex_cons

if the word starts with vowel add p before that

B i the word starts with any letter replace that with w i

regex_split
.
o
regex_append

regex_reverse_cdr

if there is any letter add v after that

a
I’

regex_tail
o
o ~ P if there is vowel add i after that

regex_flatten

if there is ¢ add e after that

v
regex_if
QR i (hcre is n add e after that
iy

S fthere is consonant add s after that

if there i r add b before that

regex_match

regex_map
enpty_string

regex_concat

if the word starts with consonant replace that with i q

if there is i replace that with k t
if there is d replace that with y

ifthere is s replace that with t q

Figure 8: Graphical map of REGEX library learned by LILO. Named abstractions (turquoise) are hierarchi-
cally composed of other abstractions and ground out in the base DSL primitives (gray box).



(fn_42) vowel_regex :: tsubstr

(regex_or 'a' (regex_or 'e' (regex_or 'i' (regex_or 'o' 'u'))))

{- Regular expression that matches any vowel ('a', 'e', 'i', 'o', 'u'). Used in various
functions to identify and modify words based on vowel presence and position. -}

{- Example usages -}

--if there is consonant add s after that

(A (replace_substring_if_match 's' (regex_not vowel_regex) $0))

--if the word starts with vowel replace that with j 1

(A (regex_if (regex_match (regex_not vowel_regex) (regex_car (split_fullstring $0))) $0
(replace_first_occurrence $0 '1' 'j')))

--if the word starts with vowel replace that with u c

(A (replace_if_match_substring $0 (replace_first_occurrence $0 'c' 'u') vowel_regex))

(fn_43) replace_substr :: tfullstr -> tsubstr -> tsubstr -> tfullstr

(A (A (X (regex_flatten (regex_map (A (regex_if (regex_match $1 $0) $2 $0))
(regex_split empty_string $2))))))

{- Replaces all instances of a given substring $1 in a full string $@ with another
substring $2. The substrings are separated by empty spaces. -}

{- Example usages -}

--if there is d replace that with y

(A (replace_substr $0 'y' 'd'))

--if there is i replace that with k t

(A (replace_substr $0 (regex_concat 'k' 't') 'i'))
--if there is s replace that with t g

(A (replace_substr $0 (regex_concat 't' 'q') 's'))

(fn_44) replace_first_occurrence :: tfullstr -> tsubstr -> tsubstr -> tfullstr
(A (A (X (regex_flatten (regex_cons $0 (regex_cons $1 (regex_cdr (regex_split
$2)))000))

{- Replaces the first occurrence of a substring $1 in a full string $0 with another
substring $2. The substrings are separated by periods. -}

{- Example usages -}

--if the word starts with vowel replace that with q b

(A (replace_if_match_substring $0 (replace_first_occurrence $0 'b' 'q') vowel_regex))
--if the word starts with consonant replace that with i

(A (replace_first_occurrence $0 empty_string 'i'))

--if the word starts with vowel replace that with 1 a

(A (regex_if (regex_match (regex_not vowel_regex) (regex_car (split_fullstring $0))) $0
(replace_first_occurrence $0 'a' '1')))

(fn_45) replace_each_substring :: tfullstr -> (tsubstr -> tsubstr) -> tfullstr

(A (X (regex_flatten (regex_map $0 (regex_split '.' $1)))))

{- Replaces each substring separated by periods in a given full string with a new
substring. The new substring can be manipulated with a A function that takes each
substring as input. -}

{- Example usages -}

--if there is t replace that with a x

(A (replace_each_substring $0 (A (regex_if (regex_match 't' $0) (regex_concat 'a' 'x')
$0))))

--if there is vowel replace that with a f

(A (replace_each_substring $0 (A (regex_if (regex_match vowel_regex $0) (regex_concat
at 'f') $0))))

--if there is c replace that with k b

(A (replace_each_substring $0 (A (regex_if (regex_match 'c' $0) (regex_concat 'k' 'b')
$0))))

(fn_46) replace_if_match_substring :: tfullstr -> tfullstr -> tsubstr -> tfullstr

(A (N (X (regex_if (regex_match $0 (regex_car (regex_split '.' $2))) $1 $2))))

{- Replaces a given substring $2 in a full string $0 with another substring $1 if the
beginning of the string matches the target substring. All substrings are separated by
periods. -}
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{- Example usages -}

--if the word starts with vowel add p before that

(A (replace_if_match_substring $0 (regex_flatten (regex_cons 'p' (split_fullstring
$0))) vowel_regex))

--if the word starts with consonant any letter replace that with f

(A (replace_if_match_substring $0 (regex_flatten (regex_cons 'f' (regex_cdr (regex_cdr
(split_fullstring $0))))) (regex_not vowel_regex)))

--if the word starts with vowel any letter replace that with w

(A (replace_if_match_substring $0 (regex_flatten (regex_cons 'w' (regex_cdr (regex_cdr
(split_fullstring $0))))) vowel_regex))

(fn_47) add_new_substring_if_match :: tsubstr -> tsubstr -> tfullstr -> tfullstr

(A (A (X (replace_each_substring $0 (A (regex_if (regex_match $2 $0) (regex_concat $3
$0) $0))))))

{- Replaces each substring separated by periods in a given full string with a new
substring, if a specified substring is found. The new substring can be manipulated with
a A function that takes each substring as input. -}

{- Example usages -}

--if there is g add w before that

(A (add_new_substring_if_match 'w' 'g' $0))
--if there is any letter add 1 before that
(A (add_new_substring_if_match '1' '.' $0))
--if there is r add b before that

(A (add_new_substring_if_match 'b' 'r' $0))

(fn_48) append_reverse_cdr :: tfullstr -> tsubstr -> tfullstr

(A (X (regex_flatten (regex_append $0 (regex_reverse_cdr (regex_split '.' $1))))))
{- Appends a new substring to the end of the given full string and reverses the order
of all substrings except for the last one (which is removed). -}

{- Example usages -}

--if the word ends with consonant replace that with o g

(A (append_reverse_cdr $0 (regex_concat 'o' 'g')))

--if the word ends with consonant replace that with n a

(A (regex_if (regex_match 'e' (regex_tail (split_fullstring $0))) $0
(append_reverse_cdr $0 (regex_concat 'n' 'a'))))

--if the word ends with any letter replace that with o j

(A (append_reverse_cdr $0 (regex_concat 'o' 'j')))

(fn_49) replace_substring_if_match :: tsubstr -> tsubstr -> tfullstr -> tfullstr

(A (A (X (replace_each_substring $0 (A (regex_if (regex_match $2 $0) (regex_concat $0
$3) $0)))))

{- Replaces each substring separated by periods in a given full string with a new
substring, if a specified substring is found, using a A function that takes the current
substring as input and replaces it with a new substring based on a condition. -}

{- Example usages -}
--if there is vowel add i after that

(A (replace_substring_if_match 'i' vowel_regex $0))
--if there is c add e after that
(A (replace_substring_if_match '
--if there is n add e after that
(A (replace_substring_if_match '

e' 'c' $0))
e' 'n' $0))

(fn_50) split_fullstring :: tfullstr -> list(tsubstr)
(A (regex_split '.' $0))
{- Splits a given full string into a list of substrings separated by periods. -}

{- Example usages -}

--if the word ends with any letter any letter add f after that

(A (regex_flatten (regex_append (regex_concat 'f' empty_string) (split_fullstring
$0))))
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--if the word starts with any letter replace that with w i

(A (regex_flatten (regex_cons (regex_concat 'w' 'i') (regex_cdr (split_fullstring
$0)))))

--if there is any letter add v after that

(A (replace_each_substring $0 (A (regex_tail (regex_map (A (regex_concat $1 'v'))
(split_fullstring $1))))))

(fn_51) replace_consonant_with_substring :: tsubstr -> tsubstr -> tfullstr -> tfullstr
(A (A (X (replace_if_match_substring $0 (replace_first_occurrence $0 $1 $2) (regex_not
vowel_regex)))))

{- Replaces the first occurrence of a consonant at the beginning of a given full string
with a specified substring. The target substring can also be modified before
replacement using another specified substring. -}

{- Example usages -}

--if the word starts with consonant replace that with i q
(A (replace_consonant_with_substring 'i' 'q' $0))

--if the word starts with consonant replace that with g d
(A (replace_consonant_with_substring 'g' 'd' $0))

--if the word starts with consonant replace that with p b
(A (replace_consonant_with_substring 'p' 'b' $0))
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C.2.2 Library for CLEVR

Primitives
clevr_relate
clevr_purple
clevr_behind
clevr_green
clevr_right

clevr_red
clevr_blue
clevr_union
clevr_small
clevr_difference
clevr_car
clevr_query_size
clevr_query_color
clevr_gt?
clevr_1t?
clevr_cyan
clevr_gray
clevr_metal
clevr_large
clevr_eq_size
clevr_count
clevr_eq_color
clevr_fold
clevr_empty
clevr_add
clevr_cylinder
clevr_query_shape
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clevr_map
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clevr_eq_shape
clevr_eq_material
clevr_guery_material
clevr_cube
clevr_rubber
clevr_left
clevr_brown
clevr_front
clevr_intersect
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1

9
clevr_sphere
clevr_transforn_color
clevr_transform_material
clevr_transform_size

clevr_transforn_shape

Figure 9: Graphical map of CLEVR library learned by LILO. Named abstractions (turquoise) are hierarchi-

CLEVR Library

what color i the small metal thing behind the small purple metal thing
how many thing s are red thing s or large green thing s

there is a metal cylinder right the small purple metal thing what is its size
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S i1 the small red thing
N .t rumber of small objects are either blue metal thing s or rubber thing s

& find the small metal cylinder
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ifyou removed the cylinder s how many large thing

find the large metal sphere
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I i you removed the biue thing s how many sphere s would be left

what number of cylinder s are either large rubber thing s or small blue rubber thing s

what s the thing that s front the brown thing made of

cally composed of other abstractions and ground out in the base DSL primitives (gray box).
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(fn_54) filter_by_size :: tclevrsize -> list(tclevrobject) -> list(tclevrobject)

(A (X (clevr_fold $0 $0 (A (A (clevr_map (A (clevr_if (clevr_eq_size (clevr_query_size
$0) $4) $0 $2)) $0))))))

{- Returns a list of objects in the input list that have the specified size. -}

(fn_55) filter_by_color :: tclevrcolor -> list(tclevrobject) -> list(tclevrobject)
(A (X (clevr_fold $0 clevr_empty (A (A (clevr_if (clevr_eq_color (clevr_query_color
$1) $3) (clevr_add $1 $0) $0))))))

{- Returns a list of objects in the input list that have the specified color. -}

{- Example usages -}

--what color is the small metal thing behind the small purple metal thing

(X (clevr_query_color (clevr_car (filter_objects_by_material
(filter_objects_by_small_size (clevr_relate (clevr_car (filter_by_color clevr_purple
(filter_objects_by_material (filter_objects_by_small_size $0)))) clevr_behind $0))))))
--what is the size of the gray thing

(X (clevr_query_size (clevr_car (filter_by_color clevr_gray $0))))

--how many thing s are red thing s or large green thing s

(A (clevr_count (clevr_union (filter_by_color clevr_red $0)
(filter_large_objects_by_size (filter_by_color clevr_green $0)))))

(fn_56) filter_by_material :: tclevrmaterial -> list(tclevrobject) ->
list(tclevrobject)

(A (X (clevr_fold $0 clevr_empty (A (A (clevr_if (clevr_eq_material
(clevr_query_material $1) $3) (clevr_add $1 $0) $0))))))

{- Returns a list of objects in the input list that have the specified material. -}

(fn_57) filter_objects_by_shape :: tclevrshape -> list(tclevrobject) ->
list(tclevrobject)

(A (X (clevr_fold $0 clevr_empty (A (A (clevr_if (clevr_eq_shape (clevr_query_shape
$1) $3) (clevr_add $1 $0) $0))))))

{- Filters a list of objects to include only those with the specified shape. -}

{- Example usages -}

--find the cube s

(A (filter_objects_by_shape clevr_cube $0))

--find the rubber cube

(A (filter_objects_by_rubber_material (filter_objects_by_shape clevr_cube $0)))
--if you removed the cylinder s how many large thing s would be left

(A (clevr_count (clevr_difference (filter_large_objects_by_size $0)
(filter_objects_by_shape clevr_cylinder $0))))

(fn_58) filter_objects_by_color :: tclevrcolor -> list(tclevrobject) ->
list(tclevrobject)

(A (X (clevr_fold $0 $0 (A (A (clevr_map (A (clevr_if (clevr_eg_color
(clevr_query_color $0) $4) $0 $2)) $0))))))

{- Returns a list of objects in the input list that have the specified color. -}

{- Example usages -}

--find the gray rubber thing

(A (filter_objects_by_rubber_material (filter_objects_by_color clevr_gray $0)))

--what is the thing that is front the brown thing made of

(A (clevr_query_material (clevr_car (clevr_relate (clevr_car (filter_objects_by_color
clevr_brown $0)) clevr_front $0))))

--what number of small objects are either metal cube s or red rubber thing s

(A (clevr_count (filter_objects_by_small_size (clevr_union (filter_objects_by_material
(filter_objects_by_shape clevr_cube $0)) (filter_objects_by_rubber_material
(filter_objects_by_color clevr_red $0))))))

(fn_59) filter_objects_by_small_size :: list(tclevrobject) -> list(tclevrobject)
(A (filter_by_size clevr_small $0))
{- Returns a list of objects in the input list that are small in size. -}

{- Example usages -}
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--find the small red thing

(A (filter_objects_by_small_size (filter_objects_by_color clevr_red $0)))
--find the small thing s

(A (filter_objects_by_small_size $0))

--what number of small objects are either blue metal thing s or rubber thing s
(A (clevr_count (filter_objects_by_small_size (clevr_union
(filter_objects_by_rubber_material $0) (filter_objects_by_material
(filter_objects_by_color clevr_blue $0))))))

(fn_60) filter_objects_by_material :: list(tclevrobject) -> list(tclevrobject)
(A (filter_by_material clevr_metal $0))
{- Returns a list of objects in the input list that have the specified material. -}

{- Example usages -}

--there is a metal cylinder right the small purple metal thing what is its size

(A (clevr_if (clevr_eq_shape clevr_cube (clevr_query_shape (clevr_car (clevr_relate
(clevr_car (clevr_union $0 (filter_objects_by_material $0))) clevr_right $0))))
clevr_small clevr_large))

--what if you removed all of the blue metal thing s

(A (clevr_difference $0 (filter_objects_by_color clevr_blue (filter_objects_by_material
$0))))

--find the small metal cylinder

(A (filter_objects_by_small_size (filter_objects_by_material (filter_objects_by_shape
clevr_cylinder $0))))

(fn_61) count_remaining_objects_by_color_and_shape :: list(tclevrobject) -> tclevrcolor
-> tclevrshape -> int

(A (A (A (clevr_count (clevr_difference (filter_objects_by_shape $0 $2)
(filter_objects_by_color $1 $2))))))

{- Counts the number of objects that remain after removing objects of a specified color
and shape from the input list of objects. -}

{- Example usages -}

--if you removed the brown thing s how many sphere s would be left

(A (count_remaining_objects_by_color_and_shape $0 clevr_brown clevr_sphere))
--if you removed the red cube s how many cube s would be left

(A (count_remaining_objects_by_color_and_shape $0 clevr_red clevr_cube))

--if you removed the cyan cylinder s how many cylinder s would be left

(A (count_remaining_objects_by_color_and_shape $0 clevr_cyan clevr_cylinder))

(fn_62) filter_objects_by_rubber_material :: list(tclevrobject) -> list(tclevrobject)
(A (filter_by_material clevr_rubber $0))
{- Returns a list of objects in the input list that have rubber as their material. -}

{- Example usages -}

--what number of sphere s are small cyan metal thing s or small rubber thing s

(A (clevr_count (clevr_union (filter_objects_by_material (filter_objects_by_small_size
(filter_by_color clevr_cyan (filter_objects_by_shape clevr_sphere $0))))
(filter_objects_by_rubber_material (filter_objects_by_small_size
(filter_objects_by_shape clevr_sphere $0))))))

--what number of rubber objects are purple thing s or cylinder s

(A (clevr_count (filter_objects_by_rubber_material (clevr_union
(filter_objects_by_shape clevr_cylinder $0) (filter_objects_by_color clevr_purple
$0)))))

--what number of cylinder s are either large rubber thing s or small blue rubber thing s
(A (clevr_count (clevr_intersect (filter_objects_by_rubber_material $0)
(filter_objects_by_shape clevr_cylinder $0))))

(fn_63) filter_large_objects_by_size :: list(tclevrobject) -> list(tclevrobject)
(A (filter_by_size clevr_large $0))
{- Returns a list of objects in the input list that are large in size. -}

{- Example usages -}
--find the large metal sphere
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(A (filter_large_objects_by_size (filter_objects_by_material (filter_objects_by_shape
clevr_sphere $0))))

--there is a large thing front the small metal cube what is its shape

(A (clevr_query_shape (clevr_car (filter_large_objects_by_size (clevr_relate (clevr_car
(filter_objects_by_small_size (filter_objects_by_material (filter_objects_by_shape
clevr_cube $0)))) clevr_front $0)))))

--what number of cylinder s are either large rubber thing s or small blue rubber thing s
(A (clevr_count (filter_objects_by_shape clevr_cylinder (clevr_union
(filter_objects_by_rubber_material (filter_large_objects_by_size $0))
(filter_objects_by_small_size (filter_by_color clevr_blue
(filter_objects_by_rubber_material $0)))))))
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C.2.3 Library for LOGO

LOGO Library
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Figure 10: Graphical map of LOGO library learned by LILO. Named abstractions (turquoise) are hierarchi-
cally composed of other abstractions and ground out in the base DSL primitives (gray box).
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(fn_27) turtle_loop_move_rotate :: turtle -> int -> tlength -> turtle

(A (A (A (logo_for_loop $1 (A (A (logo_move_pen_forward_rotate $2 (logo_divide_angle
logo_unit_angle $3) $0))) $2))))

{- Repeatedly move the turtle forward and rotate it by a specified angle, creating a
loop of a specific number of sides with a given line length. -}

{- Example usages -}

--a small square

(A (turtle_loop_move_rotate $0 4 logo_unit_line))
--a small 7 gon

(A (turtle_loop_move_rotate $0 7 logo_unit_line))
--a short line

(A (turtle_loop_move_rotate $0 1 logo_unit_line))

(fn_28) turtle_staircase :: turtle -> int -> turtle

(A (A (logo_for_loop $0 (A (A (logo_move_pen_forward_rotate logo_unit_line
(logo_divide_angle logo_unit_angle 4) (logo_move_pen_forward_rotate logo_unit_line
(logo_subtract_angles logo_unit_angle (logo_divide_angle logo_unit_angle 4)) $0))))
$12))

{- Creates a staircase pattern by repeatedly moving the turtle forward and rotating it
at a specific angle. The number of steps in the staircase is determined by the function
argument. -3}

{- Example usages -}

--a 4 stepped staircase

(A (turtle_staircase $0 4))
--a 7 stepped staircase

(A (turtle_staircase $0 7))
--a 4 stepped staircase

(A (turtle_staircase $0 4))

(fn_29) turtle_loop_draw_pentagon_spiral :: turtle -> int -> turtle

(A (A (logo_for_loop $0 (A (A (logo_move_pen_forward_rotate logo_zero_line
(logo_multiply_angle logo_epsilon_angle 8) (logo_for_loop 9 (A (A
(logo_move_pen_forward_rotate logo_unit_line (logo_multiply_angle logo_epsilon_angle 8)
$0))) $0)))) $1)))

{- Creates a spiral of pentagons by repeatedly drawing a pentagon and incrementing the
angle of each side on each iteration. The number of pentagons in the spiral is
determined by the function argument. -}

{- Example usages -}

--4 small 5 gon s in a row

(A (turtle_loop_draw_pentagon_spiral $0 4))
--3 small 5 gon s in a row

(A (turtle_loop_draw_pentagon_spiral $0 3))
--6 small 5 gon s in a row

(A (turtle_loop_draw_pentagon_spiral $0 6))

(fn_30) turtle_square_row :: turtle -> int -> turtle

(A (A (logo_for_loop $0 (A (A (logo_move_pen_forward_rotate logo_zero_line
(logo_divide_angle logo_unit_angle 4) (logo_for_loop 7 (A (A
(logo_move_pen_forward_rotate logo_unit_line (logo_divide_angle logo_unit_angle 4)
$0))) $0)))) $1)))

{- Draws a row of small squares using repeated forward motion and rotation. The number
of squares in the row is determined by the function argument. -}

{- Example usages -}

--4 small square s in a row
(A (turtle_square_row $0 4))
--6 small square s in a row
(A (turtle_square_row $0 6))
--5 small square s in a row
(A (turtle_square_row $0 5))
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(fn_31) turtle_snowflake_with_arms :: turtle -> int -> int -> turtle

(A (A (A (logo_for_loop $0 (A (A (turtle_loop_move_rotate
(logo_move_pen_forward_rotate logo_zero_line (logo_divide_angle logo_unit_angle $2) $0)
$3 (logo_multiply_line logo_unit_line 2)))) $2))))

{- Draws a snowflake shape with given number of arms, each made up of a line of specified
length that is rotated at a specific angle. The angle by which the lines are rotated
increases with each iteration of the loop, creating an intricate snowflake pattern. -}

{- Example usages -}

--7 sided snowflake with a medium 5 gon as arms

(A (turtle_snowflake_with_arms $0 5 7))

--6 sided snowflake with a medium triangle as arms
(A (turtle_snowflake_with_arms $0 3 6))

--7 sided snowflake with a medium triangle as arms
(A (turtle_snowflake_with_arms $0 3 7))

(fn_32) turtle_small_line_circle :: turtle -> int -> turtle

(A (A (logo_for_loop logo_IFTY (A (A (logo_move_pen_forward_rotate (logo_multiply_line
logo_epsilon_line $2) logo_epsilon_angle $0))) $1)))

{- Moves the turtle forward and rotates it repeatedly to draw a small circle with a
given line length. The number of iterations is determined by the function argument. -}

{- Example usages -}

--a small circle

(A (logo_for_loop 7 (A (A (turtle_small_line_circle $0 1))) $0))
--a big semicircle

(A (turtle_small_line_circle $0 5))

--a big circle

(A (logo_for_loop 7 (A (A (turtle_small_line_circle $0 5))) $0))

(fn_33) snowflake_with_rotating_arms :: turtle -> int -> int -> turtle

(A (A (A (logo_for_loop $0 (A (A (turtle_loop_move_rotate
(logo_move_pen_forward_rotate logo_zero_line (logo_divide_angle logo_unit_angle $2) $0)
$3 logo_unit_line))) $2))))

{- Draws a snowflake shape with given number of arms, each made up of a line of specified
length that is rotated at a specific angle. The angle by which the lines are rotated
increases with each iteration of the loop, creating an intricate snowflake pattern. -}

{- Example usages -}

--7 sided snowflake with a small 9 gon as arms

(A (snowflake_with_rotating_arms $0 9 7))

--6 sided snowflake with a small 7 gon as arms

(A (snowflake_with_rotating_arms $0 7 6))

--8 sided snowflake with a small triangle as arms
(A (snowflake_with_rotating_arms $0 3 8))

(fn_34) double_length_loop_move_rotate :: int -> turtle -> turtle

(A (M (turtle_loop_move_rotate $0 $1 (logo_multiply_line logo_unit_line 2))))

{- Moves and rotates the turtle in a loop, with each iteration doubling the length of
the turtle's movement. -}

{- Example usages -}

--a medium 5 gon

(A (double_length_loop_move_rotate 5 $0))
--a medium triangle

(A (double_length_loop_move_rotate 3 $0))
--a medium 8 gon

(A (double_length_loop_move_rotate 8 $0))

(fn_35) turtle_draw_short_lines :: turtle -> int -> turtle

(A (A (logo_for_loop $0 (A (A (logo_move_pen_forward_rotate logo_unit_line
logo_unit_angle $0))) $1)))

{- Draws a specified number of short lines in a row using repeated forward motion and
rotation. -}
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{- Example usages -}

--5 short line s in a row

(A (turtle_draw_short_lines $0 5))
--4 short line s in a row

(A (turtle_draw_short_lines $0 4))
--3 short line s in a row

(A (turtle_draw_short_lines $0 3))

(fn_36) pen_forward_rotate_move_pen_forward_rotate :: turtle -> int -> tlength -> turtle
(A (A (A (logo_move_pen_forward_rotate $0 (logo_divide_angle logo_unit_angle $1)
(logo_move_pen_forward_rotate logo_unit_line (logo_divide_angle logo_unit_angle 2)
$2)))))

{- Moves the turtle forward and rotates it at a given angle. Then moves the turtle
forward again and rotates it at half the angle, creating a pivot point for the turtle
to change direction. The distance the turtle moves each time is determined by a given
length parameter. -}

{- Example usages -}

--a vertical short line

(A (pen_forward_rotate_move_pen_forward_rotate $0 4 logo_zero_line))

--a short line

(A (pen_forward_rotate_move_pen_forward_rotate $0 2 logo_unit_line))

--6 sided snowflake with a short line as arms

(A (logo_for_loop 7 (A (A (pen_forward_rotate_move_pen_forward_rotate $0 3
logo_unit_line))) $0))
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C.3 Benchmark Comparison to Prior Work

Language Model Strings (nges = 500) Graphics (nyeq = 111) Scenes (ngeq = 115)

% Solved % Solved (Best) % Solved (Mean) % Solved (Curric.) % Solved (Mean.)
Synth train/test DreamCoder (no language) 334 49.55 42. 64 67.80 73.9
Synth train/test Multimodal (no generative translation model) 46.00 26.12 23.20 76.50 49.5
Synth train/test LAPS in neural search 52.20 92.79 52.93 95.6 88.1
Synth train/test LAPS + mutual exclusivity 57.00 86.49 80.18 96.5 823
Synth train/test LAPS + ME + language-program compression 54.60 98.19 81.98 95.6 95.9
Synth train/human test LAPS + ME + language-program compression 54.60 89.20 - 97.4 -
Human train/human test LAPS + ME + language-program compression 48.60 58.55 - 95.6 -
No language at test
No language on train/test Original DSL; Enumerative 0.06 0.00 - 27.8 -
No language on train/test DreamCoder (best library): Enumerative 27.2 41.44 - 53.6 -
No lang at test LAPS (best library): Enumerative 332 62.16 - 93.04 -
No lang at test LAPS (best library): example-only neural synthesis 524 91.0 - 95.6 -

Table 3: Percent held-out test-tasks solved for LAPS. Best reports the best model across replications; Mean
averages across replications. (Reproduced from Wong et al. [22].)

DreamCoder ﬂ“}’ language) Multimodal (no generative) LAPS in neural search LAPS + mutual exclusivity LAPS + ME + lgng. jcgmpygsion
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# Learning Iterations (0 — 27)

% Solved (0 - 100%)

Figure 11: Learning curves comparing baselines and LAPS models in Table 3, showing % heldout tasks solved
on the graphics domain over random training task orderings. (Reproduced from 22.)

Our results from §3 are directly comparable to those from Wong et al. [22]. The primary results from
that work are reproduced in Tab. 3, where Strings corresponds to REGEX, Graphics corresponds
to LOGO, and Scenes corresponds to CLEVR. The DreamCoder baseline from our work, which
uses the language-conditioned recognition model from [22], is comparable to the “LAPS in neural
search” condition in Tab. 3, with the key difference being that we do not use the IBM translation
model component. (We also run on larger batch sizes to take full advantage of the available CPU
parallelism on our cloud hardware.)

On REGEX (Strings), with the use of LLMs for search, our LLM Solver and L1LO conditions perform
significantly better (93.20 best vs. 57.00 best) than this prior work, even without explicitly computing
language/program alignment via a translation model. On CLEVR (Scenes), our models perform
comparably to LAPS: the DreamCoder baseline already solves almost all of the tasks in the test set
(97.09 best), and LI1LO brings the best solve rate up to 99.03.

Finally, on LOGO (Graphics), our models generally underperform with respect to the results reported
in LAPS (73.87 LILO best vs. 92.79 LAPS best). It is worth noting that the best run from LAPS on
this domain appears to be an outlier (see Fig. 11, LAPS in neural search), so a comparison of average
results (48.95 LILO mean vs. 52.93 LAPS mean) may be more appropriate. Moreover, even matching
the 1800s search time, we were unable to obtain a DreamCoder run that matches their equivalent
LAPS baseline on this domain (28.53 DreamCoder (ours) vs. 42.64 DreamCoder (LAPS)). This
finding suggests that the LOGO domain is particularly well-suited to the token-to-token assumptions
made by the IBM translation model from [22]. It is also worth noting that only the DreamCoder and
L1L0 conditions, which train a CNN-guided neural recognition model as part of enumerative search,
have the ability to condition on the LOGO drawings. In particular, the conditions that rely exclusively
on LLM-guided search must infer what to draw solely based on the task descriptions; an exceedingly
difficult generalization task.
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C.4 Experiments with Human Language Descriptions

Each of our domains provides a default set of language task descriptions that were generated
synchronously with the ground truth program(s) for each task. Following [22], we use these synthetic
language annotations for our primary experiments, as these descriptions correspond closely and
systematically to the target programs. To test generalization to real-world applications, we also
evaluated our methods on human language annotations sourced from Mechanical Turk. These were
collected by [22], with the exception of the REGEX domain, for which the annotations were sourced
from the original [13].

We ran experiments with a key subset of model conditions to compare performance on human
vs. synthetic language. Fig. 12 and Tab. 4 summarize the results from these experiments. In
general, synthesis performance with human language is upper-bounded by performance with synthetic
language. This is expected, as the human language contains a wide range of lexical and syntactic
variations. For instance, for an individual LOGO task involving drawing a snowflake, human
annotations range from 3 sided snowflake with arms that are lines with a semi circle at the end” to “3
candy cane shapes with spaces in them,” with one annotator simply stating, “boomerang.” Compared
to the more templated synthetic language, the broad variation present in the human annotations makes
it more difficult to infer a mapping between the language and target programs.

Our experiments reveal that both search and library learning appear to be important to achieving
robust performance on human language. DreamCoder achieves remarkably consistent performance
between the two language types. In contrast, the LLM Solver baseline degrades markedly on CLEVR
and LOGO with human descriptions. We see that adding search [LLM Solver (+ Search)] helps to
mitigate this gap. Introducing the full library learning pipeline [LI1LO] further improves robustness to
human language, while achieving better overall performance than DreamCoder.
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Figure 12: Learning curves illustrating performance of select models on human vs. synthetic language annota-
tions.
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SYNTHETIC LANGUAGE - TASKS SOLVED (%)

REGEX CLEVR LOGO
MODEL max mean std  max mean std  max mean std
DreamCoder 45.60  43.93 1.53 97.09 94.50 2.44 36.94 2853 13.79
LLM Solver 90.00 76.13 12.04 90.29 88.67 1.48 41.44 32.13 8.07
LLM Solver (+ Searchy 91.20  76.60 13.02 97.09 96.44 0.56 45.05 37.84 6.80
LiLo 93.20 77.07 14.14 99.03 96.76 3.12 73.87 48.95 22.15
HUMAN LANGUAGE - TASKS SOLVED (%)
DreamCoder 49.40  46.20 4.39 95.15 9450 0.56 34.23 25.23 7.85
LLM Solver 68.60 68.00 0.60 66.02 63.11 4.23 8.11 8.11 —
LLM Solver (+ Search)  71.60 71.53 0.12 94.17 93.20 0.97 20.72 16.82 3.64
LiLo 71.40  70.60 0.92 99.03 94.82 3.92 39.64 30.03 9.07

Table 4: Solution rates of select models on human vs. synthetic language annotations.
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C.5 Task-Example Selection Methods

Our LLM-guided program synthesis method (Eq. 4) requires selecting a set of few-shot examples
for prompting. As the set of solved tasks grows, the set of possible examples exceeds the size of the
LLM context window. This issue particularly affects non-compressive methods, such as the LLM
Solver baseline. However, even with program compression—which substantially reduces the length
of the program examples—LILO still requires subsampling from the total set of possible examples.

We experimented with two different methods for task example selection: a naive random sampling
method and a task-example selection method [82] based on cosine similarity between the task

descriptions of the example d, and the target dy:

score(dy, d;) = M
B PATTPAT

In our implementation, we used embeddings from text-embedding-ada-002 via the OpenAl API
to pre-compute pairwise similarities between all task descriptions in each domain. For both selection
methods, we construct the prompt dynamically to fit as many examples as possible.

We ran a head-to-head comparison between the two sampling methods for our main LILO model. As
Fig. 13 and Tab. 5 show, we did not observe a significant improvement from the cosine similarity
example selection method, though introducing determinism did have the effect of reducing the
variance across runs in the REGEX domain. In absence of evidence justifying additional methods
complexity, we chose to use random sampling for the results reported in §3.

It is possible that the use of compression in LILO reduces the need for targeted example selection,
since we are able to fit approx. 20-40 examples per prompt across all domains. We also noted a
tendency for the cosine similarity sampling to be oversensitive to superficial lexical overlap in the
task descriptions; e.g., two tasks might involve very different programs but both include the word
“six” as an argument, resulting in high cosine similarity. Thus, methods that explicitly finetune a
model to infer similarity between (observed) example and (unobserved) target programs (i.e., Target
Similarity Tuning from 83) could offer clearer performance advantages.
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Figure 13: Head-to-head comparison between task example selection methods for the main LILO model.

TASKS SOLVED (%)
REGEX CLEVR LOGO

MODEL max  mean std maxr  mean std  max mean std

LiLo (Random) 93.20 77.07 14.14 99.03 96.76 3.12 73.87 4895 22.15
LiLo (Similarity) 72.60  71.33 1.10 100.00 97.41 224 79.28 53.15 22.67

Table 5: Final performance of task example selection methods for the main LILO model.
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C.6 Computational Efficiency Analysis

Given that program search is the most computationally expensive component of synthesis, we would
like to be able to quantify and compare the compute costs of LLM-based and enumerative search.
However, performing an apples-to-apples comparison is non-trivial because the source of these costs is
different between the two cases. As discussed in Apx. B.4, enumerative search requires a high degree
of CPU parallelism, so the primary cost associated with running DreamCoder in our experiments is
the on-demand CPU-hour cost of renting suitably large machines from AWS. In contrast, LLM search
is GPU-intensive, and (in our implementation) is performed on external servers for which we do not
have access to exact specifications or cost metrics. In practice, “LLM-as-a-service” models, such as
OpenATI’s API, charge a fixed price per text token, so the primary costs of LILO-style program search
arise from the number of LLM queries, the length of the prompts, and the desired completion length.

In this section, we compare the computational efficiency of the two search approaches across three
fronts. First, we consider wall clock time, which—in addition to being an informative metric in its
own right—also allows us to compute a cost basis for enumerative search. Next, we consider token
usage, which allows us to compute a cost basis for LLM search methods. These analysis culminate
in a dollar-to-dollar comparison that, while dependent on pricing schemes of third-parties and the
markets more generally, nevertheless offers the closest means of direct comparison.
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Figure 14: Comparison of wall clock runtimes across search procedures and domains. Each bar shows
average runtime for a single iteration of train/test program search (error bars indicate 95% confidence intervals).
Even with network latency from interfacing with OpenAl servers, LLM search (top row), typically requires less
execution time than enumerative search (bottom row), which runs locally on a 96-CPU machine.

We start by analyzing observed (a.k.a. “wall clock’) runtimes of our different models. Fig. 14 breaks
these down by domain, where the x-axis corresponds to the average time to perform a single search
iteration during training and test.” Overall, we observe that even with network latency from interfacing
with OpenAl servers, a round of LLM search typically runs more quickly than an equivalent round of
enumerative search. This difference is especially pronounced on LOGO, which requires longer search
times (the enumeration budget for the DreamCoder baseline is set on a per-domain basis using the
timeouts from [22]; see Apx. B.4 for more details). We do not observe major differences in runtimes
within the different LLM Search conditions, though it is worth noting that the L1LO and LLM Solver
(+ Search) conditions require approximately 2x more total runtime than the other models because they
perform both LLM-based and enumerative search on each iteration.

Note that in Fig. 14, despite appearances, for a given model on a given domain, the per-task search times
between train and test splits are approximately equal. Any apparent within-condition discrepancies between
train and test are due to the fact that during training, we search on minibatches of 96 tasks, whereas during test,
we search on the entire test set. Thus, for domains where the number of tasks is many multiples of the batch size
(e.g., REGEX), there is a larger discrepancy betweeen train and test search times.
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GPT tokens between the prompt and the completion. (Note the y-axis measures millions of tokens.) Boxes
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individual points.

Next, we consider the token usage of the LLM solver conditions. Fig. 15 breaks these down by
domain and model. A typical training iteration uses on the order of 0.8M-1.2M GPT tokens between
the prompt and the completion. For completeness, all models are shown separately, but we do not note
any clear trends in token usage by model; all models empirically use similar token counts. This may
be because token usage is influenced by a complex interplay of several factors. Better-performing
models will require fewer queries per task to discover a solution, so they should use fewer tokens. (In
practice, however, we cap Nprompts_per_task = 4, and all conditions must make at least one query per
task, so the number of queries is bounded fairly tightly.) Models that use Stitch for compression (i.e.,
everything except the LLM Solver models) will also tend to benefit from shorter program description
lengths per task. In particular, the LILO (¢< Search / AutoDoc) condition, which uses anonymous function
names (e.g., fn_42), tends to use the fewest tokens per task. However, because we “pack the prompt”
with as many examples as can fit, per-task description length does not directly influence token usage;
though, as we discuss throughout, too much compression could affect token usage indirectly by
obfuscating program semantics, therefore making the LLM solver require more queries to solve new
tasks.

REGEX CLEVR LOGO

mean std  mean std  mean std

LLM LLM Solver $1.65 $0.35 $1.66 $0.44 $2.19  $0.32
Search LLM Solver (+ Search) $1.70 $0.33 $1.88 $0.29 $2.13 $0.30
LILO (s< Search/ AutoDoc) ~ $2.04  $0.39  $1.66 $0.47 $1.59 $0.24

LILO (¢< Search) $1.86 $0.30 $1.70 $0.52 $2.03 $0.31

LiLO $1.77  $0.38 $1.87 $0.42 $2.01 $0.30

Enumerative  DreamCoder $1.16 $0.01 $0.71 $0.01  $2.07 $0.01
Search LLM Solver (+ Search) $1.14 $0.00 $0.69 $0.00 $2.11 $0.06
LiLo $1.16 $0.00 $0.71 $0.00 $2.07 $0.00

Table 6: Dollar cost comparison between LLM-based and enumerative search. Each entry is the cost of
running one training iteration of search, estimated based on measured wall-clock time (for enumerative search)
or token usage (for LLM search). As a rough heuristic, we find that one iteration of LILO’s LLM-amortized
search scheme is approximately equivalent to an 1800-second enumerative search on 96 CPUs—or, about 48
CPU-hours—in terms of compute cost.
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Finally, in the spirit of providing an apples-to-apples compute cost comparison, we combine our
time cost and token cost analyses to estimate a dollar cost for each model per training iteration. For
conditions that perform enumerative search, we compute CPU cost using the on-demand AWS EC2
instance price for a c5.24x1large machine in us-east-2, currently priced at $4.08 / hr. Meanwhile,
for conditions that involve LLM search (everything except DreamCoder), we compute LLM inference
cost using OpenAl’s current API pricing. As discussed in §2, our experiments took advantage of
OpenAI’s Codex model beta for researchers—in other words, they were effectively free. Accordingly,
we estimate the cost of our queries using OpenAl’s more recent gpt-3.5-turbo model, which is
available to the public and priced at $0.002 per 1K tokens (at the time of writing). For the LLM solver
cost analysis, we choose not to factor in the cost of running a “head node” to issue API queries, as this
machine is an order of magnitude cheaper than the c5.24x1arge, has no specific spec requirements,
and could be arbitrarily downscaled or even replaced with a laptop.

Tab. 6 summarizes the results of this analysis. Remarkably, despite the fact that LLM-based and
enumerative searches use very different compute platforms with prices set by two different third-party
companies, the dollar costs per training iteration come out to within the same order of magnitude—
indeed, they are approximately comparable. In general, we find the tradeoff between LLM and
enumerative search to be closely tied to the search time budget: domains with shorter enumeration
timeouts (e.g., CLEVR) cost 2-2.5x less than LLM search, while domains with longer enumeration
timeouts (e.g., LOGO) cost about the same. Therefore, as a rough heuristic, we can say that one
iteration of LILO’s LLM-amortized search scheme is approximately equivalent to an 1800-second
enumerative search on 96 CPUs—or, about 48 CPU-hours—in terms of compute cost.

Of course, this cost analysis is heavily tied to market factors that are subject to change—in particular,
the hardware, electricity, and logistics costs that AWS and OpenAl face in operating their compute
platforms, as well as the profit margins that their pricing schemes bake in. Nevertheless, we find it
noteworthy that it is currently possible to implement a search scheme like LILO—which requires
thousands of LLM queries over millions of tokens per training iteration—while generally achieving
better solution rates, faster wall clock runtimes, and comparable dollar costs to enumerative search.
Moreover, we note that general-purpose cloud compute platforms like AWS have been available for
many years; especially as Moore’s Law is believed to be reaching its tail end [84], we are unlikely to
see significant reductions in the cost of large-scale CPU compute. In constrast, the LLM-as-a-service
model is a recent innovation; with increased scale, hardware optimizations, product maturation, and
growing market competition, we are likely to see the costs of LLM inference decrease dramatically
in the coming years. We are particularly excited about the growing diversity of open source LLM
packages, which should make it possible to implement LILO in an even more cost efficient manner
and with increased control over cost-performance tradeoffs.

43



Copyright Notice

Some of the graphical assets that appear in this work were generated by the authors via Midjourney,
a third-party service provider. Subject to the Midjourney Terms of Service for Paid Users, all assets
created with the services are owned by the authors to the extent possible under current law. The
authors acknowledge and respect the copyrights and trademarks held by the Walt Disney Company.
Any likeness to characters or properties trademarked by Disney is considered Fair Use under US
Transformative Use laws, which provide broad protections for commentary, criticism, parody, satire,
education, research, and other forms of creative expression.
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