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ABSTRACT 
End-user programming (EUP) tools must balance user control with 
the robot’s ability to plan and act autonomously. Many existing 
task-oriented EUP tools enforce a specifc level of control, e.g., by 
requiring that users hand-craft detailed sequences of actions, rather 
than ofering users the fexibility to choose the level of task detail 
they wish to express. We thereby created a novel EUP system, Po-
laris, that in contrast to most existing EUP tools, uses goal predicates 
as the fundamental building block of programs. Users can thereby 
express high-level robot objectives or lower-level checkpoints at 
their choosing, while an of-the-shelf task planner flls in any re-
maining program detail. To ensure that goal-specifed programs 
adhere to user expectations of robot behavior, Polaris is equipped 
with a Plan Visualizer that exposes the planner’s output to the user 
before runtime. In what follows, we describe our design of Polaris 
and its evaluation with 32 human participants. Our results support 
the Plan Visualizer’s ability to help users craft higher-quality pro-
grams. Furthermore, there are strong associations between user 
perception of the robot and Plan Visualizer usage, and evidence 
that robot familiarity has a key role in shaping user experience. 

CCS CONCEPTS 
• Human-centered computing → Systems and tools for inter-
action design; • Computer systems organization → Robotics. 

KEYWORDS 
human-robot interaction, end-user programming, task planning 

ACM Reference Format: 
David Porfrio, Mark Roberts, and Laura M. Hiatt. 2024. Goal-Oriented 
End-User Programming of Robots. In Proceedings of the 2024 ACM/IEEE 
International Conference on Human-Robot Interaction (HRI ’24), March 11– 
14, 2024, Boulder, CO, USA. ACM, New York, NY, USA, 10 pages. https: 
//doi.org/10.1145/3610977.3634974 

1 INTRODUCTION 
As robots permeate our daily lives, there is a growing demand for 
efcient and reliable approaches that allow end users to specify 
tasks for these robots to perform. End-user programming (EUP) 
tools, i.e., software environments that enable these users to cre-
ate and customize robot applications, represent a viable class of 
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Figure 1: With Polaris, end-user programmers specify goal 
automata and view the resulting plan in the Plan Visualizer. 

solutions. Given the autonomous capabilities of everyday robots, 
users should be free to omit certain details from their programs. To 
illustrate, consider the following scenario: a caregiver needs a robot 
to deliver lunch to a resident in a care facility. Rather than requiring 
the caregiver to specify a long string of actions (e.g., go to cafeteria, 
pick up tray, go to food station, wait for food, go to resident, and give 
food), the caregiver can leverage the robot’s ability to plan and act 
autonomously if simply given a desired goal state: lunch delivered. 

At the same time, these users must have the fexibility to express 
additional detail as needed, based on their own domain expertise. 
We defne fexibility as being able to choose between low oversight 
(expressing minimal goals and letting the robot resolve the details) 
and high oversight (specifying more details to constrain the robot). 
Caregivers, in particular, can beneft from being able to access dif-
ferent levels of oversight [53]. Perhaps the caregiver in our example 
desires higher oversight due to their domain knowledge—the resi-
dent is usually in the recreation area midday, but they must be in 
their room to eat lunch due to care facility rules. In this case, there 
is an additional implied outcome that the resident should be in their 
room before the food is delivered. Constraining the robot with two 
goals in sequence will sufce: (1) resident alerted to ensure that the 
resident knows to travel to their room, and then (2) lunch delivered. 

Unfortunately, there has been limited exploration of EUP tools 
that leverage robot autonomy while still afording users fexibility 
in program specifcation. Most existing EUP tools necessitate high 
oversight by requiring users to hard-code robot actions, which as 
evidenced by existing datasets of user-generated action sequences, 
exhibits high contextual conformity [36]. In this work, we challenge 
the action-oriented EUP paradigm for human-robot interaction 
(HRI) by proposing goal predicates as an alternative fundamental 
building block of robot programs. By selecting and parameterizing 
goal predicates, users can omit details on how an intended efect 
(i.e., “goal state,” or “goal” for brevity) is achieved. Furthermore, in 
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Front-End AI Interface User 
Goal Preds Planning Domain Feedback Study 

Polaris ✓ ✓ Service ✓ ✓ 
“Spbd” [9] ✓ Nav. ✓ 
JESSIE [33] Social ✓ 
Tabula [42] ✓ Service ✓ 
RoVer [41] Social ✓ ✓ 

RoboFlow [3] Service ✓ 

Table 1: A comparison of Polaris to closely related EUP tools. 
Polaris exposes goal predicates to users, explicitly incorpo-
rates AI planning techniques, provides visual feedback on 
user programs through its interface, and is user-evaluated. 

recognizing that goals do not contain explicit information about 
which actions the robot will perform, we ask how goal-oriented EUP 
tools can ensure that user expectations match robot performance. 

To address these gaps, we created a goal-oriented EUP system, 
Polaris, that represents our vision of fexibility, abstracting away 
unnecessary detail while still afording users appropriate control 
over the robot. Figure 1 depicts the high-level usage fow of Polaris, 
which exists as a handheld tablet interface. With Polaris, end users 
specify goal automata—a fow-based representation in which nodes 
in the fow represent goals rather than actions. This enables end-
user programmers to specify programs at a level of detail with which 
they are comfortable or that is required by their domain expertise. 
Polaris then automatically generates a branching task plan through 
of-the-shelf AI planning approaches. To ensure that plans match 
developer intent and to provide feedback for refnement, Polaris 
includes a Plan Visualizer interface that exposes the plan to users. 

The Polaris system represents an ongoing research efort. This 
paper describes a snapshot of this efort, culminating in Polaris 
V1.0, and highlights our motivations and initial design decisions. 
Our evaluation tests these design decisions, fnds evidence that 
the Plan Visualizer improves plan quality, and uncovers associa-
tions between user experience and both Plan Visualizer usage and 
self-reported robot familiarity. We conclude by ofering design im-
plications and discussing how these implications inform our own 
future work and future development of EUP systems in general. 

Our contributions include: Systems — the Polaris system, a novel 
goal-oriented EUP tool and our primary contribution. Empirical 
— an evaluation of Polaris, namely the Plan Visualizer’s ability to 
assist end-user programmers with creating goal-oriented programs. 
Design — design implications that emerged from our evaluation. 

2 RELATED WORK 
Polaris’ contributions and novelty are situated within end-user pro-
gramming and draw heavily from goal-oriented task specifcation 
and automated planning in HRI. 

2.1 Robot End-User Programming 
End-user programming pertains to the creation of software appli-
cations by the application users themselves [7]. Contributions in 
robot EUP often focus on novel ways to capture user intent through 
visual programming environments [e.g., 34, 50], augmented reality 
[e.g., 12, 13], natural language [e.g., 20, 23], or multimodal input [e.g., 

8, 43], to name a few examples. In HRI, end-user programmers1 are 
typically (though not always) programming novices, and may also 
be domain experts specialized in specifc felds [2]. Polaris’ target 
end-user programmer includes domain experts in need of person-
alized (e.g., through goal-oriented specifcation) yet reliable (e.g., 
through the Plan Visualizer) robot execution, such as caregivers, 
military personnel, and disaster response teams. 

Polaris’ contribution lies primarily in its goal-oriented program-
ming paradigm—users specify an intended efect in terms of goal 
state rather than an action-oriented description of robot behaviors 
to achieve that efect. Overwhelmingly, existing EUP systems for 
HRI are action-oriented. Action-oriented examples from the EUP 
literature include block-based [e.g., 16, 28, 29, 50], fow-based [e.g., 
3, 44], and event-based [e.g., 34] tools, in which the fundamental 
building block of a robot application is an action or command. 

Table 1 characterizes Polaris’ novelty against a representative 
selection of similar, existing EUP systems and programming ap-
proaches. Notably, Brageul et al. [9]’s simple programming by demon-
stration (“spbd”) interface is similar to Polaris’ goal-oriented nature 
in that it allows users to directly manipulate goal predicates. Unlike 
Polaris, however, spbd is limited to navigation domains and lacks 
a user study. Another tool, JESSIE, similarly captures goal state 
within its program logic, but this logic is not exposed to the user 
[33]. Polaris additionally distinguishes itself from prior work that 
views goals as high-level task commands (e.g.,“open a sliding door” 
as a goal in [1]) due to our strict defnition of goals as expressing 
desired state rather than any information about the robot’s actions. 

Goal-oriented nature aside, Polaris draws heavily from other 
prior work. Tabula, in particular, exists within a handheld tablet, 
invokes a planner to determine robot behavior, and ofers plan feed-
back through its user interface [42]. Tabula, however, only exposes 
actions to users and is not yet evaluated in a user study. Although 
not incorporating a planner, both RoVer [41] and RoboFlow [3] af-
ford users a similar fow-based specifcation interface to Polaris and 
check pre and postconditions between consecutive robot actions. 
RoVer is additionally similar to Polaris in its user interface, namely 
through the inclusion of a dedicated feedback pane. 

2.2 Goal-Oriented Specifcation Paradigm 
Goals are a critical component of many formal representations, 
architectures, and models for autonomous agents. The belief-desire-
intention (BDI) paradigm presents one such modeling approach 
for agent reasoning [10] and has led to numerous agent-oriented 
programming languages, including AgentSpeak [46] and variants 
of CAN [47], of which goals are of great importance. Goals are 
additionally critical to the specifcation of both classical and hierar-
chical planning problems [22, 51]. For expressing robot programs 
purely via goals, Polaris utilizes an approach most similar to Agent 
Planning Programs [18], in which programs are represented as tran-
sition systems with transitions between program states labeled by 
goals and guard functions. 

Prior work demonstrates how goal-oriented languages improve 
user outcomes. In particular, Hu et al. [27] shows how decompos-
ing a task into higher-level objectives (“goals”) combined with 
block-based programming can improve learning outcomes among 

1We often refer to end-user programmers as simply “end users” or “users” for brevity. 
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students. Additionally, Cox and Zhang [17] contrast two mixed-
initiative planning approaches, goal manipulation versus search (i.e., 
searching through action pre and postconditions), and fnd that 
goal manipulation surpasses search in terms of user performance 
and efciency. These results support our design choice to expose 
goals to users through Polaris. 

Although less common in robot EUP, goal-oriented specifcation 
is popular in related felds. Prior work within the Internet of Things 
(IoT), in particular, has produced numerous EUP tools, languages, 
and architectures for specifying smart home confgurations in terms 
of predicates (e.g., temperature is � , in which � is a value in degrees) 
[32, 38]. An underlying motivation of goal-oriented specifcation 
in IoT is to reduce development time [39]. 

2.3 Automated Planning in HRI 
Planning and acting involves selecting what an agent does and 
how it does it [22]. The scope of our work is on the former—what. 
Within this scope, automated planning solves for plans with respect 
to a planning domain, that is, constraints which are often speci-
fed in languages such as the Planning Domain Defnition Language 
(PDDL) [21] or the Action Notation Modeling Language (ANML) 
[52]. Notable planning work in HRI involves reasoning about and 
responding to human behavior [4, 30, 40] and creating robot plan-
ning domains through demonstration [35]. Recently, Chakraborti 
et al. [15] investigated the use of plan explanations to improve the 
shared understanding of a robot’s decisions. 

Various interfaces exist for visualizing and enabling end users to 
interact with plans, PDSim being a notable example in robotics [19]. 
Of the existing planning interfaces in HRI, Tabula is most similar to 
Polaris but is action-oriented and focuses more on the mechanism 
for capturing the intent of end-user programmers [42]. A plethora 
of other such interfaces (e.g., RADAR-X [55]) exist outside of HRI. 

3 SYSTEM DESIGN 
Our description of Polaris begins by elaborating on the caregiving 
scenario presented in Introduction (§1) to illustrate the user’s per-
spective, followed by our technical approach for (1) specifying task 
objectives in terms of goals, (2) generating a task plan, (3) viewing 
the plan, (4) running the plan, and (5) Polaris’ implementation. 

3.1 User Perspective 
Figure 2 depicts the user’s perspective of Polaris with its various 
components described below. 
World. The user begins by requesting a two-dimensional map of the 
environment from the robot and uploading semantic labels for key 
entities that the robot can recognize. The semantically labeled map 
(accessible though the Plan Visualizer , Figure 2b) depicts the world 
that the robot operates within, and includes the two-dimensional 
representation of the robot’s environment and the entities therein. 
There are fve general categories of entities—objects, containers, 
surfaces, regions, and people. Objects include anything that the 
robot can grab. Containers include anything within which an object 
can be placed. Surfaces are areas upon which objects can be placed 
and are non-traversable by the robot. Regions are traversable areas 
in the environment. People include the robot’s potential interaction 
partners. Within the world, the locations of objects and people 

represent initial positions, and these entities can be moved around 
throughout the course of a program’s execution. 

Figure 2b depicts the world within our caregiving scenario. The 
care facility has been labeled with regions such as the recreation 
area, the resident’s room, and the cafeteria. The robot can place 
items onto and remove items from surfaces such as the empty trays 
surface and the resident’s table. The tray is a manipulable object 
and the resident is an interactable person in the environment. 
Creating a Goal Automaton. The user enters the Drawing Board 
to specify a program in terms of goals. Figure 2a depicts the Drawing 
Board with an example user-based solution, called a goal automaton. 
In the goal automaton, blue nodes represent checkpoints. Check-
points contain goals, thereby indicating the state of the world that 
the user wants the robot to achieve at that point in the program. 
Connecting checkpoints with lines (called transitions) enforces an 
ordering and allows users to specify a conditional, or world state 
that must be true (possibly outside of the robot’s control) for the 
robot to proceed from one checkpoint to another. Checkpoints 
contain no indication of the robot’s geographical location and are 
purely intended to represent program fow. 

Figure 2a1−4 shows the process of building the goal automaton to 
represent the caregiver’s objectives. The resident must be informed 
of lunchtime before lunch is served, so the caregiver’s frst step 
(Figure 2�1) is to draw a new checkpoint and label it alerted. When 
a new checkpoint is created, a parameterization menu appears that 
prompts users to add goals to the checkpoint. Users may also click 
on existing checkpoints during the course of goal automata creation 
to modify these checkpoints’ goals. Within alerted, the caregiver 
assigns � and � values to the “x–alertedTo–y” predicate to create 
a ground predicate and assert a goal: The resident has been alerted 
to lunch being served, namely (resident–alertedTo–lunchtime).2 

Next (Figure 2�2), the caregiver draws a line from alerted to 
a new checkpoint, fetched, and inserts goals (tray–at–table) and 
(tray–is full), indicating that after alerting the resident, lunch must 
be delivered. The caregiver labels the transition from alerted to 
fetched with the ground predicate (acknowledged–lunchalert), in 
this case indicating a conditional that the robot can only proceed 
from the alerted checkpoint to the fetched checkpoint if the resident 
acknowledges the alert. Throughout the course of goal automata 
creation, the user may click on existing transitions to modify the 
transitions’ conditionals. In order to handle the edge case in which 
the robot’s lunchtime alert is dismissed (e.g., if another caregiver has 
already served the resident lunch and wishes to cancel the robot’s 
task), the next step taken by the caregiver (Figure 2�3) is to draw 
a transition from alerted to a new checkpoint, cancelled, assign a 
goal of (robotAt–home), and label the new transition with the con-
ditional dismissed. Finally (Figure 2�4), the caregiver draws a new 
checkpoint from fetched called home and adds another (robotAt– 
home) goal. More information on the semantics of goal automata 
can be found in Representing Goal Automata (§3.2). 
Viewing and Running a Plan. As the user makes progress on their 
goal automaton, Polaris computes a task plan behind the scenes, 
which contains the exact actions that the robot plans to take to 
achieve each of the caregiver’s goals in sequence. Polaris presents 
this information to users via the Plan Visualizer interface (Figure 2b). 

2Our goal notation parenthesizes bolded predicate symbols and italicized terms. 
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Figure 2: The Polaris user interface, which includes (a) the Drawing Board for specifying goal automata and (b) the Plan 
Visualizer for displaying the robot’s plan. (c) A single branch of the branching plan from the caregiving scenario is displayed. 

Figure 2c depicts the plan based on the caregiver’s goal automaton 
as it is presented to the user. At any point during goal automaton 
creation, the user can fip back and forth between the Drawing 
Board and Plan Visualizer to iterate on receiving plan feedback 
and performing modifcations to their goal automaton. Once the 
user presses the play button (Figure 2b, bottom right), the robot 
begins to execute the plan. Branching plan creation, viewing, and 
execution are detailed further in Creating a Branching Plan (§3.3), 
Viewing the Branching Plan (§3.4), and Plan Execution (§3.5). 

3.2 Representing Goal Automata 
Formally, a goal automaton is a transition system [6] that guides 
the robot in achieving goals during its task and is represented by 
the tuple (� , � , �� , −→, �0): 
Predicates. � is a set of ground predicates, i.e., predicates with 
assigned variable values. Predicates primarily represent goals, 
but can also represent conditionals, namely world state that must 
be true for the robot to proceed. Intuitively, conditionals indicate 
that the robot must wait for a particular outcome that may be 
out of the robot’s control. 
Checkpoints. � is a set of checkpoints. Intuitively, checkpoints 
represent points in the program in which the robot has achieved 
a desired set of goals � ∈ 2� , in which 2� is the power set of � . 

Goals. �� : � → 2� maps checkpoints to goals. 

Transitions. −→⊆ � × 2� ×� is the transition relation between 
checkpoints subject to a conditional being true. For example, 
� ∈ 2� is a conditional within the transition �� −→� 

� � . Intuitively, 
a transition labeled with conditional � means, “wait for � to be 
true before transitioning between �� and � � .” A transition with 
no conditional annotation (e.g., �� →− � � ) means “transition from 
�� to � � if no other transitions from �� are able to be taken.” 

Initial Checkpoint. �0 is the always-empty “start” checkpoint. 
�0 represents initial state and does not have goals: �� (�0) = ∅. 
Figure 2a depicts the interface for specifying goal automata, the 

Drawing Board. Initially, the Drawing Board contains the empty 
checkpoint �0. Each new checkpoint � � must be drawn as �� →− � � 
such that �� ∈ � (i.e., new checkpoints must connect to existing 
checkpoints), �� (� � ) = ∅ (i.e., new checkpoints initially contain no 
goals), and new transitions initially contain no conditionals. While 
the intention is to support loops in future versions of Polaris, goal 
automata are presently drawn as trees. 

3.3 Creating a Branching Plan 
Branching plans are compiled in real-time as changes are made 
to the goal automaton, provided that there are no underspecifed 
transitions (i.e., two transitions with the same conditional extending 
from the same checkpoint). If a checkpoint in the goal automaton 
contains conficting goals (e.g., the user asserts that a single-arm 
robot must hold two items at the same time), Polaris will omit that 
checkpoint and further checkpoints in its subtree from compilation. 

Formally, a branching plan is similar in tree structure to the goal 
automaton but consists of actions rather than goals. Let � be the 
set of tree nodes in the plan and �� : � → 2� be the world state 
after a node’s action has been executed. Let −→⊆ � × 2� × � be 
the transition relation between nodes. Given a goal automaton, 
Polaris creates a branching plan such that there is an injective 
non-surjective mapping between checkpoints and plan nodes �� : 
� → �. For convenience, let �� : � → 2� map node �� to the set of 
nodes in �� ’s subtree. Subject to the following additional constraints, 
Polaris leverages an of-the-shelf planner for plan creation. 

Constraint on Transitions—For each transition �� −�→ � � in the tree-
like goal automaton, there must be a corresponding transition in the 
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Figure 3: Computing branching plans from goal automata. 

branching plan �� −� 
= �� and �� (� � ) ∈ �� (� � ),→ � � such that �� (�� )

that is, �� maps to �� and the mapping of � � is in the subtree of � � . 
Figure 3 illustrates this constraint—the transition between alerted 
and fetched maps to the transition between �3 and �4, and fetched 
maps to a descendent of �4. 

Constraint on Goal Achievement—A checkpoint’s goals must match 
the state of the world after the completion of its corresponding 
action in the branching plan: �� (�) ⊆ �� (�� (�)). Figure 3 illustrates 
this constraint: The goals of fetched match the end efect of its 
corresponding action in the plan, �9. 

3.4 Viewing the Branching Plan 
At any point during the creation of a goal automaton, end users 
may view the branching plan computed by Polaris within the Plan 
Visualizer interface. The Plan Visualizer draws from existing “time-
line” interfaces in HRI [48, 49] in that it displays one branch of the 
plan at a time from left to right, and within a horizontal scrollable 
pane overlaying the semantically labeled map. Initially, the plan 
is displayed up to when a conditional is encountered. Users then 
select the conditional corresponding to the branch they wish to 
visualize via a dropdown menu. Following the user’s selection, the 
Plan Visualizer displays the corresponding branch up to the next 
conditional. Actions within each branch can be clicked to depict 
the world state that results from the execution of the clicked action. 

3.5 Plan Execution 
When the user is satisfed with their goal automaton and resulting 
plan, they may execute the plan on the robot. During plan execution, 
Polaris enters a feedback-execution loop with the robot. Rather than 
sending the robot actions directly from the plan, Polaris converts 
actions to goals (i.e., by using the end efects of an action). This 
enables the robot to compute a new plan to achieve the end efect 
of each action, rendering the robot fexible to minor perturbations 
in the environment. The robot is thereby able to re-plan when its 
perceived state of the world changes and repeat this process until 
the goal-converted action has been achieved. The robot then sends 

a confrmation back to Polaris, which converts the next action in 
the plan to a goal and sends the new goal to the robot. 

3.6 Implementation 
Polaris exists within a front-end tablet and a back-end planner 
communicating over a RESTful API. The front end is implemented 
in Unity version 2022.2.1f1 [54] and is compiled to Android. While 
Polaris is primarily intended for handheld use, its implementation 
in Unity has enabled us to deploy it on a web browser and as a 
desktop application. 

The Polaris back end is implemented within Python 3.8 and 
accesses a planning domain expressed in PDDL [21].3 At a high 
level, the planning domain consists of (1) a set of predicates that 
operate over both the robot’s state and entities in the world, and (2) 
a set of operations that the robot can perform, including how these 
operations afect both the robot and the world. We integrated an 
of-the-shelf planner, Fast Downward [25, 26], within the back end. 

We use the Hello Robot Stretch RE2 robot [31] as our runtime 
platform. Communication between Polaris and the robot occurs 
through the Noetic version of the Robot Operating System [45]. 

4 SYSTEM EVALUATION 
To evaluate our systems-level contribution and understand the in-
teraction between the core components of the system, we conducted 
an IRB-approved laboratory study that compares the full version of 
Polaris with an ablated baseline without the Plan Visualizer . Our 
hypotheses are that exposure to the Plan Visualizer improves the 
quality of the resulting plans (H1), helps match user expectations to 
robot task performance (H2), improves the perceived competence 
of the robot (H3), and improves Polaris’ usability (H4). 

4.1 Study Design 
We conducted an experiment with two conditions—plan-vis, in 
which participants were exposed and allowed access to Polaris’ Plan 
Visualizer , and no-vis, in which participants were neither exposed 
nor allowed access to the Plan Visualizer . Participants specifed a 
goal automaton and executed the resulting plan on a robot. 

4.1.1 Study Scenario. Our evaluation centered on a tidying sce-
nario. Participants were informed the following: 

You are fnished hosting a dinner for some friends, and now it 
is time to clean up. While you wash dishes in the kitchen, you 
want your robot to help deliver dirty dishes to you and deliver 
clean dishes to the cupboard. 
Figure 4 (right) depicts the physical layout of the study. Partici-

pants were informed that their job was to wash a dirty plate and 
cup. Participants were also informed of the robot’s capabilities—it 
can deliver dishes to and from the participant’s vicinity and open 
the cupboard. Participants were not allowed to step out from behind 
the countertop (see participant reachable area in Figure 4, right). 

Participants were informed that to clean a dish, they needed to 
access the dish (presumably by having the robot deliver the dish 
to their vicinity) and place the dish on the drying rack. Once on 
the drying rack, the dish is clean and ready to be put away. The 

3Planning domains are interchangeable within Polaris. Example planning domains can 
be found at https://osf.io/ewfd5/. 
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conditional:
(cup-at-drying rack)

(plate-at-drying rack)

(cup-at-countertop)
(plate-at-countertop)

(cup-at-cupboard)
(plate-at-cupboard)

start

atPerson atCupboard

Robot: Grab Objects Robot: Deliver Objects Person: Clean Objects Robot: Dropo� Objects

cup start
location

plate start
location

cupboard
(initially closed)

drying rack

countertop
(with sink)

participant
reachable area

robot traversable space

robot

participant

dining room
table

Physical Layout of StudyExample User-Based Solution and Robot Execution

Robot Execution

User-Based Solution

Figure 4: The smallest solution to the tidying scenario and its execution (left). The physical layout of the study room (right). 

smallest solution for the tidying scenario is depicted in Figure 4 
(left). On execution of this solution, the robot delivers the dishes to 
the countertop, waits until the dishes are on the drying rack, then 
opens the cupboard, and fnally moves the dishes to the cupboard. 

4.1.2 Measures. To measure plan quality, we frst enumerate four 
basic objectives of the tidying scenario—(1) cup clean, (2) plate 
clean, (3) clean cup in the cupboard, and (4) clean plate in the 
cupboard. Giving each objective equal weight, we then compute 
(1) a runtime score, or how many objectives the robot meets during 
plan execution; and (2) a feasibility score, or the maximum number 
of objectives that the robot could meet at runtime. The runtime 
score may be lower than the feasibility score if the participant 
acts suboptimally at runtime, e.g., if the participant removes the 
cup and plate from the drying rack before the robot has had the 
chance to grab them. Higher values are better for runtime and 
feasibility scores. We additionally created (3) a third and more fne-
grained analysis of task quality—human efort. Given a participant’s 
task plan, the measure asks: What is the minimum number of 
independent actions that a human would have to perform during the 
robot’s execution for all four objectives in the task to be achieved? 
To compute this measure, we relax the assumption that participants 
stay behind the countertop. Lower values of human efort are better. 

We measure usability via the SUS questionnaire (10 items, 5-point 
Likert scale) [11] and the usefulness (8 items), ease of learning (4 
items), and satisfaction (7 items) factors of the USE questionnaire (7-
point Likert scale) [37]. To measure perceived robot competence, we 
include the competence factor of the RoSAS scale (6 items, 7-point 
Likert scale) [14]. We developed our own expectations questionnaire 
to measure the degree to which expectations of robot performance 
are matched in terms of four factors (5 items each, 7-point Likert 
scale)—expectations overall (Cronbach’s � = 0.80), expectations 
of what the robot did (Cronbach’s � =0.78), and expectations of 
where (Cronbach’s � = 0.91) and why (Cronbach’s � = 0.87) it did 
it. Although not part of our hypotheses, we measured task load 
through the NASA TLX (7 items, 7-point Likert scale) [24].4 

4.1.3 Procedure. Study sessions lasted for one hour. After giving 
their consent to participate, participants completed a self-guided 

4Copies of the study materials can be found at https://osf.io/ewfd5/. 

browser-based Polaris tutorial. Participants were encouraged to 
ask questions at this stage, to which the experimenter responded 
within the scope of the tutorial. Plan-vis participants were exposed 
to the Plan Visualizer through an additional tutorial step. 

After the tutorial, participants were briefed on the tidying sce-
nario and given 10 minutes to specify a goal automaton within 
Polaris. Within the 10 minutes, plan-vis participants had unlimited 
access to the Plan Visualizer at their discretion. After 10 minutes or 
when participants indicated that they had fnished, we administered 
the TLX, USE, and SUS questionnaires. 

Participants were then given instructions for executing their 
plans on the robot. Figure 4 (left) depicts a sample execution. During 
execution, participants observed the status of the robot on the tablet. 
If the robot encountered a conditional, it waited for confrmation 
from the participant before proceeding. Participants were informed 
that they could move any items around in their vicinity, e.g., to or 
from the countertop and the drying rack. 

During execution, deviations from the robot’s expected world 
state were engineered to cause the robot to prematurely halt execu-
tion. Deviations could occur, for example, if the participant failed to 
specify in their goal automaton that clean dishes would be placed 
on the drying rack (i.e., by failing to insert a conditional that in-
structs the robot to wait until the dishes are on the drying rack 
before proceeding to put them in the cupboard). In this case, the 
robot would believe the dish to be on the countertop, but without 
seeing the dish on the countertop, it would be unable to proceed. 
Participants would be given a few seconds to realize their mistake 
and put the clean dish back on the countertop, but if deviations 
remained uncorrected, the robot halted execution. 

At the end of execution, participants flled out the questionnaires 
for expectations matched and perceived competence. To adhere to 
the one-hour time limit, one participant was administered these 
questionnaires prior to when the robot had fnished execution. If 
time permitted, participants underwent semi-structured interviews. 
Interview durations varied based on the remaining time in the hour. 

4.2 Results 
Participants. We recruited 33 volunteers (19 male, 14 female) 

from within the U.S. Naval Research Laboratory in Washington, 

587

https://osf.io/ewfd5/


�

�

�

�

� �������

�����������

�

��

��

��

��

��� ���������������

�

�

�

�

�

�

� ���
������������

�

�

�

�

�

�

� ���� �
 
��	��������

�����
������������

���	��� ����

���� ���

����� �������
���

�

�

�

�

�

�

� �����

� � � � � � �

����������

�����
���

��������������������

��������� ����­������

�

�

�

�

�

�

�

� � � � � � � � � � � � � �

�

�

	

�

�

	

����� �������
���

������
��������

�

�

�

�

�

�

�

� � � � � � � � � � � � � �

��������������
��������������

��������������
��������������

��������������
��������������

��������������
��������������

��������������
��������������

��������������
��������������

��������������
��������������

��������������
��������������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���������	�

��������������
��������������

��������������
��������������

��������������
���������������

�

�

�

�

�
�
�
�
�
�
�
��
��
��

��������������
��������������

��������������
��������������

� � � � � � �

�

Figure 5: Plan quality (top left), usability (top right), compe-
tence and task load (bottom left), and expectations matched 
(bottom right) plotted against robot familiarity. Linear trend-
lines indicate the direction of the relationship. Blue is plan-
vis. Grey is no-vis. Lower is better only for human efort and 
task load. Error bars represent standard error. 

D.C. We discarded one participant’s data (plan-vis) due to a rare but 
experience-altering software bug. Of the remaining 32 participants 
(17 plan-vis, 15 no-vis), the average age was 30.7 years (�� = 11.7) 
and the average self-reported familiarity with robots was 4.09 (�� = 
1.89) on a seven-point, single-item Likert scale (low=1, high=7). Six 
participants reported participating in past robotics studies. 

Within our sample, 14 participants (8 plan-vis, 6 no-vis) produced 
plans that were either correct or nearly correct (feasibility score of 
3-4). Two participants (1 plan-vis, 1 no-vis) created goal automata 
that failed to compile. An additional three participants (1 plan-vis, 2 
no-vis) experienced equipment failure at the time of plan execution. 
Due to these fve participants not executing their plans on the robot, 
our post-execution measures (competence, expectations matched, 
and runtime score) include 27 participants in total. 

Hypothesis Testing. We performed one-tailed Mann-Whitney U 
tests to compare plan quality and one-tailed Student’s t-tests to 

Correlation with 
Robot Familiarity 

Correlation with 
Plan Visualizer Usage 

Measure Spearman’s � � Spearman’s � � 
Runtime score 0.556 <0.01 0.468 0.079 

Feasibility score 0.445 0.011 0.387 0.125 
Hum. efort cost -0.460 <0.01 -0.377 0.136 
Expect. overall 0.398 0.040 0.831 <0.001 
Expect. what 0.422 0.028 0.737 <0.01 
Expect. when 0.484 0.011 0.784 <0.001 
Expect. why 0.371 0.057 0.614 0.015 
Competence 0.066 0.745 0.051 0.857 

Usability (SUS) 0.568 <0.001 0.496 0.043 
Usefulness 0.398 0.024 0.433 0.083 

Ease of Learn. 0.639 <0.001 0.453 0.068 
Satisfaction 0.390 0.027 0.226 0.383 
Task Load -0.399 0.024 -0.092 0.724 

Table 2: Spearman’s rank coefcient with robot familiarity 
(all data) and Plan Visualizer usage (plan-vis only) for each 
measure. Bold indicates statistical signifcance (� < 0.05). 

compare usability, competence, and expectations matched between 
conditions. We observed a signifcant diference in plan quality in 
terms of human efort between the plan-vis and no-vis conditions 
(� = 182.5, � = 0.017). We observed marginal efects (� < 0.1) for 
plan-vis performing better than no-vis participants for our measures 
of perceived usefulness of Polaris (� = 0.097, � (30) = 1.33), satisfac-
tion with Polaris (� = 0.081, � (30) = 1.43), perceived competence 
of the robot (� = 0.083, � (25) = 1.43), and expectations matched 
both overall (� = 0.082, � (25) = 1.43) and for why the robot acted 
(� = 0.095, � (25) = 1.35). Additionally, plan-vis participants re-
ported SUS scores of 67.35 (�� = 19.99), whereas no-vis participants 
reported SUS scores of 59.00 (�� = 20.68). In the other measures 
that we compared, the plan-vis condition generally performed bet-
ter on average than the no-vis condition within our sample (Figure 
5). Average values for each measure under both conditions can 
be found in Figure 5. These results support the Plan Visualizer in 
increasing overall plan quality, but further investigation is required 
before accepting our hypotheses. 

Robot Familiarity. We additionally analyzed each of our measures 
for associations with self-reported robot familiarity. Table 2 (left) 
shows the resulting Spearman’s rank correlations, and Figure 5 
visualizes these associations for each condition. It can be seen that as 
robot familiarity increases, plan quality, usability, and expectations 
matched also increase, while task load decreases. These correlations 
suggest that end-user programmers’ past familiarity with robots 
may impact almost every interaction that they have with Polaris. 
Our manipulation may be competing with robot familiarity. 

Plan Visualizer Usage. We grouped plan-vis participants (referred 
to as PX, with X being a unique identifer) into various categories 
based on how they used the Plan Visualizer . We categorized eight 
participants (P2, P5, P6, P7, P22, P25, P27, and P29) as “intended use.” 
These participants appeared to use the Plan Visualizer to validate 
their work or guide them in fxing errors and produced plans of high 
quality (feasibility score mean of 3.625 out of 4). We categorized 
an additional two participants (P16 and P30) as “unsuccessful use” 
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due to heavy reliance on the Plan Visualizer but an inability to 
fx errors in their goal automata (feasibility score mean of 0.5 out 
of 4). Four more participants (P4, P9, P13, and P21) fall into the 
“no-use” category due to not accessing the Plan Visualizer at all 
or accessing it but not interacting with it (e.g., by not scrolling 
through or clicking on actions in the plan). No-use participants 
produced plans of low quality (feasibility score mean of 0.75 out of 
4). We grouped the remaining three participants into a category of 
“unknown use,” for whom the role of the Plan Visualizer is unclear 
(feasibility score mean of 0.66 out of 4). 

Within the plan-vis condition, there are strong positive associa-
tions between Plan Visualizer usage (equal to how many times a 
participant accessed the Plan Visualizer , and while accessing it, in-
teracted with the Plan Visualizer as well) and expectations matched. 
Table 2 (right) depicts these correlations. 

5 DISCUSSION 
In our experiment, we found evidence that the Plan Visualizer in-
creases plan quality and marginal efects for the Plan Visualizer 
increasing satisfaction, expectations matched, perceived usefulness 
of Polaris, and perceived competence of the robot. On average, the 
plan-vis condition generally performed better than the no-vis con-
dition. We fnd these results encouraging, but further investigation 
is required to fully understand the Plan Visualizer’s efectiveness, 
and more generally, Polaris overall. To guide our further investiga-
tion and provide guidance to future research within the wider EUP 
community, we propose three design implications. 

Design Implication: Feedback is critical for goal-oriented EUP. 
This implication is evidenced by the signifcant and marginal efects 
of the Plan Visualizer despite its underuse by “no use” and “unknown 
use” users. There also exists a strong positive association between 
Plan Visualizer usage and both expectations matched and usability. 
Although this association is not causal, we believe that improving 
Plan Visualizer access would have increased our observed efect. 
The importance of feedback and how information is presented to 
users is further supported by prior work [5, 41]. Recommendation: 
Feedback should be provided proactively (rather than passively) by 
goal-oriented EUP tools. Polaris users should be exposed to feedback 
as soon as changes to their programs occur, which could result in 
higher expectations matched for “no use” and “unknown use” users. 

Design Implication: Although goal-oriented programming al-
lows for greater fexibility in theory (see §1) and has shown beneft in 
prior work [17, 27], users’ ability to leverage this fexibility in prac-
tice should not be presumed. As evidence of this implication, less 
than half of the participants in either condition produced correct 
or nearly correct plans. Participant interviews reveal a potential 
explanation: Goal predicates are difcult to reason about and re-
quire a shift in thinking from a potentially more intuitive (albeit 
less fexible) action-oriented paradigm (P9, P17, P19). Recommen-
dation: EUP researchers must investigate user-interface techniques 
that improve user comprehension of goal-oriented programming. Cru-
cially, EUP researchers should avoid assuming that current interface 
norms for EUP seamlessly translate to the goal-oriented paradigm. 

Design Implication: Robot familiarity strongly predicts percep-
tions and use of robot EUP tools. As evidence of this implication, 

our evaluation uncovers signifcant correlations between robot fa-
miliarity and usability, expectations matched, plan quality, and task 
load. We note that our study population is critical to uncovering 
this fnding—our sample includes both professionals and students 
at both ends of the spectrum of robot familiarity. At the same time, 
the observed efects of our manipulation are potentially diluted 
due to the breadth of our study population. Recommendation: 
EUP researchers for human-robot interaction need to choose their 
study population more carefully and deliberately than is often done 
in current practice. Robot familiarity should factor into this choice. 

Limitations and Future Work. Polaris’ design poses various op-
portunities for improvement. Most notably, users need assistance 
creating “correct” plans (i.e., plans with high feasibility scores). Fu-
ture work should thus employ formal methods to help improve plan 
feasibility, such as by automatically detecting and fxing contradic-
tory goals. Other limitations include that our planning approach 
does not account for uncertainty, such as if the location of an en-
tity in the task context (e.g., a person) is unknown or if there is 
an unknown number of multiple items of the same type. Polaris’ 
inability to support loops or enumeration (e.g., tasking the robot to 
deliver food to all rooms in the care facility) further limits the task 
contexts within which it can operate. For greater applicability in 
the wild, Polaris can also support plan adaptation, e.g., by learning 
action costs and re-planning at runtime. 

Further limitations exist in our evaluation. Primarily, our study 
is systems-level, focusing on the interaction between core com-
ponents rather than exploring the beneft of increased fexibility 
from goal-oriented programming. Future component-level testing 
is already in preparation to understand the beneft of fexibility 
in practice. Additionally, we tested Polaris with just one scenario 
and a broad user group and did not collect data about how much 
training time is required for Polaris. Although our sample is critical 
to revealing signifcant associations with robot familiarity, future 
work must explore Polaris with its target user base, more realis-
tic scenarios, and explore approaches to user training. We believe 
that our present study provides an excellent foundation for future 
testing, such as by deploying Polaris in situ with actual caregivers. 

6 CONCLUSION 
We present Polaris, a novel goal-oriented end-user programming 
(EUP) system. The purpose of Polaris is to provide fexibility to robot 
end users in the level of detail that programs are specifed while 
ensuring that user expectations match robot performance. Our 
evaluation of Polaris uncovers evidence that plan feedback increases 
the quality of user-created programs. The evaluation also uncovers 
strong associations between plan feedback, robot familiarity, and 
participant experience and performance. We conclude with various 
design implications for the future development of EUP tools. 
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