
LightThinker: Thinking Step-by-Step Compression

Anonymous ACL submission

Abstract

Large language models (LLMs) have shown001
remarkable performance in complex reasoning002
tasks, but their efficiency is hindered by the003
substantial memory and computational costs004
associated with generating lengthy tokens. In005
this paper, we propose LightThinker, a novel006
method that enables LLMs to dynamically com-007
press intermediate thoughts during reasoning.008
Inspired by human cognitive processes, Light-009
Thinker compresses verbose thought steps into010
compact representations and discards the origi-011
nal reasoning chains, thereby significantly re-012
ducing the number of tokens stored in the con-013
text window. This is achieved by training the014
model on when and how to perform compres-015
sion through data construction, mapping hid-016
den states to condensed gist tokens, and creat-017
ing specialized attention masks. Additionally,018
we introduce the Dependency (Dep) metric to019
quantify the degree of compression by measur-020
ing the reliance on historical tokens during gen-021
eration. Extensive experiments on four datasets022
and two models show that LightThinker re-023
duces peak memory usage and inference time,024
while maintaining competitive accuracy. Our025
work provides a new direction for improving026
the efficiency of LLMs in complex reasoning027
tasks without sacrificing performance.028

1 Introduction029

Recent advancements in Large Language Mod-030

els (LLMs) have demonstrated their remarkable031

capabilities in complex reasoning tasks. As re-032

search in this domain progresses, the reasoning033

patterns of these models have gradually evolved034

from “fast thinking” to “slow thinking”. This tran-035

sition is exemplified by methods such as Chain-036

of-Thought (CoT) (Wei et al., 2022) prompting,037

which enhances reasoning by breaking down com-038

plex problems into sequential sub-steps. Building039

on this, the o1-like thinking mode (Jaech et al.,040

2024; Qwen., 2024; DeepSeek-AI et al., 2025) in-041

[Thought1] Frist, Mike starts with 12 apples and gives away 
half of them, which is 12 ÷ 2 = 6 apples, leaving him with 12 − 
6 = 6 apples. [Thought2] Then, He buys 5 more apples from 
the market, bringing him total to 6 + 5 = 11 apples. [Answer] 
Therefore, Mike now has 11 apples.

(a) A CoT example requiring two-step reasoning.

Mike has 12 apples. He gives away half of his apples to his 
friend and then buys 5 more apples from the market. How 
many apples does Mike have now?

Mike gave 6 apples to his 
friends and had 6 left.

After buying 5, 
Mike had 11.

Thought 1 Thought 2

Thought 2

Answer

Answer

Question

Input:

Output:

Thought 1Question

Vanilla:

LightThinker:

generate
compress similar C T2

C T1

(b) Diagram of the reasoning process for Vanilla 
and LightThinker

Figure 1: (a) A CoT case. Tokens highlighted in yellow
represent critical reasoning tokens, while the remaining
tokens primarily ensure fluency. Humans typically only
write the yellow parts when solving this problem. (b)
Comparison of reasoning between Vanilla and Light-
Thinker. “C Ti” denotes the i-th compressed thought
representation, and we illustrate the semantic informa-
tion potentially expressed after compression.

troduces multiple reasoning abilities such as trial- 042

and-error, backtracking, correction, and iteration, 043

further improving the success rate of models in 044

solving complex problems. However, this perfor- 045

mance improvement comes at the cost of generat- 046

ing a large number of tokens (Wu et al., 2024b). 047

Given that current LLMs are predominantly based 048

on the Transformer architecture (Vaswani et al., 049

2017), the computational complexity of the atten- 050

tion mechanism grows quadratically with the con- 051

text length, while the storage overhead of the KV 052

Cache increases linearly with the context length. 053

For example, in the case of Qwen32B (Yang et al., 054

2024), when the context length reaches 104, the KV 055

Cache occupies a space comparable to the model 056

itself. Consequently, the increase in token genera- 057

1



tion leads to a sharp rise in memory overhead and058

computational costs, severely limiting the practi-059

cal efficiency of LLMs in long-text generation and060

complex reasoning tasks.061

To mitigate this issue, two main approaches have062

been proposed, primarily differentiated by their in-063

tervention requirements during inference. The first064

category requires no additional intervention dur-065

ing inference, achieving efficiency through prompt066

engineering (Han et al., 2024; Ding et al., 2024;067

Nayab et al., 2024) or specialized training (Liu068

et al., 2024a; Kang et al., 2024; Arora and Zanette,069

2025; Luo et al., 2025; Cheng and Durme, 2024;070

Hao et al., 2024) to guide LLMs in generating071

fewer or even zero (Deng et al., 2023, 2024) in-072

termediate tokens during reasoning. The second073

category operates through real-time token-by-token074

intervention during inference (Zhang et al., 2023;075

Chen et al., 2024), reducing memory usage by se-076

lectively retaining important parts of the KV Cache077

while discarding less critical ones. However, both078

approaches face distinct challenges: the first typi-079

cally requires careful data construction and iterative080

refinement, while the second introduces substantial081

inference latency due to the computational over-082

head of token-wise importance assessment.083

In this work, we propose a new approach by084

training LLMs to dynamically compress historical085

content during reasoning. Our motivation stems086

from two observations: 1) Tokens generated by087

the LLM serve dual purposes: ensuring linguistic088

fluency and facilitating actual reasoning (as high-089

lighted in yellow in Fig. 1(a)), making compression090

feasible. 2) When humans solve problems similar091

to the one in Fig. 1(a), they typically write only key092

steps (highlighted in yellow), while storing the rest093

of the thought process mentally.094

Based on these insights, we introduce Light-095

Thinker, a method that dynamically compresses096

intermediate thoughts during generation. As il-097

lustrated in Fig. 1(b), after generating a lengthy098

thought step (e.g., Thought i), it is compressed099

into a compact representation (e.g., C Ti), and the100

original thought chain is discarded, with reasoning101

continuing based solely on the compressed content.102

This approach significantly reduces the number of103

tokens stored in the context window, thereby low-104

ering memory overhead and computational costs.105

In practice, we train the LLM to learn when and106

how to compress. Specifically, we construct data107

to teach the model when to compress; the hidden108

states of the thoughts to be compressed are reduced109

to a set of hidden states corresponding to a small 110

number of special tokens (i.e., gist tokens (Mu 111

et al., 2023)). Through carefully designed atten- 112

tion masks, the LLM then learns how to compress 113

and how to continue generating based on the com- 114

pressed content. To quantify the amount of infor- 115

mation used during reasoning, we further propose 116

the Dependency (Dep) metric, defined as the total 117

number of historical tokens each generated token 118

depends on (see Fig. 3). This metric effectively 119

measures the degree of compression, with a lower 120

Dep value indicating reduced reliance on the origi- 121

nal long context and more significant compression. 122

We conduct extensive experiments across four 123

datasets using two different models. The results in- 124

dicate that, with the Qwen model, LightThinker re- 125

duces the peak token usage by 70% and decreases 126

inference time by 26% compared to the Vanilla 127

model, while maintaining comparable accuracy 128

(with only a 1% drop). Our contributions are as 129

follows: 1) We propose LightThinker, a method 130

that dynamically compresses thought chains dur- 131

ing reasoning, significantly reducing memory over- 132

head and inference time. 2) We introduce the De- 133

pendency (Dep) metric to measure the compres- 134

sion ratio and the amount of information used 135

during reasoning. 3) We demonstrate that Light- 136

Thinker achieves a good balance between reasoning 137

efficiency and accuracy, offering new insights for 138

future LLM inference acceleration. 139

2 Background 140

Slow Thinking. The reasoning ability of LLMs 141

is crucial (Qiao et al., 2023), especially in solving 142

complex problems, necessitating a shift from the 143

fast-thinking System 1 to the slow-thinking System 144

2 (Sloman, 1996; Kahneman, 2011; Booch et al., 145

2021). For instance, Chain-of-Thought (CoT) (Wei 146

et al., 2022) approaches decompose complex prob- 147

lems into sub-problems and solve them step-by- 148

step. o1-like thinking mode (Jaech et al., 2024; 149

Qwen., 2024; DeepSeek-AI et al., 2025) goes a 150

step further by incorporating abilities such as trial, 151

reflection, backtracking, and correction on top of 152

the divide-and-conquer strategy. Empirical evi- 153

dence (Jaech et al., 2024; DeepSeek-AI et al., 2025) 154

shows that the o1-like thinking mode significantly 155

enhances the model’s ability to solve complex prob- 156

lems compared to CoT. This slow-thinking mode 157

can be instilled in models through carefully con- 158

structed data using Supervised Fine-Tuning (SFT). 159

2



Compress S1 
into [c1][c2]

Compress S2 into [c1][c2]
(b) Our Attention Mask 

during training.

(a) Original Attention Mask.

(c) Inference Process and Corresponding Attention Mask 
during Inference.

t=1 Generate

t=1,w=30 

t=3 Generate
t=5 Generate

t=2 Compress

t=2,w=32

w=10+20+
15+17=62

t=3,w=28 t=4,w=30 t=5,w=33

t=4 Compress

Don’t Mask Mask Number of tokens

Figure 2: Overview of LightThinker, illustrated with an example requiring three-step
reasoning. Fig. (a) shows the attention mask of Vanilla during both training and
inference. Fig. (b) depicts the attention mask of LightThinker during the training.
Fig. (c) presents the complete inference process of LightThinker along with the
attention mask corresponding to each step. Here, ‘w’ denotes the size of the matrix.

Peak Tokens

Prompt
Length

(a) Vanilla

(c) AnLLM &
LightThinker(b) H2O

C
on

te
xt

 L
en

gt
h

C
on

te
xt

 L
en

gt
h

Generated Tokens Length

Generated Tokens Length Generated Tokens Length

C
on

te
xt

 L
en

gt
h

Peak
Tokens

Dependency

Dependency Dependency

Prompt
Length

Prompt
Length

Peak Tokens

Figure 3: The relationship
between context length and
the number of generated to-
kens across different meth-
ods. The Dependency met-
ric represents the area under
the curve, while the Peak
Token denotes the maxi-
mum value of the curve.
See Appx. A for details.

In terms of the number of output tokens, the to-160

ken consumption of System 1, CoT, and o1-like161

thinking mode increases progressively.162

Inference Challenges. Recent works on o1-like163

thinking mode (Wu et al., 2024b) highlight the ne-164

cessity of generating a substantial number of tokens165

for complex problem-solving. As the core structure166

of Transformers (Vaswani et al., 2017), the atten-167

tion mechanism faces two significant challenges168

during inference as token generation scales: 1) The169

memory overhead gradually increases. To speed up170

inference, each token’s Key and Value are cached at171

every layer. For the Qwen-32B (Yang et al., 2024),172

when the context length reaches 104 tokens, the173

space occupied by the KV cache is comparable to174

that of the model itself. 2) The computational cost175

of generating a single token in an autoregressive176

manner also increases. Due to the attention mech-177

anism in Transformers (Vaswani et al., 2017), the178

computational load grows quadratically with the179

number of tokens.180

3 Methodology181

We propose LightThinker to accelerate the reason-182

ing process of LLMs, as illustrated in Figure 2. The183

core idea is to train LLMs to dynamically compress184

the current thought during reasoning, enabling sub-185

sequent generation to be based on the compressed186

content rather than the original long thought.187

3.1 Overview 188

Notation. For clarity, we define the following 189

notations. Lowercase letters, such as xi, denote 190

a single token. Uppercase letters, such as X , de- 191

note sequences of tokens. The notation ‘[·]’ de- 192

notes a special token, such as ‘[c]’, while ‘<·>’ de- 193

notes an optional special token, such as ‘<w>’. The 194

o1-like thinking mode dataset D = {(X,Y )i}|D|
i=1 195

consists of |D| samples, where X = {xi}|X|
i=1 rep- 196

resents a question, and Y = {yi}|Y |
i=1 represents 197

the corresponding thought and final answer. Re- 198

cent works (Team, 2025; DeepSeek-AI et al., 2025) 199

show that SFT on D significantly enhances LLM 200

reasoning capabilities. 201

Design. To achieve the core idea, we focus on ad- 202

dressing two key questions: i) When to compress? 203

The timing of compression significantly impacts 204

reasoning efficiency and compression quality. We 205

explore two different strategies. The first is token- 206

level (Zhang et al., 2024b), where compression is 207

performed after a fixed number of tokens. This 208

strategy is straightforward to implement but may 209

ignore semantic boundaries. The second is thought- 210

level (Pang et al., 2024), where compression is per- 211

formed after a complete “thought”, defined as a sen- 212

tence or paragraph. This strategy better preserves 213

semantic information but requires a more com- 214

plex segmentation function. ii) How to compress? 215

The goal of compression is to encode the current 216

3



lengthy thought into a more compact representation.217

We investigate two different approaches. The first218

is text compression, where the current thought is219

encoded into a shorter text (Jiang et al., 2023) or a220

chunk of continuous vectors (Chevalier et al., 2023;221

Ge et al., 2024). This method requires an addi-222

tional encoding model and increases computational223

overhead. The second is hidden state compression,224

where the hidden state of the current thought is225

compressed into the hidden states of a few special226

tokens (i.e., gist tokens (Mu et al., 2023)). We227

choose this method as it does not require additional228

models. Specifically, in our work, we address the229

first question by reconstructing data and the second230

by constructing thought-based attention mask.231

What content has been compressed? We do not232

aim to compress lengthy thought information into233

a compact representation without loss. Instead, our234

focus is on preserving only the information that is235

essential for subsequent reasoning. As highlighted236

by the gray dashed box in Figure 1(b), the lengthy237

thought is retained solely for the elements that con-238

tribute to further inference.239

3.2 LightThinker240

Data Reconstruction. To enable LLMs to dynam-241

ically compress during generation, we reconstruct242

the original datasetD as follows. First, we segment243

the output. Given the input X and output Y , we244

use a segmentation function Seg() to divide Y into245

k subsequences S, i.e., Y = {Si}ki=1. The function246

can be based on token-level or thought-level. Then,247

we insert the special tokens. Specifically, we insert248

a set of special tokens {<w>, C, [o]} between ad-249

jacent subsequences Si, where <w> is an optional250

compression trigger, indicating the need to com-251

press the preceding thought. It can be omitted if252

the Seg() is token-level or if <w> ∈ Si. The to-253

ken C = {[ci]}|C|
i=1 consists of |C| special tokens,254

serving as gist tokens to store compressed content.255

Here we refer to C as cache tokens and denote |C|256

as the cache size. The token [o] is a mandatory257

output token, enabling continual generation based258

on compressed content, inspired by Zhang et al..259

Finally, the enhanced data is260

Ŷ = {S1, <w>, C, [o], S2, <w>, C, [o], . . . , Sk},261

and the enhanced dataset is defined as D̂ =262

{(X, Ŷ )i}|D̂|
i=1. For simplicity, we assume <w> ∈263

Si, so we omit it. Additionally, we use superscripts264

to distinguish different special tokens at different265

positions, such as C(1) and [o](1) for tokens fol- 266

lowing S1, though they are the same across differ- 267

ent positions. 268

Thought-based Attention Mask Construction. 269

To enable LLMs to learn how to compress and 270

how to generate based on the compressed content 271

(i.e., how to understand the compressed content), 272

we manipulate Thought-based Mask Construction 273

as shown in Figure 2(b). Specifically, let S<i = 274

{S1, . . . , Si−1} denotes the sequence before the 275

i-th thought Si. 276

During compression, C(i) tokens can only attend 277

to the question X , previous compressed content 278

{C, [o]}(<i), and the current thought Si, that is, 279

C(i) ← Cmp(X, 280

{C(1), [o](1), . . . , C(i−1), [o](i−1)}, Si), 281

where Cmp() is compression operation. This allows 282

the LLM to compress the key content of Si into 283

C(i). A detailed mathematical description of Cmp() 284

is in Appx. B. 285

During generation, token [o](i) can only attend 286

to the question X and the previous compressed 287

content {C, [o]}(≤i), that is, 288

Si+1 ← Gen(X, {C(1), [o](1), . . . , C(i), [o](i)}), 289

where Gen() is generation operation. This enables 290

the LLM to continue reasoning based on the ques- 291

tion and previous compressed content. 292

Training and Inference. Training objective is to 293

maximize the following probability distribution: 294

Pθ(S1|X) · Pθ(S2|X,C(1), [o](1)) · . . . 295

· Pθ(Sk|X, {C(i), [o](i)}k−1
i=1 ), 296

where θ represents the LLM parameters. Notably, 297

during training, LLM is not allowed to predict the 298

input X and the special tokens C and [o]. The 299

training samples are drawn from the D̂, and we 300

employ an attention mask to encourage the LLM to 301

learn to compress and comprehend the compressed 302

content. The entire training process remains based 303

on next token prediction. The detailed inference 304

procedure is illustrated in Fig. 1(b) and Fig. 2(c). 305

4 Experiments 306

4.1 Experimental Settings 307

Baselines. We conduct experiments on two LLMs: 308

Qwen2.5-7B (Yang et al., 2024) and Llama3.1- 309

8B (Dubey et al., 2024). To establish an upper 310

4



Method

GSM8K MMLU GPQA BBH AVG.

Acc ↑ Time ↓ Peak ↓ Dep ↓ Acc ↑ Time ↓ Peak ↓ Dep ↓ Acc ↑ Time ↓ Peak ↓ Dep ↓ Acc ↑ Time ↓ Peak ↓ Dep ↓ Acc ↑ Time ↓ Peak ↓ Dep ↓

Qwen2.5-7B Series

CoT 86.12 1.66 513 0.1M 66.50 1.77 649 0.2M 26.76 0.60 968 0.5M 65.45 0.68 570 0.1M 61.21 1.18 675 0.2M
Distill-R1 81.88 5.60 844 1.1M 51.70 14.31 2483 7.5M 24.75 8.01 6718 31M 57.78 5.53 1967 6.0M 54.03 8.36 3003 11.3M

Vanilla 90.90 11.83 2086 3.9M 59.98 20.61 3417 10M 30.81 10.76 8055 39M 69.90 11.50 3786 13M 62.90 13.68 4336 16.6M
+ H2O 89.92 22.19 640 1.2M 59.69 29.02 1024 3.2M 24.75 15.61 1200 9.8M 70.10 15.61 1024 3.5M 61.12 20.61 972 4.4M
+ SepLLM 30.40 53.52 1024 6.9M 10.81 53.45 1024 9.0M 0.00 11.65 1024 10M 8.08 26.64 1024 9.4M 12.32 36.32 1024 8.9M

AnLLM 78.39 15.26 789 1.6M 54.63 14.13 875 2.0M 19.70 9.14 3401 11M 54.95 10.04 1303 3.8M 51.92 12.14 1592 4.6M

Ours (tho.) 90.14 11.46 676 1.0M 60.47 13.09 944 1.9M 30.30 8.41 2385 9.3M 70.30 7.71 1151 2.7M 62.80 10.17 1289 3.7M
Ours (token) 87.11 11.48 1038 1.5M 57.35 13.80 489 3.5M 28.28 8.26 3940 18M 62.83 8.95 1884 5.6M 58.89 10.62 1838 7.2M

Llama3.1-8B Series

CoT 85.14 2.15 550 0.2M 65.82 2.39 736 0.3M 24.75 0.96 1231 0.9M 66.46 0.93 642 0.2M 60.54 1.61 790 0.4M
Distill-R1 73.62 2.58 395 0.1M 53.46 2.97 582 0.8M 20.20 5.24 3972 16M 61.21 0.83 380 0.2M 52.12 2.91 1332 4.4M

Vanilla 91.43 12.06 1986 3.0M 69.62 14.82 2883 6.9M 40.91 7.98 6622 26M 83.03 6.80 2793 5.9M 71.25 10.42 3571 10.5M
+ H2O 90.45 20.23 640 1.0M 65.92 27.11 736 1.8M 31.81 12.55 1536 7.9M 78.99 11.43 1024 2.1M 66.79 17.83 984 3.2M
+ SepLLM 26.25 50.05 1024 5.8M 25.12 50.11 1024 7.5M 2.53 12.62 1024 10M 14.55 27.14 1024 8.5M 17.11 34.98 1024 8.0M

AnLLM 77.33 17.92 589 1.1M 58.62 16.53 589 1.2M 31.31 7.19 838 3.7M 68.89 9.79 621 1.6M 59.04 12.86 659 1.9M

Ours (tho.) 88.25 12.65 629 0.9M 63.39 14.88 882 1.8M 36.36 6.38 1796 6.4M 79.39 7.46 911 1.9M 66.85 10.34 1055 2.7M
Ours (token) 85.52 13.87 1104 1.7M 61.05 15.85 1538 3.3M 31.82 6.94 3150 12M 74.14 7.43 1512 2.9M 63.13 11.02 1826 4.8M

Table 1: Main results. The CoT is based on the instruction model, while Vanilla, AnLLM, and LightThinker are
based on Distill-R1. The light blue background indicates acceleration methods, with bold representing the best
and underline the second best among them. The Acc of Vanilla serves as the upper bound for Acc of acceleration
methods. Dep is measured in million, Time in hours, and Peak in counts. The compression ratio can be roughly
estimated by the ratio of Dep between acceleration methods and Vanilla. See Appendix A for more details. Note that
the results here are based on the same batch size. The results under the same memory budget are shown in Table 2.

bound performance, we perform full parameter311

instruction tuning using the Bespoke-Stratos-17k312

dataset (abbr. BS17K, with a data sample shown313

in Fig. 15), and the fine-tuned model is denoted as314

Vanilla. Notably, we initialize the training with315

the R1-Distill (DeepSeek-AI et al., 2025) (e.g.,316

DeepSeek-R1-Distill-Qwen-7B) model, as we317

found that finetuning on instruction models (e.g.,318

Qwen2.5-7B-instruct) yields limited improve-319

ments. We introduce five baselines for compar-320

ison: two training-free acceleration methods ap-321

plied to Vanilla (H2O (Zhang et al., 2023) and Se-322

pLLM (Chen et al., 2024), which retain important323

KV Cache through specific strategies), one training-324

based method (AnLLM (Pang et al., 2024)), and325

two CoT (Wei et al., 2022) baselines (prompt the326

instruction model and the R1-Distill model). More327

details about baselines can be found in Appx. C.2.328

Evaluation Metrics and Datasets. We evaluate329

LightThinker on four datasets: GSM8K (Cobbe330

et al., 2021), MMLU (Hendrycks et al., 2021),331

GPQA (Rein et al., 2024), and BBH (Suzgun et al.,332

2023). For MMLU and BBH, we randomly sample333

a portion of the data for evaluation. The evaluation334

focuses on both effectiveness and efficiency. For335

effectiveness, we use accuracy as the evaluation336

metric (Acc); for efficiency, we employ three met-337

rics: inference time (Time), the peak number of338

tokens in the context during inference (Peak), and339

the sum of dependency of each generated token on340

previous tokens during the generation (Dep). Fig. 3 341

visualizes the Peak and Dep metrics, where the 342

value of Dep equals the area enclosed by the lines. 343

The Dep metric characterizes the amount of infor- 344

mation used during inference, with smaller values 345

indicating more significant compression. We aim 346

to compare the other three metrics under similar 347

Dep values. It is important to note that Peak charac- 348

terizes a momentary state, while Dep characterizes 349

the entire inference process, so there is no direct 350

correlation between the two. For more details about 351

Dep, please refer to Appx. A. 352

Implementation. For LightThinker, we design 353

two different segmentation functions Seg(). At 354

the token level, we compress every 6 tokens into 355

2 tokens, i.e., |C| = 2, denoted as “ours (token)”. 356

At the thought level, we use “\n\n” as a delim- 357

iter to simply segment the B17K data into several 358

thoughts, denoted as “ours (tho.)”. For the Qwen, 359

we compress a thought into 9 tokens, i.e., |C| = 9; 360

for the Llama, we compress a thought into 7 tokens, 361

i.e., |C| = 7. In all experiments, we use greedy 362

decoding with a maximum output length of 10240 363

tokens. Please refer to Appx. C for more details. 364

4.2 Main Results 365

In Tab. 1, we report the results of four evaluation 366

metrics for two models on four datasets. Key ob- 367

servations include: 1) Distill-R1 performs worse 368

than CoT across all datasets because its weaker 369

5



instruction-following ability (Li et al., 2025) pre-370

vents effective answer extraction using rules, even371

with attempts at evaluation using an LLM evalu-372

ator. However, this issue is not the focus of this373

paper. 2) H2O effectively reduces memory usage374

while maintaining the performance of the vanilla,375

indicating that the greedy eviction policy is ef-376

fective in long-text generation tasks. However,377

H2O significantly increases inference time com-378

pared to Vanilla, with an average increase of 51%379

((20.61−13.68)/13.68 ≈ 0.51) on Qwen and 72%380

on Llama. This is attributed to the token-wise evic-381

tion policy of H2O, which introduces additional382

overhead for each generated token. 3) SepLLM per-383

forms the worst in terms of performance, gradually384

losing language ability during generation, which385

results in the inability to output termination tokens386

and thus leads to excessive inference time. 4) Com-387

pared to H2O, LightThinker (tho.) achieves similar388

performance with lower Dep values (i.e., similar389

compression rate), while reducing inference time390

by an average of 52% on Qwen and 41% on Llama.391

Additionally, LightThinker (tho.) retains higher392

accuracy and faster inference speed compared to393

AnLLM.394

Based on these observations, we draw the fol-395

lowing conclusions: 1) B17K is an effective396

dataset. We find Vanilla outperforms CoT and397

Distill-R1 on most datasets, indicating that B17K398

is an effective dataset that mitigates the repetition399

issue in Distill-R1 through SFT. 2) LightThinker is400

effective and achieves a good balance between ef-401

fectiveness and efficiency in inference. Specifically,402

on the Qwen, LightThinker sacrifices 1% accuracy403

but saves 26% time, reduces the peak tokens by404

70%, and decreases Dep. by 78% (i.e., achieves a405

16.6/3.7=4.5x compression ratio). On the Llama, it406

sacrifices 6% accuracy but saves 1% inference time,407

reduces the peak tokens by 70%, and decreases408

Dep. by 74% (i.e., achieves a 10.5/2.7=3.9x com-409

pression ratio). 3) The segmentation function is410

vital for LightThinker. The thought-level segmen-411

tation function outperforms the token-level, with412

accuracy improvements of 6.2% on Qwen and 5.6%413

on Llama. This suggests that token-level segmenta-414

tion leads to the loss of semantic boundaries.415

4.3 Efficiency416

For clarity, “LightThinker” hereafter denotes Light-417

Thinker (tho.). In this section, we conduct an in-418

depth analysis of LightThinker’s efficiency, focus-419

ing on the following four questions:420

GSM8K MMLU GPQA BBH AVG

Vanilla 11.83 20.61 10.76 11.50 13.68
LightThinker 6.73 7.44 3.86 3.97 5.50

Table 2: Inference time comparison (in hours) for
Vanilla and LightThinker on the Qwen model across
four datasets under the same memory budget.

How does LightThinker accelerate under same 421

memory budget? Inference efficiency is mea- 422

sured through memory consumption and inference 423

speed. Tab. 1 highlights LightThinker’s ability 424

to significantly reduce memory consumption at 425

the same batch size. In practice, this reduction 426

allows for larger batch sizes under the same mem- 427

ory budget, improving throughput. Experiments 428

on four datasets with the Qwen model, conducted 429

under the same memory constraints, show that 430

LightThinker reduces inference time by an aver- 431

age of 2.5× compared to Vanilla, as demonstrated 432

in Tab. 2. This indicates that LightThinker not 433

only reduces both memory and time overhead at 434

the same batch size (as shown in Tab. 1) but also 435

significantly lowers time overhead under the same 436

memory budget, thereby improving throughput. 437

Does LightThinker generate more tokens com- 438

pared to Vanilla? Fig. 4(a) shows the average 439

number of generated tokens for H2O, AnLLM, 440

LightThinker, and Vanilla across four datasets (oth- 441

ers in the Appx. C.5). We observe that: 1) Light- 442

Thinker is the only method that reduces the number 443

of generated tokens compared to Vanilla, with an 444

average reduction of 15% on Qwen and 13% on 445

Llama. This is one of the reasons for its faster 446

inference speed. 2) H2O increases token gener- 447

ation by 10% on Qwen but reduces it by 7% on 448

Llama. Despite the reduction in tokens for Llama, 449

the inference time still increases as shown in Tab. 1, 450

indicating that its eviction policy accumulates ad- 451

ditional overhead as token generation grows. 452

What is the compression ratio of LightThinker? 453

Fig. 4(d) illustrates the compression ratio across 454

four datasets, Tab. 3 reports the average compres- 455

sion counts, and Fig. 4(b) shows the distribution of 456

compressed token counts for GPQA using Qwen 457

(other datasets are in the Appx. C.5). We find that: 458

1) Compression counts and ratios are more closely 459

related to downstream tasks than to the model itself. 460

Simple tasks like GSM8K exhibit lower compres- 461

sion counts and higher compression ratios, while 462

complex tasks like GPQA require more frequent 463

compressions and smaller compression ratios. 2) 464

6



12%

25%

72%

44%

1%

1%

4%

85%

85%

78%

82%

84%

Figure 4: Efficiency Analysis and Ablation Results. Fig.(a) represents the average tokens generated by the respective
model on the specified dataset. Fig.(b) shows the percentage of tokens falling within specified ranges, while the
cumulative percentage curve illustrates the total proportion of tokens up to each range. Fig.(c) illustrates the
relationship between the number of generated tokens and inference time. Each subplot displays the inference time
and peak token for various numbers of output tokens. Fig.(d) represents the average compression ratios with 95%
confidence intervals indicated by error bars. Fig.(e-f) examines the impact of cache size (i.e., |C|) on accuracy, Dep,
inference time, peak tokens, generated tokens, and compression frequency.

GSM8K MMLU GPQA BBH

Qwen 20 37 115 48
Llama 26 47 139 55

Table 3: Statistics of the average number of compres-
sions per dataset for LightThinker.

The distribution of compressed token counts fol-465

lows a long-tail pattern.466

How efficient is LightThinker in memory us-467

age and inference for long-text generation?468

Fig. 4(c) shows the inference time and peak tokens469

of LightThinker and Vanilla as a function of output470

token length. We set the prompt length to 125 and471

compressed 56 tokens to 8 tokens (i.e., |C| = 7).472

We observe that: 1) Our method significantly re-473

duces inference time. For example, when generat-474

ing 32K tokens, the inference time is reduced by475

44%. For shorter texts (from 1K to 4K tokens),476

the reduction is more modest, ranging from 1% to477

4%. 2) Even for shorter texts, LightThinker sub-478

stantially reduces peak tokens. For instance, when479

generating 1K tokens, peak tokens are reduced by480

72%, and for 32K tokens, it is reduced by 85%.481

4.4 Ablation482

Decoupled Token and Attention Mask Mode.483

LightThinker differs from AnLLM in two key as-484

pects: the decoupled token design and the atten- 485

tion mask as shown in Figure 9. To validate the 486

effectiveness of these mechanisms, we conduct ab- 487

lation experiments. As shown in Table 4, under 488

the same cache size setting and using AnLLM’s 489

attention mask mechanism (“AnLLM” vs. “Ours 490

(|C| = 1, T)”), the decoupled design improves ac- 491

curacy by 2%. Further adopting LightThinker’s 492

attention mask mode yields an additional 7% im- 493

provement. These results demonstrate the effective- 494

ness of both the decoupled token and the attention 495

mask mode in LightThinker. 496

Cache Size. We varied |C| in {1, 3, 5, 7, 9} to 497

observe its impact on accuracy, inference time, de- 498

pendency (i.e., Dep), peak tokens, generated token 499

count, and compression frequency. Fig. 4(e-g) illus- 500

trate these trends on the Qwen model. We observe 501

that: 1) As shown in Figure 4(e), increasing the 502

cache size significantly improves accuracy while 503

reducing inference time. This indicates that a larger 504

cache size mitigates information loss caused by 505

compression. 2) As shown in Figure 4(g), increas- 506

ing the cache size reduces both the compression 507

frequency and the number of generated tokens. 3) 508

Combining Fig. 4(e) and Fig. 4(g), we find that a 509

smaller cache size leads to more frequent genera- 510

tion and compression to retain more information, 511

7



Boris owns a chocolate factory. He produces 50,000 bars 
of chocolate each month. Boris produces 8,000 bars of 
chocolate the first week. The second week, Boris only 
produces half as much as the first week. But, the third 
week, Boris produces three times as much as the first 
week. How much does he produce the fourth week?

Okay, ...let me break this down step ...

Boris's weekly chocolate production is calculated as 
follows: First week: 8,000 bars. Second Week: 
8,000/2=4000 bars. Third week: 8,000*3=24,000 bars. 
Total for the first three weeks: 4,000 + 4,000 + 24,000 = 
32,000.   Subtracting this from the monthly total: 50,000 - 
32,000 = 18,000 bars.   Thus, Boris produces 18,000 bars 
in the fourth week.

Model’s Thoughts (Compress six times)

(Compress five times)

Question: The answer is 14000.

Model’s Solution

First, the total ...

... week,
... So third week is 24,000 bars. Now, to find the fourth...

The total monthly production is 50,000 bars ...
so the answer should be 14,000 bars in the fourth week.

Compression Error!

Figure 5: Case Study. The figure illustrates partial infer-
ence results of a case from GSM8K. See App. C.5 for
the complete content. Pink and light blue backgrounds
are used to distinguish adjacent compression processes,
where each color represents one compression.

while a larger cache size reduces this frequency.512

4.5 Case Study513

Fig. 5 illustrates a failure case from the GSM8K514

dataset. We observe that although the LLM ar-515

rives at the correct answer during the thinking pro-516

cess (see Model’s Thoughts field in the Fig. 5),517

it makes an error in the final output (see Model’s518

Solution field in the Figure). Specifically, in the519

third sentence of the Model’s Solution field, the520

first occurrence of “4000” is incorrect. This in-521

dicates that information loss occurred during the522

second compression step (theoretically, “8000”,523

“4000”, and “24000” should have been com-524

pressed, but the LLM only compressed “4000” and525

“24000”), leading to subsequent reasoning errors.526

Such errors occur frequently in the GSM8K dataset,527

suggesting that the current compression method is528

not sufficiently sensitive to numerical values.529

5 Related Work530

Current research on accelerating the inference pro-531

cess of LLMs primarily focuses on three cate-532

gories of methods: Quantizing Model, Generating533

Fewer Tokens, and Reducing KV Cache. Quan-534

tizing Model includes both parameter quantiza-535

GSM8K MMLU GPQA BBH AVG

AnLLM 78.39 54.63 19.70 54.95 51.92
Ours (|C|=1, T) 78.32 58.23 20.71 55.35 53.15
Ours (|C|=1, F) 80.21 58.23 22.22 62.02 55.67

Table 4: Ablation results on the Qwen, reporting accu-
racy on four datasets. “T” denotes the use of AnLLM’s
attention mask mechanism, while “F” indicates the use
of LightThinker’s attention mask mechanism.

tion (Lin et al., 2024) and KV Cache quantiza- 536

tion (Liu et al., 2024b). Notably, generating long 537

texts and understanding long-text represent distinct 538

scenarios; therefore, acceleration methods specifi- 539

cally targeting the long-text generation phase (e.g., 540

pre-filling stage acceleration techniques (Cheva- 541

lier et al., 2023; Ge et al., 2024; Jiang et al., 2023; 542

Zhang et al., 2024b; Li et al., 2024; Cai et al., 2024) 543

are not discussed here. Due to page limits, we focus 544

on the last one. See Appx. D for other details. 545

Reducing KV Cache. This category can be di- 546

vided into two types of strategies: pruning-based 547

KV Cache selection in discrete space and merging- 548

based KV Cache compression in continuous space. 549

1) Pruning-Based Strategies. Specific eviction poli- 550

cies (Zhang et al., 2023; Xiao et al., 2024; Chen 551

et al., 2024) are designed to retain important tokens 552

during inference. 2) Merging-Based Strategies. An- 553

chor tokens are introduced, and LLMs are trained 554

to compress historically important information into 555

these tokens, thereby achieving KV Cache merg- 556

ing (Pang et al., 2024). Both strategies require in- 557

tervention during inference. The key difference is 558

that the first strategy is training-free but applies the 559

eviction policy for every generated token, while the 560

second is a training-based method and allows the 561

LLM to decide when to apply the eviction policy. 562

6 Conclusion 563

In this paper, we present LightThinker, a new ap- 564

proach to enhance the efficiency of LLMs in com- 565

plex reasoning tasks by dynamically compressing 566

intermediate thoughts during generation. By train- 567

ing the LLM to learn when and how to compress 568

verbose thought steps into compact representations, 569

LightThinker significantly reduces memory over- 570

head and computational costs while maintaining 571

competitive accuracy. We introduce the Depen- 572

dency (abbr., Dep) metric to quantify the degree 573

of compression across different accelerating meth- 574

ods. Extensive experiments demonstrate that Light- 575

Thinker is an effective approach to balancing effi- 576

ciency and performance. 577

8



Limitations578

Although LightThinker has shown remarkable ad-579

vancements in memory optimization and inference580

speed enhancement, certain limitations warrant581

careful consideration:582

1. The number of cache tokens is fixed during583

training and must remain consistent during584

inference. The generalization capability of585

these token representations is uncertain. For586

instance, whether representations trained with587

3 tokens can extrapolate to scenarios requiring588

more tokens during inference.589

2. The design of the segmentation function is rel-590

atively simplistic, relying on rule-based meth-591

ods. Future work could investigate more ad-592

vanced segmentation strategies.593

3. The performance of LightThinker on tasks594

such as novel generation, code generation, and595

multi-turn dialogue remains unassessed.596

References597

Daman Arora and Andrea Zanette. 2025. Training lan-598
guage models to reason efficiently. arXiv preprint599
arXiv:2502.04463.600

Grady Booch, Francesco Fabiano, Lior Horesh, Ki-601
ran Kate, Jonathan Lenchner, Nick Linck, Andreas602
Loreggia, Keerthiram Murgesan, Nicholas Mattei,603
Francesca Rossi, et al. 2021. Thinking fast and slow604
in ai. In Proceedings of the AAAI Conference on Ar-605
tificial Intelligence, volume 35, pages 15042–15046.606

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu607
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao608
Chang, Junjie Hu, and Wen Xiao. 2024. Pyramidkv:609
Dynamic KV cache compression based on pyramidal610
information funneling. CoRR, abs/2406.02069.611

Guoxuan Chen, Han Shi, Jiawei Li, Yihang Gao, Xi-612
aozhe Ren, Yimeng Chen, Xin Jiang, Zhenguo Li,613
Weiyang Liu, and Chao Huang. 2024. Sepllm: Ac-614
celerate large language models by compressing one615
segment into one separator. CoRR, abs/2412.12094.616

Jeffrey Cheng and Benjamin Van Durme. 2024. Com-617
pressed chain of thought: Efficient reasoning through618
dense representations. CoRR, abs/2412.13171.619

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and620
Danqi Chen. 2023. Adapting language models to621
compress contexts. In Proceedings of the 2023 Con-622
ference on Empirical Methods in Natural Language623
Processing, EMNLP 2023, Singapore, December 6-624
10, 2023, pages 3829–3846. Association for Compu-625
tational Linguistics.626

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 627
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 628
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 629
Nakano, Christopher Hesse, and John Schulman. 630
2021. Training verifiers to solve math word prob- 631
lems. CoRR, abs/2110.14168. 632

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, 633
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, 634
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, 635
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong 636
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, 637
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, 638
Chenggang Zhao, Chengqi Deng, Chenyu Zhang, 639
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, 640
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, 641
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, 642
Han Bao, Hanwei Xu, Haocheng Wang, Honghui 643
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, 644
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang 645
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. 646
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai 647
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai 648
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong 649
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan 650
Zhang, Minghua Zhang, Minghui Tang, Meng Li, 651
Miaojun Wang, Mingming Li, Ning Tian, Panpan 652
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, 653
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, 654
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, 655
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, 656
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng 657
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing 658
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, 659
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, 660
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao 661
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan 662
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin 663
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, 664
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, 665
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi- 666
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, 667
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang 668
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng 669
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, 670
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, 671
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, 672
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu- 673
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, 674
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, 675
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, 676
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, 677
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean 678
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, 679
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi- 680
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, 681
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu 682
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen- 683
tivizing reasoning capability in llms via reinforce- 684
ment learning. Preprint, arXiv:2501.12948. 685

Yuntian Deng, Yejin Choi, and Stuart M. Shieber. 2024. 686
From explicit cot to implicit cot: Learning to inter- 687
nalize cot step by step. CoRR, abs/2405.14838. 688

9

https://doi.org/10.48550/ARXIV.2406.02069
https://doi.org/10.48550/ARXIV.2406.02069
https://doi.org/10.48550/ARXIV.2406.02069
https://doi.org/10.48550/ARXIV.2406.02069
https://doi.org/10.48550/ARXIV.2406.02069
https://doi.org/10.48550/ARXIV.2412.12094
https://doi.org/10.48550/ARXIV.2412.12094
https://doi.org/10.48550/ARXIV.2412.12094
https://doi.org/10.48550/ARXIV.2412.12094
https://doi.org/10.48550/ARXIV.2412.12094
https://doi.org/10.48550/ARXIV.2412.13171
https://doi.org/10.48550/ARXIV.2412.13171
https://doi.org/10.48550/ARXIV.2412.13171
https://doi.org/10.48550/ARXIV.2412.13171
https://doi.org/10.48550/ARXIV.2412.13171
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.232
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.232
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.232
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.48550/ARXIV.2405.14838
https://doi.org/10.48550/ARXIV.2405.14838
https://doi.org/10.48550/ARXIV.2405.14838


Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul689
Smolensky, Vishrav Chaudhary, and Stuart M.690
Shieber. 2023. Implicit chain of thought reasoning691
via knowledge distillation. CoRR, abs/2311.01460.692

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke693
Zettlemoyer. 2022. Gpt3.int8(): 8-bit matrix multi-694
plication for transformers at scale. In Advances in695
Neural Information Processing Systems 35: Annual696
Conference on Neural Information Processing Sys-697
tems 2022, NeurIPS 2022, New Orleans, LA, USA,698
November 28 - December 9, 2022.699

Mengru Ding, Hanmeng Liu, Zhizhang Fu, Jian Song,700
Wenbo Xie, and Yue Zhang. 2024. Break the chain:701
Large language models can be shortcut reasoners.702
CoRR, abs/2406.06580.703

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,704
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,705
Akhil Mathur, Alan Schelten, Amy Yang, Angela706
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,707
Archi Mitra, Archie Sravankumar, Artem Korenev,708
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien709
Rodriguez, Austen Gregerson, Ava Spataru, Bap-710
tiste Rozière, Bethany Biron, Binh Tang, Bobbie711
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe712
Bi, Chris Marra, Chris McConnell, Christian Keller,713
Christophe Touret, Chunyang Wu, Corinne Wong,714
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-715
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,716
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,717
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,718
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,719
Emily Dinan, Eric Michael Smith, Filip Radenovic,720
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-721
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,722
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-723
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,724
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan725
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan726
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,727
Jeet Shah, Jelmer van der Linde, Jennifer Billock,728
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,729
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,730
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph731
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,732
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate733
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and734
et al. 2024. The llama 3 herd of models. CoRR,735
abs/2407.21783.736

Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen,737
and Furu Wei. 2024. In-context autoencoder for con-738
text compression in a large language model. In The739
Twelfth International Conference on Learning Rep-740
resentations, ICLR 2024, Vienna, Austria, May 7-11,741
2024. OpenReview.net.742

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu743
Zhao, Shiqing Ma, and Zhenyu Chen. 2024.744
Token-budget-aware LLM reasoning. CoRR,745
abs/2412.18547.746

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li,747
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024.748

Training large language models to reason in a contin- 749
uous latent space. CoRR, abs/2412.06769. 750

Dan Hendrycks, Collin Burns, Steven Basart, Andy 751
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein- 752
hardt. 2021. Measuring massive multitask language 753
understanding. In 9th International Conference on 754
Learning Representations, ICLR 2021, Virtual Event, 755
Austria, May 3-7, 2021. OpenReview.net. 756

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, 757
Michael W. Mahoney, Yakun Sophia Shao, Kurt 758
Keutzer, and Amir Gholami. 2024. Kvquant: To- 759
wards 10 million context length LLM inference with 760
KV cache quantization. In Advances in Neural In- 761
formation Processing Systems 38: Annual Confer- 762
ence on Neural Information Processing Systems 2024, 763
NeurIPS 2024, Vancouver, BC, Canada, December 764
10 - 15, 2024. 765

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard- 766
son, Ahmed El-Kishky, Aiden Low, Alec Hel- 767
yar, Aleksander Madry, Alex Beutel, Alex Carney, 768
Alex Iftimie, Alex Karpenko, Alex Tachard Pas- 769
sos, Alexander Neitz, Alexander Prokofiev, Alexan- 770
der Wei, Allison Tam, Ally Bennett, Ananya Ku- 771
mar, Andre Saraiva, Andrea Vallone, Andrew Du- 772
berstein, Andrew Kondrich, Andrey Mishchenko, 773
Andy Applebaum, Angela Jiang, Ashvin Nair, Bar- 774
ret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin 775
Sokolowsky, Boaz Barak, Bob McGrew, Borys Mi- 776
naiev, Botao Hao, Bowen Baker, Brandon Houghton, 777
Brandon McKinzie, Brydon Eastman, Camillo Lu- 778
garesi, Cary Bassin, Cary Hudson, Chak Ming Li, 779
Charles de Bourcy, Chelsea Voss, Chen Shen, Chong 780
Zhang, Chris Koch, Chris Orsinger, Christopher 781
Hesse, Claudia Fischer, Clive Chan, Dan Roberts, 782
Daniel Kappler, Daniel Levy, Daniel Selsam, David 783
Dohan, David Farhi, David Mely, David Robinson, 784
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Free- 785
man, Eddie Zhang, Edmund Wong, Elizabeth Proehl, 786
Enoch Cheung, Eric Mitchell, Eric Wallace, Erik 787
Ritter, Evan Mays, Fan Wang, Felipe Petroski Such, 788
Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, 789
Francis Song, Fred von Lohmann, Freddie Sulit, 790
Geoff Salmon, Giambattista Parascandolo, Gildas 791
Chabot, Grace Zhao, Greg Brockman, Guillaume 792
Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, 793
Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, 794
Hunter Lightman, Hyung Won Chung, Ian Kivlichan, 795
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, 796
and Ilge Akkaya. 2024. Openai o1 system card. 797
CoRR, abs/2412.16720. 798

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing 799
Yang, and Lili Qiu. 2023. Llmlingua: Compressing 800
prompts for accelerated inference of large language 801
models. In Proceedings of the 2023 Conference on 802
Empirical Methods in Natural Language Process- 803
ing, EMNLP 2023, Singapore, December 6-10, 2023, 804
pages 13358–13376. Association for Computational 805
Linguistics. 806

Daniel Kahneman. 2011. Thinking, fast and slow. Far- 807
rar, Straus and Giroux. 808

10

https://doi.org/10.48550/ARXIV.2311.01460
https://doi.org/10.48550/ARXIV.2311.01460
https://doi.org/10.48550/ARXIV.2311.01460
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2406.06580
https://doi.org/10.48550/ARXIV.2406.06580
https://doi.org/10.48550/ARXIV.2406.06580
https://doi.org/10.48550/ARXIV.2407.21783
https://openreview.net/forum?id=uREj4ZuGJE
https://openreview.net/forum?id=uREj4ZuGJE
https://openreview.net/forum?id=uREj4ZuGJE
https://doi.org/10.48550/ARXIV.2412.18547
https://doi.org/10.48550/ARXIV.2412.06769
https://doi.org/10.48550/ARXIV.2412.06769
https://doi.org/10.48550/ARXIV.2412.06769
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
http://papers.nips.cc/paper_files/paper/2024/hash/028fcbcf85435d39a40c4d61b42c99a4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/028fcbcf85435d39a40c4d61b42c99a4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/028fcbcf85435d39a40c4d61b42c99a4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/028fcbcf85435d39a40c4d61b42c99a4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/028fcbcf85435d39a40c4d61b42c99a4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2412.16720
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.825
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.825
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.825
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.825
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.825


Yu Kang, Xianghui Sun, Liangyu Chen, and Wei809
Zou. 2024. C3ot: Generating shorter chain-of-810
thought without compromising effectiveness. CoRR,811
abs/2412.11664.812

Bespoke Labs. 2025. Bespoke-stratos: The unrea-813
sonable effectiveness of reasoning distillation.814
https://www.bespokelabs.ai/blog/bespoke-stratos-815
the-unreasonable-effectiveness-of-reasoning-816
distillation. Accessed: 2025-01-22.817

Xiaomin Li, Zhou Yu, Zhiwei Zhang, Xupeng Chen,818
Ziji Zhang, Yingying Zhuang, Narayanan Sadagopan,819
and Anurag Beniwal. 2025. When thinking fails: The820
pitfalls of reasoning for instruction-following in llms.821
Preprint, arXiv:2505.11423.822

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat823
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,824
Patrick Lewis, and Deming Chen. 2024. Snapkv:825
LLM knows what you are looking for before genera-826
tion. In Advances in Neural Information Processing827
Systems 38: Annual Conference on Neural Informa-828
tion Processing Systems 2024, NeurIPS 2024, Van-829
couver, BC, Canada, December 10 - 15, 2024.830

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-831
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,832
Xingyu Dang, Chuang Gan, and Song Han. 2024.833
AWQ: activation-aware weight quantization for on-834
device LLM compression and acceleration. In Pro-835
ceedings of the Seventh Annual Conference on Ma-836
chine Learning and Systems, MLSys 2024, Santa837
Clara, CA, USA, May 13-16, 2024. mlsys.org.838

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Ji-839
ayang, Yue Zhang, Xipeng Qiu, and Zheng Zhang.840
2024a. Can language models learn to skip steps? In841
Advances in Neural Information Processing Systems842
38: Annual Conference on Neural Information Pro-843
cessing Systems 2024, NeurIPS 2024, Vancouver, BC,844
Canada, December 10 - 15, 2024.845

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,846
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and847
Xia Hu. 2024b. KIVI: A tuning-free asymmetric 2bit848
quantization for KV cache. In Forty-first Interna-849
tional Conference on Machine Learning, ICML 2024,850
Vienna, Austria, July 21-27, 2024. OpenReview.net.851

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shi-852
wei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,853
and Dacheng Tao. 2025. O1-pruner: Length-854
harmonizing fine-tuning for o1-like reasoning prun-855
ing. Preprint, arXiv:2501.12570.856

Jesse Mu, Xiang Li, and Noah D. Goodman. 2023.857
Learning to compress prompts with gist tokens. In858
Advances in Neural Information Processing Systems859
36: Annual Conference on Neural Information Pro-860
cessing Systems 2023, NeurIPS 2023, New Orleans,861
LA, USA, December 10 - 16, 2023.862

Sania Nayab, Giulio Rossolini, Giorgio C. Buttazzo,863
Nicolamaria Manes, and Fabrizio Giacomelli. 2024.864
Concise thoughts: Impact of output length on LLM865
reasoning and cost. CoRR, abs/2407.19825.866

Jianhui Pang, Fanghua Ye, Derek F. Wong, Xin He, 867
Wanshun Chen, and Longyue Wang. 2024. Anchor- 868
based large language models. In Findings of the As- 869
sociation for Computational Linguistics, ACL 2024, 870
Bangkok, Thailand and virtual meeting, August 11- 871
16, 2024, pages 4958–4976. Association for Compu- 872
tational Linguistics. 873

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, 874
Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang, 875
and Huajun Chen. 2023. Reasoning with language 876
model prompting: A survey. In Proceedings of the 877
61st Annual Meeting of the Association for Compu- 878
tational Linguistics (Volume 1: Long Papers), pages 879
5368–5393, Toronto, Canada. Association for Com- 880
putational Linguistics. 881

Team Qwen. 2024. Qwq: Reflect deeply on the bound- 882
aries of the unknown. 883

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack- 884
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju- 885
lian Michael, and Samuel R. Bowman. 2024. GPQA: 886
A graduate-level google-proof q&a benchmark. In 887
First Conference on Language Modeling. 888

Steven A Sloman. 1996. The empirical case for two sys- 889
tems of reasoning. Psychological bulletin, 119(1):3. 890

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se- 891
bastian Gehrmann, Yi Tay, Hyung Won Chung, 892
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, 893
Denny Zhou, and Jason Wei. 2023. Challenging 894
big-bench tasks and whether chain-of-thought can 895
solve them. In Findings of the Association for Com- 896
putational Linguistics: ACL 2023, Toronto, Canada, 897
July 9-14, 2023, pages 13003–13051. Association for 898
Computational Linguistics. 899

OpenThoughts Team. 2025. Open Thoughts. 900
https://open-thoughts.ai. 901

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 902
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 903
Kaiser, and Illia Polosukhin. 2017. Attention is all 904
you need. In Advances in Neural Information Pro- 905
cessing Systems 30: Annual Conference on Neural 906
Information Processing Systems 2017, December 4-9, 907
2017, Long Beach, CA, USA, pages 5998–6008. 908

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 909
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, 910
and Denny Zhou. 2022. Chain-of-thought prompting 911
elicits reasoning in large language models. In Ad- 912
vances in Neural Information Processing Systems 35: 913
Annual Conference on Neural Information Process- 914
ing Systems 2022, NeurIPS 2022, New Orleans, LA, 915
USA, November 28 - December 9, 2022. 916

Jialong Wu, Zhenglin Wang, Linhai Zhang, Yilong Lai, 917
Yulan He, and Deyu Zhou. 2024a. SCOPE: opti- 918
mizing key-value cache compression in long-context 919
generation. CoRR, abs/2412.13649. 920

Siwei Wu, Zhongyuan Peng, Xinrun Du, Tuney Zheng, 921
Minghao Liu, Jialong Wu, Jiachen Ma, Yizhi Li, 922

11

https://doi.org/10.48550/ARXIV.2412.11664
https://doi.org/10.48550/ARXIV.2412.11664
https://doi.org/10.48550/ARXIV.2412.11664
https://arxiv.org/abs/2505.11423
https://arxiv.org/abs/2505.11423
https://arxiv.org/abs/2505.11423
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/504fa7e518da9d1b53a233ed20a38b46-Abstract-Conference.html
https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=L057s2Rq8O
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2501.12570
http://papers.nips.cc/paper_files/paper/2023/hash/3d77c6dcc7f143aa2154e7f4d5e22d68-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2407.19825
https://doi.org/10.48550/ARXIV.2407.19825
https://doi.org/10.48550/ARXIV.2407.19825
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.295
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.295
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.295
https://aclanthology.org/2023.acl-long.294
https://aclanthology.org/2023.acl-long.294
https://aclanthology.org/2023.acl-long.294
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2412.13649
https://doi.org/10.48550/ARXIV.2412.13649
https://doi.org/10.48550/ARXIV.2412.13649
https://doi.org/10.48550/ARXIV.2412.13649
https://doi.org/10.48550/ARXIV.2412.13649


Jian Yang, Wangchunshu Zhou, Qunshu Lin, Junbo923
Zhao, Zhaoxiang Zhang, Wenhao Huang, Ge Zhang,924
Chenghua Lin, and Jiaheng Liu. 2024b. A compara-925
tive study on reasoning patterns of openai’s o1 model.926
CoRR, abs/2410.13639.927

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song928
Han, and Mike Lewis. 2024. Efficient streaming lan-929
guage models with attention sinks. In The Twelfth930
International Conference on Learning Representa-931
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.932
OpenReview.net.933

An Yang, Baosong Yang, Beichen Zhang, Binyuan934
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-935
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian936
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,937
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,938
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei939
Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,940
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,941
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,942
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and943
Zihan Qiu. 2024. Qwen2.5 technical report. CoRR,944
abs/2412.15115.945

Jintian Zhang, Cheng Peng, Mengshu Sun, Xiang Chen,946
Lei Liang, Zhiqiang Zhang, Jun Zhou, Huajun Chen,947
and Ningyu Zhang. 2024a. OneGen: Efficient one-948
pass unified generation and retrieval for LLMs. In949
Findings of the Association for Computational Lin-950
guistics: EMNLP 2024, pages 4088–4119, Miami,951
Florida, USA. Association for Computational Lin-952
guistics.953

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao,954
Qiwei Ye, and Zhicheng Dou. 2024b. Long con-955
text compression with activation beacon. Preprint,956
arXiv:2401.03462.957

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong958
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,959
Yuandong Tian, Christopher Ré, Clark W. Barrett,960
Zhangyang Wang, and Beidi Chen. 2023. H2O:961
heavy-hitter oracle for efficient generative inference962
of large language models. In Advances in Neural963
Information Processing Systems 36: Annual Confer-964
ence on Neural Information Processing Systems 2023,965
NeurIPS 2023, New Orleans, LA, USA, December 10966
- 16, 2023.967

12

https://doi.org/10.48550/ARXIV.2410.13639
https://doi.org/10.48550/ARXIV.2410.13639
https://doi.org/10.48550/ARXIV.2410.13639
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://doi.org/10.48550/ARXIV.2412.15115
https://aclanthology.org/2024.findings-emnlp.237
https://aclanthology.org/2024.findings-emnlp.237
https://aclanthology.org/2024.findings-emnlp.237
https://arxiv.org/abs/2401.03462
https://arxiv.org/abs/2401.03462
https://arxiv.org/abs/2401.03462
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html


Appendix968

A Metric: Dependency969

Peak Tokens

Prompt
Length

(a) Vanilla (c) AnLLM & Ours(b) H2O

C
on

te
xt

 L
en

gt
h

C
on

te
xt

 L
en

gt
h

Generated Tokens Length Generated Tokens Length Generated Tokens Length

C
on

te
xt

 L
en

gt
h

Peak
Tokens

Dependency Dependency Dependency

Prompt
Length

Prompt
Length

Peak Tokens

Figure 6: Illustration of the metric Dependency.

A.1 Motivation970

LightThinker and AnLLM (Pang et al., 2024) are971

dynamic compression methods, meaning the num-972

ber of compressions and the compression ratio are973

determined by the LLM itself rather than being pre-974

defined hyperparameters. In contrast, H2O (Zhang975

et al., 2023) and SepLLM (Chen et al., 2024) allow976

users to set hyperparameters to control the maxi-977

mum number of tokens retained during inference.978

This fundamental difference makes it challenging979

to directly and fairly compare dynamic compres-980

sion methods like LightThinker and AnLLM with981

KV cache compression approaches like H2O and982

SepLLM.983

Traditionally, KV cache compression methods984

are compared by setting the same maximum peak985

token count, but this metric becomes inadequate986

in our context. As illustrated in Figure 6, which987

shows the relationship between generated tokens988

and context length for Vanilla, H2O, and Light-989

Thinker, LightThinker occasionally exceeds H2O990

in peak token count. However, this metric is mis-991

leading because LightThinker’s peak memory us-992

age occurs only momentarily, while H2O maintains993

a consistently high token count over time.994

Moreover, previous KV cache compression995

methods often compress prompt parts only and as-996

sume a fixed prompt length, allowing compression997

ratios to be predefined. In our setting, however, the998

output is also needed to be compressed. The output999

token count is unknown, making it impossible to1000

preset a global compression ratio. Consequently,1001

relying solely on maximum peak token count as a 1002

comparison metric is insufficient. 1003

To address these challenges, we propose a new 1004

metric called Dependency, which quantifies the to- 1005

tal amount of information dependencies during the 1006

generation process. This metric enables fair com- 1007

parisons between dynamic compression methods 1008

and traditional KV cache compression approaches 1009

by ensuring evaluations are conducted under simi- 1010

lar effective compression ratios. 1011

A.2 Definition 1012

We introduce the Dependency (abbr., Dep) metric, 1013

defined as the sum of dependencies of each gener- 1014

ated token on previous tokens during the generation 1015

of an output. Geometrically, it represents the area 1016

under the curve in Figure 6. Dependency can be 1017

calculated either from its definition or through its 1018

geometric interpretation. Here, we focus on the ge- 1019

ometric approach. Let the initial prompt length be 1020

LP , the model’s output length be LO, and the max- 1021

imum context length set by KV cache compression 1022

methods be LC . 1023

Dependency for Vanilla. The area under 1024

Vanilla’s curve forms a right trapezoid, calculated 1025

as: 1026

Dependency =
(LP + LP + LO)× LO

2

=
LO

2

2
+ LP × LO

1027

Dependency for H2O. The area under H2O’s 1028

curve consists of a trapezoid (left part in Fig- 1029

ure 6(b)) and a rectangle (right part in Figure 6(b)): 1030

STrapezoid =
(LP + LC)× (LC − LP )

2
Srectangle = LC × (LO − LC + LP )

Dependency = STrapezoid + Srectangle

=
2LPLC + 2LOLC − LP

2 − LC
2

2

1031

Dependency for LightThinker and AnLLM. 1032

For LightThinker and AnLLM, Dependency does 1033

not have a closed-form solution and must be com- 1034

puted iteratively based on its definition. 1035

A.3 Application 1036

Value of Dependency. A higher Dependency value 1037

indicates that more tokens need to be considered 1038

during generation, reflecting greater information 1039

usage. Conversely, a lower Dependency value sug- 1040

gests a higher effective compression ratio. 1041

13



Dependency Ratio. By dividing the De-1042

pendency of an accelerated method by that of1043

Vanilla, we obtain the compression ratio relative to1044

Vanilla. For example, in Table 1’s “Avg.” column,1045

Vanilla’s Dependency is 16.6M, H2O’s is 4.4M,1046

and LightThinker’s is 3.7M. Thus, H2O achieves1047

a compression ratio of 16.6
4.4 ≈ 3.8, while Light-1048

Thinker achieves 16.6
3.7 ≈ 4.5.1049

This metric provides a unified framework for1050

evaluating both dynamic and static compression1051

methods, ensuring fair and meaningful compar-1052

isons.1053

(a) AnLLM’s 
Attention Mask.

(b) LightThinker’s Attention 
Mask. (|C|=1, T)

(c) LightThinker’s Attention 
Mask. (|C|=1, F)

Figure 7: Illustration of Attention Mask in Table 4.

B Mathematical Description of1054

Compression1055

In this section, we provide a detailed formulation1056

of the compression operation introduced in Sec-1057

tion 3.2.1058

Notation. During compression, the context can1059

be divided into three segments: 1. The1060

sequence that remains in the context with-1061

out being compressed, denoted as Pre :=1062

{X, {C(1), [o](1) . . . , C(i−1), [o]i−1}}, with the1063

number of tokens represented by N ; 2. The thought1064

sequence to be compressed, defined as Tho := Si,1065

with the number of tokens denoted by T ; 3. The se-1066

quence storing the compressed content, C := C(i),1067

with its length represented by |C|.1068

Compression Operation. Here, we describe the1069

compression operation at a specific layer, focusing1070

on the information passed to the sequence C. Ac-1071

cording to the definition of self-attention (Vaswani1072

et al., 2017), the attention matrix for the sequence1073

C with respect to other content is calculated as:1074

A = Softmax(mask(
QC [KPre : KTho : KC ]⊤√

d
))1075

where [:] denotes the concatenation operation,1076

mask(·) represents the attention mask correspond-1077

ing to the “Thought-based Attention Mask Con-1078

struction” in Section 3.2, KPre, V Pre ∈ RN×d,1079

KTho, V Tho ∈ RT×d, KC , V C ∈ R|C|×d, QC ∈ 1080

R|C|×d, and d is the hidden dimension. The ma- 1081

trix A ∈ R|C|×(N+T+|C|) describes the attention 1082

of sequence C to other content. The values of the 1083

other sequences are then weighted and summed 1084

according to the attention matrix: 1085

H = A× [V Pre : V Tho : V C ] 1086

where [V Pre : V Tho : V C ] ∈ R(N+T+|C|)×d, and 1087

thus H ∈ R|C|×d. At this point, the information 1088

from the current Tho is preserved in H . Through 1089

training, the model learns to selectively retain use- 1090

ful information from Tho in H . H is then stored 1091

in the KV Cache after passing through an MLP and 1092

the next layer’s projection. 1093

C Experiment 1094

C.1 Training Data 1095

Examples of training samples are shown in Fig- 1096

ure 15. 1097

C.2 Baseline Details 1098

H2O (Zhang et al., 2023) is a training-free acceler- 1099

ation method that greedily retains tokens with the 1100

highest cumulative attention values from histori- 1101

cal tokens. It includes two hyper-parameters: the 1102

maximum number of tokens and the current win- 1103

dow size (i.e., local_size). The maximum num- 1104

ber of tokens for each task is listed in the “Peak” 1105

column of Table 1, and the local_size is set to 1106

half of the maximum number of tokens. The ex- 1107

perimental code is implemented based on https: 1108

//github.com/meta-llama/llama-cookbook. 1109

SepLLM (Chen et al., 2024) is another training- 1110

free acceleration method that considers tokens 1111

at punctuation positions as more important. It 1112

includes four parameters: the maximum num- 1113

ber of tokens is set to 1024, local_size is 1114

set to 256, sep_cache_size is set to 64, and 1115

init_cache_size is set to 384. We also tried 1116

another set of parameters (init_cache_size=4, 1117

sep_cache_size=64, local_size=720, maxi- 1118

mum number of tokens=1024), but found that the 1119

first set of parameters performed slightly better. 1120

AnLLM (Pang et al., 2024) is a training-based 1121

method that shares a similar overall approach with 1122

LightThinker but accelerates by saving historical 1123

content in anchor tokens. The specific differences 1124

between the two are detailed in Section ??. 1125

14

https://github.com/meta-llama/llama-cookbook
https://github.com/meta-llama/llama-cookbook
https://github.com/meta-llama/llama-cookbook


C.3 Training Details1126

Both Vanilla and AnLLM are trained on1127

the B17K (Labs, 2025) dataset using the R1-1128

Distill (DeepSeek-AI et al., 2025) model for 51129

epochs, while LightThinker is trained for 6 epochs.1130

The maximum length is set to 4096, and a cosine1131

warmup strategy is adopted with a warmup_ratio1132

of 0.05. Experiments are conducted on 4 A8001133

GPUs with DeepSpeed ZeRo3 offload enabled.1134

The batch size per GPU is set to 5, and the gradient1135

accumulation step is set to 4, resulting in a global1136

batch size of 80. The learning rate for Vanilla is set1137

to 1e-5, while for AnLLM and LightThinker, it is1138

set to 2e-5.1139

C.4 Evaluation Details1140

For the CoT in Table 1, the prompts used are1141

shown in Figure 11 and Figure 14. For the1142

R1-Distill model, no system prompt is used,1143

and the task-specific prompts are shown in Fig-1144

ure 13. Vanilla, H2O, SepLLM, AnLLM, and1145

LightThinker share the same set of prompts, with1146

the system prompt shown in Figure 12 and down-1147

stream task prompts shown in Figure 13. The1148

options for MMLU (Hendrycks et al., 2021) and1149

GPQA (Rein et al., 2024) multiple-choice ques-1150

tions are randomized.1151

C.5 Additional Results1152

Figure 8 compares the number of tokens generated1153

by two models across different datasets. Figure 101154

shows the distribution of compressed lengths for1155

LightThinker on two models and four datasets. Fig-1156

ure 7 illustrates the attention masks for the base-1157

lines in Table 4. Figure 16 shows a complete case1158

in Figure 5.1159

D Related Work1160

Current research on accelerating the inference pro-1161

cess of large language models (LLMs) primarily1162

focuses on three categories of methods: Quantizing1163

Model, Generating Fewer Tokens, and Reducing1164

KV Cache. Quantizing Model includes both pa-1165

rameter quantization (Lin et al., 2024; Dettmers1166

et al., 2022) and KV Cache quantization (Liu et al.,1167

2024b; Hooper et al., 2024), while this section will1168

concentrate on the latter two categories. It is im-1169

portant to note that generating long texts and under-1170

standing long texts represent distinct application1171

scenarios; therefore, acceleration methods specifi-1172

cally targeting the long-text generation phase (e.g.,1173

pre-filling stage acceleration techniques such as Au- 1174

toCompressor (Chevalier et al., 2023), ICAE (Ge 1175

et al., 2024), LLMLingua (Jiang et al., 2023), Acti- 1176

vation Beacon (Zhang et al., 2024b), SnapKV (Li 1177

et al., 2024), and PyramidKV (Cai et al., 2024)) are 1178

not discussed here. Below is a detailed overview 1179

of the last two categories. 1180

Generating Fewer Tokens. This category can 1181

be further divided into three strategies based on 1182

the number and type of tokens used during infer- 1183

ence. 1) Discrete Token Reduction. Techniques 1184

such as prompt engineering (Han et al., 2024; Ding 1185

et al., 2024; Nayab et al., 2024), instruction fine- 1186

tuning (Liu et al., 2024a; Kang et al., 2024), or 1187

reinforcement learning (Arora and Zanette, 2025; 1188

Luo et al., 2025) are used to guide LLMs to use 1189

fewer discrete tokens during inference. For ex- 1190

ample, TALE (Han et al., 2024) prompts LLMs 1191

to complete tasks under a predefined token bud- 1192

get. Arora and Zanette construct specific datasets 1193

and employ reinforcement learning reward mech- 1194

anisms to encourage models to generate concise 1195

and accurate outputs, thereby reducing token usage. 1196

2) Continuous Token Replacement. These meth- 1197

ods (Hao et al., 2024; Cheng and Durme, 2024) 1198

explore using continuous-space tokens instead of 1199

traditional discrete vocabulary tokens. A represen- 1200

tative example is CoConut (Hao et al., 2024), which 1201

leverages Curriculum Learning to train LLMs to 1202

perform inference with continuous tokens. 3)No To- 1203

ken Usage. By internalizing the inference process 1204

between model layers, the final answer is gener- 1205

ated directly during inference without intermedi- 1206

ate tokens (Deng et al., 2024, 2023). These three 1207

strategies are implemented after model training and 1208

do not require additional intervention during infer- 1209

ence. Technically, the acceleration effect of these 1210

methods increases sequentially, but at the cost of a 1211

gradual decline in the generalization performance 1212

of LLMs. Additionally, the first strategy does not 1213

significantly reduce GPU memory usage. 1214

Reducing KV Cache. This category can be di- 1215

vided into two types of strategies: pruning-based 1216

KV Cache selection in discrete space and merging- 1217

based KV Cache compression in continuous space. 1218

1) Pruning-Based Strategies. Specific eviction poli- 1219

cies (Zhang et al., 2023; Xiao et al., 2024; Chen 1220

et al., 2024; Wu et al., 2024a) are designed to re- 1221

tain important tokens during inference. For ex- 1222

ample, StreamingLLM (Xiao et al., 2024) con- 1223

siders the initial sink tokens and the most recent 1224

tokens as important. H2O (Zhang et al., 2023) 1225

15



Figure 8: Average number of generated tokens.

focuses on tokens with high historical attention1226

scores. SepLLM (Chen et al., 2024) emphasizes1227

tokens corresponding to punctuation marks. 2)1228

Merging-Based Strategies. Anchor tokens are in-1229

troduced, and LLMs are trained to compress his-1230

torically important information into these tokens,1231

thereby achieving KV Cache merging (Pang et al.,1232

2024). Both strategies require intervention during1233

inference. The key difference is that the first strat-1234

egy is training-free but applies the eviction policy1235

for every generated token, while the second strat-1236

egy is a training-based method and allows the LLM1237

to decide when to apply the eviction policy.1238

E Discussions1239

E.1 Difference between LightThinker and1240

AnLLM1241

AnLLM (Pang et al., 2024) is a work from 2023, at1242

which time the concept of long-cot (Jaech et al.,1243

2024; DeepSeek-AI et al., 2025) did not exist.1244

AnLLM itself focuses more on prompt compres-1245

sion rather than output compression. Additionally,1246

our method decouples compression and genera-1247

tion, allowing for scaling the number of cache to-1248

kens—something AnLLM cannot do. Therefore,1249

our work is only related to AnLLM in that both 1250

use sparse attention (Zhang et al., 2023; Li et al., 1251

2024) to speed up processes, but they are not simi- 1252

lar works. 1253

AnLLM is a method related to ours. In Fig- 1254

ure 9, we compare the differences in Attention 1255

Mask between LightThinker and AnLLM: 1) De- 1256

coupling Generation and Compression. In AnLLM, 1257

the [ci] token is tasked with both compressing 1258

historical information and generating subsequent 1259

content, as shown by the blue and pink arrows in 1260

Fig. 9. This design tightly couples generation and 1261

compression. In contrast, LightThinker decouples 1262

these tasks: the [ci] token solely compresses his- 1263

torical information, while the [o] token performs 1264

reasoning based on the compressed content. 2) 1265

Context Visibility during Compression. AnLLM 1266

can only access the current thought during com- 1267

pression. LightThinker, however, allows access to 1268

X , historical compressed content, and the current 1269

thought during compression, thereby enhancing 1270

contextual understanding. Ablation experiments in 1271

Section 4.4 demonstrate that these designs signifi- 1272

cantly improve performance. 1273

16



only S2 is 
not masked

1 Compression
2 Generation

C
ou

pl
ed D
is

ou
pl

ed

(a) AnLLM’s 
Attention Mask.

X, previous compressed content, 
and S2 are not masked.

(b) Ours’ Attention Mask.

Figure 9: Contrast of AnLLM and ours. Two differences
are marked: one with a red box, and the other with blue
and pink arrows.

E.2 Viewing LightThinker from Other1274

Perspectives1275

In previous sections, we design LightThinker from1276

a compression perspective. Here, we further dis-1277

cuss it from the perspectives of Memory and KV1278

Cache Compression, where KV Cache can be1279

viewed as a form of LLM work memory.1280

In Memory perspective, LightThinker’s work-1281

flow can be summarized as follows: it first per-1282

forms autoregressive reasoning, then stores key1283

information from the reasoning process as memory1284

(memory), and continues reasoning based on the1285

memorized content. Thus, the information in the1286

cache tokens acts as a compact memory, though1287

it is only effective for the current LLM and lacks1288

transferability.1289

In KV Cache Compression perspective, unlike1290

methods such as H2O (Zhang et al., 2023), which1291

rely on manually designed eviction policy to select1292

important tokens, LightThinker merges previous1293

tokens in a continuous space, ceating new repre-1294

sentations. The content and manner of merging are1295

autonomously determined by the LLM, rather than1296

being a discrete selection process.1297

E.3 Why LightThinker generates more tokens1298

with smaller cache size?1299

As shown in Figure 4(e-f), we find that Light-1300

Thinker generates more tokens with smaller cache1301

size. We examined outputs under different cache1302

sizes and found that when the cache size is small,1303

the model tends to repeat previous content more1304

often. We believe this is because smaller cache1305

sizes lead to greater information loss during com-1306

pression, prompting the model to regenerate earlier1307

content more frequently to retain as much informa-1308

tion as possible.1309

17



Figure 10: Token compression frequency distribution for LightThinker.

18



System Prompt:
Below is a question. Please think through it step by step, and then provide the final answer. If
options are provided, please select the correct one.
## Output format:
Use “<THOUGHT>...</THOUGHT>” to outline your reasoning process, and enclose the final
answer in ‘\boxed{}‘.

## Example 1:
Question:
What is 2 + 3?
Output:
<THOUGHT>First, I recognize that this is a simple addition problem. Adding 2 and 3 together
gives 5.</THOUGHT>
Therefore, the final answer is \boxed{5}.

## Example 2:
Question:
What is 2 + 3?
A. 4
B. 5
C. 10

Output:
<THOUGHT>First, I recognize that this is a simple addition problem. Adding 2 and 3 together
gives 5.</THOUGHT>
Therefore, the final answer is \boxed{B}.

Figure 11: System prompt for Qwen2.5-7B-Instruct and Llama3.1-8B-Instruct.

System Prompt:
Your role as an assistant involves thoroughly exploring questions through a systematic long think-
ing process before providing the final precise and accurate solutions. This requires engaging in
a comprehensive cycle of analysis, summarizing, exploration, reassessment, reflection, backtrac-
ing, and iteration to develop well-considered thinking process. Please structure your response
into two main sections: Thought and Solution. In the Thought section, detail your reasoning
process using the specified format: <|begin_of_thought|> {thought with steps separated with
‘\n\n’} <|end_of_thought|> Each step should include detailed considerations such as analisying
questions, summarizing relevant findings, brainstorming new ideas, verifying the accuracy of the
current steps, refining any errors, and revisiting previous steps. In the Solution section, based on
various attempts, explorations, and reflections from the Thought section, systematically present
the final solution that you deem correct. The solution should remain a logical, accurate, concise
expression style and detail necessary step needed to reach the conclusion, formatted as follows:
<|begin_of_solution|> {final formatted, precise, and clear solution} <|end_of_thought|>
Now, try to solve the following question through the above guidelines:

Figure 12: System prompt for Vanilla, H2O, SepLLM, AnLLM, and LightThinker for both Qwen-based model and
Llama-based model.

19



GSM8K/MMLU/GPQA/BBH:
Return your final response within \boxed{}. {Question}

Figure 13: Task prompt for Distill-R1, Vanilla, H2O, SepLLM, AnLLM, and LightThinker for both Qwen-based
model and Llama-based model.

GSM8K:
Return your final response within \boxed{}. {Question}

MMLU:
Please select the option that best answers the question. Return your final response within \boxed{}.
Here are the Question:
{Question}

GPQA:
Given a question, please select the option that best answers it. Return your final response within
\boxed{}. {Question}

BBH:
Return your final response within \boxed{}. If options are provided, please select the correct one.
{Question}

Figure 14: Task prompt for Qwen2.5-7B-Instruct and Llama3.1-8B-Instruct.

20



System Prompt:
See Figure 12

Input:
Return your final response within \boxed{}. The average of the numbers 23 and x is 27. What is
the positive difference between 23 and x? (Recall that the average of two numbers is their sum
divided by 2).

Output:
<|begin_of_thought|> Okay, let’s see. The problem says that the average of the numbers 23 and
x is 27. We need to find the positive difference between 23 and x. Hmm, right. Since the average of
two numbers is their sum divided by 2, I can start by setting up the equation for the average.<w>So,
the average of 23 and x is (23 + x)/2. According to the problem, this average equals 27. So I can
write the equation:<w>(23 + x)/2 = 27<w>To find x, I should solve this equation. Let me multiply
both sides by 2 to get rid of the denominator. That gives:<w>23 + x = 54<w>Then, subtract 23 from
both sides to isolate x:<w>x = 54 - 23<w>Calculating that, 54 minus 23 is 31. So x is 31. Now, the
question asks for the positive difference between 23 and x. The positive difference would be the
absolute value of 23 - x. Since x is 31, that’s |23 - 31|, which is | -8 |, so 8. Alternatively, it could
also be |31 - 23|, which is the same result, 8. Either way, the positive difference is 8.<w>Wait, let
me check my steps again to make sure I didn’t make a mistake. Starting with the average: (23 +
x)/2 = 27. Multiply both sides by 2: 23 + x = 54. Subtract 23: x = 31. Difference between 23 and
31 is 8. That seems right. Yeah, I think that’s correct. No issues here.<w> <|end_of_thought|>
<|begin_of_solution|> <w>The average of 23 and x is given by 23+x

2 = 27. Multiplying both
sides by 2:

23 + x = 54

Subtracting 23 from both sides:
x = 54− 23 = 31

The positive difference between 23 and x is:

|31− 23| = 8

<w> 8 <|end_of_solution|>

Figure 15: A training case. <w> is a compression trigger.

21



Question:
Boris owns a chocolate factory. He produces 50,000 bars of chocolate each month. Boris produces
8,000 bars of chocolate the first week. The second week, Boris only produces half as much as the
first week. But, the third week, Boris produces three times as much as the first week. How much
does he produce the fourth week?

Model Output:
<|begin_of_thought|>
Okay, let’s see. Boris has a chocolate factory that produces 50,000 bars each month. The question
is asking how much he produces in the fourth week. Hmm, let me break this down step by step.
<|splitter|>

First, the total monthly production is 50,000 bars. The month is divided into four weeks,
right? So the production for each week adds up to 50,000. The problem gives the production
for the first three weeks and asks for the fourth week. Let me note down the given information.
<|splitter|>

First week: 8,000 bars. That’s straightforward. Then the second week, he produces half
as much as the first week. Half of 8,000 is 4,000. So second week is 4,000 bars. Then the third
week, he produces three times as much as the first week. Three times 8,000 is 24,000. So third
week is 24,000 bars. <|splitter|>

Now, to find the fourth week’s production, I need to subtract the sum of the first three
weeks from the total monthly production. Let me add up the first three weeks: 8,000 + 4,000 +
24,000. Let’s do the math step by step. 8,000 plus 4,000 is 12,000. Then 12,000 plus 24,000 is
36,000. So the total for the first three weeks is 36,000 bars. <|splitter|>

The total monthly production is 50,000 bars. Subtracting the first three weeks from the
total gives the fourth week’s production. So 50,000 minus 36,000 equals 14,000 bars. Therefore,
Boris produces 14,000 bars in the fourth week. <|splitter|>

Wait a second, let me double-check my calculations to make sure I didn’t make a mis-
take. First week: 8,000. Second week: half of 8,000 is indeed 4,000. Third week: three times
8,000 is 24,000. Adding those: 8,000 + 4,000 = 12,000; 12,000 + 24,000 = 36,000. Total monthly
is 50,000. So 50,000 - 36,000 = 14,000. Yep, that seems right. I don’t think I missed anything here.
The problem states the production for each week as fractions or multiples of the first week, so the
calculations are straightforward. No complicated formulas needed. Just basic arithmetic. So the
answer should be 14,000 bars in the fourth week. <|splitter|>
<|end_of_thought|>

<|begin_of_solution|>
Boris’s weekly chocolate production is calculated as follows: <|splitter|>

- First week: 8,000 bars
- Second week: 8,000

2 = 4, 000 bars
- Third week: 8, 000× 3 = 24, 000 bars <|splitter|>

Total for the first three weeks:
4, 000 + 4, 000 + 24, 000 = 32, 000 bars <|splitter|>

Subtracting this from the monthly total:
50, 000− 32, 000 = 18, 000 bars <|splitter|>

Thus, Boris produces 18000 bars in the fourth week. <|splitter|>
<|begin_of_solution|>

Figure 16: Bad Case. <|splitter|> is equal to <w> in Figure 15.

22


	Introduction
	Background
	Methodology
	Overview
	LightThinker

	Experiments
	Experimental Settings
	Main Results
	Efficiency
	Ablation
	Case Study

	Related Work
	Conclusion
	Metric: Dependency
	Motivation
	Definition
	Application

	Mathematical Description of Compression
	Experiment
	Training Data
	Baseline Details
	Training Details
	Evaluation Details
	Additional Results

	Related Work
	Discussions
	Difference between LightThinker and AnLLM
	Viewing LightThinker from Other Perspectives
	Why LightThinker generates more tokens with smaller cache size?


