
Under review as submission to TMLR

Noncommutative C∗-algebra Net: Learning Neural Net-
works with Powerful Product Structure in C∗-algebra

Anonymous authors
Paper under double-blind review

Abstract

We propose a new generalization of neural networks with noncommutative C∗-algebra. An
important feature of C∗-algebras is their noncommutative structure of products, but the
existing C∗-algebra net frameworks have only considered commutative C∗-algebras. We
show that this noncommutative structure of C∗-algebras induces powerful effects in learning
neural networks. Our framework has a wide range of applications, such as learning multiple
related neural networks simultaneously with interactions and learning invariant features
with respect to group actions. We also show the validity of our framework numerically,
which illustrates its potential power.

1 Introduction

Generalization of the parameter space of neural networks from real numbers to others has attracted re-
searchers for decades. Although using real-valued parameters is standard and straightforward for real-valued
data, it may be more suitable to adopt parameters of complex numbers (Hirose, 1992; Nishikawa et al., 2005;
Amin et al., 2008; Yadav et al., 2005; Trabelsi et al., 2018; Lee et al., 2022) or quaternion numbers (Nitta,
1995; Arena et al., 1997; Zhu et al., 2018; Gaudet & Maida, 2018) for data in signal processing, computer
vision, and robotics domains, among others. Clifford-algebra, the generalization of these numbers, allows
more flexible geometrical processing of data, and thus is applied to neural networks (Pearson & Bisset,
1994; Buchholz, 2005; Buchholz & Sommer, 2008) to handle rich geometric relationships in data (Rivera-
Rovelo et al., 2010; Zang et al., 2022; Brandstetter et al., 2022; Ruhe et al., 2023b;a). Different from these
approaches focusing on the geometric perspective of parameter values, another direction of generalization
is to use function-valued parameters (Rossi & Conan-Guez, 2005; Thind et al., 2022), which broadens the
applications of neural networks to functional data.

Hashimoto et al. (2022) proposed generalizing neural network parameters to C∗-algebra, which is called C∗-
algebra net. They showed that multiple related neural networks can be continuously combined into a single
C∗-algebra net. For example, networks for the same task with different training datasets or different initial
parameters can be combined continuously, which enables the construction of infinitely many networks and
efficient learning using shared information among them. Such interaction among networks is also applicable
to learning from related tasks, such as ensemble learning (Dong et al., 2020; Ganaie et al., 2022) and
multitask learning (Zhang & Yang, 2022). However, because the product structure in the C∗-algebra that
Hashimoto et al. (2021) focused on is commutative, they needed specially designed loss functions to induce
the interaction.

In this paper, we propose a new generalization of neural networks with noncommutative C∗-algebra, which
also generalizes the framework of Hashimoto et al. (2022). C∗-algebra is a generalization of the space of
complex numbers (Murphy, 1990; Hashimoto et al., 2021). Typical examples of C∗-algebras include the
space of diagonal matrices and the space of (not necessarily diagonal) matrices. An important feature of
C∗-algebra is the product structure. Analogous to the case of complex numbers, for any two elements a and
b in a C∗-algebra, we can calculate the product a · b. However, unlike the case of complex numbers, the
product is not always commutative, i.e., a ·b = b ·a is not always satisfied. For example, whereas the product
of two diagonal matrices commutes, the product of two nondiagonal matrices does not commute. In the
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case of diagonal matrices, the product is just described by the product of each diagonal element, and there
are no interactions with the other elements. On the other hand, the product of two nondiagonal matrices is
described by the sum of the products between different elements in the matrices, which induces interactions
with the other elements.

For neural networks, the interactions induced by the noncommutative C∗-algebras correspond to interactions
among multiple neural networks. Because the interactions are encoded in the structure of the network, we do
not need to design loss functions to make the networks interact. Instead, the interactions required for them
are implicitly and automatically learned through the noncommutative product structure in C∗-algebras.
Therefore, our framework, which takes advantage of noncommutative C∗-algebras enables us to go beyond
existing frameworks of neural networks.

Our framework of the noncommutative C∗-algebra net is general and has a wide range of applications, not
limited to the above case of matrices. For example, by setting the C∗-algebra as a group C∗-algebra, we
can construct a group equivariant neural network. In this case, we can naturally generalize real-valued
parameters of neural networks to those inducing group convolution. We can also set the C∗-algebra as the
C∗-algebra of bounded linear operators on a function space, which can be applied to analyzing functional
data. Our main contributions are summarized as follows:

• We generalize the commutative C∗-algebra net proposed by Hashimoto et al. (2022) to noncommu-
tative C∗-algebra, which enables us to take advantage of the noncommutative product structure in
the C∗-algebra when learning neural networks.

• We show a wide range of applications of our framework, inducing interactions among networks and
learning invariant features with respect to group actions.

• We empirically illustrate the validity of noncommutative C∗-algebra nets, including interactions
among neural networks.

We emphasize that C∗-algebra is a powerful tool for neural networks, and our work provides a lot of important
perspectives about its application.

2 Background

In this section, we review the mathematical background of C∗-algebra required for this paper and the existing
C∗-algebra net. For more theoretical details of the C∗-algebra, see, for example, Murphy (1990).

2.1 C∗-algebra

C∗-algebra is a generalization of the space of complex values. It has structures of the product, involution ∗,
and norm.

Definition 1 (C∗-algebra) A set A is called a C∗-algebra if it satisfies the following conditions:

1. A is an algebra over C and equipped with a bijection (·)∗ : A → A that satisfies the following
conditions for α, β ∈ C and c, d ∈ A:

• (αc + βd)∗ = αc∗ + βd∗,
• (cd)∗ = d∗c∗,
• (c∗)∗ = c.

2. A is a normed space with ∥ · ∥, and for c, d ∈ A, ∥cd∥ ≤ ∥c∥ ∥d∥ holds. In addition, A is complete
with respect to ∥ · ∥.

3. For c ∈ A, ∥c∗c∥ = ∥c∥2 holds.
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The product structure in C∗-algebras can be both commutative and noncommutative.

Example 1 (Commutative C∗-algebra) Let A be the space of continuous functions on a compact Haus-
dorff space Z. We can regard A as a C∗-algebra by setting

• Product: Pointwise product of two functions, i.e., for a1, a2 ∈ A, a1a2(z) = a1(z)a2(z).

• Involution: Pointwise complex conjugate, i.e., for a ∈ A, a∗(z) = a(z).

• Norm: Sup norm, i.e., for a ∈ A, ∥a∥ = supz∈Z |a(z)|.

In this case, the product in A is commutative.

Example 2 (Noncommutative C∗-algebra) Let A be the space of bounded linear operators on a Hilbert
space H, which is denoted by B(H). We can regard A as a C∗-algebra by setting

• Product: Composition of two operators,

• Involution: Adjoint of an operator,

• Norm: Operator norm of an operator, i.e., for a ∈ A, ∥a∥ = supv∈H,∥v∥H=1 ∥av∥H.

Here, ∥ · ∥H is the norm in H. In this case, the product in A is noncommutative. Note that if H is a
d-dimensional space for a finite natural number d, then elements in A are d by d matrices.

Example 3 (Group C∗-algebra) The group C∗-algebra on a group G, which is denoted as C∗(G), is the
set of maps from G to C equipped with the following product, involution, and norm:

• Product: (a · b)(g) =
∫

G
a(h)b(h−1g)dλ(h) for g ∈ G,

• Involution: a∗(g) = ∆(g−1)a(g−1) for g ∈ G,

• Norm: ∥a∥ = sup[π]∈Ĝ ∥π(a)∥,

where ∆(g) is a positive number satisfying λ(Eg) = ∆(g)λ(E) for the Haar measure λ on G. In addition,
Ĝ is the set of equivalence classes of irreducible unitary representations of G. Note that if G is discrete,
then λ is the counting measure on G. In this paper, we focus mainly on the product structure of C∗(G). For
details of the Haar measure and representations of groups, see Kirillov (1976). If G = Z/pZ, then C∗(G)
is C∗-isomorphic to the C∗-algebra of circulant matrices (Hashimoto et al., 2023). Note also that if G is
noncommutative, then C∗(G) can also be noncommutative.

2.2 C∗-algebra net

Hashimoto et al. (2022) proposed generalizing real-valued neural network parameters to commutative C∗-
algebra-valued ones. Here, we briefly review the existing (commutative) C∗-algebra net. Let A = C(Z), the
commutative C∗-algebra of continuous functions on a compact Hausdorff space Z. Let H be the depth of
the network and N0, . . . , NH be the width of each layer. For i = 1, . . . , H, set Wi : ANi−1 → ANi as an Affine
transformation defined with an Ni ×Ni−1 A-valued matrix and an A-valued bias vector in ANi . In addition,
set a nonlinear activation function σi : ANi → ANi . The commutative C∗-algebra net f : AN0 → ANH is
defined as

f = σH ◦ WH ◦ · · · ◦ σ1 ◦ W1. (1)

By generalizing neural network parameters to functions, we can combine multiple standard (real-valued)
neural networks continuously, which enables them to learn efficiently. We show an example of commutative
C∗-nets below. To simplify the notation, we focus on the case where the network does not have biases.
However, the same arguments are valid for the case where the network has biases.
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(a) C∗-algebra net over diagonal matrices (commutative).
Each diagonal element corresponds to an individual sub-
model.

(b) C∗-algebra net over nondiagonal matrices (noncommuta-
tive). The nondiagonal elements induce the interactions among
multiple sub-models.

Figure 1: Difference between commutative and noncommutative C∗-algebra nets.

2.2.1 The case of diagonal matrices

If Z is a finite set, then A = {a ∈ Cd×d | a is a diagonal matrix}. The C∗-algebra net f on A corresponds
to d separate real or complex-valued sub-models. Indeed, denote by xj the vector composed of the jth
diagonal elements of x ∈ AN , which is defined as the vector in CN whose kth element is the jth diagonal
element of the A-valued kth element of x. Assume the activation function σi : AN → AN is defined as
σi(x)j = σ̃i(xj) for some σ̃i : CN → CN . Since the jth diagonal element of a1a2 for a1, a2 ∈ A is the product
of the jth element of a1 and a2, we have

f(x)j = σ̃H ◦ W j
H ◦ · · · ◦ σ̃1 ◦ W j

1 , (2)

where W j
i ∈ CNi×Ni−1 is the matrix whose (k, l)-entry is the jth diagonal of the (k, l)-entry of Wi ∈

ANi×Ni−1 . Figure 1 (a) schematically shows the C∗-algebra net over diagonal matrices.

Remark 1 Applying algebra structures to neural networks has been studied (Rivera-Rovelo et al., 2010;
Zhang & Yang, 2022; Brandstetter et al., 2022; Ruhe et al., 2023b;a; Hoffmann et al., 2020). The rich
structures of products in algebras enable us to extract structures of data. For example, Clifford algebra enables
us to geometric structure of data. It naturally unifies real numbers, vectors, complex numbers, quaternions,
exterior algebras, and so on. On the other hand, C∗-algebra is a natural generalization of the space of
complex numbers, and an advantage of considering C∗-algebra over other algebras is the straightforward
generalization of notions related to neural networks. For example, we have a generalization of Hilbert space
by means of C∗-algebra, which is called Hilbert C∗-module (Lance, 1995). Since the input and output spaces
are Hilbert spaces, the theory of Hilbert C∗-module can be used in analyzing C∗-algebra nets. We also have a
natural generalization of reproducing kernel Hilbert space (RKHS), which is called reproducing kernel Hilbert
C∗-module (RKHM) (Hashimoto et al., 2021). RKHM enables us to connect C∗-algebra nets with kernel
methods (Hashimoto et al., 2023).

3 Noncommutative C∗-algebra Net

Although the existing C∗-algebra net provides a framework for applying C∗-algebra to neural networks, it
focuses on commutative C∗-algebras, whose product structure is simple. Therefore, we generalize the existing
commutative C∗-algebra net to noncommutative C∗-algebra. Since the product structures in noncommuta-
tive C∗-algebras are more complicated than those in commutative C∗-algebras, they enable neural networks
to learn features of data more efficiently. For example, if we focus on the C∗-algebra of matrices, then the
neural network parameters describe interactions between multiple real-valued sub-models (see Section 3.1.1).
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Let A be a general C∗-algebra and consider the network f in the same form as Equation (1). We emphasize
that in our framework, the choice of A is not restricted to a commutative C∗-algebra. We list examples of
A and their validity for learning neural networks below.

3.1 Examples of C∗-algebras for neural networks

Through showing several examples of C∗-algebras, we show that C∗-algebra net is a flexible and unified
framework that incorporates C∗-algebra into neural networks. As mentioned in the previous section, we
focus on the case where the network does not have biases for simplification in this subsection.

3.1.1 Nondiagonal matrices

Let A = Cd×d. Note that A is a noncommutative C∗-algebra. In this case, unlike the network (2), the jth
diagonal element of a1a2a3 for a1, a2, a3 ∈ A depends not only on the jth diagonal element of a2, but also
the other diagonal elements of a2. Thus, f(x)j depends not only on the sub-model corresponding to jth
diagonal element discussed in Section 2.2.1, but also on other sub-models. The nondiagonal elements in A
induce interactions between d real or complex-valued sub-models. In practice, to regard the nondiagonal
elements as factors of interactions, their values should be small compared to the diagonal elements. We will
see the effect of the nondiagonal elements in A numerically in Section 4.1. Figure 1 (b) schematically shows
the C∗-algebra net over nondiagonal matrices.

3.1.2 Block diagonal matrices

Let A = {a ∈ Cd×d | a = diag(a1, . . . , am), ai ∈ Cdi×di}. The product of two block diagonal matrices
a = diag(a1, . . . , am) and b = diag(b1, . . . , bm) can be written as

ab = diag(a1b1, . . . , ambm).

In a similar manner to Section 2.2.1, we denote by xj the N by dj matrix composed of the jth diagonal blocks
of x ∈ AN . Assume the activation function σi : AN → AN is defined as σi(x) = diag(σ̃1

i (x1), . . . , σ̃m
i (xm))

for some σ̃i,j : CN×dj → CN×dj . Then, we have

f(x)j = σ̃j
H ◦ Wj

H ◦ · · · ◦ σ̃j
1 ◦ Wj

1, (3)

where Wj
i ∈ (Cdj×dj )Ni×Ni−1 is the block matrix whose (k, l)-entry is the jth block diagonal of the (k, l)-entry

of Wi ∈ ANi×Ni−1 . In this case, we have m groups of sub-models, each of which is composed of interacting
dj sub-models mentioned in Section 3.1.1. Indeed, the block diagonal case generalizes the diagonal and
nondiagonal cases stated in Sections 2.2.1 and 3.1.1. If dj = 1 for all j = 1, . . . , m, then the network (3) is
reduced to the network (2) with diagonal matrices. If m = 1 and d1 = d, then the network (3) is reduced to
the network with d by d nondiagonal matrices.

3.1.3 Circulant matrices

Let A = {a ∈ Cd×d | a is a circulant matrix}. Here, a circulant matrix a is the matrix represented as

a =


a1 ad · · · a2
a2 a1 · · · a3

. . . . . .
ad ad−1 · · · a1


for a1, . . . , ad ∈ C. Note that in this case, A is commutative. Circulant matrices are diagonalized by the
discrete Fourier matrix as follows (Davis, 1979). We denote by F the discrete Fourier transform matrix,
whose (i, j)-entry is ω(i−1)(j−1)/

√
p, where ω = e2π

√
−1/d.

Lemma 1 Any circulant matrix a is decomposed as a = FΛaF ∗, where

Λa = diag
( d∑

i=1
aiω

(i−1)·0, . . . ,

d∑
i=1

aiω
(i−1)(d−1)

)
.
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Since ab = FΛaΛbF ∗ for a, b ∈ A, the product of a and b corresponds to the multiplication of each Fourier
component of a and b. Assume the activation function σi : AN → AN is defined such that (F ∗σi(x)F )j

equals to ˆ̃σi((FxF ∗)j) for some ˆ̃σi : CN → CN . Then, we obtain the network

(F ∗f(x)F )j = ˆ̃σH ◦ Ŵ j
H ◦ · · · ◦ ˆ̃σ1 ◦ Ŵ j

1 , (4)

where Ŵ j
i ∈ CNi×Ni−1 is the matrix whose (k, l)-entry is (Fwi,k,lF

∗)j , where wi,k,l is the the (k, l)-entry
of Wi ∈ ANi×Ni−1 . The jth sub-model of the network (4) corresponds to the network of the jth Fourier
component.

Remark 2 The jth sub-model of the network (4) does not interact with those of other Fourier components
than the jth component. This fact corresponds to the fact that A is commutative in this case. Analogous
to the case in Section 3.1.1, if we set A as noncirculant matrices, then we obtain interactions between
sub-models corresponding to different Fourier components.

3.1.4 Group C∗-algebra on a symmetric group

Let G be the symmetric group on the set {1, . . . , d} and let A = C∗(G). Note that since G is noncommutative,
C∗(G) is also noncommutative. Then, the output f(x) ∈ ANH is the CNH -valued map on G. Using the
product structure introduced in Example 3, we can construct a network that takes the permutation of data
into account. Indeed, an element w ∈ A of a weight matrix W ∈ ANi−1×Ni is a function on G. Thus, w(g)
describes the weight corresponding to the permutation g ∈ G. Since the product of x ∈ C∗(G) and w is
defined as wx(g) =

∑
h∈G w(h)x(h−1g), by applying W , all the weights corresponding to the permutations

affect the input. For example, let z ∈ Rd and set x ∈ C∗(G) as x(g) = g · z, where g · z is the action of g
on z, i.e., the permutation of z with respect to g. Then, we can input all the patterns of permutations of z
simultaneously, and by virtue of the product structure in C∗(G), the network is learned with the interaction
among these permutations. Regarding the output, if the network is learned so that the outputs y become
constant functions on G, i.e., y(g) = c for some constant c, then it means that c is invariant with respect
to g, i.e., invariant with respect to the permutation. We will numerically investigate the application of the
group C∗-algebra net to permutation invariant problems in Section 4.2.

Remark 3 If the activation function σ is defined as σ(x)(g) = σ(x(g)), i.e., applied elementwisely to x,
then the network f is permutation equivariant. That is, even if the input x(g) is replaced by x(gh) for some
h ∈ G, the output f(x)(g) is replaced by f(x)(gh). This is because the product in C∗(G) is defined as a
convolution. This feature of the convolution has been studied for group equivariant neural networks (Lenssen
et al., 2018; Cohen et al., 2019; Sannai et al., 2021; Sonoda et al., 2022). The above setting of the C∗-algebra
net provides us with a design of group equivariant networks from the perspective of C∗-algebra.

Remark 4 Since the number of elements of G is d!, elements in C∗(G), which are functions on G, are repre-
sented as d!-dimensional vectors. For the case where d is large, we need a method for efficient computations,
which is future work.

3.1.5 Bounded linear operators on a Hilbert space

For functional data, we can also set A as an infinite-dimensional space. Using infinite-dimensional C∗-algebra
for analyzing functional data has been proposed (Hashimoto et al., 2021). We can also adopt this idea for neu-
ral networks. Let A = B(L2(Ω)) for a measure space Ω. Set A0 = {a ∈ A | a is a multiplication operator}.
Here, a multiplication operator a is a linear operator that is defined as av = v · u for some u ∈ L∞(Ω).
The space A0 is a generalization of the space of diagonal matrices to the infinite-dimensional space. If we
restrict elements of weight matrices to A0, then we obtain infinitely many sub-models without interactions.
Since outputs are in ANH

0 , we can obtain functional data as outputs. Similar to the case of matrices (see
Section 3.1.1), by setting elements of weight matrices as elements in A, we can take advantage of interactions
among infinitely many sub-models.
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3.2 Approximation of functions with interactions by C∗-algebra net

We observe what kind of functions the C∗-algebra net can approximate. In this subsection, we show the
universality of C∗-algebra nets, which describes the representation power of models. We focus on the case of
A = Cd×d. Consider a shallow network f : AN0 → A defined as f(x) = W ∗

2 σ(W1x+b), where W1 ∈ AN1×N0 ,
W2 ∈ AN1 , and b ∈ AN1 . Let f̃ : AN0 → A be the function in the form of f̃(x) = [

∑d
j=1 fkj(xl)]kl, where

fkj : CN0d → R. Here, we abuse the notation and denote by xl ∈ CN0d the lth column of x regarded as an
N0d by d matrix. Assume fkj is represented as

fkj(x) =
∫
R

∫
RN0d

Tkj(w, b)σ(w∗x + b)dw db (5)

for some Tkj : RN0d × R → R. By the theory of the ridgelet transform, such Tkj exists for most realistic
settings (Candès, 1999; Sonoda & Murata, 2017). For example, if fkj and its Fourier transform is in L1(RN0d),
and σ is the ReLU function, then fkj has a representation of Equation (5). We discretize Equation (5) by
replacing the Lebesgue measures with

∑N1
i=1 δwij

and
∑N1

i=1 δbij
, where δw is the Dirac measure centered at

w. Then, the (k, l)-entry of f̃(x) is written as

d∑
j=1

N1∑
i=1

Tkj(wij , bij)σ(w∗
ijxl + bij).

Setting the i-th element of W2 ∈ AN1 as [Tkj(wij , bij)]kj , the (i, m)-entry of W1 ∈ AN1×N0 as [(wi,j)md+l]jl,
the ith element of b ∈ AN1 as [bj ]jl, we obtain

d∑
j=1

N1∑
i=1

Tkj(wij , bij)σ(w∗
ijxl + bij) = (W k

2 )∗σ(W1xl + bl),

which is the (k, l)-entry of f(x). As a result, any function in the form of f̃(x) = [
∑d

j=1 fkj(xl)]kl and with
some technical assumptions (such as fkj and its Fourier transform is in L1(RN0d), and σ is the ReLU) can
be represented as a C∗-algebra net.

Remark 5 As we discussed in Sections 2.2.1 and 3.1.1, a C∗-algebra net over matrices can be regarded as
d interacting sub-models. The above argument insists the lth column of f(x) and f̃(x) depends only on xl.
Thus, in this case, if we input data xl corresponding to the lth sub-model, then the output is obtained as the
lth column of the A-valued output f(x). On the other hand, the weight matrices W1 and W2 and the bias b
are used commonly in providing the outputs for any sub-model, i.e., W1, W2, and b are learned using data
corresponding to all the sub-models. Therefore, W1, W2, and b induce interactions among the sub-models.

4 Experiments

In this section, we numerically demonstrate the abilities of noncommutative C∗-algebra nets using nondi-
agonal C∗-algebra nets over matrices and group C∗-algebra nets. We use C∗-algebra-valued multi-layered
perceptrons (MLPs) to simplify the experiments. However, they can be naturally extended to other neural
networks, such as convolutional neural networks.

The models were implemented with JAX (Bradbury et al., 2018). Experiments were conducted on an AMD
EPYC 7543 CPU and an NVIDIA A-100 GPU. See Appendix A.1 for additional information on experiments.

4.1 C∗-algebra nets over matrices

In a noncommutative C∗-algebra net over matrices consisting of nondiagonal-matrix parameters, each sub-
model is expected to interact with others and thus improve performance compared with its commutative
counterpart consisting of diagonal matrices. We demonstrate the effectiveness of such interaction using image
classification and neural implicit representation (NIR) tasks.
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See Section 3.1.1 for the notations. When training the jth sub-model (j = 1, 2, . . . , d), an original N0-
dimensional input data point x = [x1, . . . , xN0 ] ∈ RN0 is converted to its corresponding representation
x ∈ AN0 = RN0×d×d such that xi,j,j = xi for i = 1, 2, . . . , N0 and 0 otherwise. The loss to its NH -
dimensional output of a C∗-algebra net y ∈ ANH and the target t ∈ ANH is computed as ℓ(y:,j,j , t:,j,j) +
1
2

∑
k,(l ̸=j)(y2

k,j,l + y2
k,l,j), where ℓ is a certain loss function; we use the mean squared error (MSE) for image

classification and the Huber loss for NIR. The second and third terms suppress the nondiagonal elements of
the outputs to 0. In both examples, we use leaky-ReLU as an activation function and apply it only to the
diagonal elements of pre-activations.

4.1.1 Image classification

We conduct experiments of image classification tasks using MNIST (Le Cun et al., 1998), Kuzushiji-
MNIST (Clanuwat et al., 2018), and Fashion-MNIST (Xiao et al., 2017), which are composed of 10-class
28 × 28 gray-scale images. Each sub-model is trained on a mutually exclusive subset sampled from the
original training data and then evaluated on the entire test data. Each subset is sampled to be balanced,
i.e., each class has the same number of training samples. As a baseline, we use a commutative C∗-algebra net
over diagonal matrices, which consists of the same sub-models but cannot interact with other sub-models.
Both noncommutative and commutative models share hyperparameters: the number of layers was set to 4,
the hidden size was set to 128, and the models were trained for 30 epochs.

Table 1 shows average test accuracy. Accuracy can be reported in two distinct manners: the first approach
averages the accuracy across individual sub-models (“Average”), and the other is to ensemble the logits of
sub-models and then compute the accuracy (“’Ensemble’). As can be seen, the noncommutative C∗-algebra
net consistently outperforms its commutative counterpart, which is significant, particularly when the number
of sub-models is 40. Note that when the number of sub-models is 40, the size of the training dataset for each
sub-model is 40 times smaller than the original one, and thus, the commutative C∗-algebra net fails to learn.
Nevertheless, the noncommutative C∗-algebra net retains performance mostly. Commutative C∗-algebra net
improves performance by ensembling, but it achieves inferior performance to both Average and Ensemble
noncommutative C∗-algebra net when the number of sub-models is larger than five. These results suggest
that sub-models effectively share knowledge through interaction.

Additionally, Table 2 illustrates that related tasks help performance improvement through interaction.
Specifically, we prepare five sub-models per dataset, one of MNIST, Kuzushiji-MNIST, and Fashion-MNIST,
and train a total of 15 sub-models simultaneously. In addition to the commutative C∗-algebra net, where
sub-models have no interaction, and the noncommutative C∗-algebra net, where each sub-model can inter-
act with any other sub-models, we use a block-diagonal noncommutative C∗-algebra net (see Section 3.1.2),
where each sub-model can only interact with other sub-models trained on the same dataset. Table 2 shows
that the fully noncommutative C∗-algebra net surpasses the block-diagonal one on Kuzushiji-MNIST and
Fashion-MNIST, implying that not only intra-task interaction but also inter-task interaction helps perfor-
mance gain. Note that each dataset is subsampled so that every class has the same number of samples, so
it is not possible to compare the values of Tables 1 and 2.

4.1.2 Neural implicit representation

In the next experiment, we use a C∗-algebra net over matrices to learn implicit representations of 2D images
that map each pixel coordinate to its RGB colors (Sitzmann et al., 2020; Xie et al., 2022). Specifically, an
input coordinate in [0, 1]2 is transformed into a random Fourier features in [−1, 1]320 and then converted into
its C∗-algebraic representation over matrices as an input to a C∗-algebra net over matrices. Similar to the
image classification task, we compare noncommutative NIRs with commutative NIRs, using the following
hyperparameters: the number of layers to 6 and the hidden dimension to 256. These NIRs learn 128 × 128-
pixel images of ukiyo-e pictures from The Metropolitan Museum of Art1 and photographs of cats from the
AFHQ dataset (Choi et al., 2020).

Figure 2 (top) shows the curves of the average PSNR (Peak Signal-to-Noise Ratio) of sub-models correspond-
ing to the image below. Both commutative and noncommutative C∗-algebra nets consist of five sub-models

1https://www.metmuseum.org/art/the-collection
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Table 1: Average test accuracy of commutative and noncommutative C∗-algebra nets over matrices on test
datasets. “Average” reports average accuracy of sub-models, and “Ensemble” ensembles the logits of sub-
models to compute accuracy. Interactions between sub-models that the noncommutative C∗-algebra net
improves performance significantly when the number of sub-models is 40.

Dataset # sub-models Commutative C∗-algebra nets Noncommutative C∗-algebra nets
Average Ensemble Average Ensemble

MNIST

5 0.963 ± 0.003 0.970 ± 0.001 0.970 ± 0.002 0.976 ± 0.001
10 0.937 ± 0.004 0.950 ± 0.000 0.956 ± 0.002 0.969 ± 0.000
20 0.898 ± 0.007 0.914 ± 0.002 0.937 ± 0.002 0.957 ± 0.001
40 0.605 ± 0.007 0.795 ± 0.010 0.906 ± 0.004 0.938 ± 0.001

Kuzushiji-MNIST

5 0.837 ± 0.003 0.871 ± 0.001 0.859 ± 0.003 0.888 ± 0.002
10 0.766 ± 0.008 0.793 ± 0.004 0.815 ± 0.007 0.859 ± 0.002
20 0.674 ± 0.011 0.710 ± 0.001 0.758 ± 0.007 0.817 ± 0.001
40 0.453 ± 0.026 0.532 ± 0.004 0.682 ± 0.008 0.767 ± 0.001

Fashion-MNIST

5 0.862 ± 0.001 0.873 ± 0.001 0.868 ± 0.002 0.882 ± 0.001
10 0.839 ± 0.003 0.850 ± 0.001 0.852 ± 0.004 0.871 ± 0.001
20 0.790 ± 0.010 0.796 ± 0.002 0.832 ± 0.005 0.858 ± 0.000
40 0.650 ± 0.018 0.674 ± 0.001 0.810 ± 0.005 0.841 ± 0.000

Table 2: Average test accuracy over five sub-models simultaneously trained on the three datasets. The
(fully) noncommutative C∗-algebra net outperforms block-diagonal the noncommutative C∗-algebra net on
Kuzushiji-MNIST, and Fashion-MNIST, indicating that the interaction can leverage related tasks.

Dataset Commutative Block-diagonal Noncommutative
MNIST 0.956 ± 0.002 0.969 ± 0.002 0.970 ± 0.002
Kuzushiji-MNIST 0.745 ± 0.004 0.778 ± 0.006 0.796 ± 0.008
Fashion-MNIST 0.768 ± 0.007 0.807 ± 0.006 0.822 ± 0.002

trained on five ukiyo-e pictures (see also Figure 6). PSNR, the quality measure, of the noncommutative NIR
grows faster, and correspondingly, it learns the details of ground truth images faster than its commutative
version (Figure 2 bottom). Noticeably, the noncommutative representations reproduce colors even at the
early stage of learning, although the commutative ones remain monochrome after 500 iterations of training.
Along with the similar trends observed in the pictures of cats (Figure 3), these results further emphasize the
effectiveness of the interaction. Longer-term results are presented in Figure 7.

This INR for 2D images can be extended to represent 3D models. Figure 4 shows synthesized views of 3D
implicit representations using the same C∗-algebra MLPs trained on three 3D chairs from the ShapeNet
dataset (Chang et al., 2015). The presented poses are unseen during training. Again, the noncommutative
INR reconstructs the chair models with less noisy artifacts, indicating that interaction helps efficient learning.
See Appendices A.1 and A.2 for details and results.

4.2 Group C∗-algebra nets

As another experimental example of C∗-algebra nets, we showcase group C∗-algebra nets, which we intro-
duced in Section 3.1.4. The group C∗-algebra nets take functions on a symmetric group as input and return
functions on the group as output.

Refer to Section 3.1.4 for notations. A group C∗-algebra net is trained on data {(x, y) ∈ AN0 ×ANH }, where
x and y are N0- and NH -dimensional vector-valued functions. Practically, such functions may be represented
as real tensors, e.g., x ∈ CN0×#G, where #G is the size of G. Using product between functions explained in
Section 3.1.4 and element-wise addition, a linear layer, and consequently, an MLP, on A can be constructed.
Following the C∗-algebra nets over matrices, we use leaky ReLU for activations.

9
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Figure 2: Average PSNR of implicit representations of the image below (top) and reconstructions of the
ground truth image at every 100 iterations (bottom). The noncommutative C∗-algebra net learns the
geometry and colors of the image faster than its commutative counterpart.

One of the simplest tasks for the group C∗-algebra nets is to learn permutation-invariant representations,
e.g., predicting the sum of given d digits. In this case, x is a function that outputs permutations of features
of d digits, and y(g) is an identity function that returns their sum for all g ∈ G. In this experiment, we use
features of MNIST digits of a pre-trained CNN in 32-dimensional vectors. Digits are selected so that their
sum is less than 10 to simplify the problem, and the model is trained to classify the sum of given digits
using cross-entropy loss. We set the number of layers to 4 and the hidden dimension to 32. For comparison,
we prepare permutation-invariant and permutation-equivariant DeepSet models (Zaheer et al., 2017), which
adopt special structures to induce permutation invariance or equivariance, containing the same number of
parameters as floating-point numbers with the group C∗-algebra net.

Table 3 displays the results of the task with various training dataset sizes when d = 3. What stands out in
the table is that the group C∗-algebra net consistently outperforms the DeepSet models by large margins,
particularly when the number of training data is limited. Additionally, as shown in Figure 5, the group
C∗-algebra net converges with much fewer iterations than the DeepSet models. These results suggest that
the inductive biases implanted by the product structure in the group C∗-algebra net are effective.

5 Conclusion and Discussion

In this paper, we have generalized the space of neural network parameters to noncommutative C∗-algebras.
Their rich product structures bring powerful properties to neural networks. For example, a C∗-algebra net
over nondiagonal matrices enables its sub-models to interact, and a group C∗-algebra net learns permutation-

10
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ground truth

commutative

noncommutative

Figure 3: Ground truth images and their implicit representations of commutative and noncommutative C∗-
algebra nets after 500 iterations of training. The noncommutative C∗-algebra net reproduces colors more
faithfully.

Ground truth

Commutative

Noncommutative

Figure 4: Synthesized views of 3D implicit representations of commutative and noncommutative C∗-algebra
nets after 5000 iterations of training. The noncommutative C∗-algebra net can produce finer details. Note
that the commutative C∗-algebra net could not synthesize the chair on the left.

equivariant features. We have empirically demonstrated the validity of these properties in various tasks,
image classification, neural implicit representation, and sum-of-digits tasks.
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Table 3: Average test accuracy of an invariant DeepSet model, an equivariant DeepSet model, and a group
C∗-algebra net on test data of the sum-of-digits task after 100 epochs of training. The group C∗-algebra net
can learn from fewer data.

Dataset size Invariant DeepSet Equivariant DeepSet Group C∗-algebra net
1k 0.408 ± 0.014 0.571 ± 0.021 0.783 ± 0.016
5k 0.731 ± 0.026 0.811 ± 0.007 0.922 ± 0.003

10k 0.867 ± 0.021 0.836 ± 0.009 0.943 ± 0.005
50k 0.933 ± 0.005 0.862 ± 0.002 0.971 ± 0.001
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Invariant DeepSet
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Figure 5: Average test accuracy curves of invariant DeepSet, equivariant DeepSet, and a group C∗-algebra
net trained on 10k data of the sum-of-digits task. The group C∗-algebra net can learn more efficiently and
effectively.

C∗-algebra nets over matrices could be related to decentralized peer-to-peer machine learning Vanhaese-
brouck et al. (2017); Bellet et al. (2018), where each agent learns without sharing data with others, while
improving its ability thanks to other agents’ information through communication. In our case, an agent cor-
responds to a sub-model, and communication is achieved by interaction. Practical details for this purpose,
for example, how to preserve privacy during interaction, remain for future work.

Another important and interesting research direction is the application of infinite-dimensional C∗-algebras.
In this paper, we focused mainly on finite-dimensional C∗-algebras. We showed that the product structure
in C∗-algebras is a powerful tool for neural networks, for example, learning with interactions and group
equivariance (or invariance) even for the finite-dimensional case. Infinite-dimensional C∗-algebra allows us
to analyze functional data, such as time-series data and spatio-data. We believe that applying infinite
dimensional C∗-algebra can be an efficient tool to extract information of the data even when the data
is partially missing. Practical applications of our framework to functional data with infinite-dimensional
C∗-algebras are our future work.

Our framework with noncommutative C∗-algebras has a wide range of applications, and we believe that our
framework opens up a new approach to learning neural networks.
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A Appendix

A.1 Implementation details

We implemented C∗-algebra nets using JAX (Bradbury et al., 2018) with equinox (Kidger & Garcia, 2021)
and optax (Babuschkin et al., 2020). Throughout the experiments, we used the Adam optimizer (Kingma
& Ba, 2015) with a learning rate of 1.0 × 10−4, except for the 3D NIR experiment, where Adam’s initial
learning rate was set to 1.0 × 10−3. We set the batch size to 32, except for the 2D NIR, where each batch
consisted of all pixels, and 3D NIR, where a batch size of 4 was used. Listings 1 and 2 illustrate linear layers
of C∗-algebra nets using NumPy, equivalent to the implementations used in the experiments in Sections 4.1
and 4.2.

The implementation of 3D neural implicit representation (Section 4.1.2) is based on a simple NeRF-like
model and its renderer in Tancik et al. (2021). For training, 25 views of each 3D chair from the ShapeNet
dataset (Chang et al., 2015) are adopted with their 64 × 64 pixel reference images. The same C∗-algebra
MLPs with the 2D experiments were used, except for the hyperparameters: the number of layers of four and
the hidden dimensional size of 128.

The permutation-invariant DeepSet model used in Section 4.2 processes each data sample with a four-layer
MLP with hyperbolic tangent activation, sum-pooling, and a linear classifier. The permutation-equivariant
DeepSet model consists of four permutation-equivariant layers with hyperbolic tangent activation, max-
pooling, and a linear classifier, following the point cloud classification in (Zaheer et al., 2017). Although
we tried leaky ReLU activation as the group C∗-algebra net, this setting yielded sub-optimal results in
permutation-invariant DeepSet. The hidden dimension of the DeepSet models was set to 96 to match the
number of floating-point-number parameters equal to that of the group C∗-algebra net.
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import numpy as np

def matrix_valued_linear(weight: Array,
bias: Array,
input: Array
) -> Array:

"""
weight: Array of shape {output_dim}x{input_dim}x{dim_matrix}x{dim_matrix}
bias: Array of shape {output_dim}x{dim_matrix}x{dim_matrix}
input: Array of shape {input_dim}x{dim_matrix}x{dim_matrix}
out: Array of shape {output_dim}x{dim_matrix}x{dim_matrix}
"""

out = []
for _weight, b in zip(weight, bias):

tmp = np.zeros(weight.shape[2:])
for w, i in zip(_weight, input):

tmp += w @ i + b
out.append(tmp)

return np.array(out)

Listing 1: Numpy implementation of a linear layer of a C∗-algebra net over matrices used in Section 4.1.

A.2 Additional results

Figures 6 and 7 present the additional figures of 2D INRs (Section 4.1.2). Figure 6 is an ukiyo-e counterpart
of Figure 3 in the main text. Again, the noncommutative C∗-algebra net learns color details faster than
the commutative one. Figure 7 shows average PSNR curves over three NIRs of the image initialized with
different random states for 5,000 iterations. Although it is not as effective as the beginning stage, the
noncommutative C∗-algebra net still outperforms the commutative one after the convergence.

ground truth

commutative

noncommutative

Figure 6: Ground truth images and their implicit representations of commutative and noncommutative C∗-
algebra nets after 500 iterations of training.

Table 4 and Figure 8 show the additional results of 3D INRs (Section 4.1.2). Table 4 presents the aver-
age PSNR of synthesized views. As can be noticed from the synthesized views in Figures 4 and 8, the
noncommutative C∗-algebra net produces less noisy output, resulting in a higher PSNR.

Commutative Noncommutative
18.40 ± 4.30 25.22 ± 1.45

Table 4: Average PSNR over synthesized views. The specified poses of the views are unseen during training.
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import dataclasses
import numpy as np

@dataclasses.dataclass
class Permutation:

# helper class to handle permutation
value: np.ndarray

def inverse(self) -> Permutation:
return Permutation(self.value.argsort())

def __mul__(self, perm: Permutation) -> Permutation:
return Permutation(self.value[perm.value])

def __eq__(self, other: Permutation) -> bool:
return np.all(self.value == other.value)

@staticmethod
def create_hashtable(set_size: int) -> Array:

perms = [Permutation(np.array(p)) for p in permutations(range(set_size))]
map = {v: i for i, v in enumerate(perms)}
out = []
for perm in perms:

out.append([map[perm.inverse() * _perm] for _perm in perms])
return np.array(out)

def group_linear(weight: Array,
bias: Array,
input: Array
) -> Array:

"""
weight: {output_dim}x{input_dim}x{group_size}
bias: {output_dim}x{group_size}
input: {input_dim}x{group_size}
out: {output_dim}x{group_size}
"""

hashtable = Permutation.create_hashtable(set_size) # {group_size}x{group_size}
g = np.arange(hashtable.shape[0])
out = []
for _weight in weight:

tmp0 = []
for y in g:

tmp1 = []
for w, f in zip(_weight, input):

tmp2 = []
for x in g:

tmp2.append(w[x] * f[hashtable[x, y]])
tmp1.append(sum(tmp2))

tmp0.append(sum(tmp1))
out.append(tmp0)

return np.array(out) + bias

Listing 2: Numpy implementation of a group C∗-algebra linear layer used in Section 4.2.
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Figure 7: Average PSNR over implicit representations of the image of commutative and noncommutative
C∗-algebra nets trained on five cat pictures (top) and reconstructions of the ground truth image at every
500 iterations (bottom).

Commutative

Noncommutative

Figure 8: Synthesized views of implicit representations of a chair.
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