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Abstract
Identifying causal relationships between gene-level signals
and biological pathways remains a core challenge in func-
tional genomics, particularly under high-dimensional and
noisy transcriptomic data. PathSymetic is a neuro-symbolic
framework that integrates large language models (LLMs),
ontology-grounded knowledge graphs, and causal structure
learning to infer interpretable pathway-level hypotheses. It
combines symbolic reasoning and neural representations in
three stages: (1) Ontology-guided symbolic grounding, where
pathway and reaction metadata are structured into logical
graphs; (2) Causal representation alignment, where interven-
tional transcriptomic data (e.g., CRISPR, small-molecule per-
turbations) are used to learn causal attributions via counter-
factual probing; and (3) Concept-level hypothe-sis genera-
tion, where symbolic rules are merged with LLM-derived
latent embeddings to yield ranked mechanistic pathway hy-
potheses. Fine-tuned on benchmark datasets from cancer and
metabolic diseases, PathSymetic achieved an AUPR of 0.81,
F1-score of 0.77, and Precision@10 of 0.94, outperforming
attention-based GNNs (AUPR 0.68) and pathway enrichment
baselines (F1 0.52). It further achieves Hit@10 of 98.4 per-
cent and Hit@20 of 99.6 percent, highlighting its ability to
rank experimentally validated pathways among top candi-
dates. It prioritizes experimentally validated pathways among
top predictions and uncovers biologically plausible novel hy-
potheses, supported by co-citation analysis and mechanistic
literature.

Introduction
This paper introduces PathSymetic, a neuro-symbolic and
causally-informed framework for interpretable pathway-
level hypothesis generation in biomedical domains. Path-
Symetic bridges structured biological ontologies and un-
structured high-dimensional gene expression data using
symbolic reasoning, causal representation learning, and
concept-level hypothesis scoring. Unlike traditional ma-
chine learning models that rely primarily on correlation-
based associations, our method leverages explicit biological
knowledge from resources like Reactome and Gene Ontol-
ogy (GO), and aligns them with latent gene embeddings de-
rived from transcriptomic profiles using causal priors.

The increasing availability of perturbation-driven gene
expression datasets (e.g., LINCS) and curated biological
pathway databases presents an opportunity to formulate sci-
entifically grounded, testable hypotheses. However, existing

tools such as GSEA, Compass, or contrastive learning mod-
els like CausalCLR often lack symbolic explanation, formal
reasoning capabilities, or causal alignment with biological
processes. PathSymetic addresses these limitations by incor-
porating symbolic grounding, contrastive causal learning,
and interpretable ranking over enriched pathway structures.
This work contributes:
• A hybrid neuro-symbolic architecture integrating

ontology-based concept graphs with deep transcriptomic
embeddings.

• A causal alignment module (CausalMap) that ensures bi-
ologically plausible representation learning from pertur-
bational transcriptomic data.

• References must be anonymized whenever the reader can
infer that they are to the authors’ previous work.

• A hypothesis generation module (ConceptRank)that
clusters pathway-level concepts and ranks them using at-
tribution salience and symmetry.

PathSymetic is evaluated across multiple real-world gene
expression signatures with supporting evidence from Reac-
tome, demonstrating strong performance in accuracy (e.g.,
AUPR, F1-score) and interpretability, while providing novel
insight into underlying mechanisms.

Related Works
Neuro-Symbolic AI in Scientific Domains: Until now
the recent advances in neuro-symbolic AI have demon-
strated notable promise in tackling scientific discovery prob-
lems where reasoning over structured domain knowledge is
important (Garcez et al. 2019; Lamb et al. 2020; Hitzler et
al. 2022). In the bio-medical domain, symbolic reasoning
frameworks have been fused with neural networks to ex-
tract causal or mechanistic insights from biological graphs
and ontologies (Lu et al. 2025; Smaili et al. 2019; Jain et
al. 2023), enabling tasks such as drug re-purposing, disease
gene prioritization, and knowledge-based hypothesis gener-
ation. For instance, (Smaili et al. 2019) combined ontology
embeddings with graph neural networks to infer biomedi-
cal relationships with improved semantic awareness. Recent
efforts further extend neuro-symbolic reasoning into scien-
tific discovery, as demonstrated by (Oltramari 2023), who
enables high-level cognitive inference through hybrid archi-
tectures, and (Shojaee et al. 2024), who integrate symbolic



program synthesis with LLMs to automate equation discov-
ery in scientific domains. Most current methods are either
not causally aligned or struggle to handle symbolic uncer-
tainty and compositional generalization in complex systems
biology contexts. In contrast, our framework employs sym-
bolic pathway graphs and causal alignment to provide hy-
pothesis ranking under low-data constraints.

Causal Representation Learning: Counterfactual Ad-
versarial Training (CAT) was pro-posed by (Wang et al.
2021) which interpolates latent features to create counter-
factual examples and minimizes a counterfactual risk objec-
tive, improving causal robustness in language tasks. Then,
(Roschewitz et al. 2024) extended this idea into vision do-
mains through CF-SimCLR, a counterfactual contrastive
learning framework using causally controlled augmentations
to enhance robustness under distribution shifts. Similarly,
(El Bouchattaoui et al. 2024) introduced a temporal con-
trastive framework for counterfactual regression, leveraging
contrastive predictive coding and mutual in-formation max-
imization to estimate treatment effects in time-varying con-
founded settings. On the other hand, PathSymetic integrates
statistical evidence and symbol-ic priors to apply causal sig-
nals not just for resilient representations but also to struc-
turally guide and rank pathway-level hypotheses.

Pathway-Aware Hypothesis Generation via Knowledge-
Guided Inference: GSEA (Gene Set Enrichment Analy-
sis) uses curated gene sets from GO or KEGG to infer statis-
tically enriched pathways from differential gene expression
data (Subramanian et al. 2005). ReactomeFIViz (Wu et al.
2014) integrates Reactome pathways into Cytoscape visual-
izations, enabling interactive mapping of gene-level scores
onto curated pathway graphs. Recent tools like PriPath
(Sulaiman et al. 2023) embed pathways directly into ma-
chine learning pipelines by grouping gene expression sub-
sets per KEGG pathway and scoring via classification mod-
els. Network topology-aware tools like EnrichNet (Glaab et
al. 2012) improve enrichment by incorporating interaction
graph features. These systems primarily rely on enrichment
scores or static grouping strategies. In contrast, PathSymetic
integrates ontological structure and pathway topology as ac-
tive inductive biases within its hypothesis generation pipe-
line enabling explainable insights without requiring large la-
beled datasets.

Methodology
The problem statement and notations are presented in this
section, which is followed by a thorough explanation of the
suggested approach and its main elements.

Preliminaries
Let G = (V, E) denote a symbolic biological graph, where
each node v ∈ V corresponds to a curated biological concept
(e.g., pathways, cellular processes, or disease modules), and
edges e = (vi, vj) ∈ E encode a semantic or functional de-
pendency (e.g., parent–child pathways from Reactome, GO
term ontologies, or directed signaling graphs). Each node
v is grounded over a predefined subset of landmark genes
L ⊆ G, where G is the full set of human genes.

We define a symbolic grounding function ϕ : L → 2V that
maps gene subsets to their associated biological processes
using structured vocabularies S = {S1, . . . ,Sk}, where
each Si ⊆ L encodes a curated gene set annotation. These
define an ontology-guided embedding space G ∈ R|V|×|L|

with binary entries Gij = 1 if gene gj ∈ Si, and zero other-
wise.

We assume access to a matrix of empirical representations
X ∈ Rn×d, where each row xi ∈ Rd corresponds to a high-
dimensional transcriptomic profile, where d is the number
of landmark genes (e.g., d = 978 in L1000), and n is the
number of samples. A subset P = {p1, . . . , pm} denotes
known perturbations with characterized biological effects,
while D = {xi ∈ Rd} represents disease-associated signa-
tures obtained from case-control comparisons or biomarker
studies. These inputs define a multi-layered setting in which
symbolic biological priors, data-driven signal embeddings,
and perturbation effects are jointly available for hypothesis
discovery.

Problem Statement
We seek to develop a neuro-symbolic framework F , termed
PathSymetic, which can infer interpretable and causally
aligned pathway-level hypotheses H = {(pi, Pj , αij)} un-
der uncertainty. Each of these hypotheses is represented as a
ranked triple where:

• pi ∈ P is a perturbation (e.g., drug or genetic knockout),
• Pj ∈ V is a biological process or pathway from the sym-

bolic graph G (e.g., Reactome or GO term),
• αij ∈ [0, 1] quantifies the causal relevance of perturba-

tion pi modulating pathway Pj with respect to a disease
signature x ∈ D.

Formally, we aim to learn a function:

F : x 7→ {(pi, Pj , αij)}i,j (1)

such that the hypotheses reflect causally aligned, symboli-
cally grounded, and biologically plausible mechanisms un-
derlying the disease signal x.

This formulation departs from traditional correlation-
based models in three important ways. First, it operates over
symbolic biological units, pathways encoded from curated
ontologies rather than latent embeddings or raw gene lists.
Second, it leverages causal representation alignment, align-
ing perturbation and disease signatures using objectives in-
spired by counterfactual contrastive learning or weak super-
vision from known gene targets. Finally, PathSymetic scores
hypotheses at the concept level using gradient or attention-
based attribution over symbolic graphs, rather than relying
on gene-level saliency alone. Together, these components
enableF to reason over structured biological knowledge, in-
fer causally informed perturbation effects, and deliver trans-
parent, hypothesis-level predictions in low-data or out-of-
distribution regimes.

Ontology-Guided Symbolic Grounding
Symbolic biological knowledge such as Reactome path-
ways, Gene Ontology (GO) hierarchies, KEGG pathways,



Figure 1: Overview of the PathSymetic pipeline. The system integrates symbolic knowledge, causal alignment, and concept-
level interpretation to generate ranked pathway hypotheses. Key modules include ontology-grounded signature encoding, causal
representation alignment, concept scoring, and interpretable ranking. Evaluation metrics (right) include AUPR, F1, Preci-
sion@k, Hit@k, MRR, and nDCG@k.

Disease Ontology (DO), and Cell Ontology (CL) encodes
structured relationships between genes, cell types, molecular
functions, and higher-order biological processes. Comple-
mentary knowledge from perturbation-based resources such
as LINCS (L1000), DrugBank, and the Connectivity Map
(CMap) further links gene-level expression profiles to chem-
ical compounds, genetic knockdowns, and disease contexts,
enabling pathway-level reasoning grounded in real-world
transcriptomic effects.

Let G ∈ {0, 1}|V|×d denote the symbolic embedding ma-
trix, where each row Gvj = 1[gj ∈ ϕ(v)] indicates the gene-
level support for concept v. These embeddings can option-
ally be weighted if gene participation is not binary. To cap-
ture the hierarchical and semantic structure among symbolic
concepts, we define a propagated embedding:

G̃ = AG (2)

where A ∈ R|V|×|V| is a normalized graph diffusion matrix
(e.g., A = D−1(I + E)) that integrates parent-child rela-
tionships and enables multi-hop concept enrichment. Then
define the symbolic grounding of a sample input signature
x ∈ Rd as:

z = arg min
z′∈R|V|

∥∥∥G̃⊤z′ − x
∥∥∥2
2
+ λ · Ω(z′) (3)

where each entry zj indicates the relevance of concept vj ∈
V to the input x, aggregated via symbolic structure. To de-
fine an embedding ei ∈ Rd for each concept vi ∈ V , we
write:

ei = ρ(Gi,Ai,R) (4)

where Gi ∈ {0, 1}d is the gene support vector for vi,Ai ⊆ V
is the ancestor set of vi in the ontology, andR encodes edge
types (e.g., regulatory, causal). The embedding function ρ
may involve message passing or symbolic attention:

ei = Attn

Gi,
∑

vj∈Ai

wij ·Gj

 (5)

The soft activation scores can be computed by:

α = σ ((G+H · γ) · x) + δ · (I− LG) · σ(G · x) (6)

These are normalized by ontology-aware enrichment:

α̃j = αj +
∑

vk∈Desc(vj)

λk · αj (7)

Further, the concept attention weights are defined by:
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Symbolic Causal Learning Procedure
Symbolic grounding transforms gene-level signatures into
structured concept spaces, but without causal disambigua-
tion, these embeddings may reflect spurious correlations or
latent confounders. To ensure the symbolic activations re-
flect causally meaningful perturbation effects, we propose a
representation alignment framework that explicitly encour-
ages robust, biologically grounded, and counterfactually sta-
ble embeddings across disease and perturbation domains un-
der weak supervision and data scarcity.

Algorithm 1: CausalMap
Input: Gene expression matrix X , grounding matrix G,
weak supervision maskM
Parameters: Learning rate η, trade-off weight α, tempera-
ture τ , number of epochs T
Output: Encoder fθ yielding causally aligned projections
zi

1: Initialize encoder parameters θ
2: for each training epoch do
3: for each minibatch {xi}bi=1 do
4: Compute latent encoding: hi ← fθ(xi)
5: Project into symbolic space: zi ← σ(G · hi)
6: Compute symbolic loss Lsym using weak maskM

7: for each xi in minibatch do
8: Construct contrastive sets P+

i , P−
i

9: Compute per-sample contrastive loss L(i)
cau

10: Aggregate: Lcau = 1
b

∑
i L

(i)
cau

11: Combine losses: Ltotal = Lsym + α · Lcau

12: Update encoder parameters θ via gradient descent

13: return trained encoder fθ

Algorithm 1 outlines the training procedure to align sym-
bolic projections with causal representations under weak su-
pervision and contrastive regularization.

Let X = {x1, . . . ,xn} ⊂ Rd be the input set of gene ex-
pression signatures (from perturbation or disease contexts),
G ∈ R|V|×d be the symbolic grounding matrix derived from
biological ontologies, fθ : Rd → Rh be a learnable causal
encoder with parameters θ, σ(·) a non-linear activation (e.g.,
ReLU), andM ∈ {0, 1}|V|×d an optional supervision mask
encoding known concept-gene associations. We define the
causally aligned symbolic projection of an input xi as:

zi = σ (G · fθ(xi)) , zi ∈ R|V| (9)

Definition 1. (Symbolic Consistency Loss). Let M ∈
{0, 1}|V|×d be a weak supervision mask. For input xi with

symbolic projection zi ∈ R|V|, the consistency loss is:

Lsym =
1

n

n∑
i=1

∥zi · M−M∥2

Definition 2. (Causal Contrastive Loss). Let P+
i = {xj |

yj = yi} and P−
i = {xk | yk ̸= yi} be sets of intra-class

and inter-class samples. The per-sample contrastive loss is:

L(i)
cau = − log

∑
j∈P+

i
exp(sij/τ)∑

j∈P+
i
exp(sij/τ) +

∑
k∈P−

i
exp(sik/τ)

where sij = cos(fθ(xi), fθ(xj)). The overall contrastive
loss is:

Lcau =
1

n

n∑
i=1

L(i)
cau

Proposition 1. The final training objective combines sym-
bolic and causal alignment:

Ltotal = Lsym + α · Lcau

where α controls the trade-off between symbolic supervision
and contrastive discrimination.

Concept-Level Clustering Hypothesis Generation
Given symbolic embeddings {zi}ni=1 from the causal align-
ment step, we seek to extract interpretable, biologically
meaningful pathway-level hypotheses. We perform low-
dimensional projection followed by clustering to form ab-
stract concepts. Each concept is then scored and ranked
based on internal coherence and biological alignment.

Let C1, . . . , CM denote the discovered concept groups.
The score for a concept Cj is computed as a function of its
internal consistency and biological relevance:

score(Cj) = meanzi∈Cj

[
z⊤i gj

]
+λ·symmetry(Cj) (10)

where gj is a representative centroid or ontology vector,
and λ controls the weight for path-symmetry coherence.

Algorithm 2: ConceptRank
Input: Symbolic embeddings {zi}ni=1
Parameters: Number of clusters M , symmetry threshold δ,
scoring weight λ
Output: Ranked concept-hypothesis pairs
{(Cj , scorej)}Mj=1

1: Apply PCA or spectral reduction on {zi} to obtain {z̃i}

2: Cluster {z̃i} into M groups: C1, . . . , CM
3: for each cluster Cj do
4: Compute symmetry score: symmetry(Cj) ←

I[dij ≤ δ]
5: Compute mean projection score: µj =

1
|Cj |

∑
zi∈Cj

z⊤i gj

6: Compute total score: scorej = µj + λ ·
symmetry(Cj)

7: end for
8: Rank {Cj} by descending scorej
9: return ranked hypothesis set {(Cj , scorej)}Mj=1



Algorithm 2 performs pathway-level concept clustering and
ranks hypotheses based on biological symmetry and attribu-
tion strength.

Experiments
Experimental Setup
Datasets Experiments are conducted on a curated subset
of perturbation-based transcriptomic datasets obtained from
the LINCS L1000 repository (Subramanian et al. 2017),
which comprises 42,809 gene expression signatures across
diverse cell lines, small molecules, dosages, and time points.
Each expression signature is mapped to 978 landmark genes
and is further aligned with curated pathway resources, in-
cluding Reactome and the GO hierarchy (Jassal et al. 2020;
Ashburner et al. 2000). Symbolic grounding is performed
using a subset of Reactome gene sets formatted in GMT
structure, filtered to retain pathways with more than 10
and fewer than 300 genes to avoid trivial enrichments or
overly generic concepts. GO annotations are propagated us-
ing parent-child relations to construct a structured symbolic
graph. The dataset is labeled using a binary concept sig-
nature matrix derived from pathway-gene associations fol-
lowing the standards used in prior work such as Compass
(Shlomi et al. 2008) and GSEA (Subramanian et al. 2005).

Baselines We benchmark PathSymetic against a diverse
set of pathway-level inference methods spanning causal rea-
soning, gene set enrichment, and expression-derived activ-
ity scoring. The first comparator is CARNIVAL (Liu et
al. 2019), a constraint-based causal reasoning framework
that integrates transcription factor activities and prior knowl-
edge to infer upstream signaling regulators. CARNIVAL has
been widely used for interpreting perturbation effects and is
particularly suited for causal discovery over curated path-
way graphs. Next, we include Pathifier (Drier et al. 2013),
which transforms expression profiles into pathway deregu-
lation scores using principal curve embeddings, offering a
sample-specific, unsupervised view of pathway activity in
disease contexts.

We also evaluate GSVA (Hanzelmann et al. 2013), a non-
parametric, unsupervised method that estimates variation in
pathway activity over a population by evaluating gene set
enrichment at the sample level, and PROGENy (Schubert et
al. 2018), a linear model-based method that infers pathway
activation scores using experimentally derived gene signa-
tures (footprints) rather than curated gene sets. PROGENy
emphasizes functional perturbation consistency, making it
effective for LINCS-based evaluations. Finally, we include
GSEA (Subramanian et al. 2005), the canonical gene set en-
richment analysis tool that ranks genes by differential ex-
pression to identify statistically overrepresented pathways.
Despite its simplicity, GSEA remains a widely used stan-
dard in transcriptomic studies.

Training and Hyperparameter Configuration Follow-
ing standard transductive evaluation settings (Sauter et al.
2025; Zhou et al. 2023), the data is randomly split into
60% training, 20% validation, and 20% test partitions across
all concept-pathway tasks. All models are trained using the

Figure 2: Figure 2: Radar plot summarizing the average met-
ric performance across six evaluation criteria.

Adam optimizer with an initial learning rate of 1e−3 and
a batch size of 32 for 100 epochs. We apply early stopping
with a patience of 10 epochs based on validation AUPR. For
the symbolic graph encoder, we set the embedding dimen-
sion d = 512 and apply dropout of 0.3 after each layer. In
the causal alignment module, hyperparameters λalign = 0.5
and γorth = 0.1 are selected via grid search. The top-K con-
cept filter is set to K = 10 based on validation nDCG@10.

PathSymetic vs. Oracle Supervision To evaluate the the-
oretical upper bound of pathway-level hypothesis recovery,
we compare PathSymetic with an oracle variant that lever-
ages privileged supervision namely, direct pathway labels
curated from expert Reactome annotations and literature-
derived associations. This oracle is not a fair baseline but
a supervised upper-limit that is unavailable in practical dis-
covery scenarios. Despite operating under weakly super-
vised conditions, PathSymetic recovers over 95% of the
oracle’s AUPR and outperforms it in both F1-score and
concept-level interpretability. This performance gap shrink-
age illustrates the strength of symbolic grounding and causal
alignment in approximating high-quality pathway hypothe-
ses even in the absence of explicit pathway annotations.

PathSymetic vs. Alternative Scoring Strategies To iso-
late the role of the concept scoring mechanism in hypothesis
ranking, we ablate PathSymetic’s directional TCAV-based
attribution and replace it with alternative strategies: (i) inte-
grated gradients, (ii) SHAP values, and (iii) raw ViT atten-
tion weights.

Results and Evaluation
We now present empirical results demonstrating the effec-
tiveness and interpretability of PathSymetic. Building on the
experimental setup and baseline definitions in Section 4,
we focus (i) quantitative comparisons against state-of-the-
art methods, (ii) qualitative case studies, (iii) visualization



Metric Scoring Formula Parameters

AUPR AUPR =

n−1∑
i=1

(Ri+1 −Ri) · Pi+1 Thresholds = 100 bins, Area under PR curve

F1 Score F1 =
2 · Precision ·Recall

Precision+Recall
Threshold = 0.5, Binary label match

Precision@k P@k =
|Top−k ∩GT |

k
k = 10, 20

Hit@k Hit@k = 1[Top−k ∩GT ̸= ∅] k = 10, 20

MRR MRR =
1

N

N∑
i=1

1

ranki
N = #queries, 1-based index

nDCG@k nDCG@k =
1

IDCGk

k∑
i=1

2reli − 1

log2(i+ 1)
k = 10, reli ∈ {0, 1, 2}

Coverage@k Coverage@k =
|Top−k ∩GT |

|GT | k = 10, 20

Interpretability Score
1

K

K∑
i=1

1[TCAV i > τ ] τ = 0.25, K = 10 concepts

Table 1: This table summarizes the quantitative evaluation metrics applied in PathSymetic. Each metric is defined by its standard
scoring formula and accompanied by relevant parameters or threshold settings

Method AUPR F1 Score P@10 P@20 H@10 H@20 Rank
PathSymetic 0.810 ± 0.012 0.770 ± 0.010 0.940 ± 0.009 0.960 ± 0.008 0.984 ± 0.004 0.996 ± 0.002 1
CARNIVAL 0.685 ± 0.015 0.610 ± 0.014 0.750 ± 0.013 0.790 ± 0.012 0.830 ± 0.008 0.880 ± 0.006 2
Pathifier 0.650 ± 0.017 0.570 ± 0.016 0.700 ± 0.015 0.740 ± 0.013 0.780 ± 0.010 0.820 ± 0.008 3
GSVA 0.600 ± 0.014 0.510 ± 0.013 0.670 ± 0.011 0.710 ± 0.010 0.730 ± 0.007 0.780 ± 0.005 4
PROGENy 0.550 ± 0.013 0.500 ± 0.012 0.635 ± 0.010 0.700 ± 0.009 0.740 ± 0.006 0.770 ± 0.004 5
GSEA 0.520 ± 0.020 0.450 ± 0.019 0.620 ± 0.017 0.680 ± 0.015 0.710 ± 0.012 0.750 ± 0.010 6

Table 2: Quantitative evaluation of PathSymetic. The method consistently outperforms all baselines.

of pathway hypotheses, and (iv) component-wise ablations

Quantitative Performance Metrics
Table 2 reports the multi-metric evaluation of PathSymetic.
These results validate that integrating symbolic priors,
causal alignment, and concept-level ranking yields supe-
rior performance across all metrics. Notably, we achieve an
AUPR of 0.810 and F1-score of 0.770, significantly outper-
forming existing pathway reasoning approaches.

Pathway Recovery and Interpretability
To evaluate the interpretability and biological validity of the
hypotheses generated by PathSymetic, we conducted a tar-
geted analysis on selected disease signatures. Table 4 sum-
marizes the top-ranked pathways identified for these sig-
natures, along with their causal-symbolic alignment scores
and statistical significance. Many of the recovered pathways
correspond to well-established immune and inflammatory
mechanisms such as the MAPK, NF-κB, and JAK-STAT
signaling cascades demonstrating that the model not only
captures relevant biological processes but also offers in-
terpretable, mechanistically coherent outputs. These results
support PathSymetic’s utility as a pathway-level hypothesis
generator grounded in causal-symbolic reasoning.

Component-Wise Ablation Study
To assess the contribution of each module within Path-
Symetic, we conduct ablation study across six evaluation
metrics which includes AUPR, F1, P@10, P@20, H@10,
and H@20—as shown in Table 4 and Figure 4. The full
model achieves the highest scores across all metrics, demon-
strating the benefit of its joint symbolic-causal framework.
Removing either the symbolic grounding or the causal align-
ment module results in a notable drop in AUPR and F1,
highlighting their complementary roles in capturing biologi-
cally meaningful and generalizable pathway signals. In con-
trast, eliminating the Top-K concept filter yields a slight de-
cline in precision-based metrics (P@10, P@20), suggesting
the model remains attributionally saturated but less specific.

The most severe degradation is observed when both attri-
bution and alignment are ablated (w/o Align + Attribution),
resulting in the lowest performance across nearly all met-
rics. This suggests a strong synergy between concept-level
attribution and causal alignment. To further analyze deeper
model behavior, we include extended metrics—MRR, Inter-
pretability Score, and Coverage@20 in Table 3. Here again,
the full model shows superior ranking quality (e.g., MRR =
0.81) and highest interpretability. Notably, the w/o Align +
Attribution variant produces the lowest interpretability score
(0.30) and a sharp drop in Cov@20.



Configuration AUPR F1 P@10 P@20 H@10 H@20 MRR nDCG@10 Cov@20 Interp.
Full PathSymetic 0.810 0.770 0.940 0.960 0.984 0.996 0.914 0.882 0.92 0.93
w/o Attribution 0.775 0.735 0.900 0.910 0.960 0.975 0.885 0.842 0.87 0.45
w/o Causal Align 0.765 0.720 0.880 0.890 0.945 0.960 0.872 0.826 0.84 0.49
w/o Symbolic Graph 0.740 0.700 0.860 0.870 0.920 0.940 0.854 0.804 0.79 0.41
w/o Ontology 0.735 0.690 0.850 0.860 0.915 0.935 0.845 0.792 0.77 0.38
w/o Top-K Concepts 0.780 0.745 0.910 0.920 0.970 0.980 0.894 0.866 0.89 0.62
w/o Align + Attribution 0.700 0.660 0.820 0.830 0.900 0.910 0.831 0.768 0.74 0.30

Table 3: Extended Ablation Study. Performance of PathSymetic and its ablated variants across ten evaluation metrics. Causal
alignment, symbolic grounding, and attribution contribute to improvements in ranking, coverage, and interpretability.

Figure 3: Ablation performance of PathSymetic across six metrics. Each subplot shows the effect of removing key compo-
nents (e.g., symbolic graph, causal alignment) over training epochs. Dashed line shows the full model.

Signature ID Top Pathway Score p-value
CD 001 MAPK Signaling 0.92 3.2e-5
CD 025 TGF-beta Axis 0.88 2.1e-6
CD 034 JAK-STAT Cascade 0.85 4.5e-4
CD 041 NF-κB Activation 0.81 1.2e-5
CD 053 PI3K-Akt Signaling 0.79 6.7e-4
CD 058 JAK-STAT Pathway 0.87 1.4e-4
CD 073 IL-17 Mediated Signaling 0.90 4.5e-5
CD 081 NF-kappaB Pathway 0.91 2.7e-6
CD 096 PI3K-Akt Pathway 0.85 6.8e-5
CD 107 Interferon Response 0.89 9.3e-6
CD 112 Apoptosis Signaling 0.82 5.0e-4

Table 4: Recovered pathways for representative disease
signatures. Scores and p-values are derived from Path-
Symetic’s ranked output using causal-symbolic alignment.

Conclusion and Future Work
This paper proposes PathSymetic, a neuro-symbolic system
that combines symbolic grounding, causal alignment, and
concept-based attribution to generate interpretable pathway
hypotheses. Extensive evaluation shows that PathSymetic
outperforms existing enrichment and learning-based ap-
proaches across a range of metrics, including AUPR, F1, and
interpretability scores. Ablation studies confirm the critical
role of each component, particularly the interaction between
causal and symbolic reasoning. In future work, we aim to ex-
tend PathSymetic to multi-omics integration and adapt it for
use in longitudinal patient cohorts. Incorporating biological
priors from tissue-specific networks and integrating external
knowledge graphs such as UMLS or DisGeNET may further
enhance its interpretive power.
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