"my stance decides my language": Modeling of Framing and Political Stance in News Media

Anonymous ACL submission

Abstract

Framing is a political strategy in which journal-002 ists and politicians highlight certain aspects of an issue or a problem to influence public opinion. Frameworks for detecting framing in news articles or social media posts are necessary in 006 order to understand the spread of biased infor-007 mation in our society. Prior research efforts have shown that their framework for framing detection works well by predicting political affiliation afterward. In this paper, rather than predicting stance after detecting frames, we incorporate stance prediction into a framing detection model to jointly capture framing languages better. We take advantage of political 014 015 stance data, which are more readily available than framing data that require manual annota-017 tion of professionals, and propose automatic framing detection models, which can detect previously unseen framing phrases. We compare two different methods of incorporation and show that leveraging stance prediction improves the separation of liberal and conservative biased frame language.

1 Introduction

024

034

040

Framing in social sciences refers to emphasizing desired aspects of an issue to promote a particular perspective (Entman, 1993). By selecting certain information and hence elevating the salience of that information, topics can be expressed with different frames. Research on frames has largely focused on political and social issues, such as the stances of politicians (Johnson and Goldwasser, 2016), the U.S. anti-nuclear war movement (Entman and Rojecki, 1993), stem cell research (Nisbet et al., 2003), and COVID-19 (Wicke and Bolognesi, 2020).

Detecting and analyzing framing is crucial in comprehending public perspectives and biases in social issues. In a world where people are overwhelmed with information from news media outlets and social media platforms, the importance of understanding framing cannot be overstated. In response to the success of machine learning (ML), ML techniques have been applied to detect frames (Card et al., 2015; Guo et al., 2016; Johnson et al., 2017a; Bhatia et al., 2021). In many framing analyses, the performance of a framing detection model is tested by predicting the political stance of an article or political affiliation of a politician's tweet or speech. However, such stance information is rarely incorporated into the development of the actual frame detection model.

042

043

044

045

046

047

051

052

056

057

060

061

062

063

064

065

067

068

069

070

071

072

073

074

075

076

077

078

079

We explore ways to take advantage of political stance data to improve framing analysis. The first method separately trains a stance prediction model and computes mean attention weights (MAW), which signify the reasoning behind the prediction. We use the scores of MAW to delineate important words in stance prediction. The second method is to jointly train a Transformer encoder with a contrastive learning objective for frames embedding and cross-entropy for a political stance prediction. The goal is to shift embeddings in the same framing group closer together, while increasing the distance to the language used by opposing political parties.

Our main contributions are as follows: (1) We compare the two methods proposed above to integrate stance prediction with framing analysis and investigate the effectiveness of stance prediction as a method to demonstrate the performance of a framing detection framework. (2) We show that rather than separately training stance prediction and frames embeddings, jointly training them in a multi-task learning approach better dissociates framing languages used in liberal and conservative U.S. news media.

2 Related Work

Traditionally, social scientists have developed and manually annotated a topic-specific codebook of frames (Terkildsen and Schnell, 1997; Baumgartner et al., 2008; Card et al., 2015). Computational linguists recently have applied ML techniques to

(b) Method 2: Framing Embedding

Figure 1: Two proposed frameworks. The first method is an ensemble of models to perform two separate tasks. The second method is a joint model that shares layers to learn with auxiliary tasks.

analyze frames. These works can be categorized according to their ML approaches: unsupervised, supervised, or weakly-supervised.

087

880

091

100

101

103

104

105

107

108

109

110

111

Many unsupervised learning approaches for frame detection depend on Latent Dirichlet Allocation (LDA) topic modeling (Blei et al., 2003) to extract candidate words of frames. However, the output of LDA is a list of keywords in each topic, *not* frame. Hence, based on the output, researchers build framing categories, i.e., frames. For instance, an open-sourced tool built by Bhatia et al. (2021) outputs the result of LDA topic modeling so that the user can label frames with the result. These topic-based words are useful guidance in framing annotations but are not appropriate data to be used for supervised framing analysis.

Second, framing detection can be defined as a supervised learning problem. Researchers collect and annotate data and train an ML model to classify frames. Field et al. (2018) constructed framing lexicons, following the Media Frame Corpus (MFC) (Card et al., 2015) annotations, and classified issue frames in Russian news articles. Akyürek et al. (2020) used the BERT (Devlin et al., 2018) to identify multilingual frames in articles about U.S. gun violence. Similar to our method, Cabot et al. (2020) applied multi-task learning to model political perspectives in news articles, political affiliations of politicians, framing, metaphor, and emotion. Our frame embedding approach differs in that the main task of our model is to embed language used in frames with contrastive learning.

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

Finally, there are weakly supervised models. In addition to the dictionary of frame indicators, Johnson et al. (2017b,a) used linguistic features of a text to predict framing in political tweets. Roy and Goldwasser (2020) built topic-specific lexicons by extending the lexicons in the MFC, and generalized them by creating an embedding space. Our model also creates an embedding space but uses political stance prediction as an auxiliary task and applies contrastive learning.

Based on the review of the literature, we propose two frameworks to incorporate political stance information into frame modeling. Section 3 presents our first modeling approach in which we separately train a stance prediction model and a framing encoder. Then we add feature attributions from each model to compute a final framing score. Section 4 presents the second model, which applies multitask learning and jointly trains on political party and framing data.

3 Method 1: Framing Scores

We propose a model for frame detection that computes framing scores with feature attributions from a BERT-based stance prediction model (3.1) and phrase similarity with frame indicators (3.2). Figure 1a illustrates this approach. Section 3.1 explains how stances are calculated with MAW. Section 3.2 details how phrase similarity is computed.

3.1 Stance Rationales

We use the approach of Jayaram and Allaway (2021) to extract feature attributions, specifically mean attention weights (MAW), of their stance prediction model. The framework is a BERT-based encoder trained with an additional loss term designed to impose a prior based on human rationales. That is, the prior loss term encourages the model attributions to be similar to oracle attributions, which are important-word scores based on human annotations. After stance prediction, MAW are extracted as stance rationales. The MAW of a token j is the mean of all attention weights at index j.

3.2 Phrase Similarity

We extract candidate phrases and compute the cosine similarity between those phrases and frame indicators with Phrase-BERT (Wang et al., 2021). Phrase-BERT is a framework that fine-tunes BERT

2

with a contrastive learning objective. We chose Phrase-BERT to embed phrases because while other BERT-based models rely on a lexical overlap to find similar phrases, Phrase-BERT is better at discovering semantically equivalent and lexically diverse phrases.

160

161

162

163

164

165

166

167

169

170

171

172

173

174

175

178

179

181

184

187

188

190

191

192

193

195

196

197

198

204

205

206

For candidate extraction, we use the implementation in EmbedRank (Bennani-Smires et al., 2018). It uses Stanford CoreNLP to identify the Partof-Speech of each word and then generate noun phrases. We use these noun phrases as candidates of framing phrases.

Next, the candidate phrases are embedded with Phrase-BERT, and cosine similarity between a candidate and its nearest-neighbor frame indicators are computed.

The final framing score of a token is a weighted sum of MAW and the similarity score:

$$MAW \times d + SimScore \times (1 - d)$$

where d is a hyperparameter.

4 Method 2: Framing Embedding

We propose a multi-task learning framework that trains a BERT-based encoder, as shown in Figure 1b. Section 4.1 discusses how to select contrastive examples for framing embedding. Section 4.2 explains the stance prediction model.

4.1 Contrastive Learning

Similar to Phrase-BERT, we fine-tune BERT to encourage the embeddings of frame indicators in the same framing group to be close and the embeddings of frame indicators in a different group to be distant. For every frame indicator p_i , there exists a positive example p_i^+ and a negative example p_i^- . The positive examples of p are other frame indicators in the same framing group. In general, negative examples are randomly chosen from phrases or sentences that do not contain p_i . However, we specifically selected examples from framing groups that are frequently used by the opposing political party. The goal is to isolate frame indicators that are used mostly by liberal media and those that are used by conservative media. The criterion for choosing the political stance of each framing group can be found in Appendix A.

> Given a triplet of vectors (p, p^+, p^-) , the contrastive loss is computed as follows:

$$\mathcal{L}_{c} = \max(0, \epsilon - \|p - p^{-}\| + \|p + p^{+}\|)$$

where a margin ϵ is a hyperparameter.

Figure 2: t-SNE visualiation of the embeddings of frame indicators. Figure (a) is the embeddings of BERT fine-tuned with a contrastive learning objective. Figure (b) is that of Method 2, which jointly trains with both contrastive learning and stance prediction objectives.

4.2 Stance Prediction

For stance prediction, we add a single-layer Neural Network to the BERT-based encoder. Given a frame indicator p_i , we predict a stance label $y_i \in \{0, 1\}$. We use binary cross-entropy as the loss function:

$$\mathcal{L}_s = -\frac{1}{N} \sum_{i=1}^N y_i \cdot \log(p(y_i)) + (1 - y_i) \cdot \log(1 - p(y_i))$$

where N is the number of data in a batch. The final loss is

 $\mathcal{L} = \mathcal{L}_c + \alpha \cdot \mathcal{L}_s \tag{217}$

208

209

210

211

212

213

214

215

216

218

219

220

221

222

224

225

226

227

228

229

232

233

234

235

236

237

238

where α is a hyperparameter.

5 Experiments

5.1 Data

We use the dataset from Roy and Goldwasser (2020). This dataset has 21,645 news articles on three politically polarized topics: abortion, immigration, and gun control. Each article is labeled *left* or *right* according to mediabiasfactcheck.com. There are also topic-specific lexicons, which were collected as in Field et al. (2018). We use these lexicons as our framing indicators.

We build a triplet dataset with the framing indicators, following the procedure explained in Section 4.1. The dataset has 7,366 triplets. Unlike Roy and Goldwasser (2020), we do not create separate embeddings for each topic; we embed framing indicators from three topics into one embedding space.

5.2 Results

We evaluate the performance of our first model by highlighting words in a document according to their scores. Table 1 shows highlights from an article on abortion. The darker the highlight is, the higher

3

MAW	Abortion rights advocates even				
	say that the legislation could lead				
	to the end of private insurance				
	coverage for abortion. As I re-				
	ported Susan Cohen the director of				
	Governmental Affairs for the pro-				
	abortion-rights Guttmacher Founda-				
	tion argued in a policy brief this fall				
	that the Smith Bill would go into				
	uncharted.				
SimScore	Abortion rights advocates even				
	say that the legislation could lead				
	to the end of private insurance				
	coverage for abortion. As I reported				
	Susan Cohen the director of Gov-				
	ernmental Affairs for the pro-				
	abortion-rights Guttmacher				
	Foundation argued in a policy				
	brief this fall that the Smith Bill				
	would go into uncharted .				
Framing	Abortion rights advocates even				
	say that the legislation could lead				
	to the end of private insurance				
	coverage for abortion. As I reported				
	Susan Cohen the director of Gov-				
	ernmental Affairs for the pro-				
	abortion-rights Guttmacher				
	Foundation argued in a policy				
	brief this fall that the Smith Bill				
	would go into uncharted.				

Table 1: The visualization of mean attention weights (MAW), cosine similarity scores (SimScore), and the final framing scores. The example document is an article with the topic Abortion.

the score is. As shown in Table 1, important tokens based on MAW and SimScore are distinguishable. However, MAW scores were mostly proportionate across all tokens, and thus the effects of MAW on final framing scores were statistically insignificant.

240

241

242

243

245

246

247

249

251

For our second model, we used t-SNE to visualize the embeddings of frame indicators. Figure 2a shows the embedding space of BERT fine-tuned with our contrastive learning objective. Figure 2b shows the embedding space of the Method 2 model, which added a stance prediction loss. The *left* and *right* separation of framing groups is evident in Figure 2b. This result suggests that using stance prediction as an auxiliary task improves the embed-

Phrase	Nearest Neighbors	
Protecting the	baby's life, child's life, kill the	
preborn	child, child protection, kill the	
	baby, unborn life, child killing,	
	abort the baby, rip the baby,	
	protect life	
Prevent firearm	prevent gun violence, curb	
violence	gun violence, gun violence re-	
	straining, end gun violence,	
	stop gun violence, violence	
	restraining order, reduce gun	
	death, domestic violence re-	
	straining, gun violence re-	
	search, violence restraining	
Illegal im-	deport illegal immigrant, previ-	
migrants are	ously deported illegal, deport	
criminals	illegal, amnesty to illegal, de-	
	port undocumented, terrorist	
	organization, deportation of il-	
	legal, domestic terrorism, sus-	
	pected terrorist, terrorism re-	
	lated	

Table 2: Top 10 nearest neighbors of phrases that were not in the dataset.

254

255

257

259

260

261

262

263

264

265

267

268

269

270

272

273

274

275

ding of framing.

Next, we evaluated the performance of the second model in embedding previously unseen phrases. Table 2 shows the top 10 nearest neighbors of those phrases. The phrases include vocabularies that were not present in the dataset. For instance, the word "preborn" in the phrase "protecting the preborn" was not present in the framing indicators. Still, the model was able to assign its embedding close to framing indicators that do not have lexical overlaps but are semantically similar to frames used by conservative labeled articles. Yet the nearest neighbors were restricted to existing framing groups; that is, the model could not extend the assignment of phrases to unobserved framing.

6 Conclusion

In this work, we proposed and compared two frameworks that incorporate stance prediction to framing detection and have shown initial results that jointly learning the two tasks is the strongest model. We plan to extend this work with quantified experiments to discover frames in unlabeled data.

276	References	Lei Guo, Chris J Vargo, Zixuan Pan, Weicong Ding,	329
		and Prakash Ishwar. 2016. Big social data analytics	330
277	Afra Feyza Akyurek, Lei Guo, Randa Elanwar, Prakash	in journalism and mass communication: Compar-	331
278	Ishwar, Margrit Betke, and Derry Tanti Wijaya. 2020.	ing dictionary-based text analysis and unsupervised	332
279	Multi-label and multilingual news framing analysis.	topic modeling Journalism & Mass Communication	333
280	In Proceedings of the 58th Annual Meeting of the	Quartarly 03(2):332 350	22/
281	Association for Computational Linguistics.	Quarterly, 95(2):552-559.	554
282	Frank R Baumgartner, Suzanna L De Boef, and Am-	Sahil Jayaram and Emily Allaway. 2021. Human ra-	335
283	ber E Boydstun. 2008. The decline of the death	tionales as attribution priors for explainable stance	336
284	penalty and the discovery of innocence. Cambridge	detection. In Proceedings of the 2021 Conference on	337
285	University Press.	Empirical Methods in Natural Language Processing,	338
		pages 5540–5554.	339
286	Kamil Bennani-Smires, Claudiu Musat, Andreea Hoss-		
287	mann, Michael Baeriswyl, and Martin Jaggi. 2018.		
288	Simple unsupervised keyphrase extraction using sen-	Kristen Johnson and Dan Goldwasser. 2016. "all i know	340
289	tence embeddings arXiv preprint arXiv:1801.04470	about politics is what i read in twitter": Weakly su-	341
100		pervised models for extracting politicians' stances	342
200	Vibbu Bhatia, Vidya Prasad Akayoor, Sajin Daik Lai	from twitter. In Proceedings of COLING 2016, the	343
290	Guo Mono Ialal Alvaso Smith David Assofa Tofu	26th International Conference on Computational Lin-	344
291	Guo, Mona Jalai, Alyssa Siniui, David Assela Tolu,	guistics: Technical Papers, pages 2966–2977.	345
292	Edward Edberg Halim, Yimeng Sun, Margrit Betke,	0 1 1 2	
293	et al. 2021. Openframing: Open-sourced tool for		
294	computational framing analysis of multilingual data.	Kristen Johnson, Di Jin, and Dan Goldwasser. 2017a.	346
295	In Proceedings of the 2021 Conference on Empirical	Leveraging behavioral and social information for	347
296	Methods in Natural Language Processing: System	weakly supervised collective classification of politi-	348
297	Demonstrations, pages 242–250.	cal discourse on twitter. In <i>Proceedings of the 55th</i>	349
		Annual Meeting of the Association for Computational	350
298	David M Blei, Andrew Y Ng, and Michael I Jordan.	Linguistics (Volume 1: Long Papers) pages 741-752	351
299	2003. Latent dirichlet allocation. the Journal of	Emguistics (votanie 1. Eong Papers), pages 711-752.	001
300	machine Learning research, 3:993–1022.		
	0 /	Kristen Johnson, I-Ta Lee, and Dan Goldwasser. 2017b.	352
301	Pere-Lluís Huguet Cabot, Verna Dankers, David Abadi,	Ideological phrase indicators for classification of po-	353
302	Agneta Fischer and Ekaterina Shutova 2020 The	litical discourse framing on twitter. In <i>Proceedings</i>	354
202	pragmatics behind politics: Modelling metaphor	of the Second Workshop on NLP and Computational	355
204	framing and amotion in political discourse. ACL	Social Science pages 90–99	356
304	Anthology.	boenn berence, pages 90 99.	000
		Matthew C Nisbet, Dominique Brossard, and Adrianne	357
306	Danas Card, Amber Boydstun, Justin H Gross, Philip	Kroepsch. 2003. Framing science: The stem cell	358
307	Resnik, and Noan A Smith. 2015. The media frames	controversy in an age of press/politics. Harvard In-	359
308	corpus: Annotations of frames across issues. In Pro-	ternational Journal of Press/Politics, 8(2):36–70.	360
309	ceedings of the 53rd Annual Meeting of the Asso-		
310	ciation for Computational Linguistics and the 7th		
311	International Joint Conference on Natural Language	Shamik Roy and Dan Goldwasser. 2020. Weakly	361
312	Processing (Volume 2: Short Papers), pages 438–	supervised learning of nuanced frames for analyz-	362
313	444.	ing polarization in news media. arXiv preprint	363
		arXiv:2009.09609.	364
314	Jacob Devlin, Ming-Wei Chang, Kenton Lee, and		
315	Kristina Toutanova. 2018. Bert: Pre-training of deep		
316	bidirectional transformers for language understand-	Nayda Terkildsen and Frauke Schnell. 1997. How me-	365
317	ing. arXiv preprint arXiv:1810.04805.	dia frames move public opinion: An analysis of the	366
	\mathcal{S} \mathcal{I} \mathcal{I} \mathcal{I}	women's movement. Political research quarterly,	367
318	Robert M Entman 1993 Framing Towards clarifica-	50(4):879–900.	368
319	tion of a fractured paradigm McQuail's reader in		
320	mass communication theory, pages 390–397.	Shufan Wang, Laura Thompson, and Mohit Luyer, 2021	260
		Phrase-hert: Improved phrase embeddings from bert	270
321	Robert M Entman and Andrew Rojecki. 1993. Freezing	with an application to compute avalanction and	370
322	out the public: Elite and media framing of the us	with an application to corpus exploration. $drXtv$	3/1
323	anti-nuclear movement.	preprint arXiv:2109.00504.	372
324	Anjalie Field, Doron Kliger, Shuly Wintner, Jennifer	Philipp Wicke and Marianna M Bolognesi. 2020. Fram-	373
325	Pan, Dan Jurafsky, and Yulia Tsvetkov. 2018. Fram-	ing covid-19: How we conceptualize and discuss the	374
326	ing and agenda-setting in russian news: a computa-	pandemic on twitter. <i>PloS one</i> , 15(9):e0240010	375
327	tional analysis of intricate political strategies. arXiv	r	010
328	preprint arXiv:1808.09386.		
	r r		

Framing group	Lib.	Cons.
Pro-Life	0.563	0.437
Sanctity of Life	0.554	0.446
Pro-Choice	0.791	0.209
Right of Human Life	0.361	0.639
Life Protection	0.429	0.571
Abort. prov. economy	0.096	0.904
Reproduction Right	0.829	0.171
Sale of Fetal Tissue	0.57	0.43
Late Term Abortion	0.531	0.469
Abortion Funding	0.621	0.379
Hobby Lobby	0.714	0.286
Anti-Abortion	0.723	0.277
Health Care	0.818	0.182
Women freedom	0.786	0.214
Roe V. Wade	0.615	0.385
Birth Control	0.689	0.311
Planned Parenthood	0.426	0.574
Sexual Assault Vict.	0.649	0.351
Pregnancy Centers	0.295	0.705
Stem Cell Research	0.727	0.273

Table 3: Topic: Abortion. Proportion of liberal and conservative articles that mention frame indicators in each category.

A Stance Labelling of Framing Groups

Tables 3, 4, and 5 show the usage of framing in liberal and conservative articles of the Roy and Goldwasser (2020) dataset. If frame indicators in a group were mentioned more in liberal media, that group is labeled as "left." Similarly, a group, which is more used in conservative media, is labeled as "right."

B Reproducability

377

379

381

386

387

391

396

397

Machine Used We used a Nvidia Quatro RTX 5000, 16 GB memory GPU in a machine with Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz.

Libraries Used For all models, PyTorch was used for implementation.

Implementation Details

 Method 1: Stance Rationales The hyperparameter λ is 49152. The model is optimized using Adam for 20 epochs with a batch size of 32 and a fixed learning rate of 10⁻⁵. The maximum sequence length of 250 for arguments and 10 for topics. It

Framing group	Lib.	Cons.
Gun Buyback Program	0.781	0.219
Terrorist Attack	0.441	0.559
Gun Con. to Restr. Viol.	0.628	0.372
White Identity	0.761	0.239
Gun Research	0.843	0.157
Mental Health	0.622	0.378
Gun Show Loophole	0.55	0.45
Gun Business Industry	0.513	0.487
Second Amendment	0.358	0.642
Assault Weapon	0.466	0.534
Person of Color Identity	0.686	0.314
Conc. Carry Recip. Act	0.401	0.599
Gun Homicide	0.692	0.308
Ban on Handgun	0.471	0.529
Right to Self-Defense	0.275	0.725
School Safety	0.644	0.356
Background Check	0.496	0.504
Stop Gun Crime	0.535	0.465
Illegal Gun	0.446	0.554

Table 4: Topic: Gun Control. Proportion of liberal and conservative articles that mention frame indicators in each category.

Framing group	Lib.	Cons.
Terrorism	0.417	0.583
Born identity	0.156	0.844
Human Right	0.728	8 0.272
Wage Economy	0.653	0.347
DACA	0.455	0.545
Detention	0.696	0.304
Deport.: In General	0.58	0.42
Salary Stagnation	0.137	0.863
Rac. and Xen.	0.667	0.333
Border Protection	0.411	0.589
Cheap Labor Availability	0.032	0.968
Wealth Gap	0.106	0.894
Refugee	0.482	0.518
Taxpayer Money	0.461	0.539
Amnesty	0.034	0.966
Racial Identity	0.837	0.163
Deport.: Ill. Imm.	0.184	0.816
Birth Cit. & 14th Amen.	0.435	0.565
Merit Based Imm.	0.1	0.9
Dream Act	0.342	0.658
Asylum	0.519	0.481
Family Sep. Policy	0.761	0.239

Table 5: Topic: Immigration. Proportion of liberal and conservative articles that mention frame indicators in each category.

- 399 uses bert-base-uncased from Hugging-400 face.¹
- 401• Method 1: Phrase-BERT The model is
optimized using Adam for 1 epoch with
a batch size of 16 and a learning rate
of 2e 5. The initial 10% of training
steps are used as warm-up steps. It uses
bert-base-nli-stsb-mean-tokens
from Huggingface.
- 408
 Method 1: Framing Score
 The

 409
 hyperparemeter d is set as $d \in \{0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 1\}.$
- Method 2: Framing Embedding The hyperparmaeter α is set as 0.2. The model is optimized using Adam for 10 epoch with a batch size of 16 and a learning rate of 2e - 5. The initial 10% of training steps are used as warm-up steps.

C Ethical Considerations

417

As mentioned in Section 5, our methods have limitations, and we caution not to deploy our models
for not the purpose intended.

¹https://huggingface.co/transformers