
ar
X

iv
:1

91
1.

02
91

4v
1

 [
cs

.C
L

]
 7

 N
ov

 2
01

9

Transformation of Dense and Sparse Text Representations

Wenpeng Hu1,3,∗, Mengyu Wang2,3,∗, Bing Liu3,†

Feng Ji4, Haiqing Chen4, Dongyan Zhao3, Jinwen Ma1 and Rui Yan3,†

1Department of Information Science, School of Mathematical Sciences, Peking University
2Yuanpei College, Peking University

3Wangxuan Institute of Computer Technology, Peking University
4Alibaba Group

{wenpeng.hu,wangmengyu,dcsliub,zhaody,ruiyan}@pku.edu.cn, jwma@math.pku.edu.cn

Abstract

Sparsity is regarded as a desirable property of

representations, especially in terms of explana-

tion. However, its usage has been limited due

to the gap with dense representations. Most

NLP research progresses in recent years are

based on dense representations. Thus the desir-

able property of sparsity cannot be leveraged.

Inspired by Fourier Transformation, in this pa-

per, we propose a novel Semantic Transforma-

tion method to bridge the dense and sparse

spaces, which can facilitate the NLP research

to shift from dense space to sparse space or to

jointly use both spaces. The key idea of the pro-

posed approach is to use a Forward Transfor-

mation to transform dense representations to

sparse representations. Then some useful op-

erations in the sparse space can be performed

over the sparse representations, and the sparse

representations can be used directly to perform

downstream tasks such as text classification

and natural language inference. Then, a Back-

ward Transformation can also be carried out

to transform those processed sparse represen-

tations to dense representations. Experiments

using classification tasks and natural language

inference task show that the proposed Seman-

tic Transformation is effective.

1 Introduction

Many studies have shown that sparsity is a

desirable property of representations, especially

in terms of explanation (Fyshe et al., 2014;

Faruqui and Dyer, 2015). In this sense, sparse

representation may hold the key to solving the

explainability problem of deep neural networks.

Apart from the interpretability property, sparse

representation can also improve the usability

of word vectors as features (Guo et al., 2014;

Chang et al., 2018). Several tasks have benefited

∗Equal Contribution.
†Corresponding Author

Dense Space

Sparse Space

SFT SBT

Figure 1: Transformations between dense and sparse

spaces. SFT and SBT denote the forward and backward

transformation respectively.

from sparse representations, e.g., part-of-speech

tagging (Ganchev et al., 2009), dependency pars-

ing (Martins et al., 2011), and supervised classifi-

cation (Yogatama and Smith, 2014).

However, much of the research advances so

far for NLP tasks are based on dense repre-

sentations, e.g., text classification (Kim, 2014;

Tang et al., 2015; Wu et al., 2017; Wang et al.,

2018), natural language inference (Liu et al.,

2019; Kim et al., 2019), machine translation

(Cheng, 2019; He et al., 2016) and generation

(Serban et al., 2017; Zhang et al., 2019; Zhu et al.,

2018). The study of sparse representations is still

limited.

There are two key limitations in the existing

studies of sparse representations. First, there is no

study that has been done to connect dense and

sparse spaces well, which makes the two types of

representations relatively independent and cannot

reinforce each other to achieve synergy. Second,

limited work has been done to generate represen-

tations of sentences or phrases in the sparse space

using sparse word embeddings.

Inspired by Fourier Transformation, as shown

in Figure 1, this paper proposes a novel method

called Semantic Transformation (ST) to address

the problems. With the help of ST, dense and

http://arxiv.org/abs/1911.02914v1

sparse spaces can connect with each other and will

not be isolated anymore. The proposed transfor-

mation consists of two key components, namely,

Semantic Forward Transformation (SFT) and Se-

mantic Backward Transformation (SBT) (see Sec-

tion 2). SFT is designed to transform a dense rep-

resentation to a sparse representation. That is, we

can transform any learned dense features to sparse

representations and endow the model properties

that sparsity possesses. Sparse representations can

also be transformed back to dense representations

through SBT, before that, we can perform different

operations in the sparse space to achieve different

goals.

Another key innovation of this paper is that it

proposes a new approach for achieving sparseness.

Conventionally, penalties are commonly used to

achieve sparseness (Sun et al., 2016; Ng et al.,

2011; Subramanian et al., 2018). However, they

suffer from the problems of initialization sensitiv-

ity and uncontrollable optimization. In this paper,

we propose to achieve sparseness through a novel

activation function, which gives an effective solu-

tion (see Section 2.1). Experimental results show

that the proposed activation function works very

well.

In this paper, we also explore a combination

method to combine words representations into sen-

tence representations in the sparse space directly.1

Additionally, the proposed transformations and

combination method can be paralleled to enable

efficient computation.

In summary, this paper makes the following con-

tributions:

• It proposes a novel semantic transforma-

tion method which effectively connects dense and

sparse spaces.

• It proposes to use a new activation function

to achieve sparseness, which, to the best of our

knowledge, has not been used before. The function

works very well.

• It proposes a combination method that can en-

code sentence in the sparse space directly.

• The proposed methods have been evaluated

using text classification and natural language in-

ference tasks with promising results. Since the

proposed transformations avoid large scale matrix

multiplications in the combination procedure, it is

also efficient.

1In addition to the combination processing, we can per-
form different tasks in the sparse space, e.g., filtration and
transfer. We leave these tasks to our future work.

2 Semantic Transformation

In this section, we first briefly describe the compo-

sition of Semantic Transformation (ST), and then

elaborate on each component. The proposed ST

has three operations:

1. SFT (Semantic Forward Transformation). It

takes a dense representation as input and

transforms it into a higher dimensional sparse

space.

2. SBT (Semantic Backward Transformation).

It is the inverse of SFT, transforming repre-

sentations from the sparse space back to the

dense space.

3. SCSS (Semantic Combination in the Sparse

Space). It computes the sentence represen-

tation using its component word representa-

tions in the sparse space.2

2.1 Semantic Forward Transformation

SFT aims to discover the latent semantic aspects

in a dense representation of word x and put them

in a higher dimensional sparse representation y.

We assume M is the number of latent semantic

aspects3, and each latent semantic aspect is rep-

resented by a vector, i.e. bm ∈ Rd for the mth

base. We define all the latent semantic aspects as

the bases of semantemes in the real world, denoted

by B = {b1, . . . ,bM} ∈ Rd×M . Given B, the

function of SFT is to estimate the semantic distri-

bution of the given dense representation over B.

Definition (y): We define −1 ≺ y ≺ 1, meaning

that each element of y has a value in (−1, 1).

The reasons for giving positive and negative val-

ues to elements in a sparse representation are that

1) negative values can represent “negative seman-

temes”; 2) we can eliminate some meanings of ele-

ments (positive values) through simple operations

between words, i.e., adding. Note that a negative

value representing “negative semantics” of a given

aspect does not mean that two words with oppo-

site meanings have exactly corresponding positive

2Note that although many operations can be done in the
sparse space, the purpose of this paper is not to investigate
all those operations. This paper mainly focuses on SCSS, the
most basic operation in the sparse space for NLP.

3We set a limited number of semantemes because those la-
tent semantemes are not all the semantemes in the real world
but are the bases for composing real world semantemes.

and negative sparse representations. In the sparse

space, we use the composition of semantemes to

denote word meanings. This is in line with the hu-

man way of using words, e.g., the meaning of ”not

bad” can be obtained by adding the sparse repre-

sentation of “not” to the sparse representation of

“bad”. In this sense, the meaning of “not bad” is a

composition of several semantemes.

Formulation of SFT: We adopt a multilayer per-

ceptron (MLP)4 integrated with the base B to

build a SFT to perform its function. We first use

a MLP f(·) to learn deep features of the dense rep-

resentation x, and then use the features to compute

the sparse distribution over the semantic bases.

Formally, the ith layer in f(·) can be written as:

pi = fi(pi−1, µ) = σ(wipi−1) (1)

where σ is the activation function, and wi is the

parameter of the ith layer denoted by µ; pi−1 is the

output of (i− 1)th layer and p0 = x. We denote

the output of the last layer of f(·) as p and then

integrate it with B. The distribution over semantic

bases can be computed by:

y = S(p ·wfB) (2)

where wf is a trainable parameter; S(·) is a spe-

cially designed activation function used to control

the sparseness of the semantic distribution (dis-

cussed later). To sum up, SFT can be written as:

y = SFT (x) = S(f(x) ·wfB) (3)

Sparse Activation: Sparsity is enforced through

penalties in most exist studies, such as ℓ1
regularizer (Sun et al., 2016), average sparsity

penalty (Ng et al., 2011), and partial sparsity

penalty (Subramanian et al., 2018). We call those

methods penalty enforcing methods which push

the sparse representation close to either 0 or 1.

However, such penalties suffer from the initial-

ization sensitivity problem as the penalties contain

an initial interface which influences the distribu-

tion of the learned sparse representation signifi-

cantly. To overcome the problem, we propose to

use an activation function instead. We first give

the formulation of the proposed activation func-

tion S(·) and then show its activation curve in Fig-

ure 2(a).

S(x) = e−(βx−γ)2 − e−(βx+γ)2 (4)

4Our approach is not limited to using multilayer percep-
tron (MLP). Other techniques, e.g., CNN may also be used.

(a)

(b)

Figure 2: Activation curve.

where β and γ are two hyper-parameters control-

ling the sparsity of the output. We set β = 1 and

γ = 2 in our experiments.

Clearly, from Figure 2(a), we can see a large

range of inputs of S(·) is mapped to 0, while the

positions around ±γ/β will get high responses. In-

tegrated with an objective loss function (depends

on specific types of tasks, e.g., cross entropy for

classification), SFT learns to give the relevant as-

pects/semantemes with predictions around ±γ/β.

In the case under the action of this activation func-

tion, we can learn sparse representations through

the original objective function, not relying on en-

forcing penalties. Based on the experimental re-

sults, we will see that this activation function

works very well on many datasets.

S(·) is non-linear and differentiable and its

derivatives can be written as:

S′(x) = (−2β2x+ 2γβ · Sign(x)) · S(x) (5)

where Sign(·) is Sign function, and Sign(0) = 0.

Clearly, the derivative of S(·) is easy to compute.

2.2 Semantic Backward Transformation

SBT is the inverse transformation of SFT, which

transforms a sparse representation back to a dense

representation. A straightforward way to achieve

SBT is to use the sparse representation to do a

weighted sum over the base B. To increase the

fitting ability of SBT, similar to SFT, we adopt

a MLP F (·) to learn a deep dense representation.

We formulate SBT as follows:

x = SBT (y) = F (tanh(wb ·ByT)) (6)

where tanh is the Tanh activation function, and wb

is a trainable parameter. F (·) is a MLP with its

own trainable parameters.

2.3 Semantic Combination in Sparse Space

This section proposes a Semantic Elimination (SE)

method to complete semantic combination in the

sparse space.5 The main idea of SE is to use the

negative values in the representation of one word

to eliminate another word’s semantics. That is also

one of the reasons for defining negative values

in the sparse representation. In this scenario, the

sparse representation has two functions: (1) using

positive values (positive semantemes) to denote

which semantic meanings a word has and (2) us-

ing negative values (negative semantemes) to elim-

inate the semantemes that should not be present in

the word. Below, we detail SE.

Due to the fact that a word’s semantemes usu-

ally change with the nearby words or just the pre-

ceding word in a sentence, given a sentence, we

propose to use the ith word’s negative values to

eliminate the (i + 1)th word’s positive values (se-

mantemes). We call this elimination method Pre-

ceding Elimination (PE). After that, a nonlinear

activation function must be followed to avoid the

overall operation as a linear operation. Note, the

activation function must go through the origin

(0, 0) in order to ensure the balance of positive and

negative values. In this case, we specially designed

an activation function, which we will elaborate it

shortly. Then we add the sparse representations of

all words in the sentence together after PE as the

final sentence sparse representation.6

We designed an activation function, called

‘leaky’ (its curve is shown in Figure 2(b)) to (1)

decrease the small values of a sparse representa-

tion in order to prevent the system from produc-

ing new semantemes that shouldn’t exist; (2) make

the SE sensitive to word order (in order to con-

sider the information of word order) since the acti-

vation function is non-linear which enables non-

commutativity of the whole SE over linear and

5A sparse representation usually has a large number of
dimensions (or aspects) but only a small number of dimen-
sions have none zero values. Inherently, it is inappropriate to
combine words’ sparse representations into sparse sentence
representations by using complex matrix transformation.

6In the sum vector, if an element is greater than 1 or less
than -1, we reduce its absolute value to 1 without sign change.

non-linear operations. Note that ‘leaky’ is used

on sparse representations of words after preceding

elimination. SE is formulated as:

st =

t
∑

i=1

leaky(−Relu(−yi−1) + Relu(yi)) (7)

where st is the sparse representation of a sub-

sentence from 1 to position t produced by seman-

tic combination in the sparse space. In this case,

sT denotes the sparse representation of a sentence

with length T .

2.4 Objective Function

Overall, given a batch of data D, our model is

trained to minimize the following objective func-

tion:

min L(D) = PL(D) + ML(D) + BL(D) + RLo(D)
(8)

where PL(D) denotes the prediction loss over the

dataset, it depends on the task that the model is

applied to; ML(D) denotes the margin loss, it is

performed to enlarge the margin of distances be-

tween sparse representations with different mean-

ings; BL(D) is a regularization used to constrain

the norm of bases; RLo(D) denotes the recon-

struction loss, which is used to do model simula-

tion (see below) and therefore it is optional. Note,

when applying our method only PL(D) is neces-

sary, ML(D) and BL(D) can be used to improve

the model’s performance. Next, we discuss these

loss functions.

Prediction Loss (PL): PL(D) is the training loss

of the application task. For example, in our case,

this loss is Cross Entropy for supervised classifica-

tion.

Margin Loss (ML): ML(D) is designed to enlarge

the margin of distances between sparse representa-

tions with different meanings. We need ML to help

training because we found that the margin of the

learned sparse representation by optimizing PL is

not clear or significant for separating positive and

negative semantemes, which is undesirable for ex-

planation. We then explore a new method for clear

sparse representation learning, called Margin Loss,

which makes the sparse representations having dif-

ferent meanings far from each other.

In the scenario of classification, we leverage the

class labels as supervising information to group

the samples in a batch into each class, and then

average the sparse representations of the instances

in each class to represent the class. Formally, we

assume yci is the averaged representation of the

ith class. Then, based on the cosine similarity7, we

define ML(D) as follows:

min ML(D) = sum(W ⊙ (YT
c ∗Yc)) (9)

where Yc = {y1, . . . ,yN}, N is the number

of classes. ⊙ denotes Hadamard product. W ∈
R
N×N is hyper-parameter used to control the up-

dating direction and degree. Wij is set to -1 if

i = j, or 1 otherwise. This ensures a large mar-

gin between different classes by minimizing their

inner product. Note that in some scenarios, espe-

cially sentiment classification, the distance of dif-

ferent classes belonging to the same positive (or

negative) sentiment (e.g., strong and weak posi-

tive/negative classes) should not be enlarged much.

In this case, we develop an exponential decay func-

tion to intuitively set W:

Wij =

{

1
2

(N−1−|i−j|)/τ
, if i 6= j

−1, otherwise
(10)

where τ is half-life, we set it to (N − 1)/2.

Base Regularization: (BL): Recall in the pro-

posed semantic forward transformation method,

base collection B is the key for obtaining the se-

mantic distribution (semantic representation) of

the given dense representation. Clearly, it is a pro-

jection procedure. Here, we argue that a larger pro-

jection will not ensure a better prediction. That is

because representations with a large norm usually

get a large projection, which is a point that conven-

tional prediction methods ignore. The proposed

Sparse Activation method eliminates this problem

by giving large projections small responses. Simi-

larly, inconsistent length of bases in B will cause

different output (response) priors. To tackle this

problem, we propose a base regularization to con-

strain the length of bases in B to equal to 1. For-

mally, BL is formulated as:

min BL =

M
∑

m=1

(||bm|| − 1)2 (11)

where bm is the mth base in B.

7Note that yci is not a sparse representation as it is the
average of many sparse representations. Cosine similarity is
appropriate for Margin Loss.

Reconstruction Loss (RLo): The proposed ST

can easily do transformations among dense and

sparse spaces, and learn sentence representation in

the sparse space. In this case, ST could provide

a sentence with both dense and sparse representa-

tions. One question that may be asked is whether

the dense representations produced by ST through

back transform can be used in place of dense repre-

sentations directly learned by models in the dense

space, e.g., LSTM? In this case, we propose re-

construction loss to minimize the construction er-

ror between the outputs of ST and LSTM. An-

other purpose of RLo(D) is to control the mean-

ings of the same word or sentence/phrase in differ-

ent spaces to maintain consistency with the repre-

sentations of a sentence and its phrases produced

by LSTM as X, then

RL(D) =
∑

D

T
∑

i=1

(||xi − x′
i||

2
2

+ ||si − s′i||
2
2 + ||Xi −X′

i||
2
2)

(12)

where x′
i = SBT (yi),X

′
i = SBT (si), s

′
i =

SFT (Xi); T is the length of the sentence. x,y, si
have the same meanings as we defined before. X′

i

denotes the dense representation constructed from

sparse representation si. This loss helps transform

the representations in one space to another space

while maintaining the semantic information con-

sistency. The last term helps learn similar repre-

sentations with LSTM.

3 Experiments

We evaluate the proposed method using one natu-

ral language inference dataset and four text clas-

sification datasets. The tasks act as good quality

checks for the learned representations. The code is

implemented with Pytorch and can be found here 8

The five datasets are SNLI, MR, SST1, SST2 and

TREC, detailed training/dev/test splits are shown

on Table 2:

• SNLI (Bowman et al., 2015): a collection of

human-written English sentence pairs manually la-

beled for balanced classification with the labels:

entailment, contradiction, and neutral. This is the

natural language inference dataset, which is also

solved via classification.

• MR v1.09: Movie reviews with one sentence

8https://github.com/morning-dews/ST
9https://www.cs.cornell.edu/people/pabo/movie-review-

data/

https://github.com/morning-dews/ST

Table 1: Average accuracy over all tasks. Y and X’ are representations for making predictions (X’ is the back

transformation of Y; Y is the sparse representation). Helper loss refers to ML or BL. Note that only the experiments

using X’ as the representations for prediction has RLo. RLo is not used when using Y as the prediction feature.

Model SNLI MR SST1 SST2 TREC

CNN (Kim, 2014) 59.71 76.10 36.80 80.60 90.20

Transformer (Vaswani et al., 2017) 55.32 75.23 34.80 78.30 81.56

Capsule (Zhao et al., 2018) 54.53 72.57 36.44 77.02 82.31

LSTM (Hochreiter and Schmidhuber, 1997) 66.66 71.04 36.96 75.11 87.60

ST¶[X’] (without sparse activation or helper loss) 32.90 61.07 29.97 68.04 63.40

ST‡[X’] (with sparse activation, without helper loss) 63.34 70.38 35.79 75.11 80.00

ST†[X’] (using the traditional penalty, without sparse activation or helper loss) 59.89 65.51 33.97 65.25 73.40

ST[X’] (full model) 66.58 71.16 38.69 76.03 87.06

ST¶[Y] (without sparse activation or helper loss) 62.46 68.32 35.60 71.33 79.60

ST‡[Y] (with sparse activation, without helper loss) 63.53 76.38 38.24 78.33 86.20

ST†[Y] (using the traditional penalty, without sparse activation or helper loss) 62.62 69.17 35.42 71.33 81.60

ST[Y] (full model) 66.85 77.15 41.78 80.70 87.80

Table 2: Summary statistics for the datasets after tok-

enization. c denotes the number of target classes.

Data c Train Dev Test

SNLI 3 549367 9842 9842

MR 2 8529 1067 1066

SST1 5 8544 1101 2210

SST2 2 6920 872 1821

TREC 6 5452 500 500

per review labeled positive or negative for senti-

ment classification.

• SST110: an extension of MR but with fine-

grained labels: very positive, positive, neutral, neg-

ative, very negative.

• SST211: same as SST1 but with neutral re-

views removed and only using positive and neg-

ative labels.

• TREC12: question samples that classify each

question into one of 6 question types: about per-

son, location, numeric information, etc.

Baseline: Four widely used methods are employed

as the baselines:

(1) a 1-layer LSTM

(Hochreiter and Schmidhuber, 1997) with 300

hidden units;

(2) a 3-layer Transformer (Vaswani et al., 2017)

with 300 hidden units;

(3) CNN (Kim, 2014): We use exactly the same

settings as the paper;

(4) Capsule Network (Zhao et al., 2018). We

adopted the code released by the authors and used

10http://nlp.stanford.edu/sentiment/
11http://nlp.stanford.edu/sentiment/
12https://cogcomp.seas.upenn.edu/Data/QA/QC/

trainable embeddings.

For our model, we adopt a MLP with 1 hid-

den layer (300 units) for forward transform and

a MLP with 2 hidden layers (300 units) for back-

ward transform. We set the length of semantic base

to 1000.

Training details: We adopt uniform settings for

all baselines and our model:

1) Adam optimizer for parameter updating with

learning rate of 1e-4; trainable embeddings with

size 300.

2) A MLP with 1 hidden layer as the classifier.

For a fair comparison, the hidden unit size is set

to 300 for LSTM, CNN, Transformer and Capsule.

For our model, it is set to 64 when we use sparse

representation to do the prediction and still 300

when we use back transformation representations

as the prediction features.13

3) SNLI is the task of identifying the rela-

tionships between two given sentences. For each

model, we first use it to encode the two sentences

into the resulting representations respectively, and

then concatenate the two sentence representations

for the final prediction.

4) We report the average accuracy over 10 runs

of the experiment on the test data. For each run,

the maximum accuracy before early stopping is se-

lected as the result of the current run.

13In detail, the number of parameter of the classifiers for
baselines and our model using back transformation represen-
tations is 300*300=90,000; while the number for our model
using sparse representation is 1000*64=64,000.

Table 3: Average running time over all test sets

(Minute)

Model SNLI MR SST1 SST2 TREC

CNN 1.190 0.108 0.083 0.079 0.035

Transformer 1.810 0.151 0.140 0.137 0.041

Capsule 3.590 0.303 0.220 0.206 0.057

LSTM 2.096 0.186 0.168 0.142 0.049

ST 1.404 0.093 0.088 0.071 0.025

3.1 Results and Analysis

Table 1 shows the prediction accuracy of our

model and the baselines. Table 3 gives the predic-

tion run time. From Table 1 and 3, we can make

the following observations:

• The proposed Semantic Transform (ST) ap-

proach significantly outperforms LSTM on three

datasets: SST1, SST2 and MR, and get compara-

ble results with LSTM on SNLI and TREC. ST

also markedly outperforms Transformer and Cap-

sule on all five datasets, and outperforms CNN on

four out of five datasets. Therefore, we can draw

the conclusions that ST is an effective method to

learn sentence representations in both dense and

sparse spaces.

• ST† (including ST†[X’] and ST†[Y]) performs

much worse than the proposed sparse activation

method, which indicates the effectiveness of the

proposed method. ST‡ (including ST‡[X’] and

ST‡[Y]) shows the proposed sparse activation

plays an important role in our system, and it’s

very effective. And we will show that the proposed

sparse activation method can ensure good sparse-

ness of the representation through the analysis be-

low. The relatively worse results of ST‡ (including

ST‡[X’] and ST‡[Y]) also confirmed the effective-

ness of helper losses.

• In terms of efficiency, Table 3 shows that

ST is 2-3 times faster than LSTM. ST is also

markedly faster than Capsule and Transformer on

all datasets. CNN is known as the fastest model

and our method achieves comparable speeds with

CNN.

In summary, considering that our work is only

the first attempt, it performs quite well compared

with highly researched and optimized LSTM,

CNN, Capsule and Transformer models. We fore-

see that future work will significantly optimize our

method.

Sparsity Analysis: Figure 3 shows the spar-

sity of the word sparse representations of the 5

Figure 3: Sparsity evaluation of sparse word represen-

tations (the legend is explained below)

datasets. Sparsity is evaluated using the follow-

ing Sparse Evaluation (SE) function. We proposed

this method because previous methods were not

designed for sparse representations with both pos-

itive and negative values:

SE(D) =
1

|D|

|D|
∑

i=1

(sin(πyi))
2 (13)

As function (sin(πy))2 has only three minimum

points, -1, 0, 1, it is suitable for measuring the

concentration degree of the components of sparse

representations. Figure 3 shows a clear decline of

SPLoss, which indicates a high concentration de-

gree. Table 4 also gives the statistics about the

distributions of the sparse representations. We can

see that ‘zero’ (V < 0.05) takes a large portion

of the sparse representations, which is desirable.

We can conclude that the learned sparse represen-

tations are indeed sparse.

Table 4: Distribution of values in the sparse representa-

tions (%). V > 0.6 (V < 0.05) shows the frequency of

the values greater (less) than 0.6 (0.05)

Metrics SNLI MR SST1 SST2 TREC

V > 0.6 0.14 1.38 1.31 1.71 1.38

V < 0.05 99.68 97.39 97.21 96.36 97.16

Figure 4: Evaluation of the construction of X .

-

-

+

+

Sentiment

Polarity

Figure 5: Visualization of learned sparse representations.

Accuracy of Transformation: We asked a ques-

tion about the ability of ST to construct LSTM

when we introduced the RLo. Here, we analyze the

transformation accuracy of the proposed method

and give a positive answer to that question. From

Table 1, we can see that ST[X’] achieves very sim-

ilar results to those of LSTM. From the results, we

can draw the conclusion that the dense representa-

tion generated by ST through backward transfor-

mation can achieve very similar results to those

of LSTM. Further, we propose a measure to gauge

the construction accuracy, named Construction Ac-

curacy Metric (CAM), to evaluate the accuracy of

transformation. CAM is formulated as the follow-

ing function (results are shown in Figure 4):

CAM(C) =
1

J |C|

|C|∑

i=1

J∑

j=1

|Xij −X
′
ij |

2

2

0.5 ∗ |Xij |22 + 0.5 ∗ |X ′
ij |

2

2

(14)

where Xij is the original dense representation of a

sub-sentence (generated by LSTM) and X ′
ij is the

backward transformation result of its sparse rep-

resentation; C denotes the test set, and J is the

length of the sentence. Clearly, this function can

evaluate the similarity between X and X ′ as CAM

will raise with the increasing of distance between

X and X ′. Figure 4 shows that the difference be-

tween X and X ′ is only about 5%. Therefore, we

can conclude that our model can construct the out-

puts of LSTM well.

Interpretability Analysis: Interpretability is one

of the most desirable properties of sparse repre-

sentations. Figure 5 shows the average sparse rep-

resentation of five classes (tested on the test set of

SST1) with different sentiment polarities (-2, -1, 0,

1, 2). Positive numbers refer to positive sentiment,

and negative numbers refer to negative sentiment.

In order to clearly visualize the differences in the

learned representations over the five classes, we

sort the bases based on the ascending order of the

sparse representation values of +2 (very positive)

class.

From Figure 5, we can see that there is a

clear color difference for sentiment polarity class

+2 and class -2. We can also see a similar phe-

nomenon for sentiment polarity class +1 and class

-1 but less pronounced as the their polarities are

more similar. These observations demonstrate that

the same bases obtain opposite values for classes

of opposite sentiments. The bases generating dis-

tinct responses for classes with different sentiment

polarities can be regarded as primary sentiment

bases as they clearly indicate the semantic dif-

ferences of the classes. In other words, the pri-

mary sentiment bases can be explained as senti-

ment bases. For example, the bases give positive

response to positive classes but negative responses

to negative classes are the positive sentiment bases,

which directly indicate the sentiment polarities.

Comparing with positive and negative classes,

neutral class shows relative mixed responses. That

means neutral class has similar semantemes to

those of both positive and negative classes. This

demonstrates that the neutral class is more difficult

to identify.

4 Related Work

Sparse embeddings have been used in image

(Ji et al., 2019; Zhou et al., 2016; Zhang and Patel,

2016), signal (Caiafa and Cichocki, 2013;

Huang and Aviyente, 2007), and NLP

(Subramanian et al., 2018; Kober et al., 2016)

applications.

Several sparse models have been proposed to

produce sparse embeddings. For example, some

previous works trained word embeddings with

sparse or non-negative constraints (Murphy et al.,

2012; Luo et al., 2015). Linguistically inspired

dimensions (Faruqui et al., 2015) is another

way to increase sparsity and interpretability.

SPINE (SParse Interpretable Neural Embeddings)

(Subramanian et al., 2018), a variant of denois-

ing k-sparse autoencoder, can generate efficient

and interpretable distributed word representations.

Our method is different from these approaches.

We not only construct sparse representations but

also transform between dense and sparse spaces.

We also combine word sparse representations to

produce sentence representations. Some recent

studies tried to achieve sparsity in novel ways

(Park et al., 2017). We also proposed a novel

method in this paper and experimentally verified

its effectiveness.

5 Conclusion and Future Works

This paper proposed a novel method to transform

representations between dense and sparse spaces,

and a technique to combine semantics in the sparse

space. It also proposed and experimentally veri-

fied a new activation function that can be used

to achieve sparseness. Natural language inference

and text classification tasks were used to evaluate

the proposed transformations with promising re-

sults. Based on this study, many other interesting

directions can be pursued in the future, e.g.,

(1) As we discussed in the paper, the proposed

method can construct the output of LSTM well.

One future work is to apply ST to language mod-

eling. In this case, the results can be used in many

down stream tasks such as machine translation and

dialogue systems.

(2) With the help of ST, we can investigate the

style transfer on similar tasks in the sparse space

by direct semantic reversing. Also, we can use ST

to filter out noises or undesirable information.

(3) Based on sparse representations, we can also

explore semantic pattern recognition and transfor-

mation.

References

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-

tated corpus for learning natural language inference.
arXiv preprint arXiv:1508.05326.

Cesar F Caiafa and Andrzej Cichocki. 2013. Comput-
ing sparse representations of multidimensional sig-
nals using kronecker bases. Neural computation,
25(1):186–220.

Ting-Yun Chang, Ta-Chung Chi, Shang-Chi Tsai, and
Yun-Nung Chen. 2018. xsense: Learning sense-
separated sparse representations and textual defini-
tions for explainable word sense networks. arXiv
preprint arXiv:1809.03348.

Yong Cheng. 2019. Semi-supervised learning for neu-
ral machine translation. In Joint Training for Neural
Machine Translation, pages 25–40. Springer.

Manaal Faruqui and Chris Dyer. 2015. Non-
distributional word vector representations. arXiv
preprint arXiv:1506.05230.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah Smith. 2015. Sparse overcom-
plete word vector representations. arXiv preprint
arXiv:1506.02004.

Alona Fyshe, Partha P Talukdar, Brian Murphy, and
Tom M Mitchell. 2014. Interpretable semantic vec-
tors from a joint model of brain-and text-based
meaning. In ACL, volume 2014, page 489. NIH Pub-
lic Access.

Kuzman Ganchev, Ben Taskar, Fernando Pereira, and
Joao Gama. 2009. Posterior vs parameter sparsity in
latent variable models. In Advances in Neural Infor-
mation Processing Systems.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting
Liu. 2014. Revisiting embedding features for simple
semi-supervised learning. In EMNLP, pages 110–
120.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu,
Tie-Yan Liu, and Wei-Ying Ma. 2016. Dual learn-
ing for machine translation. In Advances in Neural
Information Processing Systems.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Ke Huang and Selin Aviyente. 2007. Sparse representa-
tion for signal classification. In Advances in neural
information processing systems, pages 609–616.

MingShu Ji, Hong Rao, ZhiXun Li, Jian Zhu, and Ning
Wang. 2019. Partial multi-view clustering based on
sparse embedding framework. IEEE Access.

Seonhoon Kim, Inho Kang, and Nojun Kwak.
2019. Semantic sentence matching with densely-
connected recurrent and co-attentive information. In
AAAI, volume 33, pages 6586–6593.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Thomas Kober, Julie Weeds, Jeremy Reffin, and David
Weir. 2016. Improving sparse word representations
with distributional inference for semantic composi-
tion. arXiv preprint arXiv:1608.06794.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks
for natural language understanding. arXiv preprint
arXiv:1901.11504.

Hongyin Luo, Zhiyuan Liu, Huanbo Luan, and
Maosong Sun. 2015. Online learning of inter-
pretable word embeddings. In EMNLP.

André FT Martins, Noah A Smith, Pedro MQ Aguiar,
and Mário AT Figueiredo. 2011. Structured sparsity
in structured prediction. In EMNLP, pages 1500–
1511. Association for Computational Linguistics.

Brian Murphy, Partha Talukdar, and Tom Mitchell.
2012. Learning effective and interpretable semantic
models using non-negative sparse embedding. Pro-
ceedings of COLING 2012, pages 1933–1950.

Andrew Ng et al. 2011. Sparse autoencoder. CS294A
Lecture notes, 72(2011):1–19.

Sungjoon Park, JinYeong Bak, and Alice Oh. 2017.
Rotated word vector representations and their inter-
pretability. In EMNLP.

Iulian Vlad Serban, Tim Klinger, Gerald Tesauro, Kar-
tik Talamadupula, Bowen Zhou, Yoshua Bengio,
and Aaron Courville. 2017. Multiresolution recur-
rent neural networks: An application to dialogue re-
sponse generation. In AAAI.

Anant Subramanian, Danish Pruthi, Harsh Jhamtani,
Taylor Berg-Kirkpatrick, and Eduard Hovy. 2018.
Spine: Sparse interpretable neural embeddings. In
AAAI.

Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi
Cheng. 2016. Sparse word embeddings using l1 reg-
ularized online learning. In IJCAI.

Duyu Tang, Bing Qin, Furu Wei, Li Dong, Ting Liu,
and Ming Zhou. 2015. A joint segmentation and
classification framework for sentence level senti-
ment classification. TASLP, 23(11).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Yequan Wang, Aixin Sun, Jialong Han, Ying Liu, and
Xiaoyan Zhu. 2018. Sentiment analysis by capsules.
In WWW, pages 1165–1174.

Fangzhao Wu, Jia Zhang, Zhigang Yuan, Sixing Wu,
Yongfeng Huang, and Jun Yan. 2017. Sentence-level
sentiment classification with weak supervision. In
SIGIR, pages 973–976.

Dani Yogatama and Noah A Smith. 2014. Linguistic
structured sparsity in text categorization. In ACL,
volume 1, pages 786–796.

He Zhang and Vishal M Patel. 2016. Sparse
representation-based open set recognition. IEEE
transactions on pattern analysis and machine intelli-
gence, 39(8):1690–1696.

Yizhe Zhang, Xiang Gao, Sungjin Lee, Chris Brockett,
Michel Galley, Jianfeng Gao, and Bill Dolan. 2019.
Consistent dialogue generation with self-supervised
feature learning. arXiv preprint arXiv:1903.05759.

Wei Zhao, Jianbo Ye, Min Yang, Zeyang Lei, Suofei
Zhang, and Zhou Zhao. 2018. Investigating capsule
networks with dynamic routing for text classifica-
tion. arXiv preprint arXiv:1804.00538.

Xiaowei Zhou, Menglong Zhu, Spyridon Leonardos,
and Kostas Daniilidis. 2016. Sparse representation
for 3d shape estimation: A convex relaxation ap-
proach. IEEE transactions on pattern analysis and
machine intelligence, 39(8):1648–1661.

Junnan Zhu, Haoran Li, Tianshang Liu, Yu Zhou,
Jiajun Zhang, and Chengqing Zong. 2018.
MSMO: Multimodal summarization with multimodal output.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
4154–4164, Brussels, Belgium. Association for
Computational Linguistics.

https://doi.org/10.18653/v1/D18-1448

