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Abstract

Individuals often make different decisions when faced with the same context,
due to personal preferences and background. For instance, judges may vary in
their leniency towards certain drug-related offenses, and doctors may vary in
their preference for how to start treatment for certain types of patients. With
these examples in mind, we present an algorithm for identifying types of contexts
(e.g., types of cases or patients) with high inter-decision-maker disagreement. We
formalize this as a causal inference problem, seeking a region where the assignment
of decision-maker has a large causal effect on the decision. Our algorithm finds such
a region by maximizing an empirical objective, and we give a generalization bound
for its performance. In a semi-synthetic experiment, we show that our algorithm
recovers the correct region of heterogeneity accurately compared to baselines.
Finally, we apply our algorithm to real-world healthcare datasets, recovering
variation that aligns with existing clinical knowledge.

1 Introduction

Understanding heterogeneity in decision-making is an established problem in medicine (Birkmeyer
et al., 2013; Corallo et al., 2014; De Jong et al., 2006), consumer choice (Ortega et al., 2011; Scarpa
et al., 2005), and law (Kang et al., 2012; Kleinberg et al., 2018; Arnold et al., 2018). In the context of
medicine, this is referred to as the study of practice variation (Atsma et al., 2020; Cabana et al., 1999),
where it is often observed that doctors, facing the same clinical context, will make different decisions.
Likewise, in a legal context, judges often differ in their leniency in their decisions regarding bail
(Kleinberg et al., 2018), juvenile incarceration (Aizer and Doyle Jr, 2013), the use of alternatives to
incarceration (Di Tella and Schargrodsky, 2013), and incarceration length (Kling, 2006). In some
scenarios this variation may be justified: The best medical treatment may not be obvious. In others, it
may be grossly unfair, as in the case of racial bias in bail decisions (Arnold et al., 2018).
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In this work, we tackle the question of how to find and characterize this variation in the first place. In
particular, we present a learning algorithm for identifying a “region of heterogeneity”, defined as a
subset of all contexts (e.g., patients, cases) for which the identity of the decision-maker substantially
affects the decision. In medicine, a better understanding of treatment variation can inform the
development and dissemination of clinical guidelines. In the legal domain, characterizing the cases
where judges vary most in their leniency may help with investigating potential issues of fairness.

We formalize characterizing the region of heterogeneity as a causal inference problem: We want to
characterize examples where changing the decision-maker would have resulted in a different decision.
The challenge is two-fold: First, we only observe a single decision-maker per example, so we cannot
directly observe how (for instance) multiple judges would have decided the same case. Second, our
data on individual decision-makers is often scarce. For instance, in Section 5, we consider a medical
dataset with more than 400 doctors, each of whom has fewer than 9 samples on average.

We will refer to decision-makers as “agents”, and our contributions are as follows: In Section 2,
we propose an objective defined in terms of counterfactual decisions across different agents, and
show that this objective can be identified from observational data. Moreover, this objective does
not require the use of agent-specific statistical models, making it amenable to our sparse setting. In
Section 3, we give an iterative algorithm to identify regions of disagreement by maximizing this
objective and provide intuition (in the form of a generalization bound) for the factors that drive its
performance. In Section 4, we use a semi-synthetic dataset, derived from crowd-sourced recidivism
predictions, to demonstrate that our algorithm recovers the correct region of heterogeneity accurately,
even when there are many agents. Finally, in Section 5, we apply our algorithm to a real-world
healthcare dataset and confirm that it recovers intuitive regions of variation in first-line diabetes
treatment. We conclude with a discussion of related work and implications. Our code is available at
https://github.com/clinicalml/finding-decision-heterogeneity-regions.

Our algorithm does not determine whether variation is inherently good or bad or how it should
be addressed. Rather, more careful study with domain experts would be required to determine if
variation can (or should be) reduced and how. In addition, false discovery of variation is possible and
could have a negative impact. We expect that validation on independent datasets would be required in
real-world applications, using the regions identified by our method as plausible hypotheses to test.

2 Characterizing Heterogeneity from a Causal Perspective

2.1 Notation

Let the data be drawn from a distribution P(X, A,Y), where X is a random variable representing
context (or features), A is a discrete agent, and Y ∈ {0, 1} is the binary decision. The spaces of all
X and A are denoted as X andA with realized values as lower case x and a, respectively. Indicator
variables 1 [·] are one if the statement inside the brackets is true and zero otherwise. For a subset
S ⊆ X, 1 [x ∈ S ] is sometimes written as a function S (x), where S : X → {0, 1}. A subset S may
have several disjoint regions. E [Y |X ∈ S ] denotes the average Y across samples in S . For instance, if
S = {X : X0 < 10}, then E [Y |X0 < 10] is a scalar average of Y among samples with X0 < 10.

2.2 Heterogeneity as a Causal Contrast

Our conceptual goal is to identify a region S ⊆ X where different agents tend to make different
decisions even when faced with the same context. We can formalize this in the language of potential
outcomes from the causal inference literature (Pearl, 2009; Hernán and Robins, 2020), which for
clarity we will refer to as potential decisions: In particular, we denote Y(a) to be the potential decision
of agent a. The fundamental challenge of causal inference is that we do not observe all potential
decisions {Y(a) : a ∈ A} for each sample, but only a single decision Y . With this in mind, we will
make the following assumptions, standard in the literature on causal effect estimation.

Assumption 1 (Causal Identification Assumptions). (i) Consistency: Y = y, A = a =⇒ Y(a) = y,
and (ii) No Unmeasured Confounding (NUC): For all a ∈ A, Y(a) ⊥⊥ A | X.

Consistency links the potential Y(a) to the observed Y , and NUC says that there are no unobserved
factors that influence both the assignment of agents and the decision itself. For instance, the quasi-
random assignment of cases to judges conditioned on features X satisfies NUC (Kleinberg et al., 2018).
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NUC may be violated if key aspects of the case (e.g., misdemeanor vs. felony) are omitted as features.
For instance, misdemeanor and felony cases may be seen by different judges and have different
decision processes, but this variation is not due to agent preferences. Given these assumptions, we
propose a causal measure of agent-specific bias, defined as a contrast between potential decisions.
Definition 1 (Conditional Relative Agent Bias). For an agent a ∈ A and a subset S ⊆ X, the
conditional relative agent bias is defined as

E[Y(a) − Y(π(x)) | A = a, X ∈ S ] (1)

where Y(a) is the potential decision of agent a, and Y(π(x)) B
∑

a′ E[Y(a′) | x]π(a′ | x) denotes the
expected potential decision under the agent assignment distribution π(a′ | x) B P(A = a′ | X = x).

Note that under Assumption 1, Y(π(x)) = E[Y | x],2 but here we emphasize its causal interpretation as
the expected decision of a random agent. Equation (1) represents the relative difference between the
decision of an agent (on their particular distribution of cases in the region) and the potential decision
of a random agent. In particular, Equation (1) can be written as follows under Assumption 1

E[Y(a) − Y(π) | A = a, X ∈ S ] =

∫
x∈S
E[Y(a) − Y(π) | X = x]p(x | A = a, X ∈ S )dx, (2)

where we shorten Y(π(x)) to Y(π). This is the average difference (over p(x | a), restricted to those x in
the set S ) of the conditional expected difference between Y(a) and Y(π). For example, suppose that
the agent a is a judge who is particularly lenient on bail decisions for felony arrests (the region S ),
and Y = 1 denotes granting bail. Then imagine the following counterfactual: Take the felony cases
that are assigned to this judge and reassign each individual case, described by x, to a random judge
a′, proportionally to p(a′ | x). We may then observe, on average, that the bail rate would decrease,
because most judges are less lenient than judge a, corresponding to a positive value of Equation (1).

Equation (1) has the additional advantage of being easy to estimate: Under Assumption 1, it can be
rewritten3 as E[Y−E[Y | X] | A = a, X ∈ S ], the expected residual in predicting (using the conditional
expectation E[Y | X]) the decision of an agent a across the context x typically seen by that agent.

2.3 Formalizing a Causal Objective

Our primary goal is to discover a region S where substantial heterogeneity exists across agents. To do
so, we define an aggregate objective across a group G of agents, where G(a) ∈ {0, 1} is an indicator
function for membership.

Q(S ,G) B
∑

a:G(a)=1

P(A = a | X ∈ S )E[Y(a) − Y(π) | A = a, X ∈ S ], (3)

We now show that this quantity can be identified and estimated from observational data without
requiring agent-specific statistical models, before discussing the interpretation of this objective.
Theorem 1 (Causal Identification). Under Assumption 1, Q(S ,G) can be identified as

Q(S ,G) = ES [Cov(Y,G | X)] = ES [(Y − E[Y | X])G], (4)

where ES [·] B E[· | X ∈ S ] and Cov(Y,G | X) is the conditional covariance.

Theorem 1 and other theoretical results are proven in Appendix A. The result follows from proving
that the agent-specific bias (Definition 1) is identifiable using the expected conditional covariance
between Y and the binary indicator 1 [A = a]. With this in mind, we optimize the following objective,
where the set S is constrained to be at least a certain size β and S is a hypothesis class of functions S .

max
S∈S,G

Q(S ,G) s.t., P(S ) ≥ β, (5)

Interpretation: Intuitively, this objective measures the disagreement between the agents in the group
G(a) = 1 and the overall average E[Y | X] on the region S . Hence, the choice of group is important
for interpreting the objective: If G(a) = 1 for all agents, the objective will be zero for any set S , as
can be seen from Equation (4), applying the definition of the conditional expectation.

2See Proposition A1 for a short proof, and Proposition A2 for the derivation of Equation (2).
3See Proposition A3 in Appendix A.1.
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Accordingly, we seek a region S for which the partially maximized objective L(S ) B maxG Q(S ,G)
is large: This partial maximization is obtained by taking G(a) = 1 whenever the conditional relative
agent bias of agent a (on the set S ) is non-negative. Thus, Equation (5) can be re-written as

max
G

Q(S ,G) =
∑
a∈A

P(A = a | X ∈ S ) |E[Y(a) − Y(π) | A = a, X ∈ S ]|+ , (6)

where |x|+ B max(x, 0), and this objective becomes an average over agents who have a positive bias.
This population objective is also equivalent (up to a constant factor) to the (weighted) sum of the
magnitude of each agent’s conditional relative agent bias. See Proposition A4 in Appendix A.1.

Lack of Overlap: We have not made the overlap or positivity assumption that P(A = a | x) > 0 for all
x, a. While this assumption is required to identify conditional causal effects E[Y(a) − Y(a′) | X] (Nie
and Wager, 2017; Wager and Athey, 2018; Shalit et al., 2017), it is not required for identifying our
causal contrast. Our problem only requires each context has a positive probability of being seen by
more than one decision maker. For instance, suppose that S contains both misdemeanors and felonies
and there are four judges a0, . . . , a3. If judges a0 and a1 make bail decisions exclusively for felonies
while judges a2 and a3 make bail decisions exclusively for misdemeanors, our measure captures
disagreement between a0 and a1 and between a2 and a3 even though comparisons between a0 and
a2 or other pairs are impossible to make. Thus, we have chosen to compare Y(a) to the decisions of
viable alternative agents, weighted by their probability p(a′ | x) of being selected for such a case.

3 Identifying Regions with Heterogeneity

In Section 3.1, we introduce an iterative optimization algorithm for a finite sample version of Objec-
tive (5) that alternatingly optimizes S and G. In Sections 3.2 and 3.3, we discuss practical heuristics
for choosing the region size parameter β on training data and validating if the resulting region
generalizes to held-out data. Finally, we build intuition for the factors that influence performance of
this algorithm via a generalization bound in Section 3.4 under simplifying assumptions.

3.1 Iterative Optimization Algorithm

We let Q̂(S ,G) be the empirical analog of Q(S ,G) (Equation 4), which we can write as follows,

Q̂(S ,G) B
1∑

a, j 1
[
xa j ∈ S

] ∑
a, j

(ya j − f (xa j)) ·G(a) · 1
[
xa j ∈ S

]
. (7)

where f (x) denotes a model of the conditional expectation f (x) ≈ E[Y | X = x]. For simplicity
of notation, we assume that there are R samples (indexed by j) for each of a finite set of N agents
(indexed by a), giving N · R samples in total.

Our algorithm (Algorithm 1) takes as input the data {(xa j, ya j)} and a minimum region size β, and
outputs a model h(x) and a threshold value b that describe a region of heterogeneity S = {x ∈
X; h(x) ≥ b}. Starting with S = X (the entire space), the algorithm identifies the grouping that
maximizes Q̂(S ,G), then uses that grouping to identify the region maximizing the same quantity,
repeating this process until convergence. The algorithm uses a classifier f (x) to estimate E[Y | X = x]
and a regression model h(x) to estimate the conditional covariance of the decision Y and the grouping
G at X = x. Note that we can use any supervised learning algorithms for f and h, allowing us to learn
interpretable regions as part of the algorithm if h(x) is interpretable (e.g., decision trees). If sufficient
data is available, samples can be split into three parts for estimating f (x) in line 2, computing G(a) in
lines 5-8, and training h(x) and estimating the (1 − β)-th quantile in line 10. We do not perform this
sample splitting because our sample sizes are already small. Under-fitting f (x) by further restricting
the sample size could lead to false discovery if f (x) does not capture the variation explained by X.

Optimizing over G given S . Given a region S , our first result identifies the grouping G : A → {0, 1}
that maximizes Q̂(S ,G) and shows that it can be expressed in terms of Q̂(S , 1 [A = a]).
Proposition 1. Given S ⊆ X, Q̂(S ,G) is maximized over the space of functions G : A → {0, 1} at
GS , where GS (a) = 1

[
Q̂(S , 1 [A = a]) ≥ 0

]
.

Intuitively, this proposition states that to maximize the empirical expected conditional covariance of
the decision and grouping on a region, we must group agents by whether their residuals ya j − f (xa j)
are (on average) positive or negative on S .

4



Algorithm 1 Identifying regions with variation

1: Input: Data {{xa j, ya j}
R
j=1}

N

a=1
, minimum region size β.

2: Fit a model f (x) to E(Y | X = x).
3: Initialize S = X.
4: repeat
5: for a = 1, . . . ,N do
6: Compute Q̂(S , 1 [A = a]), where Q̂(S , 1 [A = a]) B 1∑

j 1[xa j∈S ]
∑

j(ya j − f (xa j))1
[
xa j ∈ S

]
,

7: Set G(a) = 1 if Q̂(S , 1 [A = a]) ≥ 0 and 0 otherwise.
8: end for
9: Compute ba j = (ya j − f (xa j))G(a), a = 1, . . . ,N, j = 1, . . . ,R.

10: Fit a model h(x) to predict ba j from xa j, and let b be the (1 − β)-th quantile of h(xa j).
11: S ′ ← S .
12: S ← {xa j; h(xa j) ≥ b}.
13: until S = S ′ or iteration limit reached.
14: Output: Model h and threshold b, defining a region S = {x ∈ X; h(x) ≥ b}.

Optimizing over S given G. To optimize Q̂(S ,G) for a fixed grouping G over the hypothesis class
S, we train a model h(x) to predict (ya j − f (xa j))G(a) given xa j, where h ∈ H . Using h as an estimate
in Eq. 7, we find a set S to maximize the quantity 1∑

x 1[x∈S ]
∑

x∈S h(x), the empirical conditional
expectation of h(x) over S . This quantity is maximized (subject to our β constraint) by including the
largest β-fraction of the h(xa j) in S . Hence, we pick b as the (1 − β)-th quantile of h(xa j) and choose
our region as Ŝ G = {x ∈ X; h(x) ≥ b}.

3.2 Tuning the Region Size Parameter

For real datasets, we need to choose β without knowledge of the true value. Given that our objective
can be calculated on held-out data using the functions S ,G, a seemingly obvious approach would be
to compute Q(S ,G) on a validation set and select the β that leads to the highest Q(S ,G). However,
for a fixed data distribution, smaller values of β tend to produce higher values of Q(S ,G), and there is
a trade-off between finding a smaller region of higher variation and a larger region that may include
areas of lower (but still meaningful) variation. This motivated our original constraint P(S ) ≥ β.

To select β, we propose a heuristic inspired by permutation-based hypothesis testing (Wasserman,
2004). We compare the training objective to a reference distribution of values (for the same β)
that might be seen even if all agents followed the same policy. For each candidate β, we (i) run
our algorithm and compute the objective on training data qobs B Q̂(Ŝ , Ĝ). (ii) For T iterations, we
randomly shuffle the agents and re-run the algorithm to get a new objective value. This gives us a
distribution P̂null over Q(S ,G) from a distribution where P(X,Y) and P(A) are unchanged but Y, X ⊥⊥ A.
(iii) Finally, we compute a p-value pβ = P̂null(Q > qobs) and choose the β with the smallest p-value. In
Section 4.2, we find that this heuristic empirically recovers the true β value in semi-synthetic settings.

3.3 Validation of the Region

We may wish to validate the learned region Ŝ independently of the grouping Ĝ. In particular, finding
Ĝ is not our main goal, and we observe in our semi-synthetic experiments that our algorithm can find
the true region S even when the grouping Ĝ is fairly poor (due to few samples per agent), as shown in
Appendix B.2. We can optimize over G in Q(S ,G) to obtain an objective that depends only on S and
can be used to compare regions. By Proposition 1, we obtain an empirical analog of Equation (6) as

L̂(S ) B max
G

Q̂(S ,G) =
1∑

a, j 1
[
xa j ∈ S

] ∑
a

∣∣∣∣∣∣∣∣
∑

j

(ya j − f (xa j))1
[
xa j ∈ S

]∣∣∣∣∣∣∣∣
+

, (8)

where |x|+ is equal to the positive part [x]+ = max(x, 0) as before. We then use this objective L̂(S ) to
answer the following question: Does our chosen region Ŝ yield a significantly higher objective value
on test data than a randomly selected region of the same size? An example of this analysis is given in
Table 1 for the real-data experiment in Section 5.
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3.4 Generalization Error

We give a generalization bound for Algorithm 1 to build intuition for the factors that influence
performance. To derive this bound, we consider a simplified setting, where there exists a set S ′,G′
such that the following set of assumptions hold.
Assumption 2 (Group-based variation). For all x ∈ S ′, E[Y | X = x, A = a] = E[Y | X = x,G′(a)]
and for all x < S ′, E[Y | X = x, A = a] = E[Y | X = x]
Assumption 3 (Non-zero relative biases). There exists a constant α > 0 such that for all x ∈ S ′,
E[Y | X = x,G′(A) = 1] − E[Y | X = x] > α, and E[Y | X = x,G′(A) = 0] − E[Y | X = x] < −α,
Assumption 4 (All agents see samples in S ′). There exists a constant ω > 0, such that for every
a ∈ A, P(X ∈ S ′ | A = a) > ωP(X ∈ S ′).

Note that under these assumptions, S ′,G′ maximize the objective Q(S ,G) (see Appendix A.4), so we
will refer to them as S ∗,G∗ for the remainder of this section. Assumption 2 says that there are two
groups of agents, who follow two distinct decision policies within a region S ∗ but follow an identical
decision policy outside of S ∗. Assumption 3 says that one group has a positive bias across all of
S ∗, relative to the average over both groups, and the other group has a negative bias. To simplify
the analysis, we also make Assumption 4 that every agent has some non-zero chance of observing
some contexts X in the region, but note that we do not require that p(x | a) > 0 for all x ∈ S ′.
Under these assumptions, we demonstrate that the first iteration of Algorithm 1 will find, with high
probability, a region Ŝ whose value Q(Ŝ ,G∗) (for the same grouping G∗ defined above) is close to
that of the optimal S ∗. Note that we do not claim that the iterative algorithm finds the globally optimal
solution. For simplicity, we assume that f (x) perfectly recovers E[Y | X]. This can be relaxed at
the cost of additional terms in the bound that go to zero as the overall sample size increases. Under
Assumptions 2, 3, and 4, assume that P(S ∗) = β. For the informal version presented here, we assume
that P(S ∗) = P(Ŝ ) = β, where Ŝ is returned by our algorithm, and that exactly a β-fraction of our
samples fall into S ∗ and Ŝ (in the Appendix, we give a version without these simplifications).
Theorem 2. Under the assumptions above, if S ∗ ∈ S and R > 2 ln 2

α2β2ω2 , the first iteration of Algorithm 1
returns Ŝ such that, with probability at least 1 − δ, Q(S ∗,G∗) − Q(Ŝ ,G∗) ≤ ε, where

ε =

√
2 ln(3/δ)
βN · R

+
2
β

η +

√
3η(1 − η)
δ · N

 +
1
β

2R(S,N · R) + 4

√
2 ln(12/δ)

N · R

 ,
where R(S,N · R) is the Rademacher complexity of S, and η B exp

(
−Rα2β2ω2/2

)
.

The term η plays an important role: It bounds the expected misclassification error P(Ĝ(a) , G∗(a)).
For sufficiently large R, we have that η < 1/2 with high probability, i.e., we have a better-than-random
chance of identifying the group for an individual agent. Moreover, η decreases as we increase the
number of samples R for each agent, the separation α between the two groups on S ∗, the region size
β, and the constant ω. For sufficiently small η, our algorithm discovers a region whose value (in
terms of Q(S ,G∗)) is close to that of the optimal region. The generalization bound improves as the
number of agents N increases, the number of samples R for each agent increases, or the complexity
of the hypothesis class decreases. The latter is measured here by the Rademacher complexity
R(S,N · R) of our hypothesis class S, which can be bounded by standard arguments. In conclusion,
under some additional assumptions, Algorithm 1 identifies an approximately optimal solution with
high probability after one iteration. We show via semi-synthetic experiments in Appendix B.3 that
convergence is generally fast in practice.

4 Semi-Synthetic Experiment: Recidivism Prediction

For conceptual motivation in the introduction, we discussed the legal system: As a potential applica-
tion of our method, one could determine types of cases for which the idiosyncratic preferences of
judges have a significant impact on their decisions. Lacking data on judge decisions with sufficient
context, we turn to the more controlled setting of human predictions of recidivism.

Dataset: We use publicly available data from Lin et al. (2020),4 who ask participants on Amazon’s
Mechanical Turk platform to make recidivism predictions based on information present in the

4Available at https://github.com/stanford-policylab/recidivism-predictions
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Figure 1: Comparison of our method and best baselines at identifying region of heterogeneity, as
measured by the held-out test AUC for classifying samples into the true region of heterogeneity.
Total number of samples is fixed. Baselines are described in Section 4.1. Uncertainty bands give
95% intervals for the mean derived via bootstrapping over 10 random seeds using seaborn (Waskom,
2021). Left: Region is modelled using a ridge regression in the drug possession semi-synthetic set-up.
Right: Region is modelled using a random forest for the misdemeanor under age 35 set-up.

“Correctional Offender Management Profiling for Alternative Sanctions” (COMPAS) dataset for
Broward County, FL (Dressel and Farid, 2018). Participants (or “agents”) are shown 5 risk factors:
age, gender, number of prior convictions, number of juvenile felony charges, and number of juvenile
misdemeanor charges. The charge in question is also given, as well as whether the charge is a
misdemeanor or felony. The dataset contains 4550 cases evaluated by 87 participants.

Semi-Synthetic Policy Generation: To benchmark our method, we generate semi-synthetic data
where we have access to a “ground truth” region of heterogeneity. We retain the features presented to
the original participants and construct two policies, which we refer to as the “base” and “alternative”
policies: For the base policy, we learn a logistic regression model on the binary decisions across the
whole dataset. For the alternative policy, an extra positive term is added to the logistic regression for
samples within the region. We construct two scenarios with different regions of variation: (1) all drug
possession charges, and (2) all misdemeanor charges where the individual is 35 years old or younger.
These make up 22% and 21% of the data, respectively. Then, we generate synthetic agents (randomly
assigned to cases) and assign half of the agents to the base policy and half to the alternative. Synthetic
decisions are then sampled from the logistic regressions. For each scenario, the two groups of agents
follow the same stochastic policy outside of the region, and one group systematically prefers Y = 1
within the region. More details can be found in Appendix B.1.

4.1 Performance versus Baselines

Baselines: We compare how well our approach identifies the true region of heterogeneity with several
baselines. To our knowledge, the problem of finding regions of heterogeneity with a large number of
agents has not been studied before. Many causal inference methods for treatment effect estimation
are designed for a single, binary treatment. However, naively estimating the treatment effect between
each pair of providers would scale O

(
|A|2

)
. Therefore, we develop new baselines. Some (including

the causal forest and U-learner adaptations described in Appendix B.2) are based on causal inference
methods augmented to identify a region of heterogeneity and grouping of agents where possible.

Direct models: This baseline measures how much adding the agent to the feature set improves
prediction of decisions. We fit logistic regressions with and without the agent feature to estimate
E[Y | A, X] and E[Y | X]. For each sample (x, y, a), we compute |y − E[Y | X = x]| − |y − E[Y | A =
a, X = x]| to quantify how much the model with agents outperforms the model without agents. Then,
we fit a “region model” to predict this quantity from X. This region model is either a ridge regression,
decision tree, or random forest model. Finally, we compute the top β quantile of predictions from the
region model in the training and validation sets and use this cut-off to select points in the test set.

TARNet: A treatment-agnostic representation network (Shalit et al., 2017) models the outcomes of
all treatments for each sample by learning a shared representation of the sample features and then
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Figure 2: Results of tuning β over 30 semi-synthetic datasets. (a) Average p-value for each candidate
β, with 95% uncertainty intervals for the mean generated by bootstrapping. The dotted vertical line
represents the true value of β. (b) Distribution of β with the smallest p-value over the datasets.

having a separate prediction head for each treatment. We implement the shared representation model
using a 2-layer neural network with ReLU and dropout. Each prediction head is a linear layer with a
sigmoid function. TARNet predicts E[Y | X, A] for every agent for each sample. VarA[E[Y | X, A]]
measures the variation across all agents if they had seen context X and is analogous to our objective
without grouping. We predict this quantity with the region models as in the direct model baseline.

Results: We evaluate how well the algorithms identify the samples within the region of heterogeneity
when we vary the number of agents among 2, 5, 10, 20, 40, and 87, where 87 is the number of agents
in the original dataset. Figure 1 shows the best overall region models for each set-up, with the other
models deferred to Appendix B.2. The metric in Figure 1 is the region AUC, defined as how well
the model classifies whether samples belong in the region of heterogeneity when compared to the
true region. Algorithm 1 consistently performs well for both semi-synthetic set-ups, especially when
the number of agents increases to a realistic level (and the number of samples per agent decreases).
The direct baseline deteriorates very rapidly as the number of agents increases in the drug possession
set-up, while the TARNet baseline deteriorates rapidly in the misdemeanor under age 35 set-up. Refer
to Appendix B.2 for additional baseline details, region models, and evaluation metrics. We also show
that our method is robust in a set-up with more than 2 agent groups in Appendix B.4.

4.2 Tuning the Region Size

We validate the proposed approach of tuning β (discussed in Section 3.2), by applying the methodology
to our semi-synthetic setting here. We sample 30 semi-synthetic datasets and consider candidate
values of β in [0.02, 0.42] in increments of 0.04. For each proposed value of β we use T = 40 random
permutations of the agents. Figure 2 presents results for the misdemeanor under age 35 set-up. As the
candidate value of β increases (up to the true value of β), the p-value decreases, and the distribution
of selected β values are centered on the true value of β.

5 Real-data Experiment: First-Line Diabetes Treatment

We apply our algorithm on a real-world dataset consisting of first-line (initial) treatment for type 2
diabetes and examine how the treatment variation we discover aligns with clinical knowledge. We
present an additional real-world experiment (on Parkinson’s disease) in Appendix D.

Data and Setup: We use an observational, de-identified, dataset provided by a large health insurer in
the United States, spanning from 2010 to 2020. The task is to classify first-line treatment decisions
between metformin (Y = 0)–the typical recommendation from the American Diabetes Association–
and other common first-line treatments such as sitagliptin, glipizide, glimepiride, or glyburide (Y = 1)
(American Diabetes Association, 2010; Hripcsak et al., 2016). As relevant clinical features, we
include the patients’ most recent eGFR (mL/min/1.73m2) and creatinine (mg/dL) measurements,
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Table 1: Objective values L(S ) for the learned region on the training and test datasets, along with the
distribution of values for randomly generated regions S rand given as mean (standard deviation).

Metric Subset Value

L(Ŝ ) Train 0.1029
L(Ŝ ) Test 0.0924
L(S rand) Test 0.0507 (0.0073)

incidence of heart failure, and treatment date. Because treatment date does not define a type of
patient, we omit it from the region model. However, including it in the outcome model is essential
because of increasing use of metformin over time. The agent indicator A is the group practice of the
doctor responsible for the patient’s treatment. 3,980 patients and 447 group practices are included in
our cohort. After requiring at least 4 patients per agent, 3,576 patients and 176 group practices are
included. This filter ensures each group practice has at least 1 sample in the training and validation
sets and at least 2 samples in the test set. In this experiment, we choose β = 0.25 as input to our
algorithm. See Appendix C for additional cohort definition and set-up details.

Interpretation of Results: To interpret the region, we use decision trees as our region model h(x).
The tree is visualized in Appendix C. The decision tree identifies the region of heterogeneity as the
union of (i) eGFR below 71.5 and (ii) eGFR above 98.5 and creatinine above 0.815. These regions
align with clinical intuition. In the first region, low eGFR values indicate impaired renal function
(Group et al., 2009), which is a contraindication for metformin since it is traditionally associated with
increased risk of lactic acidosis (Tahrani et al., 2007). Still, treatment decisions can vary here because
guidelines for managing patients with eGFR below 45 are lacking (Group et al., 2015). Note that
this region provides an example of how our algorithm works when overlap is not satisfied. Although
33 of 176 group practices do not see patients with these features, we can still conclude that this is a
region of heterogeneity among the 143 agents with cases. In the second region, there are no obvious
contraindications for metformin. Thus, understanding why some doctors on average only prescribe
metformin 78% of the time to patients in this region may help us identify whether this is a region in
which we can standardize practice.

Assessing Significance: In Table 1, we perform a sanity check, assessing whether our algorithm
identifies a region S whose variation in held-out data is higher than that of a randomly selected region,
using the partially optimized objective L(S ) = maxG Q(S ,G) laid out in Section 3.3 to compare
regions directly. Table 1 shows that L(Ŝ ) is similar on the training and test data. Furthermore, we
compare L(Ŝ ) on the test set to the distribution of L(S rand), where S rand are random subsets of the
test data of the same size as Ŝ . We compute the latter distribution using 100 random subsets and
observe that the test value of L(Ŝ ) is more than two standard deviations above the mean of the latter.
This gives us confidence that the discovered region S generalizes to a region of heterogeneity beyond
the training set. We direct the reader to Appendix C for additional analyses, such as evaluating the
stability of the region over multiple folds of splitting the data.

6 Related Work

Beyond previously mentioned connections to causal effect estimation, we highlight a few areas of
research that share similar goals to our own.

Agent-specific Models of Decisions: Prior works have modeled agent-specific decision-making
processes by estimating a separate model for each agent. Abaluck et al. (2016) model heterogeneity
in physician tendency to run diagnostic tests. Chan Jr et al. (2019) estimate radiologist skill based on
diagnosis and miss rates. In our setting, unlike in diagnosis, there is no “correct” decision that can
be incorporated into the model. Ribers and Ullrich (2020) assume there is provider-specific noise
in determining patient type, which affects the pay-off functions for deciding whether to prescribe
antibiotics. When only a few decisions are observed per agent, these agent-specific models cannot
be estimated reliably. Currie and MacLeod (2017) also incorporate physician beliefs and skill into
a pay-off function. They estimate an aggregate logistic choice model (for C-sections) across all
physicians and then learn how individual physicians deviate from this model. They do not learn
the regions where this deviation occurs, as they focus on how heterogeneity is associated with
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downstream outcomes. Norris (2020) looks for disagreement between agents but relies on some cases
being seen by multiple agents. We assume each case is seen by only one decision-maker.

Conditional Independence Testing: While our objective maximizes a causal notion of dependence,
one could instead ask if Y is conditionally independent of A given X. Many metrics exist for testing
conditional independence, such as the Hilbert-Schmidt independence criterion (HSIC) (Fukumizu
et al., 2007; Zhang et al., 2012), conditional mutual information (Runge, 2018), conditional correlation
(Ramsey, 2014), and expected conditional covariance (Shah and Peters, 2020). We give the last a
causal interpretation under some assumptions and seek a region that maximizes it, in lieu of testing.

Hierarchical /Mixture Models: Bayesian methods are often used to estimate group-level effects,
such as a per-physician effect on patient outcomes (Tuerk et al., 2008), where group identifiers
are included as a categorical feature in a multi-level generalized linear model (Gelman and Hill,
2006). Alternatively, one could assume a conditional mixture model (Bishop, 2006), where agents
belong to latent clusters that each have their own policy. However, both of these methods require
parametric assumptions on the distribution of P[Y | x, a], and even so, the optimal mixture model is
not necessarily identifiable when both the clusters and policies are unknown (Dasgupta and Schulman,
2007). By contrast, our method does not require making particular parametric assumptions about
E[Y | x, a] and seeks to learn the region of heterogeneity directly.

Feature Evaluation: Checking for heterogeneity can also be framed as feature evaluation, where we
would like to evaluate whether adding the agent identifier will increase predictive power. Feature
evaluation methods typically maximize dependence between selected features and labels, utilizing
measures similar to those in conditional independence testing, such as the HSIC (Song et al., 2007).
Other methods use the correlation of the new feature with the loss gradient of the current predictor as
a measure of utility (Koepke and Bilenko, 2012). In contrast, we focus not on checking marginally
for the predictive power of agent identifiers, but rather identifying a region.

Crowdsourcing: Our work is conceptually related to identifying which samples are difficult to label
via crowdsourcing annotations (Karger et al., 2014; Whitehill et al., 2009). Most crowdsourcing
models are generative with latent variables for the correct sample labels, sample difficulty, agent
expertise, and agent bias. They then optimize for the likelihood of the observed labels. The set of
difficult samples is analogous to our region of heterogeneity. The main difference with our problem is
that we do not require any notion of the “correct” label.

7 Discussion

In this work, we take a causal perspective on finding regions where agents (i.e., decision-makers) have
heterogeneous preferences, formalizing this heterogeneity in terms of counterfactual (or “potential”)
decisions across agents. We propose a causal measure of agent-specific biases and give an objective
that aggregates this bias over agents. This objective can be identified from observational data and
written in terms of an expected conditional covariance. Importantly, for our applications, this does
not require building agent-specific models or assuming overlap across all agents.

We give an iterative algorithm to find a region that maximizes this objective. Then, we demonstrate
in semi-synthetic experiments that our algorithm accurately recovers the region of heterogeneity and
scales well with the number of agents. In contrast, performance of baslines deteriorates when the
number of agents increases. Although our experiments have low-dimensional spaces, we hypothesize
our algorithm would scale well to high-dimensional feature spaces since the average policy and
region models can handle high-dimensional input spaces. Finally, on a real-world medical dataset,
we show that our algorithm can yield insights that align with clinical knowledge.

Our work is motivated by understanding variation in human decision-making. In the judicial domain,
our method may help unearth types of cases where decisions are highly dependent on the judge
assigned to the case. In the medical domain, our approach may identify types of patients where new
guidelines may be required to help doctors make decisions more consistent with standard of care.
Domain expertise is required to determine the implications of the regions discovered by our method.
Beyond these applications, we see our approach as a useful data science tool for understanding
heterogeneity in decisions that appears to be driven by individual-level preferences.
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1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We present the formalized problem and solution we
describe in the abstract. We also run experiments that support the application examples
we mention in the abstract.

(b) Did you describe the limitations of your work? [Yes] Assumption 1 must hold.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 1.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] In Theorem 1,
we collect the full set of assumptions in Assumption 1, and for Theorem 2, we give the
relevant assumptions immediately before the statement of the theorem in Section 3.4.

(b) Did you include complete proofs of all theoretical results? [Yes] All proofs can be
found in Section A of the Appendix.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] We will
submit code and instructions with the supplement. The recidivism and Parkinson’s data
are publicly available. The only exception is the diabetes data is proprietary from an
insurance company collaborator.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4.2 for how the region size hyperparameter is tuned,
Appendix B.2 for how other hyperparameters are tuned, and other details in the paper.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See our figures.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We discuss this in the upfront
overview section of the Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite Lin et al.
(2020) for the recidivism dataset. We cite Marek et al. (2011) for the Parkinson’s
dataset. The insurance data is proprietary.

(b) Did you mention the license of the assets? [Yes] For the recidivism dataset, the data
repository does not have a license at https://github.com/stanford-policylab/
recidivism-predictions. For the Parkinson’s dataset, we include the disclaimer
from PPMI.

(c) Did you include any new assets either in the supplemental material or as a URL?
[N/A] We do not curate/release any new assets, other than code for replicating our
experiments; This code will be available in the supplementary material, as discussed
above.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] See Appendix C regarding consent for the proprietary health
insurance claims dataset. All other data we use is publicly available.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] See Appendix C regarding de-identification of
the health insurance dataset. All other data we use is publicly available.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots,
if applicable? [N/A] The crowdsourced dataset was collected by another paper and
publicly released.
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