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ABSTRACT

This article makes discrete masked models for the generative modeling of discrete
data controllable. The goal is to generate samples of a discrete random variable
that adheres to a posterior distribution, satisfies specific constraints, or optimizes
a reward function. This methodological development enables broad applications
across downstream tasks such as class-specific image generation and protein de-
sign. Existing approaches for controllable generation of masked models typically
rely on task-specific fine-tuning or additional modifications, which can be ineffi-
cient and resource-intensive. To overcome these limitations, we propose a novel
plug-and-play framework based on importance sampling that bypasses the need
for training a conditional score. Our framework is agnostic to the choice of con-
trol criteria, requires no gradient information, and is well-suited for tasks such
as posterior sampling, Bayesian inverse problems, and constrained generation.
We demonstrate the effectiveness of our approach through extensive experiments,
showcasing its versatility across multiple domains, including protein design.

1 INTRODUCTION

Modeling complex discrete probability distributions in high-dimensional spaces is a crucial chal-
lenge across multiple domains in generative AI, including language, vision, audio, and biology.
Among the various approaches, discrete masked models have emerged as powerful tools, offering
robust solutions for generating and understanding discrete data. Notable examples include BERT
for language modeling (Devlin et al., 2019), MaskGIT for image synthesis (Chang et al., 2022),
DNABERT for DNA modeling (Ji et al., 2021; Zhou et al., 2023), the ESM series for protein gener-
ation (Rives et al., 2021; Lin et al., 2023; Hayes et al., 2024), and the more recent masked discrete
diffusion models (see, e.g., Lou et al. (2024); Ou et al. (2024); Sahoo et al. (2024); Shi et al. (2024);
Zheng et al. (2024)). These models typically learn the conditional distribution of each masked po-
sition given a partially masked data sequence, allowing for iterative decoding to generate a full
sequence during inference.

In many practical applications of masked models, the objective extends beyond generating realis-
tic samples from the data distribution to doing to in a controlled manner. This involves generating
samples that align with specific constraints, conditions, or prompts, often by sampling from a condi-
tional data distribution or maximizing a reward function (Zhang et al., 2023). Controlled generation
is crucial in tasks such as (1) posterior sampling, where samples are drawn from a posterior distribu-
tion conditioned on observed data; (2) constrained generation, where the aim is to produce samples
that meet predefined constraints. These applications highlight the growing need for generative mod-
els that not only capture the underlying data distribution, but also allow for flexible control over the
generated outputs.

For controllable generation, it is desirable to establish a framework of plug-and-play samplers that
allows for efficient sampling from the desired controlled distribution without requiring further train-
ing or fine-tuning of the underlying pre-trained model, given any suitable control criterion. This
approach is computationally advantageous, as it avoids the costly and time-consuming process of
retraining the model for each new task, making it a highly scalable and adaptable solution for real-
world applications.

However, existing work on plug-and-play controllable generation primarily focused on the continu-
ous domain, such as continuous diffusion models (Chung et al., 2023; Song et al., 2023; Huang et al.,
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Figure 1: A demonstration of Algorithm 1 with vocabulary size N = 4, sequence length D = 8,
and number of Monte Carlo estimate K = 6.

2024), and often requires the differentiability in the control criteria. In contrast, controllable genera-
tion for discrete generative models often relies on learning-based approaches (Dathathri et al., 2020;
Nisonoff et al., 2024; Li et al., 2024), and to the best of our knowledge, there is no plug-and-play
sampler in this domain.

In this paper, we address this gap by developing a plug-and-play framework for controllable genera-
tion using discrete masked models, eliminating the need for task-specific fine-tuning. Our algorithm
operates through iterative unmasking and remasking. At each step, given the unmasked positions, we
apply a mean-field approximation to estimate the conditional distribution of the masked positions,
sample from it via Monte Carlo, and employ importance sampling to filter the most likely samples.
We then remask a portion of the newly generated positions, and repeat this unmasking-remasking
process for several times until all positions are unmasked. Since the complexity of querying the
masked model to obtain conditional probabilities is typically much higher than querying the reward
function in most of the real-world applications, the Monte Carlo estimation introduces minimal com-
putational overhead, keeping the sampling and filtering process efficient. In our experiments, high-
quality samples can be obtained with approximately 10 queries to the masked model and around
1000 Monte Carlo samples, demonstrating the effectiveness of our proposed algorithm.

In summary, our contributions are as follows:

• We tackle the problem of plug-and-play controllable generation for discrete masked mod-
els, introducing an efficient and economical paradigm for sampling from these models.

• We propose a novel framework based on mean-field approximation of multi-dimensional
discrete distributions and iterative masking-unmasking. This fine-tuning-free approach en-
ables sample generation that satisfies control criteria for any (potentially non-differentiable)
reward functions. To the best of our knowledge, this is the first plug-and-play controllable
sampler for discrete masked models.

• We demonstrate the versatility of our method through multiple experiments, including sam-
pling sequence of integers with equality constraint and designing protein sequences, high-
lighting its adaptability and effectiveness across diverse tasks.

Notations. The indicator function 1A of a statement A is 1 if A is true and 0 if otherwise. We will use
superscripts for indexing a vector, e.g., x = (x1, . . . , xD). Given x ∈ RD and a set Ω ⊂ {1, . . . , D},
the slicing xΩ is defined as (xd : d ∈ Ω). Given a partition (Ω1,Ω2) of {1, . . . , D} (i.e., Ω1,Ω2 are
disjoint and their union is {1, . . . , D}), and two vectors x = (xd : d ∈ Ω1) and y = (yd : d ∈ Ω2),
their concatenation x⊕y is a D-dimensional vector whose d-th entry is xd1d∈Ω1+yd1d∈Ω2 . Finally,
f(x) ∝x g(x) means that f(x) = c · g(x) for some constant c > 0 that does not depend on x.
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2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 DISCRETE MASKED MODELS

Discrete masked models (or simply masked models) are designed to learn the distribution of se-
quential discrete data. Let {1, . . . , N} represent a vocabulary of N tokens, and consider a random
sequence X = (X1, . . . , XD) ∈ {1, . . . , N}D of length D. For example, X can be a sentence
with D words, a protein composed of D amino acids, or a discrete latent representation of images
tokenized by a vector quantized variational autoencoder (VQ-VAE) (van den Oord et al., 2017). To
learn the probability distribution p of X given i.i.d. samples of X ∼ p, masked models are trained
by randomly replacing certain positions in the sequence with a masked token M, and learning the
probability of the masked positions conditional on the unmasked portion of the sequence.

Throughout this paper, for a partially observed sequence x ∈ {1, . . . , N,M}D, we use Ω := {d :
xd ̸= M} andM := {d : xd = M} to denote the unmasked and masked positions, respectively.
Formally, a masked model p̂ takes such a sequence as input and output a matrix p̂(x) ∈ RD×N

≥0 that
approximates the following probability distribution:

p̂(x)d,n ≈ p(Xd = n|XΩ = xΩ).

The rows in p̂ corresponding to the unmasked positions in Ω are trivial, as the probabilities are
either 0 or 1. To learn the remaining entries, masked models are typically trained by minimizing the
cross-entropy loss:

min
p̂

EX∼p Erandom subset Ω⊂{1,...,D}

− log
∑
d̸∈Ω

p̂
(
XΩ ⊕M

)
d,Xd

 ,

where XΩ ⊕M represents the sequence obtained by replacing all entries not in Ω with M.

During inference, a direct approach is to initialize with the fully-masked sequence, select an or-
der σ (a permutation of {1, . . . , D}), and autoregressively sample Xσ(t) based on Xσ(<t) for
t = 1, 2, . . . , D. However, this scheme requires D queries to the masked model, which is inef-
ficient for long sequences. To balance accuracy and efficiency, instead of unmasking one position at
a time, one may introduce a decreasing function γ : [0, 1]→ [0, 1] known as an unmasking sched-
ule, which determines the number of remaining masked tokens at each step (Chang et al., 2022). At
the t-th step (t = 1, 2, . . . , T ) out of T total steps, given x with observed positions Ω, the following
steps are implemented:

1. Predict the probability of the masked positions p(Xd = ·|XΩ = xΩ) ≈ p̂(x)d,·, d /∈ Ω
using the masked model.

2. Independently sample the masked values xd ∼ p̂(x)d,·, d /∈ Ω.

3. Remask ⌊γ(t/T )D⌋ newly-generated positions with the lowest predicted probability
p̂(x)d,xd .

Such steps will also be utilized in the design of our algorithm.

There are several equivalent formulation of masked models. First, as demonstrated in the sampling
procedure outlined above, they can be interpreted as any-order autoregressive models (Hoogeboom
et al., 2022; Shih et al., 2022), where the joint distribution is factorized using any arbitrary order σ,
and the model learns the conditional distributions p(Xσ(d)|Xσ(<d)), d ∈ {1, . . . , D}. Second, re-
cent research (Ou et al., 2024; Sahoo et al., 2024; Shi et al., 2024; Zheng et al., 2024) has shown that
masked models are equivalent to the masked discrete diffusion model, which involves reversing a
continuous-time Markov chain that transform any data distribution into the distribution concentrated
on the sequence with all masked states.

2.2 CONTROLLABLE GENERATION

This paper focuses on the following task of controllable generation for masked models: given a
pretrained masked model p̂(·) that generates from a data distribution p, sample from a modified

3
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distribution

q(x) =
1

Z
r(x)p(x), x ∈ {1, . . . , N}D,

where r(x) is a non-negative reward function, and the normalizing constant Z =
∑

x r(x)p(x) is
unknown. This formulation encompasses various applications, including:

• Posterior sampling for Bayesian inference: Suppose X ∼ p(x) and we have a condi-
tional distribution p(y|x) for a related random variable Y , where Y |X = x ∼ p(y|x)
serves as the reward function. Given an observation Y = y, the posterior distribution of X
is p(x|y) ∝x p(y|x)p(x). For instance, if X is a tokenized image and Y is its correspond-
ing class label given by a classifier, then sampling from X|Y = y would generate an image
belonging to a specific class y.

• Constrained generation: Given a specific subset S ⊂ {1, . . . , N}D of interest, we define
the reward function as the indicator function r(x) = 1x∈S . In this case, q represents the
distribution p truncated to the set S. For example, X represents DNA sequences, and S is
the set of DNA sequences whose percentage of A is less than 30%.

We also assume that evaluating the reward function r(·) is significantly less computationally ex-
pensive than querying the mask model p̂(·), which is a common scenario in most of the real-world
applications, and serves as an important starting point for our algorithm’s design.

3 CONTROLLABLE GENERATION FOR MASKED MODELS

In this section, we present our framework for plug-and-play controllable generation of masked mod-
els. We begin by drawing insights from the plug-and-play conditional generation for continuous
diffusion models in Section 3.1, and then propose our novel algorithms tailored specifically for dis-
crete masked models in Section 3.2.

3.1 EXISTING PLUG-AND-PLAY SAMPLERS FOR CONTINUOUS DIFFUSION MODELS

In continuous diffusion model, the data distribution is X0 ∼ p(x0), and a diffusion process (Xt ∼
pt)t∈[0,T ] transforms data to noise following Xt|X0 = x0 ∼ N

(
x0, σ

2
t I
)
. Leveraging the data

samples and the diffusion process, one can learn the score function ∇xt
log pt(xt) for all t > 0.

Given a condition variable Y with distribution p(y|x0) conditional on X0 = x0, the task of sampling
from the posterior distribution p(x0|y) boils down to estimating∇xt

log pt(y|xt) for all t > 0, where
pt(y|xt) is the predicted distribution of Y given noisy sample Xt = xt.

To estimate this quantity in a training-free way, Chung et al. (2023) observed that pt(y|xt) =
Ep(x0|xt) p(y|x0), and proposed to approximate the unknown distribution p(x0|xt) by the point
mass at x̂0(xt) := E(X0|Xt = xt) = xt + σ2

t∇xt
log pt(xt), resulting in pt(y|xt) ≈ p(y|x̂0(xt)).

Song et al. (2023) later proposed a Gaussian approximation centered at x̂0(xt) with a suitable vari-
ance, estimating the expectation by the empirical mean over i.i.d. Gaussian samples. Finally, one
step of backward propagation yields the gradient of log p(x0|xt) with respect to xt. Throughout
this process, only one query to the score model ∇xt

log pt(xt) is required, while the conditional
probability p(y|x0) is generally easy to obtain, minimizing computational overhead.

To sum up, the key ingredient of this approach is the approximation of the distribution p(x0|xt),
which involves predicting the clean data X0 given a noisy sample Xt = xt.

3.2 CONTROLLABLE GENERATION FOR MASKED MODELS

We first continue the exploration of conditional generation, and then extend our methodology to
general controllable generation problems.

In the discrete case, unlike the Gaussian noise Xt|X0 = x0 ∼ N
(
x0, σ

2
t I
)
, we now have a mask-

ing process Xt|X0 = x0 obtained by independently masking each position with a probability that
depends on t. As the required entity is not the score function here, we cannot directly apply the con-
tinuous diffusion model’s strategy. Moreover, the discrete state space lacks a Gaussian distribution,

4
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and the posterior mean E(X0|Xt = xt) is meaningless. However, a simple yet effective alternative
exists: a mean-field approximation.

Our goal is to sample from p(x0|xt, y). By conditional independence of Xt and Y given X0,

p(x0|xt, y) ∝x0
p(x0, xt, y) = p(x0)p(xt|x0)p(y|x0) = p(x0|xt)p(xt)p(y|x0)

=⇒ p(x0|xt, y) ∝x0
Ep(x0|xt) p(y|x0).

As Xt is by independently masking each position in X0, we only need to predict the conditional
probability of the masked positions in xt given the observed ones. As the masked model only
predicts one-dimensional probability distributions, a straightforward approach is to iteratively un-
masking one position at a time, requiring |M| queries to the masked model.

To avoid such computational overhead, we employ a mean-field approximation, i.e., assume that
conditional on the observed part xΩ of a sequence x, each remaining dimension inM is independent.
Formally,

p(XM = u|XΩ = xΩ) ≈
∏
d∈M

p(Xd = ud|XΩ = xΩ),

which only requires one query to the masked model. While mean-field approximation introduces
some error, it is effective for approximating multidimensional distributions when dependencies be-
tween different positions are relatively weak. Similar ideas have been incorporated to the sampling
algorithm of MaskGIT (Chang et al., 2022) and the backward sampling of Continuous-Time Markov
Chain (Lou et al., 2024; Ou et al., 2024; Zheng et al., 2024).

Building upon our insights into conditional generation, we are ready to present a solution to the
general problem of controlled generation. Based on the problem settings in Section 2.2, we now
illustrate our method for sampling from q in a plug-and-play manner.

Suppose we have a partially observed sequence x during the generation process, with observed and
masked positions Ω andM. We can calculate the conditional distribution of masked positions given
the observed ones under q as follows: for all u ∈ {1, . . . , N}|M|,

q(XM = u|XΩ = xΩ) ∝u q(XM = u,XΩ = xΩ)

∝u r(xΩ ⊕ u)p(XM = u,XΩ = xΩ)

∝u r(xΩ ⊕ u)p(XM = u|XΩ = xΩ)

≈ r(xΩ ⊕ u)
∏
d∈M

p(Xd = ud|XΩ = xΩ), (1)

where the last line is obtained by mean-field approximation. As the normalizing constant of this
distribution is unknown, one way to sample a u from this distribution is by leveraging importance
sampling. Let us first recall the following lemma.

Lemma 1 (Importance Sampling). Suppose two probability masses or densities p, q are related
through q(x) = 1

Z r(x)p(x). Then, with x1, . . . , xK i.i.d. samples from p, one can approximate q
with the following weighted empirical distribution:

q(x) ≈ q̃(x) :=

K∑
k=1

qkδxk
(x), where qk =

r(xk)∑K
j=1 r(xj)

.

Proof. Since p(x) ≈ p̃(x) := 1
K

∑K
k=1 δxk

(x), we have the following approximation of q:

q(x) =
r(x)p(x)

Ep r
≈ r(x)p̃(x)

Ep̃ r
=

r(x)
∑K

k=1 δxk
(x)∑K

k=1 r(xk)
= q̃(x).

Thanks to Lemma 1, we can approximately sample from the distribution in Equation (1) by indepen-
dently sampling each dimension d ∈ M conditional on the observed sequence xΩ and then obtain
their corresponding weights, using which we can sample a u.

5
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Algorithm 1: Plug-and-play controllable sampler of discrete masked models
Input: Vocabulary size N , length of sequence D, reward function r(·), masked model p̂(·),

number of unmasking steps T , unmasking schedule γ : [0, 1]→ [0, 1], number of
Monte Carlo samples K.

Output: An approximate sample x from the distribution q(x) ∝ r(x)p(x).
1 Initialize x = (M, . . . ,M), the mask positionsM = {1, . . . , D}, and the observed positions

Ω = ∅;
2 for t = 1 to T do
3 Compute the probabilities {p̂(x)d,n ≈ p(Xd = n|XΩ = xΩ) : d ∈M, n ∈ {1, . . . , N}}

from the masked model;
4 for d ∈M, k ∈ {1, . . . ,K} (in parallel) do
5 Independently sample ud

(k) ∼ p̂(x)d,·;
6 end
7 for k ∈ {1, . . . ,K} (in parallel) do
8 Assign the sample u(k) = (ud

(k) : d ∈M) with a weight w(k) = r(xΩ ⊕ u(k));
9 end

10 for k ∈ {1, . . . ,K} (in parallel) do
11 Normalize the weights w(k) by w(k) ←

w(k)∑K
j=1 w(j)

;

12 end
13 Obtain one sample of xM via selecting u(k) with probability w(k);
14 Remask ⌊γ(t/T )D⌋ positions in xM according to a defined rule (e.g., uniform remasking:

sample a subsetM0 ofM with ⌊γ(t/T )D⌋ elements uniformly at random, and remask
the positions xd, d ∈M0);

15 Update the masked positionsM← {d : xd = M} and the observed positions Ω←M∁;
16 end
17 return x.

Although this process generates a full sequence x, its alignment to the target distribution q may
be sub-optimal due to the lost of dependencies in mean-field approximation, especially when |M|
is large (i.e., many positions are unmasked in a row). To address this, we further introduce a re-
masking step as discussed in Section 2.1: remask some of positions inM according to a remasking
schedule γ (e.g., by sampling a random subset of M), so that in the t-th step among the T total
steps (t = 1, . . . , T ), after remasking, the remaining number of masked tokens is ⌊γ(t/T )D⌋. In
our experiments, we found that this uniform remasking strategy performs well. However, exploring
more advanced remasking strategies is a promising area for future research.

We summarize the entire procedure in Algorithm 1. Notably, our algorithm can be easily extended
for the inpainting task, i.e., given a subset Ω of {1, . . . , D} that has known values xΩ, we aim to

sample the remaining positions according to q(XΩ
∁

= ·|XΩ = xΩ). This modified version of the
algorithm is provided in Algorithm 2.

4 RELATED WORK

Conditional generation based on guidance. As an important task in controllable generation, con-
ditional generation aims to generate a random variable X ∼ p(x) (e.g., image) given another random
variable Y known as the condition (e.g., the text description of an image). A popular approach is
guidance: for example, in continuous diffusion model, the classifier guidance (Dhariwal & Nichol,
2021) learns a classifier p(y|x) that predicts the condition Y given a noisy sample of X and lever-
ages its information to generate X conditional on Y = y. Classifier-free guidance (Ho & Salimans,
2022) trains a score model that approximates both the conditional and unconditional score functions,
using a combination of them for conditional generation. These approaches can be extended to the
discrete diffusion model (see Nisonoff et al. (2024)).
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Controllable generation for discrete generative models. The study of controllable generation is
an emerging area in language modeling (see, e.g., Zhang et al. (2023) for a review). A notable work,
Dathathri et al. (2020), proposed applying gradient updates to the key-value cache in transformers,
a task-agnostic approach but requiring fine-tuning during inference. For diffusion models, a recent
work Li et al. (2024) introduced soft value-based decoding, a derivative-free algorithm that requires
pre-sampled trajectories x0, x1, . . . , xT of discrete diffusion model to estimate a conditional expec-
tation. This method does not exploit the special properties of the masking process. To the best of
our knowledge, there are no fine-tuning-free samplers for controllable generation in discrete masked
models.

5 EXPERIMENTAL RESULTS

5.1 TOY EXPERIMENT ON SAMPLING EQUALITY-CONSTRAINED SEQUENCES

We first apply our controllable generation framework to constrained sampling, demonstrating its
outstanding efficiency in challenging tasks where the constraint set is extremely sparse.

Consider the state space {1, . . . , N}D comprising sequences of integers x = (x1, . . . , xD), where
we fix the sequence length D to 10. Let the unconditional distribution be the uniform distribution.
In this case, the masked model has a closed form, requiring no training:

p̂(x)d,n = p(Xd = n|XΩ = xΩ) =

{
1/N, d ∈M
δxd,n, d ∈ Ω

.

We study sampling from the uniform distribution restricted to the following set:

SN =
{
x ∈ {1, . . . , N}D : ϕ(x) := x1 − x2x3 − x4 + x5x6x7 + x8 + x9 − x10 = 0

}
.

The ratio between the cardinalities of SN and the entire state space {1, . . . , N}D is extremely low:
approximately 1.07% when N = 10, 0.20% when N = 20, and 0.07% when N = 30.

We use Algorithm 1 to sample from the uniform distribution constrained on SN , and present the
results in Figure 2. We observe that the number of Monte Carlo samples, K, significantly impacts
the quality of generated samples, while the number of steps of unmasking T has a less pronounced
effect, likely due to the short sequence length. Further experimental details are provided in Ap-
pendix B.1.
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Figure 2: Result for sampling equality-constrained sequences.

5.2 CONTROLLABLE PROTEIN GENERATION

We employ ESM3 (Hayes et al., 2024) as the underlying protein generation model, which is a pio-
neering generative model for protein, capable of reasoning simultaneously over multiple modalities
including sequence, structure, and function, achieving state-of-the-art performance in multiple pro-
tein generation tasks. In our experiments, we focus on generation in the sequence domain, and fix
the length of sequence to 50. The vocabulary considered is the set of 20 standard amino acids1. We
will consider three tasks of controlled generation: generating hydrophilic and hydrophobic proteins,

1They are: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y.
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sampling proteins with a propensity for alpha-helices, and protein inpainting for higher percentage
of alpha-helices. In all tasks, we impose a constraint based on the instability index (Guruprasad
et al., 1990), a positive number that estimates the stability of a protein sequence. A protein with
value between 0 and 40 is predicted as stable. To evaluate all the required metrics of protein se-
quences, we use the Biopython package (Cock et al., 2009), a widely used tool in computational
molecular biology.

Design of reward function. To begin with, we first introduce a flexible way of designing the reward
function r(·) for a given task. Suppose we have M metrics mi : {1, . . . , N}D → R, i = 1, 2, . . . ,M
that we are interested in, and our constraint is expressed as

M⋂
i=1

{x : mi(x) ∈ Ai},

where Ai ⊂ R is an interval. We propose the following reward function:

r(x) = exp

(
−

M∑
i=1

wi dist(mi(x), Ai)
αi

)
,

where dist(a,A) is the distance from a ∈ R to the interval A ⊂ R, wi > 0 is the weight of the i-th
constraint (mi(x) ∈ Ai), and αi > 0 determines the shape of penalty (e.g., linear or quadratic).

Sampling hydrophilic/hydrophobic proteins. Solubility is one of the key traits of protein and it
is a joint consequence of amino acid sequence composition as well as 3D structure. Protein sol-
ubility is often quantified through the hydropathy index, with high hydropathy values indicating
water-repelling (hydrophobic) and low hydropathy value indicating water-attracting (hydrophilic).
Designing hydrophilic or hydropathic proteins have numerous important applications, yet the tasks
also pose unique challenges (Qing et al., 2022). Low hydropathy value is often desirable for thera-
peutic purposes as it’s central to the protein expression and purification process. Hydrophilicity is
also critical for a longer circulation time in the human bloodstream, potentially indicating a better
therapeutic efficacy (Garidel, 2013). Proteins with high hydropathy value are often designed for
transmembrane proteins, important examples of which include cell surface receptors. Transmem-
brane proteins are often targets of drugs, especially receptors like G-protein-coupled receptors. De-
signing these proteins can help create more effective disease treatments by improving the capability
to modulate cellular signals (Yang et al., 2021).

In the following, we consider the challenging task of generating hydrophilic and hydrophobic pro-
tein sequences. We set the length of protein sequence to 50, and use GRAVY (Grand Average of
Hydropathy) value (Kyte & Doolittle, 1982) to quantify the hydropathy level of the generated se-
quence, which is defined as the average hydropathy value of a peptide or protein. Negative GRAVY
value indicates hydrophilic, while positive one means hydrophobic.

We compare the GRAVY values of the samples generated by ESM3 model in both uncontrolled
and controlled way in Table 1. For controlled generation, we fix the hyperparameters w2 and A2

for promoting low instability index, and experimented with multiple choices of w1 and A1 (see
further details in Appendix B). The table presents the best generation result. Using our proposed
controllable generation method, we successfully sample protein sequences with the desired values
of GRAVY while maintaining protein stablility. We also observe a significant reduction in standard
deviation among the controlled generated samples, highlighting the reliability of our method.

Table 1: Controlled generation for high and low GRAVY values. The metrics are presented in the
form of mean ± std.

Task m1 = GRAVY m2 = instability GRAVY Instability ↓
Uncontrolled / / −0.207± 0.552 41.467± 17.906
Controlled,

high GRAVY
w1 = 30, α1 = 1,

A1 = [1,∞)
w2 = 5, α2 = 2,
A2 = [0, 40]

1.209± 0.223 25.176± 10.094

Controlled,
low GRAVY

w1 = 35, α1 = 1,
A1 = (−∞,−1]

w2 = 5, α2 = 2,
A2 = [0, 40]

−1.261± 0.260 31.569± 8.204

Sampling alpha-helix-rich protein. Proteins fold naturally into unique three-dimensional struc-
tures based on their amino acid sequence composition. This spatial conformation further determines
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Unctrl. Gen.

helix% = 0.32 helix% = 0.32 helix% = 0.30 helix% = 0.36 helix% = 0.38

Ctrl. Gen.

helix% = 0.78 helix% = 0.44 helix% = 0.48 helix% = 0.56 helix% = 0.42

Figure 3: Structure of protein sequences predicted by ESM3. The upper row are the uncontrolled
generated sequences, and the lower row are the controlled generated sequences. The sequences are
randomly chosen.

its molecular and cellular function. Among the possible spatial structures, alpha helix is one of the
most common secondary structures in protein, where the amino acids in the polypeptide chain form
into a coil (helix) through hydrogen bonding. Particularly, designing proteins rich in alpha helices is
of special interest for engineering certain protein functions (Kortemme, 2024), such as binding and
self-assembly (Sakuma et al., 2024). These functions are central to applications such as therapeutic
protein discovery (Walsh & Jefferis, 2006) and alpha-helical nanofiber design (Zhang, 2003).

Motivated by the versatile purpose of protein with rich alpha-helix structures, in the following, we
focus on generating protein sequences with secondary structure being all or predominant alpha-
helices. We compare the metrics of the generated proteins by our proposed method with those
generated by the unconditional model in Table 2. Our controlled generation method successfully
produces sequences with a high predicted percentage of alpha-helices (helix%). To verify the struc-
tural accuracy of the generated sequences, we use the folding algorithm provided by ESM3 to predict
their 3D structures given the sequences. The result is displayed in Figure 3, where we randomly sam-
ple five generated sequences from both the uncontrolled and controlled generated sets and predict
their structure. The controlled generated samples exhibit a higher frequency of alpha-helices in the
predicted structure, confirming the effectiveness of our algorithm. For further details on the figures,
please refer to Appendix B.3.

We also investigate the influence of the hyperparameters wi and Ai in the design of reward function
r(·). Our empirical findings suggest an optimal choice for these parameters, providing valuable in-
sights into designing reward function for general controlled generation problems. Additional details
are presented in Appendix B.2.

Table 2: Controlled generation for high alpha-helix percentage. The metrics are presented in the
form of mean± std.

Task m1 = helix% m2 = instability Helix% ↑ Instability ↓
Uncontrolled / / 0.315± 0.072 41.467± 17.906

Controlled w1 = 50, α1 = 1,
A1 = [0.8,∞)

w2 = 5, α2 = 2,
A2 = [0, 40]

0.600± 0.116 27.387± 12.025

Protein inpainting. We consider the following inpainting problem: using a protein chain with
high beta-sheet percentage as a prompt to generate the remaining positions in a controlled manner
to maximize the percentage of alpha-helices. In particular, the prompt is chosen as a 35-amino-
acid slice from the SM-related protein of P. Abyssi (PDB ID: 1H64), chain A, which consists of
71 amino acids and has a secondary structure composed almost entirely of beta-sheets. The cyan
motif in the subfigure wrapped in red box in Figure 4 highlights the prompt. We use Algorithm 2
to generate alpha-helix-rich proteins based on this prompt, and display the predicted 3D structure

9
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Figure 4: Visualization of the generated sequence from protein inpainting.

of three randomly generated sequences in the blue box in Figure 4, demonstrating the presence of
alpha-helices in the generated portions. Further experimental details can be found in Appendix B.4.

6 CONCLUSION AND FUTURE WORK

In this paper, we study the task of controllable generation for discrete masked models and introduce
an efficient paradigm for plug-and-play sampling. Our approach is based on mean-field approxima-
tion and iterative masking and remasking, demonstrating promising potential for real-world applica-
tions. Future research directions include exploring alternative remasking strategies beyond uniform
remasking, rigorously analyzing the error bounds of our method, and extending its application to
other domains such as image, molecule, and DNA.
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A ALGORITHM FOR INPAINTING

See Algorithm 2. Its difference with Algorithm 1 is marked in blue.

Algorithm 2: Plug-and-play controllable sampler of discrete masked models, the inpainting
version.
Input: Vocabulary size N , length of sequence D, reward function r(·), masked model p̂(·),

number of unmasking steps T , unmasking schedule γ : [0, 1]→ [0, 1], number of
Monte Carlo samples K, inpainted indices Ω ⊂ {1, . . . , D}, inpainted values
xΩ ∈ {1, . . . , N}|Ω|.

Output: An approximate sample x from the distribution q(x) ∝ r(x)p(x).

1 Initialize x = xΩ ⊕M, the mask positionsM = Ω
∁
, and the observed positions Ω = Ω;

2 for t = 1 to T do
3 Compute the probabilities {p̂(x)d,n ≈ p(Xd = n|XΩ = xΩ) : d ∈M, n ∈ {1, . . . , N}}

from the masked model;
4 for d ∈M, k ∈ {1, . . . ,K} (in parallel) do
5 Independently sample ud

(k) ∼ p̂(x)d,·;
6 end
7 for k ∈ {1, . . . ,K} (in parallel) do
8 Assign the sample u(k) = (ud

(k) : d ∈M) with a weight w(k) = r(xΩ ⊕ u(k));
9 end

10 for k ∈ {1, . . . ,K} (in parallel) do
11 Normalize the weights w(k) by w(k) ←

w(k)∑K
j=1 w(j)

;

12 end
13 Obtain one sample of xM via selecting u(k) with probability w(k);
14 Remask

⌊
γ(t/T )(N − |Ω|)

⌋
positions in xM according to a defined rule (e.g., uniform

remasking: sample a subsetM0 ofM with
⌊
γ(t/T )(N − |Ω|)

⌋
elements uniformly at

random, and remask the positions xd, d ∈M0);
15 Update the masked positionsM← {d : xd = M} and the observed positions Ω←M∁;
16 end
17 return x.

B SUPPLEMENTARY EXPERIMENTAL RESULTS

B.1 IMPLEMENTATION DETAILS OF THE TOY EXAMPLE

We first demonstrate how we choose the reward function r(·). Recall that the equality constraint is
ϕ(x) = 0. Thus, we propose to use the reward function r(x) = exp(−wmax(|ϕ(x)|,m), where the
weight w > 0 and the truncation threshold m > 0. We choose w = 5 and m = 10 throughout all of
our experiments.

We fix the remasking schedule γ(t) = cos
(
π
2 r
)

as suggested by Chang et al. (2022).

The values of K experimented in Figure 2 are 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000,
while the values of T experimented are 2, 5, 8, 10.

B.2 TUNING THE HYPERPARAMETERS FOR CONTROLLED PROTEIN GENERATION

In this section, we study how the hyperparameters wi and Ai in the reward function influences the
quality of controllable generation. In particular, we focus on the task of sampling alpha-helix rich
protein, fix the hyperparameters for m2 = instability, and vary the choice of w1, A1 while fixing
α1 = 1 throughtout the experiments. We experiment w1 ∈ {10, 15, . . . , 45, 50} and A1 = [a1,∞)
for a1 ∈ {0.5, 0.6, . . . , 1.3, 1.4}, and for each pair of (w1, A1), generate 16 protein sequences and
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Figure 5: Influence of w1 and A1 on helix% in sampling alpha-helix rich proteins.
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Figure 6: Influence of w1 and A1 on instability in sampling alpha-helix rich proteins.

evaluate the metrics helix% and instability. The results are displayed in Figures 5 and 6. We find
that

• For a fixed a1, as w1 grows, the helix% of the generated sequences would grow at first, but
may decline when w1 is larger than some threshold. This threshold becomes smaller when
a1 gets larger.

• For small a1, the instability index of the generated sequences does not vary significantly
among different choices of w1. But for large a1, the generated sequences is prone to be-
come more unstable when w1 is large.

These results show that there may exist an optimal choice of the hyperparameters w1 and A1 that
maximizes the helix% of the generated sequences while keeping low instability index, which may
provide insights in designing the reward function r(·) for general controlled generation problems.
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B.3 PROTEIN SEQUENCES IN FIGURE 3.

From left to right, the uncontrolled generated sequences are:

1. RAGPRAPPRSDAGRTRGVGRKGQLLVTGKLDAPTLLSLPAAVKSTGATRS
2. MGFPNVPATAAPCPAAPTYEDYAAARGGSLPQVIQHALPVIFTAPLRKST
3. MNQQSTADIRMLIEIGSFMNDPNMMTLINLLILSNVFILLIVIYYRWRSL
4. MKFLARSTAKTEQLRERYLKTDIQILVYETIQGDFESIRLLPASVYNVSL
5. MLPSPAFAISEAQATVESGSIAGPELLAVAVEAPSTQDHRVFAGEETYGV

From left to right, the controlled generated sequences are

1. MINAEAADKDECRLADLLEAKELEMLELKALYLRLEEENKALKELARAMA
2. TACVEKPTHGNPTLHLAAKAFNAEIILDLAFLGQKREKLTQSNLRVISEK
3. MNNDEDLWWKSKGKLINKDKYKNLDNTIMYMKQNMKDIKELKGLETILNA
4. MNDQTREKLLKPGAAEVFAKKYRREKEAIESRAIARVADIDEALKLAAQL
5. MLAEPIGNIVTYAYVIILSILLLVKLGLAENMETSVALTTLLFSNIWQLR

These sequence are randomly sampled from the batch of generated sequences and are not cherry-
picked.

B.4 MORE DETAILS OF PROTEIN INPAINTING

The whole sequence of the protein is ERPLDVIHRSLDKDVLVILKKGFEFRGRLIGYDIHLNVVLA
DAEMIQDGEVVKRYGKIVIRGDNVLAISPT, where the cyan part with 35 amino acids is the prompt
we use for inpainting. We choose the same hyperparameters as in Table 2. From left to right, the
three sequences displayed in the blue box in Figure 4 are

1. MSLAVLKNSEDTLVKAELKGDVSVRGRLIGYDIHLNVVLADAEMIQDGEVVKRYGKIVIR
GDSVVTVHLLTALESQIHEIEDEKAKADRAVKARTKAIKA

2. MEGIALKALMDFQVVMKLKGGKELRGRLIGYDIHLNVVLADAEMIQDGEVVKRYGKIVIR
GTVITLIHIPEEVDFEAALKLLEKKPKKRIRRLKAEKSKK

3. SMSLAMQNLMGKEMKIRLAGGMCMRGRLIGYDIHLNVVLADAEMIQDGEVVKRYGKIVIR
GNCIVYLDLPDSLKDELQSHERVHQYRGLKGAHAVKEKKR

C CODES FOR ALGORITHMS 1 AND 2

1 import tqdm
2 import torch
3 import numpy as np
4
5
6 @torch.no_grad()
7 def ctrl_gen(obtain_logits, obtain_reward, device,
8 B, D, N, K, T,
9 mask_state: int = None,

10 invalid_ids: list = None,
11 inpainting_pos: list = None,
12 inpainting_values: list = None,
13 gamma=lambda r: np.cos(r * np.pi / 2),
14 prob_low_threshold=1e-10,
15 disable_tqdm=False):
16 """
17 B: batch size
18 D: sequence length
19 N: vocabulary size including the masked token
20 K: number of samples for Monte Carlo estimation
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21
22 Sample from q(x) \\propto r(x) p(x), p(x) comes from the masked model,

and r(x) is the reward function.
23
24 obtain_logits: [B,D] -> [B,D,N], return the logits P(Xˆd|XˆUM)
25 obtain_reward: [*,D] -> [*], return the reward r(X)
26 return: [B,D], the sampled sequence
27
28 By default, mask_state is N-1, and the valid_ids (i.e., real tokens)

are from 0 to N-2.
29 If there are other invalid tokens, one can specify the invalid_ids (

default is [mask_state]).
30 The logits for invalid tokens will be set to -inf.
31 when inpainting_pos is not None, we will always inpaint the values at

these positions with inpainting_values.
32 """
33
34 if mask_state is None:
35 mask_state = N-1
36 if invalid_ids is None:
37 invalid_ids = [mask_state]
38 elif mask_state not in invalid_ids:
39 invalid_ids = invalid_ids.append(mask_state)
40
41 if inpainting_pos is not None:
42 assert len(inpainting_values) == len(inpainting_pos)
43 assert all([0 <= pos < D for pos in inpainting_pos])
44 assert all([0 <= val < N and val !=
45 mask_state for val in inpainting_values])
46 inpainting_values = torch.tensor(
47 inpainting_values, dtype=torch.int).to(device)
48
49 def inpaint(x):
50 """*,D -> *,D inpaint"""
51 if inpainting_pos is None:
52 return x
53 else:
54 shape = x.shape
55 x = x.reshape(-1, D)
56 x[:, inpainting_pos] = inpainting_values
57 return x.reshape(shape)
58
59 D_essential = D - len(set(inpainting_pos))
60 # only the dimensions in dims_to_sample will be sampled. The rest will

be inpainted.
61
62 x = torch.full((B, D), mask_state, dtype=torch.int).to(device)
63 x = inpaint(x)
64 # B,D, initialize with mask_state and inpainted values
65
66 for t in tqdm(range(1, T+1), desc="Unmasking steps", disable=

disable_tqdm):
67 if int(D_essential*gamma(t/T)) == int(D_essential*gamma((t-1)/T)):
68 continue # no more tokens to unmask in this step
69
70 # predict all the masked tokens
71 logits = obtain_logits(x) # B,D,N, p(xˆd | xˆUM)
72 logits[:, :, invalid_ids] = -np.inf
73 masked = x == mask_state # B,D
74 masked_logits = logits[masked] # ?,N
75 samples = torch.distributions.Categorical(logits=masked_logits).

sample(
76 (K,)).to(dtype=torch.int, device=device) # K,?
77 x = x.repeat(K, 1).reshape(K, B, D).to(device) # K,B,D
78 x[:, masked] = samples
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79 x = x.transpose(0, 1) # B,K,D
80 x = inpaint(x)
81 probs = obtain_reward(x) # B,K, p(y|x)
82 # avoid numerical instability during division
83 probs[probs < prob_low_threshold] = prob_low_threshold
84 weights = probs / probs.sum(dim=1, keepdim=True) # B,K, normalized
85 selected = torch.distributions.Categorical(probs=weights).sample()

# B
86 x = x[torch.arange(B), selected] # B,D
87
88 # remask the tokens based on their confidence scores
89 confidence = torch.ones_like(x, dtype=torch.float64).to(device)
90 confidence[masked] = torch.rand_like(
91 confidence[masked], dtype=torch.float64).to(device)
92 low_k_values, low_k_indices = torch.topk(
93 confidence, k=int(D_essential*gamma(t/T)), dim=-1, largest=False

)
94 x[torch.arange(B).unsqueeze(1), low_k_indices] = mask_state
95 return x
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