
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PLUG-AND-PLAY CONTROLLABLE GENERATION FOR
DISCRETE MASKED MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

This article makes discrete masked models for the generative modeling of discrete
data controllable. The goal is to generate samples of a discrete random variable
that adheres to a posterior distribution, satisfies specific constraints, or optimizes
a reward function. This methodological development enables broad applications
across downstream tasks such as class-specific image generation and protein de-
sign. Existing approaches for controllable generation of masked models typically
rely on task-specific fine-tuning or additional modifications, which can be ineffi-
cient and resource-intensive. To overcome these limitations, we propose a novel
plug-and-play framework based on importance sampling that bypasses the need
for training a conditional score. Our framework is agnostic to the choice of con-
trol criteria, requires no gradient information, and is well-suited for tasks such
as posterior sampling, Bayesian inverse problems, and constrained generation.
We demonstrate the effectiveness of our approach through extensive experiments,
showcasing its versatility across multiple domains, including protein design.

1 INTRODUCTION

Modeling complex discrete probability distributions in high-dimensional spaces is a crucial chal-
lenge across multiple domains in generative AI, including language, vision, audio, and biology.
Among the various approaches, discrete masked models have emerged as powerful tools, offering
robust solutions for generating and understanding discrete data. Notable examples include BERT
for language modeling (Devlin et al., 2019), MaskGIT for image synthesis (Chang et al., 2022),
DNABERT for DNA modeling (Ji et al., 2021; Zhou et al., 2023), the ESM series for protein gener-
ation (Rives et al., 2021; Lin et al., 2023; Hayes et al., 2024), and the more recent masked discrete
diffusion models (see, e.g., Lou et al. (2024); Ou et al. (2024); Sahoo et al. (2024); Shi et al. (2024);
Zheng et al. (2024)). These models typically learn the conditional distribution of each masked po-
sition given a partially masked data sequence, allowing for iterative decoding to generate a full
sequence during inference.

In many practical applications of masked models, the objective extends beyond generating realis-
tic samples from the data distribution to doing to in a controlled manner. This involves generating
samples that align with specific constraints, conditions, or prompts, often by sampling from a condi-
tional data distribution or maximizing a reward function (Zhang et al., 2023). Controlled generation
is crucial in tasks such as (1) posterior sampling, where samples are drawn from a posterior distribu-
tion conditioned on observed data; (2) constrained generation, where the aim is to produce samples
that meet predefined constraints. These applications highlight the growing need for generative mod-
els that not only capture the underlying data distribution, but also allow for flexible control over the
generated outputs.

For controllable generation, it is desirable to establish a framework of plug-and-play samplers that
allows for efficient sampling from the desired controlled distribution without requiring further train-
ing or fine-tuning of the underlying pre-trained model, given any suitable control criterion. This
approach is computationally advantageous, as it avoids the costly and time-consuming process of
retraining the model for each new task, making it a highly scalable and adaptable solution for real-
world applications.

However, existing work on plug-and-play controllable generation primarily focused on the continu-
ous domain, such as continuous diffusion models (Chung et al., 2023; Song et al., 2023; Huang et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

M M M M M M M M … M 1 M 2 M 1 3 M 4 1 M 2 M 1 3 1 4 1 4 2 1 1 3 1

0.1 0.3 0.4 0.2

1 0 0 0

0.2 0.1 0.5 0.2

0 1 0 0

0.3 0.4 0.1 0.2

1 0 0 0

0 0 1 0

0.5 0.1 0.3 0.1

2 1 3 2 1 1 3 1

1 1 2 2 2 1 3 3

3 1 1 2 2 1 3 3

4 1 1 2 1 1 3 1

3 1 4 2 3 1 3 4

2 1 3 2 3 1 3 1

3.1

1.7

2.5

5.2

0.5

1.9

0.208

0.114

0.168

0.349

0.033

0.128

4 1 1 2 1 1 3 1

(1) Obtain conditional
probabilities

d
↑

→ n

(2)
Sampling

(3)
Evaluate

the
reward

(4)
Normalize

the
weights

(5) Choose the
sample according
to the weights

(6) Remask

…

Figure 1: A demonstration of Algorithm 1 with vocabulary size N = 4, sequence length D = 8,
and number of Monte Carlo estimate K = 6.

2024), and often requires the differentiability in the control criteria. In contrast, controllable genera-
tion for discrete generative models often relies on learning-based approaches (Dathathri et al., 2020;
Nisonoff et al., 2024; Li et al., 2024), and to the best of our knowledge, there is no plug-and-play
sampler in this domain.

In this paper, we address this gap by developing a plug-and-play framework for controllable genera-
tion using discrete masked models, eliminating the need for task-specific fine-tuning. Our algorithm
operates through iterative unmasking and remasking. At each step, given the unmasked positions, we
apply a mean-field approximation to estimate the conditional distribution of the masked positions,
sample from it via Monte Carlo, and employ importance sampling to filter the most likely samples.
We then remask a portion of the newly generated positions, and repeat this unmasking-remasking
process for several times until all positions are unmasked. Since the complexity of querying the
masked model to obtain conditional probabilities is typically much higher than querying the reward
function in most of the real-world applications, the Monte Carlo estimation introduces minimal com-
putational overhead, keeping the sampling and filtering process efficient. In our experiments, high-
quality samples can be obtained with approximately 10 queries to the masked model and around
1000 Monte Carlo samples, demonstrating the effectiveness of our proposed algorithm.

In summary, our contributions are as follows:

• We tackle the problem of plug-and-play controllable generation for discrete masked mod-
els, introducing an efficient and economical paradigm for sampling from these models.

• We propose a novel framework based on mean-field approximation of multi-dimensional
discrete distributions and iterative masking-unmasking. This fine-tuning-free approach en-
ables sample generation that satisfies control criteria for any (potentially non-differentiable)
reward functions. To the best of our knowledge, this is the first plug-and-play controllable
sampler for discrete masked models.

• We demonstrate the versatility of our method through multiple experiments, including sam-
pling sequence of integers with equality constraint and designing protein sequences, high-
lighting its adaptability and effectiveness across diverse tasks.

Notations. The indicator function 1A of a statement A is 1 if A is true and 0 if otherwise. We will use
superscripts for indexing a vector, e.g., x = (x1, . . . , xD). Given x ∈ RD and a set Ω ⊂ {1, . . . , D},
the slicing xΩ is defined as (xd : d ∈ Ω). Given a partition (Ω1,Ω2) of {1, . . . , D} (i.e., Ω1,Ω2 are
disjoint and their union is {1, . . . , D}), and two vectors x = (xd : d ∈ Ω1) and y = (yd : d ∈ Ω2),
their concatenation x⊕y is a D-dimensional vector whose d-th entry is xd1d∈Ω1+yd1d∈Ω2 . Finally,
f(x) ∝x g(x) means that f(x) = c · g(x) for some constant c > 0 that does not depend on x.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 DISCRETE MASKED MODELS

Discrete masked models (or simply masked models) are designed to learn the distribution of se-
quential discrete data. Let {1, . . . , N} represent a vocabulary of N tokens, and consider a random
sequence X = (X1, . . . , XD) ∈ {1, . . . , N}D of length D. For example, X can be a sentence
with D words, a protein composed of D amino acids, or a discrete latent representation of images
tokenized by a vector quantized variational autoencoder (VQ-VAE) (van den Oord et al., 2017). To
learn the probability distribution p of X given i.i.d. samples of X ∼ p, masked models are trained
by randomly replacing certain positions in the sequence with a masked token M, and learning the
probability of the masked positions conditional on the unmasked portion of the sequence.

Throughout this paper, for a partially observed sequence x ∈ {1, . . . , N,M}D, we use Ω := {d :
xd ̸= M} andM := {d : xd = M} to denote the unmasked and masked positions, respectively.
Formally, a masked model p̂ takes such a sequence as input and output a matrix p̂(x) ∈ RD×N

≥0 that
approximates the following probability distribution:

p̂(x)d,n ≈ p(Xd = n|XΩ = xΩ).

The rows in p̂ corresponding to the unmasked positions in Ω are trivial, as the probabilities are
either 0 or 1. To learn the remaining entries, masked models are typically trained by minimizing the
cross-entropy loss:

min
p̂

EX∼p Erandom subset Ω⊂{1,...,D}

− log
∑
d̸∈Ω

p̂
(
XΩ ⊕M

)
d,Xd

 ,

where XΩ ⊕M represents the sequence obtained by replacing all entries not in Ω with M.

During inference, a direct approach is to initialize with the fully-masked sequence, select an or-
der σ (a permutation of {1, . . . , D}), and autoregressively sample Xσ(t) based on Xσ(<t) for
t = 1, 2, . . . , D. However, this scheme requires D queries to the masked model, which is inef-
ficient for long sequences. To balance accuracy and efficiency, instead of unmasking one position at
a time, one may introduce a decreasing function γ : [0, 1]→ [0, 1] known as an unmasking sched-
ule, which determines the number of remaining masked tokens at each step (Chang et al., 2022). At
the t-th step (t = 1, 2, . . . , T) out of T total steps, given x with observed positions Ω, the following
steps are implemented:

1. Predict the probability of the masked positions p(Xd = ·|XΩ = xΩ) ≈ p̂(x)d,·, d /∈ Ω
using the masked model.

2. Independently sample the masked values xd ∼ p̂(x)d,·, d /∈ Ω.

3. Remask ⌊γ(t/T)D⌋ newly-generated positions with the lowest predicted probability
p̂(x)d,xd .

Such steps will also be utilized in the design of our algorithm.

There are several equivalent formulation of masked models. First, as demonstrated in the sampling
procedure outlined above, they can be interpreted as any-order autoregressive models (Hoogeboom
et al., 2022; Shih et al., 2022), where the joint distribution is factorized using any arbitrary order σ,
and the model learns the conditional distributions p(Xσ(d)|Xσ(<d)), d ∈ {1, . . . , D}. Second, re-
cent research (Ou et al., 2024; Sahoo et al., 2024; Shi et al., 2024; Zheng et al., 2024) has shown that
masked models are equivalent to the masked discrete diffusion model, which involves reversing a
continuous-time Markov chain that transform any data distribution into the distribution concentrated
on the sequence with all masked states.

2.2 CONTROLLABLE GENERATION

This paper focuses on the following task of controllable generation for masked models: given a
pretrained masked model p̂(·) that generates from a data distribution p, sample from a modified

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

distribution

q(x) =
1

Z
r(x)p(x), x ∈ {1, . . . , N}D,

where r(x) is a non-negative reward function, and the normalizing constant Z =
∑

x r(x)p(x) is
unknown. This formulation encompasses various applications, including:

• Posterior sampling for Bayesian inference: Suppose X ∼ p(x) and we have a condi-
tional distribution p(y|x) for a related random variable Y , where Y |X = x ∼ p(y|x)
serves as the reward function. Given an observation Y = y, the posterior distribution of X
is p(x|y) ∝x p(y|x)p(x). For instance, if X is a tokenized image and Y is its correspond-
ing class label given by a classifier, then sampling from X|Y = y would generate an image
belonging to a specific class y.

• Constrained generation: Given a specific subset S ⊂ {1, . . . , N}D of interest, we define
the reward function as the indicator function r(x) = 1x∈S . In this case, q represents the
distribution p truncated to the set S. For example, X represents DNA sequences, and S is
the set of DNA sequences whose percentage of A is less than 30%.

We also assume that evaluating the reward function r(·) is significantly less computationally ex-
pensive than querying the mask model p̂(·), which is a common scenario in most of the real-world
applications, and serves as an important starting point for our algorithm’s design.

3 CONTROLLABLE GENERATION FOR MASKED MODELS

In this section, we present our framework for plug-and-play controllable generation of masked mod-
els. We begin by drawing insights from the plug-and-play conditional generation for continuous
diffusion models in Section 3.1, and then propose our novel algorithms tailored specifically for dis-
crete masked models in Section 3.2.

3.1 EXISTING PLUG-AND-PLAY SAMPLERS FOR CONTINUOUS DIFFUSION MODELS

In continuous diffusion model, the data distribution is X0 ∼ p(x0), and a diffusion process (Xt ∼
pt)t∈[0,T] transforms data to noise following Xt|X0 = x0 ∼ N

(
x0, σ

2
t I
)
. Leveraging the data

samples and the diffusion process, one can learn the score function ∇xt
log pt(xt) for all t > 0.

Given a condition variable Y with distribution p(y|x0) conditional on X0 = x0, the task of sampling
from the posterior distribution p(x0|y) boils down to estimating∇xt

log pt(y|xt) for all t > 0, where
pt(y|xt) is the predicted distribution of Y given noisy sample Xt = xt.

To estimate this quantity in a training-free way, Chung et al. (2023) observed that pt(y|xt) =
Ep(x0|xt) p(y|x0), and proposed to approximate the unknown distribution p(x0|xt) by the point
mass at x̂0(xt) := E(X0|Xt = xt) = xt + σ2

t∇xt
log pt(xt), resulting in pt(y|xt) ≈ p(y|x̂0(xt)).

Song et al. (2023) later proposed a Gaussian approximation centered at x̂0(xt) with a suitable vari-
ance, estimating the expectation by the empirical mean over i.i.d. Gaussian samples. Finally, one
step of backward propagation yields the gradient of log p(x0|xt) with respect to xt. Throughout
this process, only one query to the score model ∇xt

log pt(xt) is required, while the conditional
probability p(y|x0) is generally easy to obtain, minimizing computational overhead.

To sum up, the key ingredient of this approach is the approximation of the distribution p(x0|xt),
which involves predicting the clean data X0 given a noisy sample Xt = xt.

3.2 CONTROLLABLE GENERATION FOR MASKED MODELS

We first continue the exploration of conditional generation, and then extend our methodology to
general controllable generation problems.

In the discrete case, unlike the Gaussian noise Xt|X0 = x0 ∼ N
(
x0, σ

2
t I
)
, we now have a mask-

ing process Xt|X0 = x0 obtained by independently masking each position with a probability that
depends on t. As the required entity is not the score function here, we cannot directly apply the con-
tinuous diffusion model’s strategy. Moreover, the discrete state space lacks a Gaussian distribution,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

and the posterior mean E(X0|Xt = xt) is meaningless. However, a simple yet effective alternative
exists: a mean-field approximation.

Our goal is to sample from p(x0|xt, y). By conditional independence of Xt and Y given X0,

p(x0|xt, y) ∝x0
p(x0, xt, y) = p(x0)p(xt|x0)p(y|x0) = p(x0|xt)p(xt)p(y|x0)

=⇒ p(x0|xt, y) ∝x0
Ep(x0|xt) p(y|x0).

As Xt is by independently masking each position in X0, we only need to predict the conditional
probability of the masked positions in xt given the observed ones. As the masked model only
predicts one-dimensional probability distributions, a straightforward approach is to iteratively un-
masking one position at a time, requiring |M| queries to the masked model.

To avoid such computational overhead, we employ a mean-field approximation, i.e., assume that
conditional on the observed part xΩ of a sequence x, each remaining dimension inM is independent.
Formally,

p(XM = u|XΩ = xΩ) ≈
∏
d∈M

p(Xd = ud|XΩ = xΩ),

which only requires one query to the masked model. While mean-field approximation introduces
some error, it is effective for approximating multidimensional distributions when dependencies be-
tween different positions are relatively weak. Similar ideas have been incorporated to the sampling
algorithm of MaskGIT (Chang et al., 2022) and the backward sampling of Continuous-Time Markov
Chain (Lou et al., 2024; Ou et al., 2024; Zheng et al., 2024).

Building upon our insights into conditional generation, we are ready to present a solution to the
general problem of controlled generation. Based on the problem settings in Section 2.2, we now
illustrate our method for sampling from q in a plug-and-play manner.

Suppose we have a partially observed sequence x during the generation process, with observed and
masked positions Ω andM. We can calculate the conditional distribution of masked positions given
the observed ones under q as follows: for all u ∈ {1, . . . , N}|M|,

q(XM = u|XΩ = xΩ) ∝u q(XM = u,XΩ = xΩ)

∝u r(xΩ ⊕ u)p(XM = u,XΩ = xΩ)

∝u r(xΩ ⊕ u)p(XM = u|XΩ = xΩ)

≈ r(xΩ ⊕ u)
∏
d∈M

p(Xd = ud|XΩ = xΩ), (1)

where the last line is obtained by mean-field approximation. As the normalizing constant of this
distribution is unknown, one way to sample a u from this distribution is by leveraging importance
sampling. Let us first recall the following lemma.

Lemma 1 (Importance Sampling). Suppose two probability masses or densities p, q are related
through q(x) = 1

Z r(x)p(x). Then, with x1, . . . , xK i.i.d. samples from p, one can approximate q
with the following weighted empirical distribution:

q(x) ≈ q̃(x) :=

K∑
k=1

qkδxk
(x), where qk =

r(xk)∑K
j=1 r(xj)

.

Proof. Since p(x) ≈ p̃(x) := 1
K

∑K
k=1 δxk

(x), we have the following approximation of q:

q(x) =
r(x)p(x)

Ep r
≈ r(x)p̃(x)

Ep̃ r
=

r(x)
∑K

k=1 δxk
(x)∑K

k=1 r(xk)
= q̃(x).

Thanks to Lemma 1, we can approximately sample from the distribution in Equation (1) by indepen-
dently sampling each dimension d ∈ M conditional on the observed sequence xΩ and then obtain
their corresponding weights, using which we can sample a u.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: Plug-and-play controllable sampler of discrete masked models
Input: Vocabulary size N , length of sequence D, reward function r(·), masked model p̂(·),

number of unmasking steps T , unmasking schedule γ : [0, 1]→ [0, 1], number of
Monte Carlo samples K.

Output: An approximate sample x from the distribution q(x) ∝ r(x)p(x).
1 Initialize x = (M, . . . ,M), the mask positionsM = {1, . . . , D}, and the observed positions

Ω = ∅;
2 for t = 1 to T do
3 Compute the probabilities {p̂(x)d,n ≈ p(Xd = n|XΩ = xΩ) : d ∈M, n ∈ {1, . . . , N}}

from the masked model;
4 for d ∈M, k ∈ {1, . . . ,K} (in parallel) do
5 Independently sample ud

(k) ∼ p̂(x)d,·;
6 end
7 for k ∈ {1, . . . ,K} (in parallel) do
8 Assign the sample u(k) = (ud

(k) : d ∈M) with a weight w(k) = r(xΩ ⊕ u(k));
9 end

10 for k ∈ {1, . . . ,K} (in parallel) do
11 Normalize the weights w(k) by w(k) ←

w(k)∑K
j=1 w(j)

;

12 end
13 Obtain one sample of xM via selecting u(k) with probability w(k);
14 Remask ⌊γ(t/T)D⌋ positions in xM according to a defined rule (e.g., uniform remasking:

sample a subsetM0 ofM with ⌊γ(t/T)D⌋ elements uniformly at random, and remask
the positions xd, d ∈M0);

15 Update the masked positionsM← {d : xd = M} and the observed positions Ω←M∁;
16 end
17 return x.

Although this process generates a full sequence x, its alignment to the target distribution q may
be sub-optimal due to the lost of dependencies in mean-field approximation, especially when |M|
is large (i.e., many positions are unmasked in a row). To address this, we further introduce a re-
masking step as discussed in Section 2.1: remask some of positions inM according to a remasking
schedule γ (e.g., by sampling a random subset of M), so that in the t-th step among the T total
steps (t = 1, . . . , T), after remasking, the remaining number of masked tokens is ⌊γ(t/T)D⌋. In
our experiments, we found that this uniform remasking strategy performs well. However, exploring
more advanced remasking strategies is a promising area for future research.

We summarize the entire procedure in Algorithm 1. Notably, our algorithm can be easily extended
for the inpainting task, i.e., given a subset Ω of {1, . . . , D} that has known values xΩ, we aim to

sample the remaining positions according to q(XΩ
∁

= ·|XΩ = xΩ). This modified version of the
algorithm is provided in Algorithm 2.

4 RELATED WORK

Conditional generation based on guidance. As an important task in controllable generation, con-
ditional generation aims to generate a random variable X ∼ p(x) (e.g., image) given another random
variable Y known as the condition (e.g., the text description of an image). A popular approach is
guidance: for example, in continuous diffusion model, the classifier guidance (Dhariwal & Nichol,
2021) learns a classifier p(y|x) that predicts the condition Y given a noisy sample of X and lever-
ages its information to generate X conditional on Y = y. Classifier-free guidance (Ho & Salimans,
2022) trains a score model that approximates both the conditional and unconditional score functions,
using a combination of them for conditional generation. These approaches can be extended to the
discrete diffusion model (see Nisonoff et al. (2024)).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Controllable generation for discrete generative models. The study of controllable generation is
an emerging area in language modeling (see, e.g., Zhang et al. (2023) for a review). A notable work,
Dathathri et al. (2020), proposed applying gradient updates to the key-value cache in transformers,
a task-agnostic approach but requiring fine-tuning during inference. For diffusion models, a recent
work Li et al. (2024) introduced soft value-based decoding, a derivative-free algorithm that requires
pre-sampled trajectories x0, x1, . . . , xT of discrete diffusion model to estimate a conditional expec-
tation. This method does not exploit the special properties of the masking process. To the best of
our knowledge, there are no fine-tuning-free samplers for controllable generation in discrete masked
models.

5 EXPERIMENTAL RESULTS

5.1 TOY EXPERIMENT ON SAMPLING EQUALITY-CONSTRAINED SEQUENCES

We first apply our controllable generation framework to constrained sampling, demonstrating its
outstanding efficiency in challenging tasks where the constraint set is extremely sparse.

Consider the state space {1, . . . , N}D comprising sequences of integers x = (x1, . . . , xD), where
we fix the sequence length D to 10. Let the unconditional distribution be the uniform distribution.
In this case, the masked model has a closed form, requiring no training:

p̂(x)d,n = p(Xd = n|XΩ = xΩ) =

{
1/N, d ∈M
δxd,n, d ∈ Ω

.

We study sampling from the uniform distribution restricted to the following set:

SN =
{
x ∈ {1, . . . , N}D : ϕ(x) := x1 − x2x3 − x4 + x5x6x7 + x8 + x9 − x10 = 0

}
.

The ratio between the cardinalities of SN and the entire state space {1, . . . , N}D is extremely low:
approximately 1.07% when N = 10, 0.20% when N = 20, and 0.07% when N = 30.

We use Algorithm 1 to sample from the uniform distribution constrained on SN , and present the
results in Figure 2. We observe that the number of Monte Carlo samples, K, significantly impacts
the quality of generated samples, while the number of steps of unmasking T has a less pronounced
effect, likely due to the short sequence length. Further experimental details are provided in Ap-
pendix B.1.

101 102 103 104

K: # of Monte Carlo estimation

0.2

0.4

0.6

0.8

1.0

%
 o

f s
am

pl
es

 in
 S

N

T = 2
T = 5
T = 8
T = 10

(a) N = 10.

101 102 103 104

K: # of Monte Carlo estimation

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f s
am

pl
es

 in
 S

N

T = 2
T = 5
T = 8
T = 10

(b) N = 20.

101 102 103 104

K: # of Monte Carlo estimation

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f s
am

pl
es

 in
 S

N

T = 2
T = 5
T = 8
T = 10

(c) N = 30.

Figure 2: Result for sampling equality-constrained sequences.

5.2 CONTROLLABLE PROTEIN GENERATION

We employ ESM3 (Hayes et al., 2024) as the underlying protein generation model, which is a pio-
neering generative model for protein, capable of reasoning simultaneously over multiple modalities
including sequence, structure, and function, achieving state-of-the-art performance in multiple pro-
tein generation tasks. In our experiments, we focus on generation in the sequence domain, and fix
the length of sequence to 50. The vocabulary considered is the set of 20 standard amino acids1. We
will consider three tasks of controlled generation: generating hydrophilic and hydrophobic proteins,

1They are: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

sampling proteins with a propensity for alpha-helices, and protein inpainting for higher percentage
of alpha-helices. In all tasks, we impose a constraint based on the instability index (Guruprasad
et al., 1990), a positive number that estimates the stability of a protein sequence. A protein with
value between 0 and 40 is predicted as stable. To evaluate all the required metrics of protein se-
quences, we use the Biopython package (Cock et al., 2009), a widely used tool in computational
molecular biology.

Design of reward function. To begin with, we first introduce a flexible way of designing the reward
function r(·) for a given task. Suppose we have M metrics mi : {1, . . . , N}D → R, i = 1, 2, . . . ,M
that we are interested in, and our constraint is expressed as

M⋂
i=1

{x : mi(x) ∈ Ai},

where Ai ⊂ R is an interval. We propose the following reward function:

r(x) = exp

(
−

M∑
i=1

wi dist(mi(x), Ai)
αi

)
,

where dist(a,A) is the distance from a ∈ R to the interval A ⊂ R, wi > 0 is the weight of the i-th
constraint (mi(x) ∈ Ai), and αi > 0 determines the shape of penalty (e.g., linear or quadratic).

Sampling hydrophilic/hydrophobic proteins. Solubility is one of the key traits of protein and it
is a joint consequence of amino acid sequence composition as well as 3D structure. Protein sol-
ubility is often quantified through the hydropathy index, with high hydropathy values indicating
water-repelling (hydrophobic) and low hydropathy value indicating water-attracting (hydrophilic).
Designing hydrophilic or hydropathic proteins have numerous important applications, yet the tasks
also pose unique challenges (Qing et al., 2022). Low hydropathy value is often desirable for thera-
peutic purposes as it’s central to the protein expression and purification process. Hydrophilicity is
also critical for a longer circulation time in the human bloodstream, potentially indicating a better
therapeutic efficacy (Garidel, 2013). Proteins with high hydropathy value are often designed for
transmembrane proteins, important examples of which include cell surface receptors. Transmem-
brane proteins are often targets of drugs, especially receptors like G-protein-coupled receptors. De-
signing these proteins can help create more effective disease treatments by improving the capability
to modulate cellular signals (Yang et al., 2021).

In the following, we consider the challenging task of generating hydrophilic and hydrophobic pro-
tein sequences. We set the length of protein sequence to 50, and use GRAVY (Grand Average of
Hydropathy) value (Kyte & Doolittle, 1982) to quantify the hydropathy level of the generated se-
quence, which is defined as the average hydropathy value of a peptide or protein. Negative GRAVY
value indicates hydrophilic, while positive one means hydrophobic.

We compare the GRAVY values of the samples generated by ESM3 model in both uncontrolled
and controlled way in Table 1. For controlled generation, we fix the hyperparameters w2 and A2

for promoting low instability index, and experimented with multiple choices of w1 and A1 (see
further details in Appendix B). The table presents the best generation result. Using our proposed
controllable generation method, we successfully sample protein sequences with the desired values
of GRAVY while maintaining protein stablility. We also observe a significant reduction in standard
deviation among the controlled generated samples, highlighting the reliability of our method.

Table 1: Controlled generation for high and low GRAVY values. The metrics are presented in the
form of mean ± std.

Task m1 = GRAVY m2 = instability GRAVY Instability ↓
Uncontrolled / / −0.207± 0.552 41.467± 17.906
Controlled,

high GRAVY
w1 = 30, α1 = 1,

A1 = [1,∞)
w2 = 5, α2 = 2,
A2 = [0, 40]

1.209± 0.223 25.176± 10.094

Controlled,
low GRAVY

w1 = 35, α1 = 1,
A1 = (−∞,−1]

w2 = 5, α2 = 2,
A2 = [0, 40]

−1.261± 0.260 31.569± 8.204

Sampling alpha-helix-rich protein. Proteins fold naturally into unique three-dimensional struc-
tures based on their amino acid sequence composition. This spatial conformation further determines

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Unctrl. Gen.

helix% = 0.32 helix% = 0.32 helix% = 0.30 helix% = 0.36 helix% = 0.38

Ctrl. Gen.

helix% = 0.78 helix% = 0.44 helix% = 0.48 helix% = 0.56 helix% = 0.42

Figure 3: Structure of protein sequences predicted by ESM3. The upper row are the uncontrolled
generated sequences, and the lower row are the controlled generated sequences. The sequences are
randomly chosen.

its molecular and cellular function. Among the possible spatial structures, alpha helix is one of the
most common secondary structures in protein, where the amino acids in the polypeptide chain form
into a coil (helix) through hydrogen bonding. Particularly, designing proteins rich in alpha helices is
of special interest for engineering certain protein functions (Kortemme, 2024), such as binding and
self-assembly (Sakuma et al., 2024). These functions are central to applications such as therapeutic
protein discovery (Walsh & Jefferis, 2006) and alpha-helical nanofiber design (Zhang, 2003).

Motivated by the versatile purpose of protein with rich alpha-helix structures, in the following, we
focus on generating protein sequences with secondary structure being all or predominant alpha-
helices. We compare the metrics of the generated proteins by our proposed method with those
generated by the unconditional model in Table 2. Our controlled generation method successfully
produces sequences with a high predicted percentage of alpha-helices (helix%). To verify the struc-
tural accuracy of the generated sequences, we use the folding algorithm provided by ESM3 to predict
their 3D structures given the sequences. The result is displayed in Figure 3, where we randomly sam-
ple five generated sequences from both the uncontrolled and controlled generated sets and predict
their structure. The controlled generated samples exhibit a higher frequency of alpha-helices in the
predicted structure, confirming the effectiveness of our algorithm. For further details on the figures,
please refer to Appendix B.3.

We also investigate the influence of the hyperparameters wi and Ai in the design of reward function
r(·). Our empirical findings suggest an optimal choice for these parameters, providing valuable in-
sights into designing reward function for general controlled generation problems. Additional details
are presented in Appendix B.2.

Table 2: Controlled generation for high alpha-helix percentage. The metrics are presented in the
form of mean± std.

Task m1 = helix% m2 = instability Helix% ↑ Instability ↓
Uncontrolled / / 0.315± 0.072 41.467± 17.906

Controlled w1 = 50, α1 = 1,
A1 = [0.8,∞)

w2 = 5, α2 = 2,
A2 = [0, 40]

0.600± 0.116 27.387± 12.025

Protein inpainting. We consider the following inpainting problem: using a protein chain with
high beta-sheet percentage as a prompt to generate the remaining positions in a controlled manner
to maximize the percentage of alpha-helices. In particular, the prompt is chosen as a 35-amino-
acid slice from the SM-related protein of P. Abyssi (PDB ID: 1H64), chain A, which consists of
71 amino acids and has a secondary structure composed almost entirely of beta-sheets. The cyan
motif in the subfigure wrapped in red box in Figure 4 highlights the prompt. We use Algorithm 2
to generate alpha-helix-rich proteins based on this prompt, and display the predicted 3D structure

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Visualization of the generated sequence from protein inpainting.

of three randomly generated sequences in the blue box in Figure 4, demonstrating the presence of
alpha-helices in the generated portions. Further experimental details can be found in Appendix B.4.

6 CONCLUSION AND FUTURE WORK

In this paper, we study the task of controllable generation for discrete masked models and introduce
an efficient paradigm for plug-and-play sampling. Our approach is based on mean-field approxima-
tion and iterative masking and remasking, demonstrating promising potential for real-world applica-
tions. Future research directions include exploring alternative remasking strategies beyond uniform
remasking, rigorously analyzing the error bounds of our method, and extending its application to
other domains such as image, molecule, and DNA.

REFERENCES

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. MaskGIT: Masked gener-
ative image transformer. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 11305–11315, 2022. doi: 10.1109/CVPR52688.2022.01103.

Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul
Ye. Diffusion posterior sampling for general noisy inverse problems. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/f
orum?id=OnD9zGAGT0k.

Peter JA Cock, Tiago Antao, Jeffrey T Chang, Brad A Chapman, Cymon J Cox, Andrew Dalke,
Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek Wilczynski, et al. Biopython: freely
available python tools for computational molecular biology and bioinformatics. Bioinformatics,
25(11):1422, 2009.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason
Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to con-
trolled text generation. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=H1edEyBKDS.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N
19-1423.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, 2021. URL https://openreview.net/forum?id=AA
WuCvzaVt.

10

https://openreview.net/forum?id=OnD9zGAGT0k
https://openreview.net/forum?id=OnD9zGAGT0k
https://openreview.net/forum?id=H1edEyBKDS
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://openreview.net/forum?id=AAWuCvzaVt
https://openreview.net/forum?id=AAWuCvzaVt

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Patrick Garidel. Protein solubility from a biochemical, physicochemical and colloidal perspective.
Am Pharm Rev, 2(5):26–28, 2013.

Kunchur Guruprasad, B.V.Bhasker Reddy, and Madhusudan W. Pandit. Correlation between stabil-
ity of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a
protein from its primary sequence. Protein Engineering, Design and Selection, 4(2):155–161, 12
1990. ISSN 1741-0126. doi: 10.1093/protein/4.2.155. URL https://doi.org/10.1093/
protein/4.2.155.

Tomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert
Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years
of evolution with a language model. bioRxiv, pp. 2024–07, 2024.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and
Tim Salimans. Autoregressive diffusion models. In International Conference on Learning Rep-
resentations, 2022. URL https://openreview.net/forum?id=Lm8T39vLDTE.

Yujia Huang, Adishree Ghatare, Yuanzhe Liu, Ziniu Hu, Qinsheng Zhang, Chandramouli Shama
Sastry, Siddharth Gururani, Sageev Oore, and Yisong Yue. Symbolic music generation with non-
differentiable rule guided diffusion. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=g8AigOTNXL.

Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. DNABERT: pre-trained bidirectional
encoder representations from transformers model for dna-language in genome. Bioinformatics, 37
(15):2112–2120, 02 2021. ISSN 1367-4803. doi: 10.1093/bioinformatics/btab083. URL https:
//doi.org/10.1093/bioinformatics/btab083.

Tanja Kortemme. De novo protein design—from new structures to programmable functions. Cell,
187(3):526–544, 2024.

Jack Kyte and Russell F. Doolittle. A simple method for displaying the hydropathic character of
a protein. Journal of Molecular Biology, 157(1):105–132, 1982. ISSN 0022-2836. doi: https:
//doi.org/10.1016/0022-2836(82)90515-0. URL https://www.sciencedirect.com/sc
ience/article/pii/0022283682905150.

Xiner Li, Yulai Zhao, Chenyu Wang, Gabriele Scalia, Gokcen Eraslan, Surag Nair, Tommaso Bian-
calani, Aviv Regev, Sergey Levine, and Masatoshi Uehara. Derivative-free guidance in continuous
and discrete diffusion models with soft value-based decoding. arXiv preprint arXiv:2408.08252,
2024.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom
Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023. doi: 10.1126/sc
ience.ade2574. URL https://www.science.org/doi/abs/10.1126/science.ad
e2574.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=CNicRIVIPA.

Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
for discrete state-space diffusion and flow models. arXiv preprint arXiv:2406.01572, 2024.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
arXiv preprint arXiv:2406.03736, 2024.

Rui Qing, Shilei Hao, Eva Smorodina, David Jin, Arthur Zalevsky, and Shuguang Zhang. Protein
design: From the aspect of water solubility and stability. Chemical Reviews, 122(18):14085–
14179, 2022.

11

https://doi.org/10.1093/protein/4.2.155
https://doi.org/10.1093/protein/4.2.155
https://openreview.net/forum?id=Lm8T39vLDTE
https://openreview.net/forum?id=g8AigOTNXL
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1093/bioinformatics/btab083
https://www.sciencedirect.com/science/article/pii/0022283682905150
https://www.sciencedirect.com/science/article/pii/0022283682905150
https://www.science.org/doi/abs/10.1126/science.ade2574
https://www.science.org/doi/abs/10.1126/science.ade2574
https://openreview.net/forum?id=CNicRIVIPA

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. Biological structure and function
emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of
the National Academy of Sciences, 118(15):e2016239118, 2021. doi: 10.1073/pnas.2016239118.
URL https://www.pnas.org/doi/abs/10.1073/pnas.2016239118.

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. arXiv preprint arXiv:2406.07524, 2024.

Koya Sakuma, Naohiro Kobayashi, Toshihiko Sugiki, Toshio Nagashima, Toshimichi Fujiwara,
Kano Suzuki, Naoya Kobayashi, Takeshi Murata, Takahiro Kosugi, Rie Tatsumi-Koga, et al.
Design of complicated all-α protein structures. Nature Structural & Molecular Biology, 31(2):
275–282, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and gener-
alized masked diffusion for discrete data. arXiv preprint arXiv:2406.04329, 2024.

Andy Shih, Dorsa Sadigh, and Stefano Ermon. Training and inference on any-
order autoregressive models the right way. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 2762–2775. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/123f
d8a56501194823c8e0dca00733df-Paper-Conference.pdf.

Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz, Yongxin
Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable generation.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 32483–32498. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/v202/song23k.html.

Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. Neural discrete representation learning.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/fi
le/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf.

Gary Walsh and Roy Jefferis. Post-translational modifications in the context of therapeutic proteins.
Nature biotechnology, 24(10):1241–1252, 2006.

Dehua Yang, Qingtong Zhou, Viktorija Labroska, Shanshan Qin, Sanaz Darbalaei, Yiran Wu,
Elita Yuliantie, Linshan Xie, Houchao Tao, Jianjun Cheng, et al. G protein-coupled receptors:
structure-and function-based drug discovery. Signal transduction and targeted therapy, 6(1):7,
2021.

Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou, and Dawei Song. A survey of controllable
text generation using transformer-based pre-trained language models. ACM Comput. Surv., 56
(3), October 2023. ISSN 0360-0300. doi: 10.1145/3617680. URL https://doi.org/10.
1145/3617680.

Shuguang Zhang. Fabrication of novel biomaterials through molecular self-assembly. Nature
biotechnology, 21(10):1171–1178, 2003.

Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
sampling. arXiv preprint arXiv:2409.02908, 2024.

Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-
2: Efficient foundation model and benchmark for multi-species genome. arXiv preprint
arXiv:2306.15006, 2023.

12

https://www.pnas.org/doi/abs/10.1073/pnas.2016239118
https://proceedings.neurips.cc/paper_files/paper/2022/file/123fd8a56501194823c8e0dca00733df-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/123fd8a56501194823c8e0dca00733df-Paper-Conference.pdf
https://proceedings.mlr.press/v202/song23k.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://doi.org/10.1145/3617680
https://doi.org/10.1145/3617680

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A ALGORITHM FOR INPAINTING

See Algorithm 2. Its difference with Algorithm 1 is marked in blue.

Algorithm 2: Plug-and-play controllable sampler of discrete masked models, the inpainting
version.
Input: Vocabulary size N , length of sequence D, reward function r(·), masked model p̂(·),

number of unmasking steps T , unmasking schedule γ : [0, 1]→ [0, 1], number of
Monte Carlo samples K, inpainted indices Ω ⊂ {1, . . . , D}, inpainted values
xΩ ∈ {1, . . . , N}|Ω|.

Output: An approximate sample x from the distribution q(x) ∝ r(x)p(x).

1 Initialize x = xΩ ⊕M, the mask positionsM = Ω
∁
, and the observed positions Ω = Ω;

2 for t = 1 to T do
3 Compute the probabilities {p̂(x)d,n ≈ p(Xd = n|XΩ = xΩ) : d ∈M, n ∈ {1, . . . , N}}

from the masked model;
4 for d ∈M, k ∈ {1, . . . ,K} (in parallel) do
5 Independently sample ud

(k) ∼ p̂(x)d,·;
6 end
7 for k ∈ {1, . . . ,K} (in parallel) do
8 Assign the sample u(k) = (ud

(k) : d ∈M) with a weight w(k) = r(xΩ ⊕ u(k));
9 end

10 for k ∈ {1, . . . ,K} (in parallel) do
11 Normalize the weights w(k) by w(k) ←

w(k)∑K
j=1 w(j)

;

12 end
13 Obtain one sample of xM via selecting u(k) with probability w(k);
14 Remask

⌊
γ(t/T)(N − |Ω|)

⌋
positions in xM according to a defined rule (e.g., uniform

remasking: sample a subsetM0 ofM with
⌊
γ(t/T)(N − |Ω|)

⌋
elements uniformly at

random, and remask the positions xd, d ∈M0);
15 Update the masked positionsM← {d : xd = M} and the observed positions Ω←M∁;
16 end
17 return x.

B SUPPLEMENTARY EXPERIMENTAL RESULTS

B.1 IMPLEMENTATION DETAILS OF THE TOY EXAMPLE

We first demonstrate how we choose the reward function r(·). Recall that the equality constraint is
ϕ(x) = 0. Thus, we propose to use the reward function r(x) = exp(−wmax(|ϕ(x)|,m), where the
weight w > 0 and the truncation threshold m > 0. We choose w = 5 and m = 10 throughout all of
our experiments.

We fix the remasking schedule γ(t) = cos
(
π
2 r
)

as suggested by Chang et al. (2022).

The values of K experimented in Figure 2 are 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000,
while the values of T experimented are 2, 5, 8, 10.

B.2 TUNING THE HYPERPARAMETERS FOR CONTROLLED PROTEIN GENERATION

In this section, we study how the hyperparameters wi and Ai in the reward function influences the
quality of controllable generation. In particular, we focus on the task of sampling alpha-helix rich
protein, fix the hyperparameters for m2 = instability, and vary the choice of w1, A1 while fixing
α1 = 1 throughtout the experiments. We experiment w1 ∈ {10, 15, . . . , 45, 50} and A1 = [a1,∞)
for a1 ∈ {0.5, 0.6, . . . , 1.3, 1.4}, and for each pair of (w1, A1), generate 16 protein sequences and

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

10 15 20 25 30 35 40 45 50
w1

0.2

0.3

0.4

0.5

0.6

0.7

He
lix

%
 (m

ea
n

±
sd

)

A1 = [0.5,)
A1 = [0.6,)
A1 = [0.7,)
A1 = [0.8,)
A1 = [0.9,)
A1 = [1.0,)
A1 = [1.1,)
A1 = [1.2,)
A1 = [1.3,)
A1 = [1.4,)

Figure 5: Influence of w1 and A1 on helix% in sampling alpha-helix rich proteins.

10 15 20 25 30 35 40 45 50
w1

10

20

30

40

50

60

70

In
st

ab
ilit

y
(m

ea
n

±
sd

)

A1 = [0.5,)
A1 = [0.6,)
A1 = [0.7,)
A1 = [0.8,)
A1 = [0.9,)
A1 = [1.0,)
A1 = [1.1,)
A1 = [1.2,)
A1 = [1.3,)
A1 = [1.4,)

Figure 6: Influence of w1 and A1 on instability in sampling alpha-helix rich proteins.

evaluate the metrics helix% and instability. The results are displayed in Figures 5 and 6. We find
that

• For a fixed a1, as w1 grows, the helix% of the generated sequences would grow at first, but
may decline when w1 is larger than some threshold. This threshold becomes smaller when
a1 gets larger.

• For small a1, the instability index of the generated sequences does not vary significantly
among different choices of w1. But for large a1, the generated sequences is prone to be-
come more unstable when w1 is large.

These results show that there may exist an optimal choice of the hyperparameters w1 and A1 that
maximizes the helix% of the generated sequences while keeping low instability index, which may
provide insights in designing the reward function r(·) for general controlled generation problems.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B.3 PROTEIN SEQUENCES IN FIGURE 3.

From left to right, the uncontrolled generated sequences are:

1. RAGPRAPPRSDAGRTRGVGRKGQLLVTGKLDAPTLLSLPAAVKSTGATRS
2. MGFPNVPATAAPCPAAPTYEDYAAARGGSLPQVIQHALPVIFTAPLRKST
3. MNQQSTADIRMLIEIGSFMNDPNMMTLINLLILSNVFILLIVIYYRWRSL
4. MKFLARSTAKTEQLRERYLKTDIQILVYETIQGDFESIRLLPASVYNVSL
5. MLPSPAFAISEAQATVESGSIAGPELLAVAVEAPSTQDHRVFAGEETYGV

From left to right, the controlled generated sequences are

1. MINAEAADKDECRLADLLEAKELEMLELKALYLRLEEENKALKELARAMA
2. TACVEKPTHGNPTLHLAAKAFNAEIILDLAFLGQKREKLTQSNLRVISEK
3. MNNDEDLWWKSKGKLINKDKYKNLDNTIMYMKQNMKDIKELKGLETILNA
4. MNDQTREKLLKPGAAEVFAKKYRREKEAIESRAIARVADIDEALKLAAQL
5. MLAEPIGNIVTYAYVIILSILLLVKLGLAENMETSVALTTLLFSNIWQLR

These sequence are randomly sampled from the batch of generated sequences and are not cherry-
picked.

B.4 MORE DETAILS OF PROTEIN INPAINTING

The whole sequence of the protein is ERPLDVIHRSLDKDVLVILKKGFEFRGRLIGYDIHLNVVLA
DAEMIQDGEVVKRYGKIVIRGDNVLAISPT, where the cyan part with 35 amino acids is the prompt
we use for inpainting. We choose the same hyperparameters as in Table 2. From left to right, the
three sequences displayed in the blue box in Figure 4 are

1. MSLAVLKNSEDTLVKAELKGDVSVRGRLIGYDIHLNVVLADAEMIQDGEVVKRYGKIVIR
GDSVVTVHLLTALESQIHEIEDEKAKADRAVKARTKAIKA

2. MEGIALKALMDFQVVMKLKGGKELRGRLIGYDIHLNVVLADAEMIQDGEVVKRYGKIVIR
GTVITLIHIPEEVDFEAALKLLEKKPKKRIRRLKAEKSKK

3. SMSLAMQNLMGKEMKIRLAGGMCMRGRLIGYDIHLNVVLADAEMIQDGEVVKRYGKIVIR
GNCIVYLDLPDSLKDELQSHERVHQYRGLKGAHAVKEKKR

C CODES FOR ALGORITHMS 1 AND 2

1 import tqdm
2 import torch
3 import numpy as np
4
5
6 @torch.no_grad()
7 def ctrl_gen(obtain_logits, obtain_reward, device,
8 B, D, N, K, T,
9 mask_state: int = None,

10 invalid_ids: list = None,
11 inpainting_pos: list = None,
12 inpainting_values: list = None,
13 gamma=lambda r: np.cos(r * np.pi / 2),
14 prob_low_threshold=1e-10,
15 disable_tqdm=False):
16 """
17 B: batch size
18 D: sequence length
19 N: vocabulary size including the masked token
20 K: number of samples for Monte Carlo estimation

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

21
22 Sample from q(x) \\propto r(x) p(x), p(x) comes from the masked model,

and r(x) is the reward function.
23
24 obtain_logits: [B,D] -> [B,D,N], return the logits P(Xˆd|XˆUM)
25 obtain_reward: [*,D] -> [*], return the reward r(X)
26 return: [B,D], the sampled sequence
27
28 By default, mask_state is N-1, and the valid_ids (i.e., real tokens)

are from 0 to N-2.
29 If there are other invalid tokens, one can specify the invalid_ids (

default is [mask_state]).
30 The logits for invalid tokens will be set to -inf.
31 when inpainting_pos is not None, we will always inpaint the values at

these positions with inpainting_values.
32 """
33
34 if mask_state is None:
35 mask_state = N-1
36 if invalid_ids is None:
37 invalid_ids = [mask_state]
38 elif mask_state not in invalid_ids:
39 invalid_ids = invalid_ids.append(mask_state)
40
41 if inpainting_pos is not None:
42 assert len(inpainting_values) == len(inpainting_pos)
43 assert all([0 <= pos < D for pos in inpainting_pos])
44 assert all([0 <= val < N and val !=
45 mask_state for val in inpainting_values])
46 inpainting_values = torch.tensor(
47 inpainting_values, dtype=torch.int).to(device)
48
49 def inpaint(x):
50 """*,D -> *,D inpaint"""
51 if inpainting_pos is None:
52 return x
53 else:
54 shape = x.shape
55 x = x.reshape(-1, D)
56 x[:, inpainting_pos] = inpainting_values
57 return x.reshape(shape)
58
59 D_essential = D - len(set(inpainting_pos))
60 # only the dimensions in dims_to_sample will be sampled. The rest will

be inpainted.
61
62 x = torch.full((B, D), mask_state, dtype=torch.int).to(device)
63 x = inpaint(x)
64 # B,D, initialize with mask_state and inpainted values
65
66 for t in tqdm(range(1, T+1), desc="Unmasking steps", disable=

disable_tqdm):
67 if int(D_essential*gamma(t/T)) == int(D_essential*gamma((t-1)/T)):
68 continue # no more tokens to unmask in this step
69
70 # predict all the masked tokens
71 logits = obtain_logits(x) # B,D,N, p(xˆd | xˆUM)
72 logits[:, :, invalid_ids] = -np.inf
73 masked = x == mask_state # B,D
74 masked_logits = logits[masked] # ?,N
75 samples = torch.distributions.Categorical(logits=masked_logits).

sample(
76 (K,)).to(dtype=torch.int, device=device) # K,?
77 x = x.repeat(K, 1).reshape(K, B, D).to(device) # K,B,D
78 x[:, masked] = samples

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

79 x = x.transpose(0, 1) # B,K,D
80 x = inpaint(x)
81 probs = obtain_reward(x) # B,K, p(y|x)
82 # avoid numerical instability during division
83 probs[probs < prob_low_threshold] = prob_low_threshold
84 weights = probs / probs.sum(dim=1, keepdim=True) # B,K, normalized
85 selected = torch.distributions.Categorical(probs=weights).sample()

B
86 x = x[torch.arange(B), selected] # B,D
87
88 # remask the tokens based on their confidence scores
89 confidence = torch.ones_like(x, dtype=torch.float64).to(device)
90 confidence[masked] = torch.rand_like(
91 confidence[masked], dtype=torch.float64).to(device)
92 low_k_values, low_k_indices = torch.topk(
93 confidence, k=int(D_essential*gamma(t/T)), dim=-1, largest=False

)
94 x[torch.arange(B).unsqueeze(1), low_k_indices] = mask_state
95 return x

17

	Introduction
	Preliminaries and Problem Formulation
	Discrete Masked Models
	Controllable Generation

	Controllable Generation for Masked Models
	Existing Plug-and-play Samplers for Continuous Diffusion Models
	Controllable generation for Masked Models

	Related Work
	Experimental Results
	Toy Experiment on Sampling Equality-constrained Sequences
	Controllable Protein Generation

	Conclusion and Future Work
	Algorithm for Inpainting
	Supplementary Experimental Results
	Implementation Details of the Toy Example
	Tuning the Hyperparameters for Controlled Protein Generation
	Protein Sequences in fig:helix.
	More Details of Protein Inpainting

	Codes for alg:sample,alg:sampleinpaint

