
Neural Networks 169 (2024) 143–153

A
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

BI-FedGNN: Federated graph neural networks framework based on Bayesian
inference
Rufei Gao a, Zhaowei Liu a,∗, Chenxi Jiang a, Yingjie Wang a, Shenqiang Wang b, Pengda Wang c

a School of Computer Science and Engineering, Yantai University, Shandong, China
b Institute of Network Technology (Yantai), Shandong, China
c University of Science and Technology of China, Anhui, China

A R T I C L E I N F O

Keywords:
Graph neural networks
Industrial Internet of Things
Federated graph learning
Bayesian inference

A B S T R A C T

The development of the Industrial Internet of Things (IIoT) in recent years has resulted in an increase in the
amount of data generated by connected devices, creating new opportunities to enhance the quality of service
for machine learning in the IIoT through data sharing. Graph neural networks (GNNs) are the most popular
technique in machine learning at the moment because they can learn extremely precise node representations
from graph-structured data. Due to privacy issues and legal restrictions of clients in industrial IoT, it is
not permissible to directly concentrate vast real-world graph-structured datasets for training on GNNs. To
resolve the aforementioned difficulties, this paper proposes a federal graph learning framework based on
Bayesian inference (BI-FedGNN) that performs effectively in the presence of noisy graph structure information
or missing strong relational edges. BI-FedGNN extends Bayesian Inference (BI) to the process of Federal
Graph Learning (FGL), adding random samples with weights and biases to the client-side local model training
process, improving the accuracy and generalization ability of FGL in the training process by rendering the
graph structure data involved in GNNs training more similar to the graph structure data existing in the real
world. Through extensive experimental tests, the results show that BI-FedGNN has about 0.5%–5.0% accuracy
improvement over other baselines of federal graph learning. In order to expand the applicability of BI-FedGNN,
experiments are carried out on heterogeneous graph datasets, and the results indicate that BI-FedGNN can also
have at least 1.4% improvement in classification accuracy.
1. Introduction

GNNs have been extensively utilized to model graphically structured
data in a variety of scenarios and applications, including recommenda-
tion systems (Sun et al., 2023; Wu, Sun, Zhang, Xie, & Cui, 2022), node
classification (Shen, Pan, Choi, & Zhou, 2023; Wang et al., 2023), and
drug discovery (Gaudelet et al., 2021). With the continuous increase of
graph-structured data, how to retain rich graph topology information
while ensuring a small computational cost is an urgent problem, and
graph-based representation learning methods can help solve this prob-
lem (Tang et al., 2022, 2023). Most existing GNNs follow the principle
of centralized training, which requires the collection of graph data
before training (Li, Liu, Ma, Yang, & Sun, 2022; Xu, Hu, Leskovec, &
Jegelka, 2019) to select and learn node features (Yan et al., 2023; Zhou,
Song, Yu, & Zheng, 2023). However, the vast majority of graph struc-
ture information in IIoT environments contains private information
about the user, and this information is held by different information
managers and cannot be trained directly, preventing traditional GNNs

∗ Corresponding author.
E-mail addresses: gaorufei@s.ytu.edu.cn (R. Gao), lzw@ytu.edu.cn (Z. Liu), 17863565053@s.ytu.edu.cn (C. Jiang), wangyingjie@ytu.edu.cn (Y. Wang),

wsqaahh@foxmail.com (S. Wang), wangpengda@cetccloud.com (P. Wang).

from training powerful models through collective intelligence (Chang
et al., 2023; Zhang et al., 2021). In the meantime, graph structure
information in the IIoT is typically extracted from complex interaction
systems that contain uncertainties or errors, resulting in the prevalence
of missing, meaningless, or even spurious edges in the graph structure
data, which affects the precision or accuracy of GNN training. As shown
in Fig. 1. How to effectively solve distributed, error-containing graph
structure data has a significant impact on machine learning in an IIoT
environment.

As a new distributed machine learning paradigm, Federated Learn-
ing (FL) allows clients to collaboratively train globally shared models
or personalized models in a decentralized manner through various
privacy-preserving strategies (Wang, Wang, et al., 2022) without con-
tributing their own local data (Tun, Nguyen, Thwal, Choi, & Hong,
2023). This feature enables the application of FL to graph data to
alleviate the data isolation problem and secure the proprietorship of
vailable online 18 October 2023
893-6080/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2023.10.024
Received 19 June 2023; Received in revised form 1 October 2023; Accepted 17 Oc
tober 2023

Neural Networks 169 (2024) 143–153R. Gao et al.
Fig. 1. The differences between real-world graph structure data and actual trained graph structure data include noise and the absence of strong relationship edges. (a) represents
graph structure data in the real world; (b), (c), and (d) are three types of biased data, respectively. (b) represents the missing problem of strong relational edges, i.e., 𝐵2 and
𝐶1actually have one edge, but the edge may be missing in the extraction process in the complex industrial internet of things environment; (c) is a problem with noise edges,
i.e., 𝐴1 and 𝐶2 In practice, there are no edges, but due to the influence of noise, the extracted training data has a noisy edge; (d) is a mixture of two problems, namely 𝐴1 and
𝐴3 The actual edge is missing, 𝐴3 and 𝐶1 There is actually no edge, but there is a noisy edge.
graph data for each client. Federated graph learning, an application of
FL to graph data (Fu, Zhang, Dong, Chen, & Li, 2022), has emerged
as a highly promising avenue for further investigation of GNNs on
decentralized graph data. The benefit of FGL is that it enables users
to maintain their own private data locally while enhancing overall
performance through collaboratively learning globally shared mod-
els (He, Ceyani, Balasubramanian, Annavaram, & Avestimehr, 2022;
Wu, Wu, et al., 2022). This mechanism enables FGL to address the
privacy and security concerns associated with graphical data in order
to avoid the issues and risks associated with data centralization, which
is essential for information processing in the IIoT. Therefore, FGL has
a prospective application and can play a significant role in social
networks, recommender systems, industrial IoT, etc. Additionally, it
provides researchers with a new research direction.

The Non-iid data issue is a significant obstacle in FL (Jing et al.,
2023; Shu et al., 2023). Depending on the client’s behaviors or prefer-
ences, the client’s local dataset may be vastly different, which might
result in training instability and accuracy degradation. For instance,
client data may originate from a variety of domains (Kairouz et al.,
2021; Li, JIANG, Zhang, Kamp, & Dou, 2021), resulting in vastly
different distributions of datasets. Due to the diversity of graph data,
unfortunately, the issue of Non-iid data also exists in FGL (Xie, Ma,
Xiong, & Yang, 2021). Different companies or platforms, for instance,
maintain vast amounts of social network data, which vary significantly
due to diverse data acquisition methods and purposes. In the interim,
graph data in GNNs may contain issues such as absent and meaningless
information, a challenge also faced by FGL (Fang & Ye, 2022; Peng,
Wang, Dvornek, Zhu, & Li, 2022). A large quantity of data noise or
missing graph data may lead to errors in GNN’s model training based
on their own local subgraphs by users participating in FGL, which in
turn leads to inaccurate results for FGL as a whole. Consequently, over-
coming Non-iid data and optimizing the graph structure are extremely
advantageous for FGL.

Nevertheless, learning the most suitable graph structure for GNNs
is a difficult endeavor that necessitates the resolution of two obstacles.
The first problem is how to generate the graph. Most of the current
approaches parameterize each edge locally (Franceschi, Niepert, Pontil,
& He, 2019; Jiang, Zhang, Lin, Tang, & Luo, 2019) without considering
the underlying generation mechanism of the graph. As a result, these
methods are less tolerant of noise and sparsity. Solving this problem
requires considering the graph generation mechanism (Xie & Tu, 2022),
for example, using methods such as configuration models (Casiraghi &
Nanumyan, 2021) to drive the global structure of the learned graph
while keeping the rules, thus making the learned graph more robust.
The second issue is how to inject multiparty information. Learning
graph structure from a single data source can lead to inaccurate graphs.
To improve the reliability of the graph, more comprehensive infor-
mation should be taken into account. Current methods (Jin et al.,
144
2020) mainly use feature similarity to inject multiparty information,
but this approach has some limitations. A superior method should
incorporate data from multiple data sources to increase the precision
and robustness of the learned graphs. In summary, solving the above
two problems is the key to learning the optimal graph structure of
GNNs. Future research can explore more effective graph generation
methods and strategies for injecting multi-party information to further
improve the performance of GNNs.

To further address the training effect of data differences on the
overall model during federal graph learning to improve the accuracy
of node classification. In this paper, Bayesian inference-based federal
graph learning (BI-FedGNN) is proposed. Unlike the traditional federal
graph learning process, BI-FedGNN reduces the impact of noise or
missing edges on model training by using Bayesian inference in the
process of GNN model training based on the client’s own local sub-
graph. During the training process, Gaussian-distributed weights and
biases are introduced to the node features that make up the model, and
these randomly sampled weights and biases are distributed a priori and
a posteriori by BI to obtain different model instances, which makes the
trained model possess uncertainty capability. To prevent training bias,
information shared by other clients participating in FL is injected as
multi-order neighborhood information into the model training proce-
dure. The above multi-view information is jointly considered as the best
graph information of GNNs for client-side local training. The training
parameters are subsequently uploaded to the central server, which
aggregates them and transmits them to clients who are participating
in the training sessions so that their models can be updated. This
procedure is repeated until the model converges, thereby increasing
the precision of FGL training as a whole. The following are the three
principal contributions of this paper:

∙ This paper applies the BI method to the process of local model
training for FGL clients, enabling the clients participating in FGL
training to obtain better GNN models when training based on
local subgraphs, thereby improving the overall training efficiency
of the federal graph learning framework.

∙ BI-FedGNN, a novel federal graph learning framework, is pro-
posed in this paper, which improves the uncertainty of local
model training by adding randomly sampled weights and biases
to the subgraphs owned by the client. In addition, it combines
multi-order neighborhood information with information shared
by other clients during the client’s local model training, increasing
the accuracy of the model’s training and reducing the impact of
data noise or missing strong relational edges on the training of
the FGL model.

∙ In this paper, a regular term for KL divergence loss is added to the
loss function to prevent the model from being overfitted during

Neural Networks 169 (2024) 143–153R. Gao et al.

2

o
L

2

m
p
a
t
e
Y
n
a
c
f
s
p
m
i
d

2

t
v
t
H
g
u
e
d
2
r
r
p
n
w
t
c
F
L
g
G
g
d
c
i
(
F
T
s
c
E
e
g
c
t

training, and the efficacy of BI-FedGNN is validated by comparing
it to the state-of-the-art federal graph learning framework in a
number of challenging benchmark tests.

. Related work

On the basis of the work presented in this paper, a concise summary
f the most relevant work on Graph Neural Networks, Federal Graph
earning, and Bayesian Inference is provided.

.1. Graph neural networks

Graph Neural Networks are an effective neural architecture for
ining graph structured data, extracting and uncovering features and
atterns in graph structured data, while capturing higher order content
nd topological information on the graph. Most of GNNs discover
heir representation of nodes through aggregating and transforming the
mbeddings of adjacent nodes and themselves. For instance, GCN (Wan,
uan, Zhan, & Chen, 2022) aggregates messages by averaging over
eighboring representations, GAT (Ding et al., 2023) aggregates char-
cteristics of neighboring nodes to the central vertex based on attention
oefficients, and GIN (Xu et al., 2019) aggregates data using summation
unctions. GNNs can achieve outstanding performance when learning a
et of graphs in a shared feature space when employing such message-
assing features. However, the feature-based message initialization
echanism tightly couples the feature space and learnable parameters

n GNNs, making it difficult to train GNNs on graph data from multiple
omains (Liu, Ding, Liu, & Pan, 2023; Qiu et al., 2020).

.2. Federated graph learning

Federated Learning has garnered significant attention for its po-
ential to facilitate collaborative training while protecting data pri-
acy (Kairouz et al., 2021; Liang et al., 2023). Traditional federa-
ion learning algorithms, such as FedAvg (McMahan, Moore, Ramage,
ampson, & y Arcas, 2017), perform local training on the client side,
lobal parameter averaging on a central server, and so on iteratively
ntil the model converges. However, the current assumptions of fed-
ration learning are based on some completely ‘‘clean’’ datasets and
o not consider the problem of label noise in the data (Fang & Ye,
022). Due to the different behaviors and habits of customers in the
eal world, each customer’s data will have different labels and features,
esulting in data heterogeneity (Wang, Liu, Xu, & Yan, 2022), which
resents another significant challenge in FL: federated learning with
on-iid data (Li et al., 2020). Federated Graph Learning combines FL
ith graph learning to support distributed GNN training and extend

he application scenario of GNNs (Fu et al., 2022). Existing FGL can be
lassified into three types:inter-graph FGL (Xie et al., 2021), intra-graph
GL (Pei et al., 2021), and graph structure FGL (Meng, Rambhatla, &
iu, 2021). In inter-graph FGL, each client possesses a collection of
raphs and participates in federated training to acquire more effective
NNs for modeling local models. The most common use of the inter-
raph FGL framework is within the biochemistry industry, in which
ata sharing between companies is not possible due to commercial
ompetition but is possible under the inter-graph FGL framework. In
ntra-graph FGL, every client possesses a portion of the graph’s data
i.e., sub-graphs), which can be specifically divided into horizontal
GL (Tan et al., 2022) and vertical FGL (Chen, Zhou, et al., 2022).
he subgraph data held in each client in the horizontal FGL can be
een as divided horizontally from the underlying whole graph (the
onnections between the subgraphs are lost and can strictly overlap).
ach subgraph in the vertical FGL is parallel, has a large overlap with
ach other, and can be seen as being divided from the underlying whole
raph divided vertically. Intra-graph FGL can be applied to financial
rime detection. In graph structured FGL, graphs are used to model
he topological relationships between clients, i.e., to aggregate local
145

[

models using GNNs based on the topological relationships of clients.
Examples of common application circumstances include images (Chen,
Long, et al., 2022) and traffic data. This paper focuses primarily on
intra-graph FGL, with an emphasis on learning better local models to
enhance the overall computational precision of FGL.

2.3. Bayesian inference

Bayesian Inference is an approach to statistical inference based
on Bayes’ theorem, which can infer the probability distribution of
an unknown quantity based on known data and prior knowledge. In
Bayesian inference, the prior probability distribution represents the
initial beliefs about the unknown quantity, while the posterior prob-
ability distribution represents the update of beliefs about the unknown
quantity after the data are observed. By continuously iterating this
process, the uncertainty can be gradually reduced, and increasingly
accurate probability distributions can be obtained. The combination
of Bayesian inference and graph convolutional network (GCN) can be
used to infer the potential representation of nodes and edges in graph
data. Traditional GCN methods typically utilize the information of local
neighbor nodes to update the representation of each node; however,
this approach may disregard the global topology and the information
of interfering nodes. Incorporating BI into the model training procedure
of GNNs (Liu, Yang, Wang, Lu, & Li, 2023; Liu, Yang, Wang, & Su, 2022;
Wang et al., 2021) can not only take into account the global topology,
but also prevent overfitting and enhance the model’s robustness by
utilizing the prior distribution. Specifically, these methods generally
treat node representations as random variables and use BI to update
the posterior probability distribution of node representations. Through
continuous iterative updates, more robust and accurate node repre-
sentations can be obtained. This combination of methods has a wide
range of applications in industrial IoT, social networks, recommender
systems, bioinformatics, and other fields.

3. Methodology

In this chapter, BI-FedGNN, a framework for federated graph learn-
ing based on Bayesian inference, is introduced in detail.

3.1. Research objectives

The implementation background of this article is that in the indus-
trial Internet of Things environment, most of the data in the Industrial
Internet of Things is owned by different data holders, and centralized
training is not feasible. The goal is to improve the uncertainty of
the client’s local model and use Bayesian inference to eliminate the
impact of client local data participating in training on local model
training due to noise or uncertain information. At the same time, KL-
Loss is used as the regularization term of the overall loss function
to prevent over-fitting problems in training. Thereby improving the
training effect of federated graph learning in the industrial Internet of
Things environment.

3.2. Problem formulation

Let 𝐺 = (𝑉 ,𝐸,𝑋) be a graph, where 𝑉 represents a set of nodes, 𝑉 =
{𝑣1, 𝑣2,… , 𝑣𝑛}, 𝐸 is the group of edges, 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑛} represents
the characteristic matrix of the node, 𝑥𝑖 is the characteristic vector of
node 𝑣𝑖. Relationships between nodes, which can be represented by
a critical matrix 𝐴, are characterized by edges, where 𝐴𝑖𝑗 represents
the relationship between nodes 𝑣𝑖 and 𝑣𝑗 .𝑌𝑛 = {𝑦1, 𝑦2,… , 𝑦𝑛} is the
label of the node, where 𝑦𝑖 is the label of node 𝑣𝑖. Through graph 𝐺
and label 𝑌𝑁 , GNNs can learn the optimal adjacency matrix 𝑆 ∈ 𝑆 =

𝑁×𝑁
0, 1] and GNNs parameters 𝛩, to enhance the performance of node

Neural Networks 169 (2024) 143–153R. Gao et al.
Fig. 2. The basic structure of the BI-FedGNN model. BI-FedGNN is divided into two parts, namely client local model parameter training and server global model parameter
aggregation. The client uses a Bayesian GNN model to improve the uncertainty of local model training by randomly sampling weights and biases that conform to a Gaussian
distribution during local model training. At the same time, in order to avoid the problem of over-fitting, the KL divergence loss is added as a regularization term to the overall loss
function. The differential privacy method is used to upload local parameters to the server, and the server uses the Fedavg strategy to achieve aggregation of global parameters.
classification for unmarked nodes. The function of objectiveness can be
expressed as follows:

𝑚𝑖𝑛(𝐴,𝑋, 𝑌𝑁) =
∑

𝑣𝑖∈𝑉
𝛤 (𝑓𝛩(𝑋,𝑆)𝑖, 𝑦𝑖) (1)

Where 𝑓𝛩(𝑋,𝑆)𝑖 is the prediction of node 𝑣𝑖, and 𝛤 (𝑝𝑟𝑒, 𝑙𝑎𝑏𝑙𝑒) is the
difference between the measured value and the true label, such as KL
divergence loss.

3.3. Overview

During training, the majority of FGL approaches consider the graph
owned by each client to be the most accurate description of the rela-
tionships between nodes. However, data in industrial IoT scenarios is
frequently imperfect, with some false edges or absent strong relational
edges in the graph, causing FGL to produce subpar classification results.
In this paper, a Bayesian inference-based approach is proposed to
mitigate the impact of noise or missing edges in the training data on
FGL. This model can model the uncertainty of weights and biases, with
prior and posterior distributions, to enhance the model’s reliability and
precision. An example of the BI-FedGNN model is shown in Fig. 2.
There are a variety of FGL models currently available, but this paper
focuses on the GCN-based federated graph learning framework.

3.4. Bayesian linear layer

Each parameter is modeled as a variable at random with prior
and posterior distributions. In addition to optimizing the posterior
distribution of the parameters during training, the posterior distribution
of the parameters is also estimated as the output of the model. Thus,
during inference, it is possible to sample from the posterior distribution
of the parameters to acquire multiple instances of the model, thereby
capturing the model’s uncertainty. This method can better consider the
model’s generalization ability on unseen data, thereby improving the
model’s robustness and reliability.

In the Bayesian linear layer, the characteristic matrix of the graph is
first initialized with weights 𝑊 ∈ R𝐷𝑖𝑛×𝐷𝑜𝑢𝑡 and biases 𝐵 ∈ R𝐷𝑜𝑢𝑡 . These
weights and biases are initialized using a random Gaussian distribution,
and linear transformations of input data are achieved using different
weights and biases to obtain better model output. At the same time, the
weights and biases in this layer are assigned a priori and a posteriori
probability distribution. Assume that the input of the Bayesian linear
layer is 𝑋 ∈ R𝑛×𝑑 , where 𝑛 represents the total amount of nodes and
146
𝑑 represents the dimension of each node’s feature vector. The weights
and biases of this layer obey a Gaussian distribution with mean 0 and
standard deviations of 𝜎𝑤 and 𝜎𝑏, respectively. The specific forward
propagation process can be expressed as:

𝑍 = 𝑋𝑊 + 𝐵 (2)

Wherein 𝑊 ∈ R𝑑×ℎ represents the weight matrix, 𝐵 ∈ Rℎ represents the
offset vector, and 𝑍 ∈ R𝑛×ℎ represents the output of the layer. However,
in the Bayesian linear layer, both 𝑊 and 𝐵 are random variables, so
it is necessary to give their prior distribution 𝑝(𝜃). Taking 𝑝(𝑊) as an
example, 𝑝(𝐵) is also similar. In this paper, the Gaussian distribution is
used as a prior distribution:

𝑝(𝑊 |𝛼) =  (0, 𝛼−1𝐼) (3)

Where 𝛼 is a hyperparameter that controls the variance of the prior
distribution, and 𝐼 is the identity matrix. For each input 𝑋, a posterior
distribution can be obtained by substituting a prior distribution into
Bayesian inference:

𝑝(𝑊 |𝑋, 𝑌) =
𝑝(𝑌 |𝑋,𝑊)𝑝(𝑊 |𝛼)

𝑝(𝑌 |𝑋)

=  ((𝜇 = 1
𝜎2

⋅ 𝛴 ⋅𝑋𝑇 𝑌), 𝛴 = (1
𝛼
⋅ 𝐼 + 1

𝜎2
⋅𝑋𝑇𝑋)−1)

=  (𝜇,𝛴)

(4)

Therefore, a posterior distribution is also a Gaussian distribution,
where 𝑌 ∈ R𝑛×𝑐 represents the label of the sample, 𝑐 represents the
number of categories, and 𝜇 and 𝛴 are the mean and covariance
matrices of the posterior distribution, respectively. By randomly sam-
pling a posterior distribution, a set of weight parameters 𝑊 𝑠 can be
obtained. By substituting 𝑊 𝑠 into the forward propagation formula, the
corresponding output 𝑍𝑠 can be obtained:

𝑍𝑆 = 𝑋𝑊 𝑆 + 𝐵𝑆 (5)

Where 𝐵𝑠 represents the offset vector sampled from a prior distribution.
Using the Monte Carlo technique, the final output of this layer can be
obtained by averaging the sampled multiple sets of output 𝑍𝑠:

𝑍 = 1
𝑆

𝑆
∑

𝑠=1
𝑍𝑆 (6)

𝑆 represents the number of total samples, and finally transmits the
output 𝑍 of this layer to the next layer for further forward propa-
gation. At the same time, this work also randomly samples a set of

Neural Networks 169 (2024) 143–153R. Gao et al.
Fig. 3. Overall framework of Bayesian GNN module.
weighted and biased noise to add to the final weights and biases,
and re-parameterize the weights and biases. At this time, the weights
and biases are random variables, not determined values. During each
forward propagation process, each calculation will sample from the
distribution of the weights and biases, so the results obtained from
each forward propagation are also random. The purpose is to introduce
randomness to represent the uncertainty of weights and biases, so as
to better and more accurately describe the uncertainty of the model.
Specifically, it can be expressed as:

𝑤 = 𝜇𝑤 + 𝜎𝑤 ⊙ 𝜖𝑤 (7)

𝑏 = 𝜇𝑏 + 𝜎𝑏 ⊙ 𝜖𝑏 (8)

Where 𝜇𝑤, 𝜇𝑏 is the mean value of weight and bias, 𝜎𝑤, 𝜎𝑏 is the
standard deviation of weight and bias, 𝜖𝑤, 𝜖𝑏 is the noise value of
random sampling weight and bias, and ⊙ is the multiplication of
elements.

3.5. Bayesian GNN module

There are many existing GNNs models, such as GAT, GCN, Graph-
SAGE, and so on. This article selects a representative GCN as the
backbone for local client model training in federated graph learning.
When the client performs training based on local subgraphs, the orig-
inal graph G = (𝑉 ,𝐸,𝑋) is input into the Bayesian GCN module for
local node classification training. After training is complete, the model
parameters are transmitted to the central server using differential pri-
vacy. The central server aggregates and then issues all parameters. The
client then completes the local model update based on the newly issued
parameters. This process is iterative until the final model converges.
The detailed model is shown in Fig. 3.

Specifically, GCN employs the neighborhood aggregation strategy,
which repeatedly updates the representation of a node by aggregat-
ing its neighborhood representation and its own data. The 𝐿-layer
aggregation rule of GCN can be expressed as:

𝐻 (𝐿) = 𝜎(�̃�− 1
2 �̃��̃�− 1

2 𝐻 (𝐿−1)𝑊 (𝐿)) (9)

Wherein, �̃� = 𝐴+ 𝐼𝑁 is the normalization matrix of adjacency of graph
𝐺 that has an added self-relationship, �̃�𝑖𝑖 =

∑

𝑗�̃�𝑖𝑗 . 𝑊 is a trainable
weight matrix, 𝜎 is an activation function, and GCN model parameter
𝛩 = (𝑊 (1),𝑊 (2),… ,𝑊 (𝐿)) can be trained by gradient descent. The
matrix represented by nodes in layer 𝐿𝑡ℎ is 𝐻 (𝐿) ∈ R𝑁×𝑑 , and in layer
0 there is 𝐻 (0) = 𝑋. The activation function of the final layer of an
𝐿-layer GCN is softmax, and the ultimate prediction result is:

𝑍 = 𝑓 (𝑋,𝐴) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(�̃�ReLU(�̃�𝑋𝑊 (0))𝑊 (𝐿−1)) (10)

In this paper, the influence of subgraph data owned by the local
client containing some noise or the lack of strong relational edges on
model training is considered. Instead of using the traditional determin-
istic linear layer to process the data, the Bayesian linear layer proposed
in Section 4.3 is used, which can provide uncertainty estimates of the
model and can also effectively prevent overfitting problems to a certain
147
extent, thus improving the overall robustness and generalization ability
of the FGL framework.

Specifically, input the node feature matrix 𝑋 and edge index matrix
𝐸 of graph 𝐺 into the Bayesian GCN model. Firstly, input the node
feature matrix 𝑋 into the Bayesian Pre layer, where weights and biases
are randomly sampled and combined with the incoming node feature
matrix to map node moments to the hidden layer feature matrix 𝑋𝑛ℎ𝑖𝑑
in the 𝑛ℎ𝑖𝑑 dimension. Subsequently, the hidden layer feature matrix
𝑋𝑛ℎ𝑖𝑑 and edge index matrix 𝐸 are input into the (𝑛−1) layer GCNConv
layer, and each layer GCNConv layer performs convolution operations
on the input data, ultimately outputting an 𝑛ℎ𝑖𝑑 dimensional node
feature matrix 𝑋𝑁𝐹𝑀 . Input 𝑋𝑁𝐹𝑀 into the Bayesian Post layer, and
the node feature matrix will be mapped to the output feature matrix
𝑋𝑛𝑐𝑙𝑎𝑠𝑠 of the nclass dimension. By employing the softmax function,
it is possible to determine the probability distribution of each node
belonging to each category. By using the backpropagation function,
the gradient of trainable parameters in the model trained by the client
based on local subgraphs can be obtained. The gradient is then up-
loaded to the centralized server in order to aggregate global parameters
for the model. The client is then sent the global model parameters for
the following round of training, and this procedure is repeated until all
of the models converge. As this article mainly focuses on intra-graph
FGL, which is a horizontal federated graph learning model, it can be
represented as:

w𝑡+1 =
𝑀
∑

𝑚=1

𝑁𝑚
𝑁

⋅ w𝑡,𝑚 (11)

Among them, w𝑡,𝑚 is the local model parameter of the 𝑚 client after
𝑡 rounds of updates, 𝑁𝑚 represents the amount of data transmitted by
client 𝑚, 𝑁 is the sum of the numbers of all clients, and w𝑡+1 is the
global model parameter aggregated by the central server.

3.6. Regularization of loss function

In this paper, the model’s loss function consists primarily of two
components: negative logarithmic likelihood loss and KL divergence
loss. The negative logarithmic likelihood loss measures the difference
between the predicted results of the model and the actual label. This
loss converts the difference between the probability distribution of the
model prediction and the one-hot encoding of the actual label into a
scalar value, which can be shown as follows:

𝑛𝑙𝑙 = − 1
𝑁

𝑁
∑

𝑖=1

𝐶
∑

𝑗=1
𝑦𝑖𝑗 log(�̂�𝑖𝑗) (12)

Among them, �̂� represents the output of the model, 𝑦 represents
the real label, 𝑁 represents the quantity of specimens, 𝐶 indicates
the number of classes, 𝑦𝑖𝑗 represents whether the 𝑖 sample belongs to
category 𝑗, and �̂�𝑖𝑗 represents the prediction probability of the model for
the 𝑖 sample belonging to category 𝑗. The KL divergence loss quantifies
the difference between the model’s predicted and prior distributions.
KL divergence is a metric for measuring the distance between two

Neural Networks 169 (2024) 143–153R. Gao et al.
Table 1
Synopsis of datasets.

Datasets Nodes Edges Classes Features Train Val Test

CiteSeer 3327 12,431 6 3703 100 100 800
PubMed 19,717 108,365 3 500 100 100 800
Coauthor-CS 18,333 182,121 15 6805 100 100 800
Coauthor-Physics 34,493 530,417 5 8415 100 100 800

DBLP 26,128 239,566 4 4231 100 100 800
probability distributions, which limits the parameter space of a model.
In particular, it can be stated as:

𝑘𝑙 = 𝐾𝐿(𝑞(𝜃𝑖) ∥ 𝑝(𝜃)) = 1
2

𝐷
∑

𝑗=1
(log

𝜎2𝑗
�̃�2𝑗

+
�̃�2𝑗 + (𝜇𝑗 − �̃�𝑗)

2

𝜎2𝑗
) (13)

Among them, 𝑞(𝜃𝑖) represents the posterior distribution of the 𝑖
sample, 𝑝(𝜃) represents the prior distribution, 𝜇𝑗 and 𝜎𝑗 represent the
mean and standard deviation of the posterior distribution, �̃�𝑗 and �̃�𝑗
represent the mean and standard deviation of the prior distribution,
and 𝐷 indicates the total amount of model parameters. Therefore, the
total loss function can be expressed as:

 = 𝑛𝑙𝑙 + 𝑘𝑙 (14)

As a regularization term, the KL divergence loss is incorporated into
the total loss function. By controlling the size of the regularization
coefficient, the complexity of the model can be controlled, and then the
fitting ability and generalization ability of the model can be controlled.

In general, NLL-loss measures the difference between the real data
labels and the labels predicted by the Bayesian GNN model to prevent
the labels predicted by the model from being far different from the
actual labels. At the same time, since the weights and biases added
to nodes in this article are randomly sampled, KL-loss is used to
measure the difference between the predicted distribution and the prior
distribution of the model to prevent over-fitting problems. Therefore,
KL-loss is used as a regularization term of the overall loss function, and
NLL-loss and KL-loss are combined for better training of the model.

4. Experiment

In this section, a significant quantity of experiments will be con-
ducted to evaluate the effectiveness of BI-FedGNN. In the FGL node
classification task in the graph, BI-FedGNN was compared with existing
methods to evaluate whether the classification results of BI-FedGNN
were more accurate, and the mechanism and properties of the proposed
model were further analyzed.

4.1. Experimental setup

In this subsection, the datasets, baseline, and experimental specifics
utilized in the experiment are described.

4.1.1. Datasets
This work validated the proposed BI-FedGNN on five open graph

datasets. Firstly, the dataset was processed to generate subgraphs cen-
tered around a certain node for model training in FGL. Classify the
graph data structure based on whether or not it is isomorphic. Table 1
provides a summary of the dataset’s statistical information.

∙ CiteSeer (Giles, Bollacker, & Lawrence, 1998) and PubMed (Sen
et al., 2008) are literature reference network datasets. Nodes
represent the literature of the paper, while edges represent the
citation relationship. Labels are academic disciplines, and node
148

characteristics are a bag-of-words depicting documents.
∙ Coauthor-CS (Shchur, Mumme, Bojchevski, & Günnemann, 2018)
and Coauthor-Physics (Shchur et al., 2018) are datasets that
contain coauthor ship relationships. Authors are represented by
nodes, while coauthor ship relationships are represented by edges,
labels represent the number of paper categories, and node char-
acteristics are a bag-of-words representation of papers’ essential
phrases.

∙ DBLP (Tang et al., 2008) is a collection of authors retrieved from
the DBLP website. If it is a coauthor relationship, there is an edge
between the two authors.

Please note that based on isomorphism, these data are divided
into two categories, with CiteSeer, PubMed, Coauthor CS, and Coau-
thor Physics being isomorphic datasets and DBLP being heterogeneous
datasets.

4.1.2. Baselines
In order to better evaluate BI-FedGNN, it was compared with four

baseline federated graph learning methods, including GCN-FGL, GAT-
FGL, SAGE-FGL, and SGC-FGL (He et al., 2021). The final comparison
results were obtained through the Micro-F1 and Macro-F1 values.

∙ GCN-FGL: During local model training, the feature vectors of
the nodes are derived by considering the attributes of the nodes
themselves and the attributes of the nodes’ neighboring nodes.

∙ GAT-FGL: FGL framework for applying attention operations to
graph nodes during client-side local model training.

∙ SAGE-FGL: The framework is comprised of sampling and aggrega-
tion, first sampling the neighbors using the connection informa-
tion between nodes and then continuously fusing the information
of neighboring nodes through a multi-layer aggregation function.

∙ SGC-FGL: A simplified version of the GCN that eliminates nonlin-
earity and collapses the weight matrix to reduce the additional
complexity of the original GCN.

4.1.3. Implementation details
All the experiments were run on a GPU server with two NVIDIA

GeForce RTX 3090 GPUs and a 12th Gen Intel(R) Core(TM) i9-12900K
24-core processor. Python and PyTorch have respective versions of
3.8.0 and 1.11.0.

All models have a hidden size of 32, node-embedding-dim is set to
32, graph-embedding-dim is set to 64, readout-hidden-dim is set to 64,
and the training level of the model is 5. Using the SGD optimizer with
a weight decay of 1e-4, the learning rate is 0.03. At the same time, the
ReLU function is used as the function to activate and the dropout rate is
set to 0.3 to prevent overfitting even further. Through test comparison,
when the number of communication rounds is less than 100, the data
quality changes greatly. When it is greater than 100, the data quality
changes very little, so the number of communication rounds for all FGL
methods is 100. The data protection strategy adopted in this article
when the client uploads local training parameters is the traditional

differential privacy method.

Neural Networks 169 (2024) 143–153R. Gao et al.
Table 2
Node classification results (%). (Index: Micro-F1 Macro-F1 Bold: best.)

Datasets Metrics GCN-FedML SAGE-FedML SGC-FedML GAT-FedML BI-FedGNN

CiteSeer Micro-F1 84.22 77.65 80.10 81.64 90.79
Macro-F1 55.51 40.17 56.53 55.52 82.69

PubMed Micro-F1 84.3 84.02 81.32 82.05 84.49
Macro-F1 76.52 77.87 74.63 78.35 79.60

Coauthor-CS Micro-F1 74.39 65.02 74.83 71.15 75.99
Macro-F1 41.19 32.74 47.68 45.22 47.59

Coauthor-Physics Micro-F1 82.62 72.71 87.95 85.74 90.73
Macro-F1 43.47 25.35 70.1 57.32 69.74

DBLP Micro-F1 73.28 63.62 63.47 71.34 74.68
Macro-F1 43.24 28.19 20.83 41.62 49.46
Fig. 4. Comparison of BI-FedGNN performance using CiteSeer and DBLP datasets as examples.
4.2. Node classification

A performance evaluation was conducted on the node classifica-
tion task of BI-FedGNN for federated graph learning on the above
five datasets, and results are presented in Table 2. In this study,
the Industrial IoT node classification task of federated graph learning
was simulated between a central server and four clients. During the
experiment, the dataset was randomly assigned to four clients for local
model training. Based on the above results, it can be concluded that:

∙ On the majority of datasets, BI-FedGNN has demonstrated promis-
ing experimental results, demonstrating the efficacy of incorporat-
ing BI into federated graph neural networks. Using the Bayesian
inference approach, clients involved in training can obtain better
graph structures, thereby enhancing the efficacy of local GNN
model training for clients.

∙ The BI-FedGNN proposed in this paper has significant perfor-
mance advantages over the conventional GCN-based FGL. This
phenomenon is consistent with predicted outcomes, i.e., if there
are noisy edges or lacking strong relationship edges in the graph
trained by the model, it will reduce GCN’s ability to aggregate
accurate information. This indicates that BI-FedGNN can manage
the impact of noise and other factors on federated graph learning
more effectively.

∙ In BI-FedGNN, the weights and biases in the client local model
training process are randomly selected and optimized as the
model iterates. Experimental results show that the randomly se-
lected weights and biases increase the uncertainty of the model
and do not have a negative impact on model training. Even in
heterogeneous datasets, BI-FedGNN can still achieve good results.

4.3. Performance comparison

The performance of BI-FedGNN is compared with the rest of the
benchmarks using the homogeneous dataset CiteSeer and the heteroge-
neous dataset DBLP as examples, and the specific results are shown in
Fig. 4, which contains the metric curves of Micro-F1 and Macro-F1 for
classification. It can be concluded that the performance of BI-FedGNN
149
is always at a higher level in both homogeneous and heterogeneous
datasets, which indicates that the method proposed in this paper is well
optimized for the classification task of FGL and improves the overall
classification accuracy. As shown in the illustration, the accuracy of BI-
FedGNN is higher than the rest of the baseline in the early stages of the
classification task. This demonstrates that Bayesian inference can well
enable the client to obtain better graph structure data for local GNN
model training and improve the effectiveness of GNN model training.
Meanwhile, the random weights and biases added in the GNN model
training process can well improve the uncertainty of the model, making
BI-FedGNN can reduce the impact of noise or strong relational edges
missing on the overall model training from the beginning of training.

4.4. Ablation analysis

To further validate the optimization brought about by Bayesian
inference and KL divergence loss in BI-FedGNN for overall model
training, ablation experiments are conducted on BI-FedGNN in this
abstract, using the traditional GCN-based federal graph learning as a
comparison, with the small dataset CiteSeer serving as the test sample
and Micro-F1 and Macro-F1 as the metrics. The specific outcomes are
depicted in Figs. 5 and 6. In this study, the BI-FedGNN is divided into
three distinct types.

∙ BI-FedGNN-B: Removes the Bayesian GNN model used in the
client’s local model training process and instead uses the tradi-
tional GCN model to train the client’s local data. But keep KL-Loss
as part of the overall loss function.

∙ BI-FedGNN-K: Remove the KL-Loss loss function from the overall
loss function, leaving only NLL-Loss. However, the client con-
tinues to use the Bayesian GNN model for training during local
model training.

∙ BI-FedGNN: A complete version of the federated graph learning
paradigm. The client uses the Bayesian GNN model for training,
and also constrains KL-Loss as part of the overall loss function.

Figs. 5 and 6 show the comparison of the three BI-FedGNNs with
Micro-F1 and Macro-F1 as metrics with the traditional GCN-based

Neural Networks 169 (2024) 143–153R. Gao et al.
Fig. 5. Ablation experiment with Micro-F1 as an indicator.
Fig. 6. Ablation experiment with Macro-F1 as an indicator.
federal graph learning, respectively. From Figs. 5(a) and 6(a), although
BI-FedGNN (Delete BI) is able to achieve good training results, there is
a flat or even decreasing trend in the training process. This is due to
the fact that although the KL divergence loss function regularizes the
training against the overfitting problem, the model lacks the capability
of model uncertainty, making it difficult to have effective handling
against the missing problem of noisy edges and strongly related edges.
Figs. 5(b) and 6(b) show that although BI-FedGNN (Delete KL Loss)
has the ability to regularize the model uncertainty, without the KL
divergence loss function to regularize the constraint, it will lead to the
overfitting problem of the model and even make the training result
lower than the unimproved federal graph learning. Both Figs. 5(c) and
6(c) show the full version of BI-FedGNN compared with BI-FedGNN
(Delete BI) and BI-FedGNN (Delete KL Loss), which fully demonstrate
that Bayesian inference and KL divergence loss function are indis-
pensable for BI-FedGNN. Bayesian inference is used to improve the
model uncertainty, while the KL divergence loss function is used as
a regularization term to constrain the model and avoid overfitting
problems. The two complement each other to improve the classification
accuracy of the overall framework.

4.5. Visualization

To verify the effectiveness of the designed framework further, the
Coauthor-Physics dataset is used as an example for the low-dimensional
vector visualization task, and the BI-FedGNN is contrasted intuitively
with the traditional FGL based on GCN, GAT, and SAGE. Specifically,
the node embedding vector on the last layer of the hidden layer of
the last iteration of the client involved in the training is used to
convert the high-dimensional node embedding into a low-dimensional
representation using the 𝑡 − 𝑆𝑁𝐸 method (Van der Maaten & Hinton,
2008), while the 𝑝𝑙𝑡.𝑠ℎ𝑜𝑤() method is used to visualize the display. The
details are shown in Fig. 7.

In Fig. 7, the results of GCN-FedML, GAT-FedML, and SAGE-FedML
are not always satisfactory due to the fact that the subgraphs owned
by the clients involved in the training of the industrial Internet may
have a gap with the actual graph structure data. This results in the
training process receiving noise or missing edges, which in turn causes
150
the degree of differentiation between nodes in different categories to
not be obvious. BI-FedGNN performs better in terms of visualization,
the classification results are more accurate, and it demonstrates that
the nodes of different categories are near one another, with distinct
boundaries between them.

4.6. Parameter analysis

In this paper, the data are processed using the FedML (He et al.,
2021) algorithm to self-sample the central nodes, which are being
constructed 𝑘−ℎ𝑜𝑝 neighborhoods. Where 𝑘 = 1, 2, 3, these datasets are
also partitioned and then distributed to the various clients involved in
the training. Considering the workload of node sampling, in this article,
the maximum sampling hop of the test node is set to 3, because the
neighborhood information of 3 hops is enough for the training of the
target node. At the same time, it is very time-consuming to sample
neighbor information of more than 3 hops for each node in the data
set. Again, this subsection takes the homogeneous dataset CiteSeer and
the heterogeneous dataset DBLP as examples and focuses on the 𝑘-
parameters in 𝑘−ℎ𝑜𝑝. This work was tested using the 𝑘 = 2 case earlier,
so the data comparison graph for the 𝑘 = 2 case is not shown in this
session; please see Section 4.3 for details.

The comparison of results is shown in Figs. 8 and 9. Please see
Table 3 for specific results. Figs. 8 and 9 show the comparison of Micro-
F1 and Macro-F1 for the datasets CiteSeer and DBLP for 𝑘 = 1 and 𝑘 = 3,
respectively. With the combination of Fig. 8, Fig. 9 and Table 3, it can
be concluded that the classification performance of BI-FedGNNd has
been in a relatively advantageous position, and the results show that
BI-FedGNN works well with or without the inclusion of higher-order
neighbor information, and the performance of BI-FedGNN may become
better with the inclusion of more higher-order information. With the
increase in higher-order information, BI in BI-FedGNN can better com-
bine additional information node features to process and improve the
uncertainty of the model, while KL divergence loss regularizes the loss
function to prevent the problem of overfitting. However, the overall
running duration will increase as the number of training data points
increases.

Neural Networks 169 (2024) 143–153R. Gao et al.
Fig. 7. Visual representation of the training results of the Coauthor-Physics dataset.
Fig. 8. Parameter Analysis 𝑘=1.
Fig. 9. Parameter Analysis 𝑘=3.
Table 3
Parameter Analysis results (%). (Index: Micro-F1 Macro-F1 Bold: best.)

Datasets k-hop Metrics GCN-FedML SAGE-FedML SGC-FedML GAT-FedML BI-FedGNN

CiteSeer
1 Micro-F1 68.47 66.19 77.56 76.7 78.84

Macro-F1 58.03 56.4 46.67 74.81 77.78

3 Micro-F1 84.11 84 83.57 85.86 91.2
Macro-F1 46.07 41.29 47.82 48.82 65.77

DBLP
1 Micro-F1 75.36 73.91 69.68 75.36 76.68

Macro-F1 47.03 38.36 32.17 38.36 49.69

3 Micro-F1 71.69 73.41 68.37 74.14 77.64
Macro-F1 47.03 38.36 32.17 38.36 49.69
4.7. Complexity analysis

In this section, the time complexity of the BI-FedGNN proposed
in this article is analyzed. There are 𝑛 clients participating in the
training, the amount of data owned by each client is set to 𝑚, and the
number of communication rounds during the entire training process
is 𝑟. In the client-side local model training phase, each data node
is subjected to a convolution operation with a time complexity of
𝑂(𝑚 log𝑚). Meanwhile, the nodes are sampled with random weights and
biases using Bayesian inference before and after the convolution, which
in turn has a time complexity of 𝑂(𝑚). The time complexity of the two
samples is 𝑂(2 𝑚). The time complexity of local training for one client
is 𝑂(𝑚(2 + log𝑚)), and the complexity of local model training for two
clients is 𝑂(𝑛(𝑚(2 + log𝑚))). At the same time, after the client’s local
model training is completed, the parameters are uploaded to the server
for aggregation. A total of 𝑟 rounds of communication are performed,
151
and the server aggregates local parameters 𝑟 times in total. Therefore,
the overall time complexity of BI-FedGNN is 𝑂(𝑛𝑟2(𝑚(2 + log𝑚))).

5. Conclusion and future work

This paper investigates and exhibits the effectiveness of adding
Bayesian inference to the training of a local client model for federal
graph learning. To implement the framework, a Bayesian-based GNN
model is designed to adapt to environments where noisy or strongly
related edges are missing. Compared with the traditional federal graph
learning method, this framework can improve the classification accu-
racy and robustness of BI-FedGNN by randomly sampling the weights
and bias values that obey Gaussian distributions to process the node
features of the model, and using KL divergence loss as the regulariza-
tion term of the overall loss function to prevent the overfitting of the
model training. The effectiveness of the BI-FedGNN proposed in this
paper is demonstrated by a large number of experiments.

Neural Networks 169 (2024) 143–153R. Gao et al.

Q

S

S

S

S

S

T

T

T

T

T

In this paper, the differential privacy (DP) strategy is still used
for data transfer from the client to the server. Due to the limited
workload, the data protection aspect is not well optimized, and fu-
ture research will conduct new research on data privacy protection
in the process of federal graph learning. During the same time, in
the actual federal graph learning process, each client uploads data
parameters with different influence and how to realize the server in
the parameter aggregation of different clients’ parameters according
to different weights for different degrees of learning, and whether the
trained model of the participating clients can benefit the clients who
see the training becomes an urgent problem to be studied.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported in part by the National Natural Science
Foundation of China under Grant 62272405, School and Locality In-
tegration Development Project of Yantai City(2022), China, the Youth
Innovation Science and Technology Support Program of Shandong
Provincial, China under Grant 2021KJ080, the Natural Science Founda-
tion of Shandong Province, China under Grant ZR2022MF238, Yantai
Science and Technology Innovation Development Plan Project, China
under Grant 2022XDRH023.

References

Casiraghi, G., & Nanumyan, V. (2021). Configuration models as an urn problem.
Scientific Reports, 11(1), 13416.

Chang, Y., Zhou, W., Cai, H., Fan, W., Hu, L., & Wen, J. (2023). Meta-relation
assisted knowledge-aware coupled graph neural network for recommendation.
Information Processing & Management, 60(3), Article 103353. http://dx.doi.org/10.
1016/j.ipm.2023.103353, URL: https://www.sciencedirect.com/science/article/pii/
S0306457323000900.

Chen, F., Long, G., Wu, Z., Zhou, T., & Jiang, J. (2022). Personalized federated learning
with a graph. In L. D. Raedt (Ed.), Proceedings of the thirty-first international joint
conference on artificial intelligence (pp. 2575–2582). International Joint Conferences
on Artificial Intelligence Organization, http://dx.doi.org/10.24963/ijcai.2022/357,
Main Track.

Chen, C., Zhou, J., Zheng, L., Wu, H., Lyu, L., Wu, J., et al. (2022). Vertically
federated graph neural network for privacy-preserving node classification. In
L. D. Raedt (Ed.), Proceedings of the thirty-first international joint conference on
artificial intelligence (pp. 1959–1965). International Joint Conferences on Artificial
Intelligence Organization, http://dx.doi.org/10.24963/ijcai.2022/272, Main Track.

Ding, Y., Zhang, Z., Zhao, X., Hong, D., Cai, W., Yang, N., et al. (2023). Multi-
scale receptive fields: Graph attention neural network for hyperspectral image
classification. Expert Systems with Applications, 223, Article 119858.

Fang, X., & Ye, M. (2022). Robust federated learning with noisy and heterogeneous
clients. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 10072–10081).

Franceschi, L., Niepert, M., Pontil, M., & He, X. (2019). Learning discrete structures
for graph neural networks. In International conference on machine learning (pp.
1972–1982). PMLR.

Fu, X., Zhang, B., Dong, Y., Chen, C., & Li, J. (2022). Federated graph machine learning:
A survey of concepts, techniques, and applications. ACM SIGKDD Explorations
Newsletter, 24(2), 32–47.

Gaudelet, T., Day, B., Jamasb, A. R., Soman, J., Regep, C., Liu, G., et al. (2021).
Utilizing graph machine learning within drug discovery and development. Briefings
in Bioinformatics, 22(6), bbab159.

Giles, C. L., Bollacker, K. D., & Lawrence, S. (1998). CiteSeer: An automatic citation
indexing system. In Proceedings of the third ACM conference on digital libraries (pp.
89–98).

He, C., Balasubramanian, K., Ceyani, E., Yang, C., Xie, H., Sun, L., et al. (2021).
Fedgraphnn: A federated learning benchmark system for graph neural networks.
152

In ICLR 2021 workshop on distributed and private machine learning.
He, C., Ceyani, E., Balasubramanian, K., Annavaram, M., & Avestimehr, S. (2022).
Spreadgnn: Decentralized multi-task federated learning for graph neural networks
on molecular data. In Proceedings of the AAAI conference on artificial intelligence, vol.
36, no. 36 (pp. 6865–6873).

Jiang, B., Zhang, Z., Lin, D., Tang, J., & Luo, B. (2019). Semi-supervised learning with
graph learning-convolutional networks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (pp. 11313–11320).

Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., & Tang, J. (2020). Graph structure
learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining (pp. 66–74).

Jing, C., Huang, Y., Zhuang, Y., Sun, L., Xiao, Z., Huang, Y., et al. (2023). Exploring
personalization via federated representation learning on non-IID data. Neural Net-
works, 163, 354–366. http://dx.doi.org/10.1016/j.neunet.2023.04.007, URL: https:
//www.sciencedirect.com/science/article/pii/S0893608023001843.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., et al.
(2021). Advances and open problems in federated learning. Foundations and Trends®
in Machine Learning, 14(1–2), 1–210.

Li, X., JIANG, M., Zhang, X., Kamp, M., & Dou, Q. (2021). FedBN: Federated learning
on non-IID features via local batch normalization. In International conference on
learning representations. URL: https://openreview.net/forum?id=6YEQUn0QICG.

Li, R., Liu, Z., Ma, Y., Yang, D., & Sun, S. (2022). Internet financial fraud detection
based on graph learning. Ieee Transactions on Computational Social Systems.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2020). Federated
optimization in heterogeneous networks. In Proceedings of machine learning and
systems, vol. 2 (pp. 429–450).

Liang, W., Chen, X., Huang, S., Xiong, G., Yan, K., & Zhou, X. (2023). Federal learning
edge network based sentiment analysis combating global COVID-19. Computer
Communications, 204, 33–42.

Liu, Y., Ding, K., Liu, H., & Pan, S. (2023). GOOD-D: On unsupervised graph out-of-
distribution detection. In Proceedings of the sixteenth ACM international conference
on web search and data mining (pp. 339–347).

Liu, Z., Yang, D., Wang, Y., Lu, M., & Li, R. (2023). EGNN: Graph structure learning
based on evolutionary computation helps more in graph neural networks. Applied
Soft Computing, Article 110040.

Liu, Z., Yang, D., Wang, S., & Su, H. (2022). Adaptive multi-channel Bayesian graph
attention network for IoT transaction security. Digital Communications and Networks.

McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017).
Communication-efficient learning of deep networks from decentralized data. In
Artificial intelligence and statistics (pp. 1273–1282). PMLR.

Meng, C., Rambhatla, S., & Liu, Y. (2021). Cross-node federated graph neural net-
work for spatio-temporal data modeling. In Proceedings of the 27th ACM SIGKDD
conference on knowledge discovery & data mining (pp. 1202–1211).

Pei, Y., Mao, R., Liu, Y., Chen, C., Xu, S., Qiang, F., et al. (2021). Decentralized
federated graph neural networks. In International workshop on federated and transfer
learning for data sparsity and confidentiality in conjunction with IJCAI.

Peng, L., Wang, N., Dvornek, N., Zhu, X., & Li, X. (2022). Fedni: Federated graph
learning with network inpainting for population-based disease prediction. IEEE
Transactions on Medical Imaging.

iu, J., Chen, Q., Dong, Y., Zhang, J., Yang, H., Ding, M., et al. (2020). Gcc: Graph
contrastive coding for graph neural network pre-training. In Proceedings of the 26th
ACM SIGKDD international conference on knowledge discovery & data mining (pp.
1150–1160).

en, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., & Eliassi-Rad, T. (2008).
Collective classification in network data. AI Magazine, 29(3), 93.

hchur, O., Mumme, M., Bojchevski, A., & Günnemann, S. (2018). Pitfalls of graph
neural network evaluation. arXiv preprint arXiv:1811.05868.

hen, X., Pan, S., Choi, K.-S., & Zhou, X. (2023). Domain-adaptive message pass-
ing graph neural network. Neural Networks, 164, 439–454. http://dx.doi.org/10.
1016/j.neunet.2023.04.038, URL: https://www.sciencedirect.com/science/article/
pii/S0893608023002253.

hu, J., Yang, T., Liao, X., Chen, F., Xiao, Y., Yang, K., et al. (2023). Clustered federated
multitask learning on non-IID data with enhanced privacy. IEEE Internet of Things
Journal, 10(4), 3453–3467. http://dx.doi.org/10.1109/JIOT.2022.3228893.

un, J., Gao, L., Shen, X., Liu, S., Liang, R., Du, S., et al. (2023). Separated graph neural
networks for recommendation systems. IEEE Transactions on Industrial Informatics,
19(1), 382–393. http://dx.doi.org/10.1109/TII.2022.3194659.

an, Y., Liu, Y., Long, G., Jiang, J., Lu, Q., & Zhang, C. (2022). Federated learning on
non-IID graphs via structural knowledge sharing. arXiv preprint arXiv:2211.13009.

ang, C., Li, Z., Wang, J., Liu, X., Zhang, W., & Zhu, E. (2022). Unified one-step multi-
view spectral clustering. IEEE Transactions on Knowledge and Data Engineering, 35(6),
6449–6460.

ang, J., Zhang, J., Yao, L., Li, J., Zhang, L., & Su, Z. (2008). Arnetminer: extraction
and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD
international conference on knowledge discovery and data mining (pp. 990–998).

ang, C., Zheng, X., Zhang, W., Liu, X., Zhu, X., & Zhu, E. (2023). Unsupervised
feature selection via multiple graph fusion and feature weight learning. Science
China. Information Sciences, 66(5), 1–17.

un, Y. L., Nguyen, M. N., Thwal, C. M., Choi, J., & Hong, C. S. (2023). Contrastive
encoder pre-training–based clustered federated learning for heterogeneous data.
Neural Networks, http://dx.doi.org/10.1016/j.neunet.2023.06.010, URL: https://
www.sciencedirect.com/science/article/pii/S0893608023003192.

Neural Networks 169 (2024) 143–153R. Gao et al.

W

W

W

W

W

W

W

X

X

X

Y

Z

Z

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(11).

an, Y., Yuan, C., Zhan, M., & Chen, L. (2022). Robust graph learning with graph
convolutional network. Information Processing & Management, 59(3), Article 102916.

ang, K., An, J., Zhou, M., Shi, Z., Shi, X., & Kang, Q. (2023). Minority-weighted graph
neural network for imbalanced node classification in social networks of internet of
people. IEEE Internet of Things Journal, 10(1), 330–340. http://dx.doi.org/10.1109/
JIOT.2022.3200964.

ang, Y., Liu, Z., Xu, J., & Yan, W. (2022). Heterogeneous network representa-
tion learning approach for ethereum identity identification. IEEE Transactions on
Computational Social Systems.

ang, R., Mou, S., Wang, X., Xiao, W., Ju, Q., Shi, C., et al. (2021). Graph structure
estimation neural networks. In Proceedings of the web conference 2021 (pp. 342–353).

ang, W., Wang, Y., Duan, P., Liu, T., Tong, X., & Cai, Z. (2022). A triple real-time
trajectory privacy protection mechanism based on edge computing and blockchain
in mobile crowdsourcing. IEEE Transactions on Mobile Computing.

u, S., Sun, F., Zhang, W., Xie, X., & Cui, B. (2022). Graph neural networks in
recommender systems: A survey. ACM Computing Surveys, 55(5), 1–37.
153
u, C., Wu, F., Lyu, L., Qi, T., Huang, Y., & Xie, X. (2022). A federated graph neural
network framework for privacy-preserving personalization. Nature Communications,
13(1), 3091.

ie, H., Ma, J., Xiong, L., & Yang, C. (2021). Federated graph classification over
non-iid graphs. In Advances in neural information processing systems, vol. 34 (pp.
18839–18852).

ie, Z., & Tu, Y. (2022). A graph convolutional network with adaptive graph generation
and channel selection for event detection. In Proceedings of the AAAI conference on
artificial intelligence, vol. 36, no. 10 (pp. 11522–11529).

u, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph neural
networks? In International conference on learning representations. URL: https://
openreview.net/forum?id=ryGs6iA5Km.

an, W., Gu, M., Ren, J., Yue, G., Liu, Z., Xu, J., et al. (2023). Collaborative
structure and feature learning for multi-view clustering. Information Fusion, 98,
Article 101832.

hang, H., Shen, T., Wu, F., Yin, M., Yang, H., & Wu, C. (2021). Federated graph
learning–A position paper. arXiv preprint arXiv:2105.11099.

hou, S., Song, P., Yu, Y., & Zheng, W. (2023). Structural regularization based
discriminative multi-view unsupervised feature selection. Knowledge-Based Systems,
272, Article 110601.

