

000 TRANSFORMERS AS UNSUPERVISED LEARNING ALGO- 001 RITHMS: 002 003 A STUDY ON GAUSSIAN MIXTURES 004 005

006 **Anonymous authors**

007 Paper under double-blind review
008
009
010
011

ABSTRACT

013 The transformer architecture has demonstrated remarkable capabilities in modern
014 artificial intelligence, among which the capability of implicitly learning an internal
015 model during inference time is widely believed to play a key role in the understand-
016 ing of pre-trained large language models. However, most recent works have been
017 focusing on studying supervised learning topics such as in-context learning, leav-
018 ing the field of unsupervised learning largely unexplored. This paper investigates
019 the capabilities of transformers in solving Gaussian Mixture Models (GMMs), a
020 fundamental unsupervised learning problem through the lens of statistical esti-
021 mation. We propose a transformer-based learning framework called Transformer
022 for Gaussian Mixture Models (TGMM) that simultaneously learns to solve mul-
023 tiple GMM tasks using a shared transformer backbone. The learned models are
024 empirically demonstrated to effectively mitigate the limitations of classical meth-
025 ods such as Expectation-Maximization (EM) or spectral algorithms, at the same
026 time exhibit reasonable robustness to distribution shifts. Theoretically, we prove
027 that transformers can efficiently approximate both the Expectation-Maximization
028 (EM) algorithm and a core component of spectral methods—namely, cubic tensor
029 power iterations. These results not only improve upon prior work on approximat-
030 ing the EM algorithm, but also provide, to our knowledge, the first theoretical
031 guarantee that transformers can approximate high-order tensor operations. Our
032 study bridges the gap between practical success and theoretical understanding,
033 positioning transformers as versatile tools for unsupervised learning.

1 INTRODUCTION

034 Large Language Models (LLMs) have achieved remarkable success across various tasks in recent
035 years. Transformers(Vaswani et al., 2017), the dominant architecture in modern LLMs(Brown et al.,
036 2020), outperform many other neural network models in efficiency and scalability. Beyond language
037 tasks, transformers have also demonstrated strong performance in other domains, such as computer
038 vision(Han et al., 2023; Khan et al., 2022) and reinforcement learning(Li et al., 2023a). Given their
039 practical success, understanding the mechanisms behind transformers has attracted growing research
040 interest. Existing studies often treat transformers as algorithmic toolboxes, investigating their ability
041 to implement diverse algorithms(Von Oswald et al., 2023; Bai et al., 2023; Lin et al., 2024; Giannou
042 et al., 2025; Teh et al., 2025)—a perspective linked to meta-learning(Hospedales et al., 2021).

043 However, most research has focused on supervised learning settings, such as regression(Bai et al.,
044 2023) and classification(Giannou et al., 2025), leaving the unsupervised learning paradigm relatively
045 unexplored. Since transformer models are typically trained in a supervised manner, unsupervised
046 learning poses inherent challenges for transformers due to the absence of labeled data. Moreover,
047 given the abundance of unlabeled data in real-world scenarios, investigating the mechanisms of
048 transformers in unsupervised learning holds significant implications for practical applications. The
049 Gaussian mixture model (GMM) represents one of the most fundamental unsupervised learning tasks
050 in statistics, with a rich historical background(DAY, 1969; Aitkin & Wilson, 1980) and ongoing
051 research interest(Zhang et al., 2021; Manduchi et al., 2021; Löffler et al., 2021; Ndaoud, 2022;
052 Gribonval et al., 2021; Yu et al., 2021). Two primary algorithmic approaches are existing for solving
053 GMM problems: (1) likelihood-based methods employing the Expectation-Maximization (EM)

054 algorithm(Dempster et al., 1977; Balakrishnan et al., 2017), and (2) moment-based methods utilizing
 055 spectral algorithms(Hsu & Kakade, 2013; Anandkumar et al., 2014). However, both algorithms
 056 have inherent limitations. The EM algorithm is prone to convergence at local optima and is highly
 057 sensitive to initialization(Moitra, 2018; Jin et al., 2016). In contrast, while the spectral method is
 058 independent of initialization, it requires the number of components to be smaller than the data’s
 059 dimensionality—an assumption that restricts its applicability to problems involving many components
 060 in low-dimensional GMMs(Hsu & Kakade, 2013).

061 In this work, we explore transformers for GMM parameter estimation to address two questions. (i)
 062 Can Transformers *provably* work for GMM in-context? (ii) Can Transformers *empirically* overcome
 063 the drawbacks of both EM algorithm and the spectral method? Our answers are affirmative. We find
 064 that meta-trained transformers exhibit strong performance on GMM tasks without the aforementioned
 065 limitations. Notably, we construct transformer-based solvers that efficiently solve GMMs with varying
 066 component counts simultaneously. The experimental phenomena are further backed up by novel
 067 theoretical establishments: We prove that transformers can effectively learn GMMs with different
 068 components by approximating both the EM algorithm and a key component of spectral methods on
 069 GMM tasks.

070 Main Contributions.

- 071 • We propose the TGMM framework that utilizes transformers to solve multiple GMM tasks with
 072 varying numbers of components simultaneously during inference time. Through extensive ex-
 073 perimentation, the learned TGMM model is demonstrated to achieve competitive and robust
 074 performance over synthetic GMM tasks. Notably, TGMM outperforms the popular EM algorithm
 075 in terms of estimation quality, and approximately matches the strong performance of spectral
 076 methods while enjoying better flexibility.
- 077 • We establish theoretical foundations by proving that transformers can approximate both the EM
 078 algorithm and a key component of spectral methods. Our approximation of the EM algorithm
 079 fundamentally leverages the weighted averaging property inherent in softmax attention, enabling
 080 simultaneous approximation of both the E and M steps. Notably, our approximation results also
 081 hold across varying dimensions and mixture components in GMM.
- 082 • We proved that transformers (with RELU activation) can implement cubic tensor power iterations—
 083 a crucial component of spectral algorithms for GMM. The proof is highly dependent on the
 084 multi-head structure of transformers. To the best of our knowledge, this is the first theoretical
 085 demonstration of transformers’ capacity for high-order tensor calculations.

086 **Related works.** Recent research has explored the mechanisms by which transformers can implement
 087 various supervised learning algorithms. For instance, Akyürek et al. (2023), Von Oswald et al. (2023),
 088 and Bai et al. (2023) demonstrate that transformers can perform gradient descent for linear regression
 089 problems in-context. Lin et al. (2024) shows that transformers are capable of implementing Upper
 090 Confidence Bound (UCB) algorithms, as well as other classical algorithms in reinforcement learning
 091 tasks. Giannou et al. (2025) reveals that transformers can execute in-context Newton’s method for
 092 logistic regression problems. Teh et al. (2025) illustrates that transformers can approximate Robbins’
 093 estimator and solve Naive Bayes problems. Kim et al. (2024) studies the minimax optimality of
 094 transformers on nonparametric regression. Some literature on density estimation using LLMs is
 095 discussed in Section A.

096 **Comparison with prior theoretical works in unsupervised learning setting.** Several recent studies
 097 have investigated the mechanisms of transformer-based models in mixture model settings(He et al.,
 098 2025a; Jin et al., 2024; He et al., 2025b). Among these, He et al. (2025a) establishes that transformers
 099 can implement Principal Component Analysis (PCA) and leverages this to GMM clustering. However,
 their analysis is limited to the two-component case, restricting its broader applicability.

100 The paper Jin et al. (2024) investigates the in-context learning capabilities of transformers for mixture
 101 linear models, a setting that differs from ours. Furthermore, their approximation construction of
 102 the transformer is limited to two-component GMMs, leaving the general case unaddressed. While
 103 they assume ReLU as the activation function—contrary to the conventional choice of softmax—their
 104 theoretical proofs rely on a key lemma from prior work Pathak et al. (2024) that assumes softmax
 105 activation, thereby introducing an inconsistency in their assumptions. The paper He et al. (2025b)
 106 studies the performance of transformers on multi-class GMM clustering, a setting closely related
 107 to ours. However, our work focuses on *parameter estimation* rather than *clustering*. We give a
 108 discussion of our theoretical improvements over their work in detail in the following paragraph. From

108 an empirical perspective, their experiments are conducted on a small-scale transformer, which fails to
 109 validate their theoretical claims.
 110

111 **Sharpness of our results.** Our theoretical analysis fully leverages key architectural components
 112 of Transformers: the query-key-value mechanism, multi-head attention, and the properties of the
 113 activation function. It is worth pointing out that our result improves the prior work for EM ap-
 114 proximation in several points: First, Our analysis shows that Transformers can approximate L-step
 115 EM algorithms with just $O(L)$ layers, a significant improvement over prior work (He et al., 2025b)
 116 , which requires $O(KL)$ layers (dependent on the number of components K). Second, unlike He
 117 et al. (2025b), which needs number of attention heads $M \rightarrow +\infty$ to get valid bounds, our results
 118 hold with $M = O(1)$, aligning better with real-world designs. Third, our approximation bounds
 119 scale polynomially in dimension d , unlike He et al. (2025b)’s exponential dependence—a crucial
 120 improvement for high-dimensional settings. We believe our results and proofs can offer profound
 121 insights for subsequent theoretical research on transformers.

122 **Organization.** The rest of paper is organized as follows. In Section 2, some background knowledge
 123 is introduced. In Section 3, we present the experimental details and findings. The theoretical results
 124 are proposed in Section 4, and some discussions are given in Section 5. The proofs and additional
 125 experimental results are given in the appendix.

126 **Notations.** We introduce the following notations. Let $[n] := \{1, 2, \dots, n\}$. All vectors are
 127 represented as column vectors unless otherwise specified. For a vector $v \in \mathbb{R}^d$, we denote $\|v\|$
 128 as its Euclidean norm. For two sequences a_n and b_n indexed by n , we denote $a_n = O(b_n)$ if there
 129 exists a universal constant C such that $a_n \leq Cb_n$ for sufficiently large n .
 130

2 METHODOLOGY

2.1 PRELIMINARIES

131 The Gaussian mixture model (GMM) is a cornerstone of unsupervised learning in statistics, with
 132 deep historical roots and enduring relevance in modern research. Since its early formalizations(DAY,
 133 1969; Aitkin & Wilson, 1980), GMM has remained a fundamental tool for clustering and density
 134 estimation, widely applied across diverse domains. Recent advances have further explored the
 135 theoretical foundations of Gaussian Mixture Models (GMMs)(Löffler et al., 2021; Ndaoud, 2022;
 136 Gribonval et al., 2021), extended their applications in incomplete data settings(Zhang et al., 2021),
 137 and integrated them with deep learning frameworks(Manduchi et al., 2021; Yu et al., 2021). Due to
 138 their versatility and interpretability, GMMs remain indispensable in unsupervised learning, effectively
 139 bridging classical statistical principles with modern machine learning paradigms. We consider the
 140 (unit-variance) isotropic Gaussian Mixture Model with K components, with its probability density
 141 function as
 142

$$143 \quad p(x|\theta) = \sum_{k=1}^K \pi_k \phi(x; \mu_k), \quad (1)$$

144 where $\phi(x; \mu)$ is the standard Gaussian kernel, i.e. $\phi(x; \mu) = \frac{1}{(2\pi)^{d/2}} \exp\left(-\frac{1}{2}(x - \mu)^\top(x - \mu)\right)$.
 145 The parameter θ is defined as $\theta = \pi \cup \mu$, where $\pi := \{\pi_1, \pi_2, \dots, \pi_K\}$, $\pi_k \in \mathbb{R}$ and $\mu =$
 146 $\{\mu_1, \mu_2, \dots, \mu_K\}$, $\mu_k \in \mathbb{R}^d$, $k \in [K]$. We take N samples $\mathbf{X} = \{X_i\}_{i \in [N]}$ from model (1).
 147 $\{X_i\}_{i \in [N]}$ can be also rewritten as
 148

$$149 \quad X_i = \mu_{y_i} + Z_i,$$

150 where $\{y_i\}_{i \in [N]}$ are i.i.d. discrete random variables with $\mathbb{P}(y = k) = \pi_k$ for $k \in [K]$ and $\{Z_i\}_{i \in [N]}$
 151 are i.i.d. standard Gaussian random vector in \mathbb{R}^d .
 152

153 The EM algorithm(Dempster et al., 1977) remains the most widely used approach for GMM parameter
 154 estimation. Due to space constraints, we propose the algorithm in Section B. Alternatively, the
 155 spectral algorithm(Hsu & Kakade, 2013) offers an efficient moment-based approach that estimates
 156 parameters through low-order observable moments. A key component of this method is cubic tensor
 157 decomposition(Anandkumar et al., 2014). For brevity, we defer the algorithmic details to Section B.
 158

159 Next, we give a rigorous definition of the transformer model. To maintain consistency with existing
 160 literature, we adopt the notational conventions presented in Bai et al. (2023), with modifications
 161

tailored to our specific context. We consider a sequence of N input vectors $\{h_i\}_{i=1}^N \subset \mathbb{R}^D$, which can be compactly represented as an input matrix $\mathbf{H} = [h_1, \dots, h_N] \in \mathbb{R}^{D \times N}$, where each h_i corresponds to a column of \mathbf{H} (also referred to as a token).

Here we introduce several useful definitions and their full notations are given in Appendix C.

Definition 1 (Attention layer). *A (self-)attention layer with M heads is denoted as $\text{Attn}_{\Theta_{\text{attn}}}(\cdot)$ with parameters $\Theta_{\text{attn}} = \{(\mathbf{V}_m, \mathbf{Q}_m, \mathbf{K}_m)\}_{m \in [M]} \subset \mathbb{R}^{D \times D}$.*

Definition 2 (MLP layer). *A (token-wise) MLP layer with hidden dimension D' is denoted as $\text{MLP}_{\Theta_{\text{mlp}}}(\cdot)$ with parameters $\Theta_{\text{mlp}} = (\mathbf{W}_1, \mathbf{W}_2) \in \mathbb{R}^{D' \times D} \times \mathbb{R}^{D \times D'}$.*

Definition 3 (Transformer). *An L -layer transformer, denoted as $\text{TF}_{\Theta_{\text{tf}}}(\cdot)$, is a composition of L self-attention layers each followed by an MLP layer:*

$$\text{TF}_{\Theta_{\text{tf}}}(\mathbf{H}) = \text{MLP}_{\Theta_{\text{mlp}}^{(L)}} \left(\text{Attn}_{\Theta_{\text{attn}}^{(L)}} \left(\dots \text{MLP}_{\Theta_{\text{mlp}}^{(1)}} \left(\text{Attn}_{\Theta_{\text{attn}}^{(1)}}(\mathbf{H}) \right) \right) \right).$$

2.2 THE TGMM ARCHITECTURE

A recent line of work(Xie et al., 2021; Garg et al., 2022; Bai et al., 2023; Akyürek et al., 2023; Li et al., 2023b) has been studying the capability of transformer that functions as a data-driven algorithm under the context of in-context learning (ICL). However, in contrast to the setups therein where inputs consist of both features and labels, under the unsupervised GMM setup, there is no explicitly provided label information. Therefore, we formulate the learning problem as learning an *estimation* algorithm instead of learning a *prediction* algorithm as in the case of ICL. A notable property of GMM is that the structure of the estimand depends on an unknown parameter K , which is often treated as a hyper-parameter in GMM estimation(Titterington et al., 1985; McLachlan & Peel, 2000). For clarity of representation, we define an isotropic Gaussian mixture task as $\mathcal{T} = (\boldsymbol{\theta}, \mathbf{X}, K)$, where \mathbf{X} is a i.i.d. sample generated according to ground truth $\boldsymbol{\theta}$ according to the isotropic GMM law and K is the configuration used during estimation which we assume to be the same as the number of components of the ground truth $\boldsymbol{\theta}$. The GMM task is solved via applying some algorithm \mathcal{A} that takes \mathbf{X} and K as inputs and outputs an estimate of the ground truth $\hat{\boldsymbol{\theta}} = \mathcal{A}(\mathbf{X}; K)$.

In this paper, we propose a transformer-based architecture, transformers-for-Gaussian-mixtures (TGMM), as a GMM task solver that allows flexibility in its outputs, while at the same time being parameter-efficient, as illustrated in Figure 1: A TGMM model supports solving s different GMM tasks with $K \in \mathcal{K} := \{K_1, \dots, K_s\}$. Given inputs N data points $\mathbf{X} \in \mathbb{R}^{d \times N}$ and a structure configuration of the estimand K . TGMM first augments the inputs with auxiliary configurations about K via concatenating it with a task embedding $\mathbf{P} = \text{embed}(K)$, i.e., $\mathbf{H} = [\mathbf{X} \parallel \mathbf{P}]$, and use a linear Readin layer to project the augmented inputs onto a shared hidden representation space for several estimand structures $\{K_1, \dots, K_s\}$, which is then manipulated by a shared transformer backbone that produces task-aware hidden representations. The TGMM estimates are then decoded by task-specific Readout modules. More precisely, with target decoding parameters of K components, the Readout module first performs an attentive-pooling operation(Lee et al., 2019):

$$\mathbf{O} = (\mathbf{V}_o \mathbf{H}) \text{SoftMax}((\mathbf{K}_o \mathbf{H})^\top \mathbf{Q}_o) \in \mathbb{R}^{(d+K) \times K},$$

where $\mathbf{V}_o, \mathbf{K}_o \in \mathbb{R}^{(d+K) \times D}$, $\mathbf{Q}_o \in \mathbb{R}^{(d+K) \times K}$. The estimates for mixture probability are then extracted by a row-wise mean-pooling of the first K rows of \mathbf{O} , and the estimates for mean vectors are the last d rows of \mathbf{O} . We wrap the above procedure as $\{\hat{\pi}_k, \hat{\mu}_k\}_{k \in [K]} = \text{Readout}_{\Theta_{\text{out}}}(\mathbf{H})$. TGMM is parameter-efficient in the sense that it only introduces extra parameter complexities of the order $O(s d D)$ in addition to the backbone. We give a more detailed explanation of the parameter efficiency of TGMM in appendix Section D. We wrap the TGMM model into the following form:

$$\text{TGMM}_{\Theta}(\mathbf{X}; K) = \text{Readout}_{\Theta_{\text{out}}}(\text{TF}_{\Theta_{\text{tf}}}(\text{Readin}_{\Theta_{\text{in}}}([\mathbf{X} \parallel \text{embed}(K)]))).$$

Above, the parameter $\Theta = (\Theta_{\text{tf}}, \Theta_{\text{in}}, \Theta_{\text{out}})$ consists of the parameters in the transformer Θ_{tf} and the parameters in the Readin and the Readout functions $\Theta_{\text{in}}, \Theta_{\text{out}}$.

2.3 META TRAINING PROCEDURE

We adopt the meta-training framework as in Garg et al. (2022); Bai et al. (2023) and utilize diverse synthetic tasks to learn the TGMM model. In particular, during each step of the learning process, we

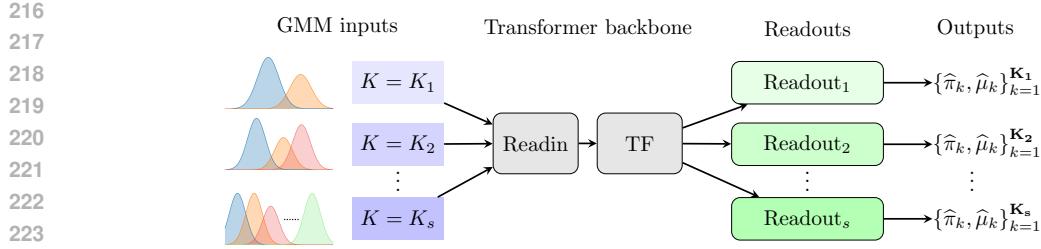


Figure 1: Illustration of the proposed TGMM architecture: TGMM utilizes a shared transformer backbone that supports solving s different kind of GMM tasks via a task-specific Readout strategies.

Algorithm 1 TaskSampler

Require: sampling distributions p_μ, p_π, p_N, p_K .

- 1: Sample the type of task (i.e., number of mixture components) $K \sim p_K$.
- 2: Sample a GMM task according to the type of task

$$\theta = (\mu, \pi),$$

$$\mu \sim p_\mu, \pi \sim p_\pi,$$

where $\mu = \{\mu_1, \dots, \mu_K\}$, $\pi = \{\pi_1, \dots, \pi_K\}$.

- 3: Sample the size of inputs $N \sim p_N$.
- 4: Sample the data points $\mathbf{X} = (X_1, \dots, X_N) \stackrel{\text{i.i.d.}}{\sim} p(\cdot | \theta)$.
- 5: **return** An (isotropic) GMM task $\mathcal{T} = (\mathbf{X}, \theta, K)$.

Algorithm 2 (Meta) Training procedure for TGMM

Require: task dimension d , task types $\mathcal{K} = \{K_1, \dots, K_s\}$, number of tasks n per step, number of steps T .

- 1: Initialize a TGMM model $\text{TGMM}_{\Theta^{(0)}}$.
- 2: **for** $t = 1 : T$ **do**
- 3: Sample n tasks $\{\mathcal{T}_i\}_{i \in [n]}$ independently using the TaskSampler from Algorithm 1.
- 4: Compute the training objective $\hat{L}_n(\Theta^{(t-1)})$ as in (2).
- 5: Update $\Theta^{(t-1)}$ into $\Theta^{(t)}$ using any gradient based training algorithm like AdamW.
- 6: **end for**
- 7: **return** Trained model $\text{TGMM}_{\Theta^{(T)}}$.

first use a TaskSampler routine (described in Algorithm 1) to generate a batch of n tasks, with each task having a probably distinct sample size. The TGMM model outputs estimates for each task, i.e., $\{\hat{\mu}_k, \hat{\pi}_k\}_{k \in [K]} = \text{TGMM}_{\Theta}(\mathbf{X}; K)$. Define $\hat{\pi} := \{\hat{\pi}_k\}_{k \in [K]}$ and $\hat{\mu} := \{\hat{\mu}_k\}_{k \in [K]}$. For a batch of tasks $\{\mathcal{T}_i\}_{i \in [n]} = \{\mathbf{X}_i, \theta_i, K_i\}_{i \in [n]}$, denote by $\theta_i = \mu_i \cup \pi_i$ and $\hat{\theta}_i = \hat{\mu}_i \cup \hat{\pi}_i = \text{TGMM}_{\Theta}(\mathbf{X}_i; K_i)$, $i \in [n]$. Then the learning objective is thus:

$$\hat{L}_n(\Theta) = \frac{1}{n} \sum_{i=1}^n \ell_\mu(\hat{\mu}_i, \mu_i) + \ell_\pi(\hat{\pi}_i, \pi_i). \quad (2)$$

where ℓ_μ and ℓ_π are loss functions for estimation of μ and π , respectively. We will by default use square loss for ℓ_μ and cross entropy loss for ℓ_π . Note that the task sampling procedure relies on several sampling distributions p_μ, p_π, p_N, p_K , which are themselves dependent upon some global configurations such as the dimension d as well as the task types \mathcal{K} . We will omit those dependencies on global configurations when they are clear from context. The (meta) training procedure is detailed in Algorithm 2.

3 EXPERIMENTS

In this section, we empirically investigate TGMM’s capability of learning to solve GMMs. We focus on the following research questions (RQ):

RQ1 Effectiveness: How well do TGMM solve GMM problems, compared to classical algorithms?

RQ2 Robustness: How well does TGMM perform over test tasks unseen during training?

RQ3 Flexibility: Can we extend the current formulation by adopting alternative backbone architectures or relaxing the isotropic setting to more sophisticated models like anisotropic GMM?

270
271

We pick the default backbone of TGMM similar to that in Garg et al. (2022); Bai et al. (2023), with a GPT-2 type transformer encoder(Radford et al., 2019) of 12 layers, 4 heads, and 128-dimensional hidden state size. The task embedding dimension is fixed at 128. Across all the experiments, we use AdamW(Loshchilov et al., 2017) as the optimizer and use both learning rate and weight decay coefficient set to 10^{-4} without further tuning. During each meta-training step, we fix the batch size to be 64 and train 10^6 steps. For the construction of TaskSampler, the sampling distributions are defined as follows: For p_K , We sample K uniformly from $\{2, 3, 4, 5\}$; For p_μ , given dimension d and number of components K , we sample each component uniformly from $[-5, 5]^d$. Additionally, to prevent collapsed component means(Ndaoud, 2022), we filter the generated mean vectors with a maximum pairwise cosine similarity threshold of 0.8. For p_π , given K , we sample each π_k uniformly from $[0.2, 0.8]$ and normalize them to be a probability vector; For p_N , Given a maximum sample size N_0 , we sample N uniformly from $[N_0/2, N_0]$. The default choice of N_0 is 128. During evaluation, we separately evaluate 4 tasks with 2, 3, 4, 5 components, respectively. With a sample size of 128 and averaging over 1280 randomly sampled tasks.

Metrics. We use ℓ_2 -error as evaluation metrics in the experiments. We denote the output of the TGMM as $\hat{\theta} := \{\hat{\pi}_1, \hat{\mu}_1, \hat{\pi}_2, \hat{\mu}_2, \dots, \hat{\pi}_K, \hat{\mu}_K\}$. The rigorous definition is

$$\frac{1}{K} \sum_{k \in [K]} \left(\frac{1}{d} \|\hat{\mu}_{\tilde{\sigma}(i)} - \mu_i\|^2 + (\hat{\pi}_{\tilde{\sigma}(i)} - \pi_i)^2 \right),$$

where $\tilde{\sigma}$ is the permutation such that $\tilde{\sigma} = \arg \min_{\sigma} \sum_{k \in [K]} \|\hat{\mu}_{\sigma(i)} - \mu_i\|^2$. We obtain the permutation via solving a linear assignment program using the Jonker-Volgenant algorithm(Crouse, 2016). We also report all the experimental results under two alternative metrics: cluster-classification accuracy and log-likelihood in Section H.2.

3.2 RESULTS AND FINDINGS

RQ1: Effectiveness

We compare the performance of a learned TGMM with the classical EM algorithm and spectral algorithm under 4 scenarios where the problem dimension ranges over $\{2, 8, 32, 128\}$. The results are reported in Figure 2. We observe that all three algorithms perform competitively (reaching almost zero estimation error) when $K = 2$. However, as the estimation problem gets more challenging as K increases, the EM algorithm gets trapped in local minima and underperforms both spectral and TGMM. Moreover, while the spectral algorithm performs comparably with TGMM, it cannot handle cases when $K > d$, which is effectively mitigated by TGMM, with corresponding performances surpassing those of the EM algorithm. This demonstrates the effectiveness of TGMM for learning an estimation algorithm that efficiently solves GMM problems.

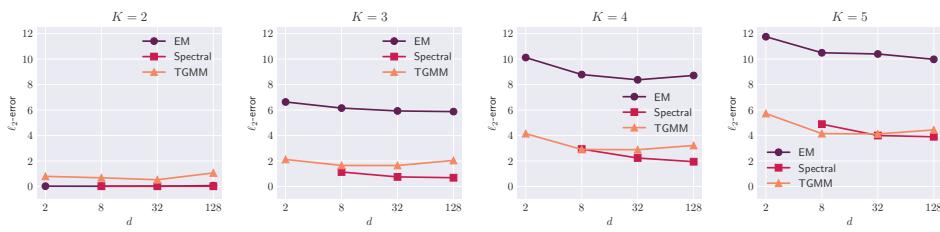


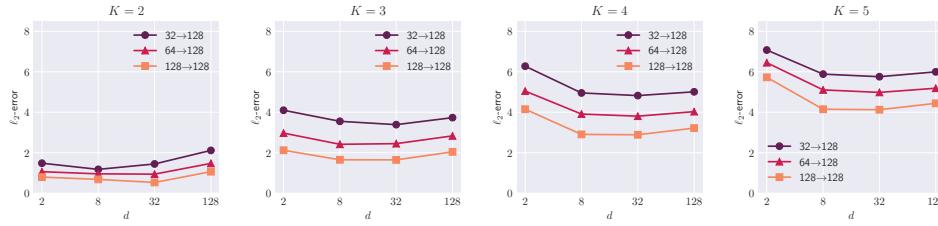
Figure 2: Performance comparison between TGMM and two classical algorithms, reported in ℓ_2 -error.

RQ2: Robustness To assess the robustness of the learned TGMM, we consider two types of test-time distribution shifts:

1. Shifts in sample size N Under this scenario, we evaluate the learned TGMM model on tasks with sample size N^{test} that are unseen during training.

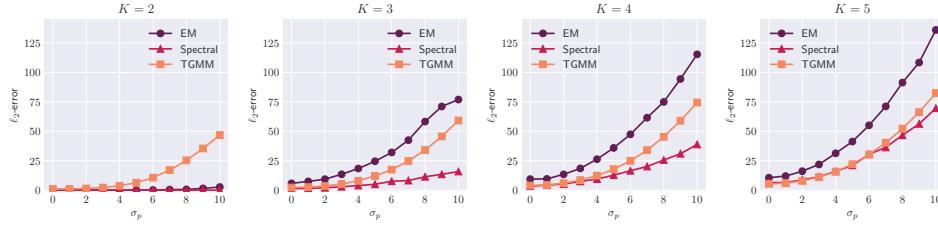
2. Shifts in sampling distributions Under this scenario, we test the learned TGMM model on tasks that are sampled from different sampling distributions that are used during training. Specifically, we use the same training sampling configuration as stated in Section 3.1 and test on the following

324 perturbed sampling scheme, with $\tilde{\mu}_k = \mu_k + \sigma_p \varepsilon_k$, where $\mu_k \stackrel{i.i.d.}{\sim} \text{Unif}([-5, 5]^d)$, $\varepsilon_k \stackrel{i.i.d.}{\sim} \mathcal{N}(0, I_d)$,
 325 $k \in [K]$ and $\{\varepsilon_k\}_{k \in [K]}$ is independent with $\{\mu_k\}_{k \in [K]}$.
 326



336 Figure 3: Assessments of TGMM under test-time task distribution shifts I: A line with $N_0^{\text{train}} \rightarrow N^{\text{test}}$
 337 draws the performance of a TGMM model trained over tasks with sample size randomly sampled
 338 in $[N_0^{\text{train}}/2, N_0^{\text{train}}]$ and evaluated over tasks with sample size N^{test} . We can view the configuration
 339 128 → 128 as an in-distribution test and the rest as out-of-distribution tests.

340 In Figure 3, we report the assessments regarding shifts in sample size, where we set N_{test} to be
 341 128 and vary the training configuration N_0 to range over $\{32, 64, 128\}$, respectively. The results
 342 demonstrate graceful performance degradation of out-of-domain testing performance in comparison
 343 to the in-domain performance. To measure performance over shifted test-time sampling distributions,
 344 we vary the perturbation scale $\sigma_p \in \{0, 1, \dots, 10\}$ with problem dimension fixed at $d = 8$. The
 345 results are illustrated in Figure 4 along with comparisons to EM and spectral baselines. As shown
 346 in the results, with the increase of the perturbation scale, the estimation problem gets much harder.
 347 Nevertheless, the learned TGMM can still outperform the EM algorithm when $K > 2$. Both pieces
 348 of evidence suggest that our meta-training procedure indeed learns an algorithm instead of overfitting
 349 to some training distribution.



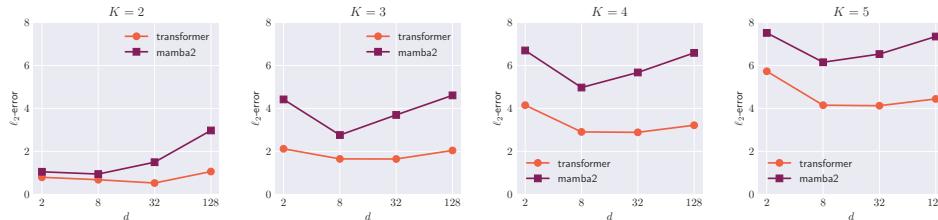
351 Figure 4: Assessments of TGMM under test-time task distribution shifts II: ℓ_2 -error of estimation
 352 when the test-time tasks $\mathcal{T}^{\text{test}}$ are sampled using a mean vector sampling distribution p_{μ}^{test} different
 353 from the one used during training.

354 **RQ3: Flexibility** Finally, we initiate two studies that extend both the TGMM framework and the
 355 (meta) learning problem of solving isotropic GMMs. In our first study, we investigated alternative
 356 architectures for the TGMM backbone. Motivated by previous studies(Park et al., 2024) that demon-
 357 strate the in-context learning capability of linear attention models such as Mamba series(Gu & Dao,
 358 2023; Dao & Gu, 2024). We test replacing the backbone of TGMM with a Mamba2(Dao & Gu, 2024)
 359 model with its detailed specifications and experimental setups listed in Section H.1. The results are
 360 reported in Figure 5, suggesting that while utilizing Mamba2 as the TGMM backbone still yields
 361 non-trivial estimation efficacy, it is in general inferior to transformer backbone under comparable
 362 model complexity.

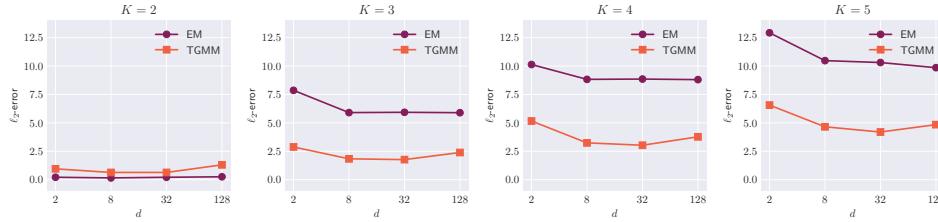
363 In our second study, we adapted TGMM to be compatible with more sophisticated GMM tasks via
 364 relaxing the isotropic assumption. Specifically, we construct anisotropic GMM tasks via equipping it
 365 with another scale sampling mechanism p_{σ} , where for each task we sample $\sigma \sim \text{softplus}(\tilde{\sigma})$ with $\tilde{\sigma}$
 366 being sampled uniformly from $[-1, 1]^d$. We adjust the output structure of TGMM accordingly so
 367 that its outputs can be decoded into both estimates of both mean vectors, mixture probabilities, and
 368 scales, which are detailed in Section H.1. Note that the spectral algorithm does not directly apply to
 369 anisotropic setups, limiting its flexibility. Consequently, we compare TGMM with the EM approach
 370 and plot results in Figure 6 with the ℓ_2 -error metric accommodating errors from scale estimation. The

378 results demonstrate a similar trend as in evaluations in the isotropic case, showcasing TGMM as a
 379 versatile tool in GMM learning problems.
 380

381 **Additional experiments** We postpone some further evaluations to Section H, where we present a
 382 complete report consisting of more metrics and conduct several ablations on the effects of backbone
 383 scales and sample sizes.



392 Figure 5: Performance comparisons between TGMM using transformer and Mamba2 as backbone,
 393 reported in ℓ_2 -error.
 394



402 Figure 6: Performance comparison between TGMM and the EM algorithm on anisotropic GMM
 403 tasks, reported in ℓ_2 -error.
 404

405 **Remark 1.** One might be concerned with the fairness of comparisons between TGMM pre-training
 406 and EM/spectral method. We would like to point out that the only additional information that TGMM
 407 receives during meta-training is the (implicitly provided) distributional information. The empirical
 408 results show that TGMM can generalize beyond the meta-training distribution.

4 THEORETICAL UNDERSTANDINGS

410 In this section, we provide some theoretical understandings for the experiments.

4.1 UNDERSTANDING TGMM

411 We investigate the expressive power of transformers-for-Gaussian-mixtures(TGMM) as demonstrated
 412 in Section 3. Our analysis presents two key findings that elucidate the transformer's effectiveness
 413 for GMM estimation: 1. Transformer can approximate the EM algorithm; 2. Transformer can
 414 approximate the power iteration of cubic tensor.

415 **Transformer can approximate the EM algorithm.** We show that transformer can efficiently
 416 approximate the EM algorithm (Algorithm B.1; see Section B) and estimate the parameters of GMM.
 417 Moreover, we show that transformer with one backbone can handle tasks with different dimensions
 418 and components simultaneously. The formal statement appears in Section F due to space limitations.

419 **Theorem 1 (Informal).** There exists a $2L$ -layer transformer TF_{Θ} such that for any $d \leq d_0$, $K \leq K_0$
 420 and task $\mathcal{T} = (\mathbf{X}, \theta, K)$ satisfying some regular conditions, given suitable embeddings, TF_{Θ}
 421 approximates EM algorithm L steps and estimates θ efficiently.

422 **Transformer can approximate power iteration of cubic tensor.** Since directly implementing the
 423 spectral algorithm with transformers proves prohibitively complex, we instead demonstrate that
 424 transformers can effectively approximate its core computational step—the power iteration for cubic
 425 tensors (Algorithm 1 in Anandkumar et al. (2014); see Section B). Specifically, we prove that a
 426 single-layer transformer can approximate the iteration step:

$$v^{(j+1)} = T(I, v^{(j)}, v^{(j)}), \quad j \in \mathbb{N}, \quad (3)$$

427 where I denotes the identity matrix and T represents the given cubic tensor. For technical tractability,
 428 we assume the attention layer employs a *ReLU* activation function. The formal statement appears in
 429 Section G due to space limitations.

432 **Theorem 2** (Informal). *There exists a $2L$ -layer transformer TF_Θ with ReLU activation such that for
433 any $d \leq d_0$, $T \in \mathbb{R}^{d \times d \times d}$ and $v^{(0)} \in \mathbb{R}^d$, given suitable embeddings, TF_Θ implements L steps of
434 (3) exactly.*

435 We give some discussion of the theorems in the following remarks.

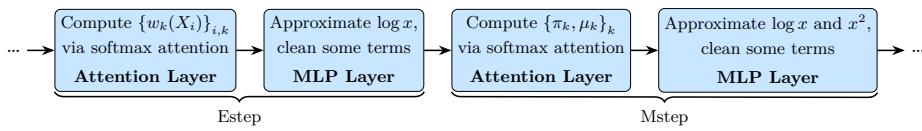
436 **Remark 2.** (1) *Theorem 1 demonstrates that a transformer architecture can approximate the EM
437 algorithm for GMM tasks with varying numbers of components using a single shared set of param-
438 eters (i.e., one backbone Θ). This finding supports the empirical effectiveness of TGMM (RQ1 in
439 Section 3.2). Additionally, Theorem 2 establishes that transformers can approximate power iterations
440 for third-order tensors across different dimensions, further corroborating the model’s ability to
441 generalize across GMMs with varying component counts.*

442 (2) *Theorem 1 holds uniformly over sample sizes N and sampling distributions under mild regularity
443 conditions, aligning with the observed robustness of TGMM (RQ2 in Section 3.2).*

444 **Remark 3.** *Different “readout” functions are also required to extract task-specific parameters in
445 our theoretical analysis, aligning with the architectural design described in Section 2.2. For further
446 discussion, refer to Remark F.3 in Section F.2.*

447 4.2 PROOF IDEAS

448 **Proof Idea of Theorem 1.** We present a brief overview of the proof strategy for Theorem 1. Our
449 approach combines three key components: (1) the convergence properties of the population-EM
450 algorithm (Kwon & Caramanis, 2020), (2) concentration bounds between population and sample
451 quantities (established via classical empirical process theory), and (3) a novel transformer architecture
452 construction. The transformer design is specifically motivated by the weighting properties of the
453 softmax activation function, which naturally aligns with the EM algorithm’s update structure. For
454 intuitive understanding, Figure 7 provides a graphical illustration of this construction. The full proof
455 is in Section F.



461 Figure 7: (Informal version) Transformer Construction for Approximating EM Algorithm Iterations.
462 The word “clean” means setting all positions of the corresponding vector to zero.
463

464 **Proof Idea of Theorem 2.** To approximate (3), we perform a two-dimensional computation within
465 a single-layer transformer. The key idea is to leverage the number of attention heads M to handle
466 one dimension while utilizing the Q, K, V structure in the attention layer. Specifically, let $T =$
467 $(T_{i,j,m})_{i,j,m \in [d]}$ and $v^{(j)} = (v_i^{(j)})_{i \in [d]}$. Then, (3) can be rewritten as $v^{(j+1)} = \sum_{j,m \in [d]} v_j v_l T_{:,j,m}$,
468 where $T_{:,j,m} = (T_{i,j,m})_{i \in [d]} \in \mathbb{R}^d$. This operation can be implemented using d attention heads,
469 where each head processes a dimension of size d (Figure 8). The complete construction and proof are
470 provided in Section G.

$$472 \bar{h}_i = h_i + \frac{1}{d} \sum_{m=1}^d \sum_{j=1}^d \sigma \left(\langle \text{Q}_m h_i, \text{K}_m h_j \rangle \right) V_m h_j \longrightarrow v^{j+1} = \sum_{m=1}^d \sum_{j=1}^d \left(v_m \cdot v_j \right) T_{:,j,m}$$

475 Figure 8: Illustration of implementing (3) via a multi-head attention structure, where colored boxes
476 denote corresponding implementation components. Here σ denotes the ReLU function.
477

478 5 CONCLUSION AND DISCUSSIONS

479 In this paper, we investigate the capabilities of transformers in GMM tasks from both theoretical
480 and empirical perspectives. Our work is among the earliest studies to investigate the mechanism of
481 transformers in unsupervised learning settings. Our results establish fundamental theoretical guar-
482 antees that Transformers can efficiently implement classical algorithms—such as the EM algorithm
483 and spectral methods. This is consistent with our empirical finding that the performance of our
484 meta-training algorithm can interpolate between EM and the spectral method. It also opens a room
485 for future improvement of attention-based meta-training algorithms in a broader class of unsupervised
learning problems. We discuss the limitations and potential future research directions in Section E.

486 REFERENCES
487

488 Murray Aitkin and Granville Tunnicliffe Wilson. Mixture models, outliers, and the em algorithm.
489 *Technometrics*, 22(3):325–331, 1980.

490 Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
491 algorithm is in-context learning? investigations with linear models. In *The Eleventh International
492 Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=0g0X4H8yN4I>.

493

494 Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Telgarsky. Tensor
495 decompositions for learning latent variable models. *Journal of Machine Learning Research*, 15
496 (80):2773–2832, 2014. URL <http://jmlr.org/papers/v15/anandkumar14b.html>.

497

498 Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
499 Provable in-context learning with in-context algorithm selection. In *Advances
500 in Neural Information Processing Systems*, volume 36, pp. 57125–57211. Curran Asso-
501 ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/b2e63e36c57e153b9015fce2352a9f9-Paper-Conference.pdf.

502

503 Sivaraman Balakrishnan, Martin J. Wainwright, and Bin Yu. Statistical guarantees for the EM
504 algorithm: From population to sample-based analysis. *The Annals of Statistics*, 45(1):77 – 120,
505 2017. doi: 10.1214/16-AOS1435. URL <https://doi.org/10.1214/16-AOS1435>.

506

507 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
508 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
509 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
510 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
511 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
512 Sutskever, and Dario Amodei. Language models are few-shot learners. In *Proceedings of the 34th
513 International Conference on Neural Information Processing Systems*, NIPS ’20, Red Hook, NY,
514 USA, 2020. Curran Associates Inc. ISBN 9781713829546.

515

516 David F Crouse. On implementing 2d rectangular assignment algorithms. *IEEE Transactions on
517 Aerospace and Electronic Systems*, 52(4):1679–1696, 2016.

518

519 Tri Dao and Albert Gu. Transformers are ssms: generalized models and efficient algorithms through
520 structured state space duality. In *Proceedings of the 41st International Conference on Machine
521 Learning*, pp. 10041–10071, 2024.

522

523 N. E. DAY. Estimating the components of a mixture of normal distributions. *Biometrika*, 56(3):
463–474, 12 1969. ISSN 0006-3444. doi: 10.1093/biomet/56.3.463. URL <https://doi.org/10.1093/biomet/56.3.463>.

524

525 A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em
526 algorithm. *Journal of the Royal Statistical Society. Series B (Methodological)*, 39(1):1–38, 1977.
527 ISSN 00359246. URL <http://www.jstor.org/stable/2984875>.

528

529 Rasool Fakoor, Pratik Chaudhari, Jonas Mueller, and Alexander J Smola. Trade: Transformers for
530 density estimation. *arXiv preprint arXiv:2004.02441*, 2020.

531

532 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
533 in-context? a case study of simple function classes. *Advances in Neural Information Processing
534 Systems*, 35:30583–30598, 2022.

535

536 Angeliki Giannou, Liu Yang, Tianhao Wang, Dimitris Papailiopoulos, and Jason D. Lee. How well
537 can transformers emulate in-context newton’s method? In *The 28th International Conference on
538 Artificial Intelligence and Statistics*, 2025. URL <https://openreview.net/forum?id=cj5L29Vwol>.

539

540 Rémi Gribonval, Gilles Blanchard, Nicolas Keriven, and Yann Traonmilin. Statistical learning
541 guarantees for compressive clustering and compressive mixture modeling. *Mathematical Statistics
542 and Learning*, 3(2):165–257, 2021.

540 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv*
 541 *preprint arXiv:2312.00752*, 2023.
 542

543 Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang,
 544 An Xiao, Chunjing Xu, Yixing Xu, Zhaohui Yang, Yiman Zhang, and Dacheng Tao. A survey
 545 on vision transformer. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(1):
 546 87–110, 2023. doi: 10.1109/TPAMI.2022.3152247.

547 Yihan He, Yuan Cao, Hong-Yu Chen, Dennis Wu, Jianqing Fan, and Han Liu. Learning spectral
 548 methods by transformers. *arXiv preprint arXiv:2501.01312*, 2025a.
 549

550 Yihan He, Hong-Yu Chen, Yuan Cao, Jianqing Fan, and Han Liu. Transformers versus the em
 551 algorithm in multi-class clustering. *arXiv preprint arXiv:2502.06007*, 2025b.
 552

553 Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
 554 networks: A survey. *IEEE transactions on pattern analysis and machine intelligence*, 44(9):
 555 5149–5169, 2021.
 556

556 Daniel Hsu and Sham M. Kakade. Learning mixtures of spherical gaussians: moment methods and
 557 spectral decompositions. In *Proceedings of the 4th Conference on Innovations in Theoretical*
 558 *Computer Science*, ITCS ’13, pp. 11–20, New York, NY, USA, 2013. Association for Computing
 559 Machinery. ISBN 9781450318594. doi: 10.1145/2422436.2422439. URL <https://doi.org/10.1145/2422436.2422439>.
 560

561 Chi Jin, Yuchen Zhang, Sivaraman Balakrishnan, Martin J. Wainwright, and Michael I. Jordan.
 562 Local maxima in the likelihood of gaussian mixture models: structural results and algorithmic
 563 consequences. In *Proceedings of the 30th International Conference on Neural Information*
 564 *Processing Systems*, NIPS’16, pp. 4123–4131, Red Hook, NY, USA, 2016. Curran Associates Inc.
 565 ISBN 9781510838819.
 566

567 Yanhao Jin, Krishnakumar Balasubramanian, and Lifeng Lai. Provable in-context learning for mixture
 568 of linear regressions using transformers. *arXiv preprint arXiv:2410.14183*, 2024.
 569

570 Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and
 571 Mubarak Shah. Transformers in vision: A survey. *ACM Comput. Surv.*, 54(10s), September 2022.
 572 ISSN 0360-0300. doi: 10.1145/3505244. URL <https://doi.org/10.1145/3505244>.
 573

574 Juno Kim, Tai Nakamaki, and Taiji Suzuki. Transformers are minimax optimal nonparametric
 575 in-context learners. *Advances in Neural Information Processing Systems*, 37:106667–106713,
 576 2024.
 577

578 Jeongyeol Kwon and Constantine Caramanis. The em algorithm gives sample-optimality for learning
 579 mixtures of well-separated gaussians. In *Proceedings of Thirty Third Conference on Learning*
 580 *Theory*, volume 125 of *Proceedings of Machine Learning Research*, pp. 2425–2487. PMLR, 09–12
 581 Jul 2020.
 582

583 Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
 584 former: A framework for attention-based permutation-invariant neural networks. In *International*
 585 *conference on machine learning*, pp. 3744–3753. PMLR, 2019.
 586

587 Wenzhe Li, Hao Luo, Zichuan Lin, Chongjie Zhang, Zongqing Lu, and Deheng Ye. A survey on
 588 transformers in reinforcement learning. *Transactions on Machine Learning Research*, 2023a.
 589 ISSN 2835-8856. URL <https://openreview.net/forum?id=r30yuDPvf2>. Survey
 590 Certification.
 591

592 Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
 593 as algorithms: Generalization and stability in in-context learning. In *International conference on*
 594 *machine learning*, pp. 19565–19594. PMLR, 2023b.
 595

596 Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
 597 ment learning via supervised pretraining. In *The Twelfth International Conference on Learning*
 598 *Representations*, 2024. URL <https://openreview.net/forum?id=yN4Wv17ss3>.
 599

594 Toni Liu, Nicolas Boulle, Raphaël Sarfati, and Christopher Earls. Density estimation with llms: a
 595 geometric investigation of in-context learning trajectories. In Y. Yue, A. Garg, N. Peng, F. Sha,
 596 and R. Yu (eds.), *International Conference on Representation Learning*, volume 2025, pp. 22163–
 597 22197, 2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/file/380af1a245a3b2134010620eae88865-Paper-Conference.pdf.

599

600 Matthias Löffler, Anderson Y Zhang, and Harrison H Zhou. Optimality of spectral clustering in the
 601 gaussian mixture model. *The Annals of Statistics*, 49(5):2506–2530, 2021.

602 Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. *arXiv preprint*
 603 *arXiv:1711.05101*, 5:5, 2017.

604

605 Laura Manduchi, Kieran Chin-Cheong, Holger Michel, Sven Wellmann, and Julia E. Vogt. Deep
 606 conditional gaussian mixture model for constrained clustering. In *Proceedings of the 35th Interna-*
 607 *tional Conference on Neural Information Processing Systems*, NIPS ’21, Red Hook, NY, USA,
 608 2021. Curran Associates Inc. ISBN 9781713845393.

609

610 Geoffrey J McLachlan and David Peel. *Finite mixture models*. John Wiley & Sons, 2000.

611

612 Song Mei. U-nets as belief propagation: Efficient classification, denoising, and diffusion in generative
 613 hierarchical models. *ArXiv*, abs/2404.18444, 2024. URL <https://arxiv.org/abs/2404.18444>.

614

615 Ankur Moitra. *Algorithmic aspects of machine learning*. Cambridge University Press, 2018.

616

617 Mohamed Ndaoud. Sharp optimal recovery in the two component gaussian mixture model. *The*
 618 *Annals of Statistics*, 50(4):2096–2126, 2022.

619

620 Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
 621 woong Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? a comparative study
 622 on in-context learning tasks. In *Proceedings of the 41st International Conference on Machine*
 623 *Learning*, pp. 39793–39812, 2024.

624

625 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
 626 Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
 627 Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
 628 Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
 629 performance deep learning library. In *NeurIPS*, pp. 8024–8035, 2019.

630

631 Reese Pathak, Rajat Sen, Weihao Kong, and Abhimanyu Das. Transformers can optimally learn
 632 regression mixture models. In *The Twelfth International Conference on Learning Representations*,
 633 2024. URL <https://openreview.net/forum?id=sLkj91HIZU>.

634

635 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 636 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

637

638 Rylan Schaeffer, Mikail Khona, and Sanmi Koyejo. In-context learning of energy functions. In *ICML*
 639 *2024 Workshop on In-Context Learning*, 2024. URL <https://openreview.net/forum?id=9QI3E2iaSD>.

640

641 Nimrod Segol and Boaz Nadler. Improved convergence guarantees for learning Gaussian mixture
 642 models by EM and gradient EM. *Electronic Journal of Statistics*, 15(2):4510 – 4544, 2021.

643

644 Kai Shen, Junliang Guo, Xu Tan, Siliang Tang, Rui Wang, and Jiang Bian. A study on relu and
 645 softmax in transformer. *arXiv preprint arXiv:2302.06461*, 2023.

646

647 Anzo Teh, Mark Jabbour, and Yury Polyanskiy. Solving empirical bayes via transformers. *arXiv*
 648 *preprint arXiv:2502.09844*, 2025.

649

650 D.M. Titterington, A.F.M. Smith, and U.E. Makov. *Statistical Analysis of Finite Mixture Distributions*.
 651 Wiley, New York, 1985.

648 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
 649 Kaiser, and Illia Polosukhin. Attention is all you need. In *Proceedings of the 31st International*
 650 *Conference on Neural Information Processing Systems*, NIPS'17, pp. 6000–6010, Red Hook, NY,
 651 USA, 2017. Curran Associates Inc. ISBN 9781510860964.

652 Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordvintsev,
 653 Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent.
 654 In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
 655 Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*,
 656 volume 202 of *Proceedings of Machine Learning Research*, pp. 35151–35174. PMLR, 23–29 Jul
 657 2023. URL <https://proceedings.mlr.press/v202/von-oswald23a.html>.

658 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 659 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
 660 Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
 661 Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
 662 processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
 663 cessing: System Demonstrations*, pp. 38–45, Online, October 2020. Association for Computational
 664 Linguistics. URL <https://www.aclweb.org/anthology/2020.emnlp-demos.6>.

665 Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
 666 learning as implicit bayesian inference. *arXiv preprint arXiv:2111.02080*, 2021.

667 Bin Yu, Chen Chen, Ren Qi, Ruiqing Zheng, Patrick J Skillman-Lawrence, Xiaolin Wang, Anjun Ma,
 668 and Haiming Gu. scgmai: a gaussian mixture model for clustering single-cell rna-seq data based
 669 on deep autoencoder. *Briefings in bioinformatics*, 22(4):bbaa316, 2021.

670 Yi Zhang, Miaomiao Li, Siwei Wang, Sisi Dai, Lei Luo, En Zhu, Huiying Xu, Xinzhang Zhu,
 671 Chaoyun Yao, and Haoran Zhou. Gaussian mixture model clustering with incomplete data.
 672 *ACM Trans. Multimedia Comput. Commun. Appl.*, 17(1s), March 2021. ISSN 1551-6857. doi:
 673 10.1145/3408318. URL <https://doi.org/10.1145/3408318>.

674 Ruofei Zhao, Yuanzhi Li, and Yuekai Sun. Statistical convergence of the EM algorithm on Gaussian
 675 mixture models. *Electronic Journal of Statistics*, 14(1):632 – 660, 2020. doi: 10.1214/19-EJS1660.

682 Appendix

685 Table of Contents

687 A Literature on Density Estimation using LLMs	14
688	
689 B Algorithm Details	14
690	
691 C Full Notation of Network Architecture	14
692	
693 D On the parameter efficiency of TGMM	16
694	
695 E Limitations and future work directions	16
696	
697 F Formal statement of Theorem 1 and proofs	17
698 F.1 Formal statement of Theorem 1	17
699 F.2 Construction of transformer architecture and formal version of Figure 7	18
700 F.3 Convergence results for EM algorithm	22
701 F.4 Proof of Theorem F.1	30
702	
703 G Formal statement of Theorem 2 and proofs	30
704	

702	G.1 Formal statement of Theorem 2	30
703	G.2 Proof of Theorem G.8	32
704		
705	H More on empirical studies	33
706	H.1 More on experimental setups	33
707	H.2 A complete report regarding different evaluation metrics	34
708	H.3 On the impact of inference-time sample size N	34
709	H.4 On the impact of backbone scale	34
710		

711 **Organization of the Appendix.** In Section B, we formally present the GMM algorithms referenced
 712 in Section 2. We discuss the parameter efficiency of TGMM in Section D. Rigorous statements and
 713 proofs of Theorem 1 and Theorem 2 are provided in Section F and Section G, respectively. Additional
 714 experimental details are included in Section H.

715 **Additional notations in the Appendix.** The maximum between two scalars a, b is denoted as $a \vee b$.
 716 For a vector $v \in \mathbb{R}^d$, let $\|v\|_\infty := \max_{i \in [d]} |v_i|$ be its infinity norm. We use $\mathbf{0}_d$ to denote the zero
 717 vector and $\mathbf{e}_i \in \mathbb{R}^d$ to denote the i -th standard unit vector in \mathbb{R}^d . For a matrix $\mathbf{A} \in \mathbb{R}^{d_1 \times d_2}$, we
 718 denote $\|\mathbf{A}\|_2 := \sup_{\|x\|_2=1} \|\mathbf{A}x\|$ as its operator norm. We use $\tilde{O}(\cdot)$ to denote $O(\cdot)$ with hidden
 719 log factors. For clarity, we denote the ground-truth parameters of GMM with a superscript $*$, i.e.
 720 $\{\pi_k^*, \mu_k^*\}_{k \in [K]}$, throughout this appendix.

723 A LITERATURE ON DENSITY ESTIMATION USING LLMs

724 Recent studies have explored the capabilities of large language models (LLMs) for in-context
 725 probability density estimation. For instance, Liu et al. (2025) interprets LLM learning as an adaptive
 726 form of Kernel Density Estimation, revealing divergent learning trajectories compared to traditional
 727 methods. Schaeffer et al. (2024) introduces a more general framework for in-context learning by
 728 modeling unconstrained energy functions, enabling effective learning even when input and output
 729 spaces are mismatched. Meanwhile, Fakoor et al. (2020) leverages self-attention mechanisms to
 730 perform empirical density estimation across heterogeneous data types. Whereas these efforts prioritize
 731 empirical performance in distribution estimation, our paper focuses on the theoretical expressive
 732 power of transformers, specifically in the context of GMM estimation.

734 B ALGORITHM DETAILS

735 We state the classical algorithms of GMM mention in Section 2 in this section.

736 Algorithm B.1 EM algorithm for GMM

737 **Require:** $\{X_i, i \in [N]\}, \theta^{(0)} = \{\pi_1^{(0)}, \mu_1^{(0)}, \dots, \pi_K^{(0)}, \mu_K^{(0)}\}$
 738 1: $j \leftarrow 0$
 739 2: **while** not converge **do**
 740 3: **E-step:** $w_k^{(j+1)}(X_i) = \frac{\pi_k^{(j)} \phi(X_i; \mu_k^{(j)})}{\sum_{k \in [K]} \pi_k^{(j)} \phi(X_i; \mu_k^{(j)})}, i \in [N], k \in [K]$
 741 4: **M-step:** $\pi_k^{(j+1)} = \frac{\sum_{i \in [N]} w_k^{(j+1)}(X_i)}{N}, \mu_k^{(j+1)} = \frac{\sum_{i \in [N]} w_k^{(j+1)}(X_i) X_i}{\sum_{i \in [N]} w_k^{(j+1)}(X_i)}, k \in [K]$
 742 5: $j \leftarrow j + 1$
 743 6: **end while**

750 C FULL NOTATION OF NETWORK ARCHITECTURE

751 **Definition 4** (Attention layer). A (self-)attention layer with M heads is denoted as $\text{Attn}_{\Theta_{\text{attn}}}(\cdot)$ with
 752 parameters $\Theta_{\text{attn}} = \{(\mathbf{V}_m, \mathbf{Q}_m, \mathbf{K}_m)\}_{m \in [M]} \subset \mathbb{R}^{D \times D}$. On any input sequence $\mathbf{H} \in \mathbb{R}^{D \times N}$,

$$753 \tilde{\mathbf{H}} = \text{Attn}_{\Theta_{\text{attn}}}(\mathbf{H}) := \mathbf{H} + \sum_{m=1}^M (\mathbf{V}_m \mathbf{H}) \text{softmax}((\mathbf{K}_m \mathbf{H})^\top (\mathbf{Q}_m \mathbf{H})) \in \mathbb{R}^{D \times N},$$

756
757
758
759
760

761 **Algorithm B.2** Spectral Algorithm for GMM

762 **Require:** $\{X_i, i \in [N]\}$ 763 1: Compute the empirical moments \hat{M}_2 and \hat{M}_3 by

764
$$\hat{M}_2 = \frac{1}{N} \sum_{i \in [N]} X_i \otimes X_i - I_d,$$

765
$$\hat{M}_3 = \frac{1}{N} \sum_{i \in [N]} X_i \otimes X_i \otimes X_i - \frac{1}{N} \sum_{i \in [N], j \in [d]} (X_i \otimes \mathbf{e}_j \otimes \mathbf{e}_j + \mathbf{e}_j \otimes X_i \otimes \mathbf{e}_j + \mathbf{e}_j \otimes \mathbf{e}_j \otimes X_i)$$

766 2: Do first K -th singular value decomposition(SVD) for \hat{M}_2 : $\hat{M}_2 \approx UDU^\top$ and let $W = U D^{-1/2}$,
767 $B = U D^{1/2}$ 768 3: Do first K -th robust tensor decomposition (Algorithm 1 in Anandkumar et al. (2014), see
769 Algorithm B.3) for $\tilde{M}_3 = \hat{M}_3(W, W, W)$:

770
$$\tilde{M}_3 \approx \sum_{k \in [K]} \lambda_k v_k^{\otimes 3}$$

771 **return** $\hat{\pi}_k = \lambda_k^{-2}, \hat{\mu}_k = \lambda_k B v_k, k \in [K]$.

772773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789

790 **Algorithm B.3** Robust Tensor Power Method

791 **Require:** symmetric tensor $T \in \mathbb{R}^{d \times d \times d}$, number of iterations L, N .792 **Ensure:** the estimated eigenvector/eigenvalue pair; the deflated tensor.793 1: **for** $\tau = 1$ to L **do**794 2: Draw $v_0^{(\tau)}$ uniformly at random from the unit sphere in \mathbb{R}^d .795 3: **for** $t = 1$ to N **do**

796 4: Compute power iteration update:

797 5:
$$v_t^{(\tau)} := \frac{T(I, v_{t-1}^{(\tau)}, v_{t-1}^{(\tau)})}{\|T(I, v_{t-1}^{(\tau)}, v_{t-1}^{(\tau)})\|}$$

798 6: **end for**799 7: **end for**800 8: Let $\tau^* := \arg \max_{\tau \in [L]} \{T(v_N^{(\tau)}, v_N^{(\tau)}, v_N^{(\tau)})\}$.801 9: Do N power iteration updates (line 5) starting from $v_N^{(\tau^*)}$ to obtain \hat{v} .802 10: Set $\hat{\lambda} := \tilde{T}(\hat{v}, \hat{v}, \hat{v})$.803 11: **return** the estimated eigenvector/eigenvalue pair $(\hat{v}, \hat{\lambda})$; the deflated tensor $\tilde{T} - \hat{\lambda} \hat{v}^{\otimes 3}$.

804805
806
807
808
809

810 *In vector form,*

$$812 \quad \tilde{\mathbf{h}}_i = [\text{Attn}_{\Theta_{\text{attn}}}(\mathbf{H})]_i = \mathbf{h}_i + \sum_{m=1}^M \sum_{j=1}^N \left[\text{softmax} \left(\left((\mathbf{Q}_m \mathbf{h}_i)^\top (\mathbf{K}_m \mathbf{h}_j) \right)_{j=1}^N \right) \right]_j \mathbf{V}_m \mathbf{h}_j.$$

815 *Here softmax is the activation function defined by $\text{softmax}(v) =$*

$$816 \quad \left(\frac{\exp(v_1)}{\sum_{i=1}^d \exp(v_i)}, \dots, \frac{\exp(v_d)}{\sum_{i=1}^d \exp(v_i)} \right)$$
 for $v \in \mathbb{R}^d$.

818 The Multilayer Perceptron(MLP) layer is defined as follows.

820 **Definition 5** (MLP layer). *A (token-wise) MLP layer with hidden dimension D' is denoted as*

$$821 \quad \text{MLP}_{\Theta_{\text{mlp}}}(\cdot)$$
 with parameters $\Theta_{\text{mlp}} = (\mathbf{W}_1, \mathbf{W}_2) \in \mathbb{R}^{D' \times D} \times \mathbb{R}^{D \times D'}$. On any input sequence

$$822 \quad \mathbf{H} \in \mathbb{R}^{D \times N}$$
,

$$823 \quad \tilde{\mathbf{H}} = \text{MLP}_{\Theta_{\text{mlp}}}(\mathbf{H}) := \mathbf{H} + \mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{H}),$$

825 *where $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ is the ReLU function. In vector form, we have $\tilde{\mathbf{h}}_i = \mathbf{h}_i + \mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{h}_i)$.*

827 Then we can use the above definitions to define the transformer model.

829 **Definition 6** (Transformer). *An L -layer transformer, denoted as $\text{TF}_{\Theta_{\text{tf}}}(\cdot)$, is a composition of L*

$$830 \quad \text{self-attention layers each followed by an MLP layer:}$$

$$831 \quad \text{TF}_{\Theta_{\text{tf}}}(\mathbf{H}) = \text{MLP}_{\Theta_{\text{mlp}}^{(L)}} \left(\text{Attn}_{\Theta_{\text{attn}}^{(L)}} \left(\dots \text{MLP}_{\Theta_{\text{mlp}}^{(1)}} \left(\text{Attn}_{\Theta_{\text{attn}}^{(1)}}(\mathbf{H}) \right) \right) \right).$$

834 *Here the parameter $\Theta_{\text{tf}} = (\Theta_{\text{attn}}^{(1:L)}, \Theta_{\text{mlp}}^{(1:L)})$ consists of the attention layers $\Theta_{\text{attn}}^{(\ell)} =$*

$$835 \quad \{(\mathbf{V}_m^{(\ell)}, \mathbf{Q}_m^{(\ell)}, \mathbf{K}_m^{(\ell)})\}_{m \in [M^{(\ell)}]} \subset \mathbb{R}^{D \times D}$$
, *the MLP layers $\Theta_{\text{mlp}}^{(\ell)} = (\mathbf{W}_1^{(\ell)}, \mathbf{W}_2^{(\ell)}) \in \mathbb{R}^{D^{(\ell)} \times D} \times$*

$$836 \quad \mathbb{R}^{D \times D^{(\ell)}}$$
.

839 D ON THE PARAMETER EFFICIENCY OF TGMM

841 Aside from its backbone, the extra parameters in a TGMM comprises the following:

843 **Parameters in the task embedding module** This part has a parameter count of $s \times d_{\text{task}}$.

845 **Parameters in the Readin layer** This part has a parameter count of $O((d_{\text{task}} + d) \times D)$.

846 **Parameters in the Readout layer** This part has a parameter count of $O(s d D)$, which comprises of

$$847 \quad$$
 parameters from s distinct attention mechanisms.

849 As d_{task} is typically of the order $O(D)$, we conclude that the total extra parameter complexity is of the

$$850 \quad$$
 order $O(s d D)$, which in practice is often way smaller than the parameter complexity of the backbone,

$$851 \quad$$
 i.e., of the order $O(L D^2)$ Meanwhile, a naive implementation of adapting transformer architecture to

$$852 \quad$$
 solve s distinct GMM tasks require a different transformer backbone. As the complexity of backbone

$$853 \quad$$
 often dominate those of extra components, the TGMM implementation can reduce the parameter

$$854 \quad$$
 complexity by an (approximate) factor of $1/s$ in practice.

856 E LIMITATIONS AND FUTURE WORK DIRECTIONS

858 First, while our theoretical analysis focuses on the approximation ability of transformers, the optimi-

$$859 \quad$$
 zation dynamics remain unexplored. This is a common theoretical challenge in ICL literature;

$$860 \quad$$
 see Bai et al. (2023); Lin et al. (2024); Giannou et al. (2025). Second, approximating the full

$$861 \quad$$
 spectral algorithm (Algorithm B.2; see Section B) presents a significant challenge, which we leave

$$862 \quad$$
 for future work. Third, our study is limited to the expressivity of transformers on classical GMM

$$863 \quad$$
 tasks; exploring their performance on other unsupervised learning tasks is an interesting direction

$$864 \quad$$
 that warrants further investigation.

864 F FORMAL STATEMENT OF THEOREM 1 AND PROOFS
 865

866 For analytical tractability, we implement Readin as an identity transformation and define Readout
 867 to extract targeted matrix elements hence they are both fixed functions. Actually, we also need
 868 "Readout" functions to get the estimated parameters for different tasks, see Remark F.3. To theoretical
 869 convenience, we use the following norm of transformers, which differs slightly from the definition in
 870 Bai et al. (2023).

$$872 \|\Theta\| := \max_{\ell \in [L]} \left\{ \max_{m \in [M]} \left\{ \|\mathbf{Q}_m^{(\ell)}\|_2, \|\mathbf{K}_m^{(\ell)}\|_2, \|\mathbf{V}_m^{(\ell)}\|_2 \right\} + \|\mathbf{W}_1^{(\ell)}\|_2 + \|\mathbf{W}_2^{(\ell)}\|_2 \right\}.$$

874 Then the transformer class can be defined as
 875

$$876 \mathcal{F} := \mathcal{F}(L, D, D', M, B_\Theta) = \left\{ \text{TF}_\Theta, \|\Theta\| \leq B_\Theta, D^{(\ell)} \leq D', M^{(\ell)} \leq M, \ell \in [L] \right\}.$$

878 F.1 FORMAL STATEMENT OF THEOREM 1
 879

880 First, we introduce some notations. We define $\pi_{\min} = \min_i \pi_i^*$, $\rho_\pi = \max_i \pi_i^* / \min_i \pi_i^*$. We use
 881 $R_{ij} = \|\mu_i^* - \mu_j^*\|$ to denote the pairwise distance between components and $R_{\min} = \min_{i \neq j} R_{ij}$,
 882 $R_{\max} = (\max_{i \neq j} R_{ij}) \vee (\max_{i \in [K]} \|\mu_i^*\|)$. Without the loss of generality, we assume that $R_{\max} \geq 1$.
 883 For dimension and components adaptation, we assume $d \leq d_0$ and $K \leq K_0$. Since in practice the
 884 sample size N is much larger than the number of components K , we assume that N is divisible by
 885 K , i.e. $N/K \in \mathbb{N}$. Otherwise, we only consider the first $K \lfloor N/K \rfloor$ samples and drop the others. We
 886 encode $\mathbf{X} = \{X_i\}_{i=1}^N$ into an input sequence \mathbf{H} as the following:
 887

$$888 \mathbf{H} = \begin{bmatrix} \bar{X}_1 & \bar{X}_2 & \dots & \bar{X}_N \\ \mathbf{p}_1 & \mathbf{p}_2 & \dots & \mathbf{p}_N \end{bmatrix} \in \mathbb{R}^{D \times N}, \mathbf{p}_i = \begin{bmatrix} \bar{\theta}_i \\ \mathbf{r}_i \end{bmatrix}, \bar{\theta}_i = \begin{bmatrix} \bar{\pi}_{\log} \\ \bar{\mu}_{i\%K} \\ c_{i\%K} \\ \mathbf{0}_{3K_0} \end{bmatrix} \in \mathbb{R}^{d_0+4K_0+1}, \mathbf{r}_i = \begin{bmatrix} \mathbf{0}_{\tilde{D}} \\ 1 \\ \mathbf{e}_{i\%K} \end{bmatrix} \in \mathbb{R}^{D-(2d_0+3K_0+1)},$$

892 where $\bar{X}_i = [X_i^\top, \mathbf{0}_{d_0-d}^\top]^\top$, $\bar{\pi}_{\log} = [\pi_{\log}^\top, \mathbf{0}_{K_0-K}^\top]^\top$, $\bar{\mu}_{i\%K} = [\mu_{i\%K}^\top, \mathbf{0}_{d_0-d}^\top]^\top$, $c_{i\%K} \in \mathbb{R}$ and
 893 $\mathbf{e}_{i\%K} \in \mathbb{R}^{K_0}$ denotes the $i\%K$ -th standard unit vector. To match the dimension, $\tilde{D} = D - (2d_0 +$
 894 $5K_0 + 2)$. We choose $D = O(d_0 + K_0)$ to get the encoding above. For the initialization, we choose
 895 $\pi_{\log} = \log \pi^{(0)}$, $\mu_i = \mu_i^{(0)}$, $c_i = \|\mu_i^{(0)}\|_2^2$.

896 To guarantee convergence of the EM algorithm, we adopt the following assumption for the initialization
 897 parameters, consistent with the approach in Kwon & Caramanis (2020).
 898

899 (A1) Suppose the GMM has parameters $\{(\pi_j^*, \mu_j^*) : j \in [K]\}$ such that

$$900 R_{\min} \geq C \cdot \sqrt{\log(\rho_\pi K)},$$

901 and suppose the mean initialization $\mu_1^{(0)}, \dots, \mu_K^{(0)}$ satisfies

$$902 \forall i \in [K], \|\mu_i^{(0)} - \mu_i^*\| \leq \frac{R_{\min}}{16}.$$

903 Also, suppose the mixing weights are initialized such that

$$904 \forall i \in [K], |\pi_i^{(0)} - \pi_i^*| \leq \pi_i/2.$$

905 We denote the output of the transformer TF_Θ as $\theta^{\text{TF}} := \{\pi_1^{\text{TF}}, \mu_1^{\text{TF}}, \pi_2^{\text{TF}}, \mu_2^{\text{TF}}, \dots, \pi_K^{\text{TF}}, \mu_K^{\text{TF}}\}$ and assume
 906 matched indices. Define

$$907 D_\Theta^{\text{TF}} := \max_{i \in [K]} \{ \|\mu_i^{\text{TF}} - \mu_i^*\| \vee (|\pi_i^{\text{TF}} - \pi_i^*| / \pi_i) \}.$$

908 Now we propose the theorem that transformer can efficiently approximate the EM Algorithm (Algorithm
 909 B.1), which is the formal version of Theorem 1.

918 **Theorem F.1.** Fix $0 < \delta, \beta < 1$ and $1/2 < a < 1$. Suppose there exists a sufficiently large universal
 919 constant $C \geq 128$ for which assumption (A1) holds. If N is sufficient large and $\varepsilon \leq 1/(100K_0)$
 920 sufficient small such that

$$922 \quad \frac{\tilde{c}_1}{(1-a)\pi_{\min}} \sqrt{\frac{R_{\max}(R_{\max} \vee d) \log(\frac{24K}{\delta})}{N}} + \tilde{c}_2 \left(R_{\max} + d \left(1 + \sqrt{\frac{2 \log(\frac{4N}{\delta})}{d}} \right) \right) N\varepsilon < \frac{1}{2} \left(a - \frac{1}{2} \right),$$

925 and

$$927 \quad \epsilon(N, \varepsilon, \delta, a) := \frac{\tilde{c}_3}{(1-a)\pi_{\min}} \sqrt{\frac{Kd \log(\frac{\tilde{C}N}{\delta})}{N}} + \tilde{c}_4 \left(\frac{1}{\pi_{\min}} + N \left(R_{\max} + d + \sqrt{2d \log(\frac{4N}{\delta})} \right) \right) \varepsilon < a(1-\beta),$$

930 hold, where \tilde{c}_1 - \tilde{c}_4 are universal constants, $\tilde{C} = 288K^2(\sqrt{d} + 2R_{\max} + \frac{1}{1-a})^2$. Then there exists a
 931 $2(L+1)$ -layer transformer TF_{Θ} such that

$$933 \quad D_{\Theta}^{\text{TF}} \leq a\beta^L + \frac{1}{1-\beta} \epsilon(N, \varepsilon, \delta, a) \quad (5)$$

935 holds with probability at least $1 - \delta$. Moreover, TF_{Θ} falls within the class \mathcal{F} with parameters
 936 satisfying:

$$938 \quad D = O(d_0 + K_0), D' \leq \tilde{O}(K_0 R_{\max}(R_{\max} + d_0)\varepsilon^{-1}), M = O(1), \log B_{\Theta} \leq \tilde{O}(K_0 R_{\max}(R_{\max} + d_0)).$$

939 Notably, (5) holds for all tasks satisfying $d \leq d_0$ and $K \leq K_0$, where the parameters of transformer
 940 Θ remains fixed across different tasks \mathcal{T} .

941 **Remark F.1.** From Theorem F.1, if we take $\varepsilon = \tilde{O}(N^{-3/2}d^{-1/2})$ and $L = O(\log N)$, then we have

$$943 \quad D_{\Theta}^{\text{TF}} \leq \tilde{O}\left(\sqrt{\frac{d}{N}}\right),$$

946 which matches the canonical parametric error rate.

947 **Remark F.2.** We give some explanations for the notations in Theorem F.1. Define

$$949 \quad D_j^{\text{pEM}} := \max_{i \in [K]} \left\{ \left\| \tilde{\mu}_i^{(j)} - \mu_i \right\| \vee \left(\left| \tilde{\pi}_i^{(j)} - \pi_i \right| / \pi_i \right) \right\},$$

951 where $\{\tilde{\mu}_i^{(j)}, \tilde{\pi}_i^{(j)}\}_{i \in [K]}$ are the parameters obtained at the j -th iteration of the population-EM
 952 algorithm (see Section F.3 for details). In the convergence analysis of the population-EM algorithm
 953 (Kwon & Caramanis, 2020), it is shown that after the first iteration, the parameters lie in a small
 954 neighborhood of the true parameters with high probability (i.e., $D_1^{\text{pEM}} \leq a$ for some $1/2 \leq a < 1$).
 955 Furthermore, the authors prove that the algorithm achieves linear convergence (i.e., $D_{j+1}^{\text{pEM}} \leq \beta D_j^{\text{pEM}}$
 956 for $j \in \mathbb{N}_+$ and some $0 < \beta < 1$) with high probability if $D_1^{\text{pEM}} \leq a$ holds. Following their
 957 notations, here a represents the radius of the neighborhood after the first iteration, while β is the
 958 linear convergence rate parameter. Finally, ε controls the approximation error of the transformer.

961 F.2 CONSTRUCTION OF TRANSFORMER ARCHITECTURE AND FORMAL VERSION OF FIGURE 7

963 In this section, we give the transformer architecture construction in Theorem F.1. We denote
 964 $w_{ij} = w_j(X_i)$, $i \in [N]$, $k \in [K]$ in this subsection for simplicity. Recall that we have assumed that
 965 $d \leq d_0$, $K \leq K_0$ and N is divisible by $K(N/K \in \mathbb{N})$. We first restate the encoding formulas in (4):

$$966 \quad \mathbf{H} = \begin{bmatrix} \overline{X}_1 & \overline{X}_2 & \dots & \overline{X}_N \\ \overline{\theta}_1 & \overline{\theta}_2 & \dots & \overline{\theta}_N \\ \mathbf{p}_1 & \mathbf{p}_2 & \dots & \mathbf{p}_N \end{bmatrix} \in \mathbb{R}^{D \times N}, \quad \overline{\theta}_i = \begin{bmatrix} \overline{\pi}_{\log} \\ \overline{\mu}_{i\%K} \\ \overline{c}_{i\%K} \\ \overline{\mathbf{w}}_i \\ \overline{\mathbf{w}}_{i\log} \\ \overline{\pi} \end{bmatrix} \in \mathbb{R}^{d_0+4K_0+1}, \quad \mathbf{p}_i := \begin{bmatrix} \mathbf{0}_{D-(2d_0+5K_0+2)} \\ 1 \\ \mathbf{e}_{i\%K} \end{bmatrix} \in \mathbb{R}^{D-(2d_0+3K_0+1)},$$

971 (6)

972 where $\bar{X}_i = [X_i^\top, \mathbf{0}_{d_0-d}^\top]^\top$, $\bar{\pi}_{\log} = [\pi_{\log}^\top, \mathbf{0}_{K_0-K}^\top]^\top$, $\bar{\mu}_{i\%K} = [\mu_{i\%K}^\top, \mathbf{0}_{d_0-d}^\top]^\top$, $\bar{\mathbf{w}}_i =$
 973 $[\mathbf{w}_i^\top, \mathbf{0}_{K_0-K}^\top]^\top$, $\bar{\mathbf{w}}_{i\log} = [\mathbf{w}_{i\log}^\top, \mathbf{0}_{K_0-K}^\top]^\top$, $\bar{\pi} = [\pi^\top, \mathbf{0}_{K_0-K}^\top]^\top$, $c_{i\%K} \in \mathbb{R}$ and $\mathbf{e}_{i\%K} \in \mathbb{R}^{K_0}$ de-
 974 notes the $i\%K$ -th standard unit vector. For the initialization, we choose $\pi_{\log} = \log \pi^{(0)}$, $\mu_i = \mu_i^{(0)}$,
 975 $c_i = \|\mu_i^{(0)}\|_2^2$. and $\pi = \mathbf{w}_i = \mathbf{w}_{i\log} = \mathbf{0}_K$, $i \in [K]$. Finally, take $\mathbf{H}^{(0)} = \mathbf{H}$ which is defined in (6).

976 Then in E-step, we consider the following attention structures: we define matrices $\mathbf{Q}^{(1)}, \mathbf{K}^{(1)}, \mathbf{V}^{(1)}$,
 977 such that

$$981 \quad \mathbf{Q}^{(1)} \mathbf{h}_i^{(0)} = \begin{bmatrix} \bar{X}_i \\ \bar{\pi}_{\log} \\ 1 \\ \mathbf{0} \end{bmatrix}, \quad \mathbf{K}^{(1)} \mathbf{h}_j^{(0)} = \begin{bmatrix} -\bar{\mu}_{j\%K} \\ \mathbf{e}_{j\%K} \\ \frac{1}{2} c_{j\%K} \\ \mathbf{0} \end{bmatrix}, \quad \mathbf{V}^{(1)} \mathbf{h}_j^{(0)} = \begin{bmatrix} \mathbf{0}_{d_0} \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{d_0+1} \\ \mathbf{e}_{j\%K} \\ \mathbf{0}_{D-(2d_0+2K_0+1)} \end{bmatrix},$$

982 and use the standard softmax attention, thus

$$983 \quad \tilde{\mathbf{h}}_i^{(1)} = \left[\text{Attn}_{\Theta_{\text{attn}}^{(1)}}(\mathbf{H}^{(0)}) \right]_{:,i} = \mathbf{h}_i^{(0)} + \sum_{j=1}^N \left[\text{softmax} \left(\left((\mathbf{Q}^{(1)} \mathbf{h}_i^{(0)})^\top (\mathbf{K}^{(1)} \mathbf{h}_j^{(0)}) \right)_{j=1}^N \right) \right]_j \cdot \mathbf{V}^{(1)} \mathbf{h}_j^{(0)} \\ 984 \\ 985 \quad = \mathbf{h}_i^{(0)} + \sum_{j=1}^N \frac{\alpha_{j\%K}^{(0)} \exp \left(-X_i^\top \mu_{j\%K} + \frac{1}{2} \mu_{j\%K}^\top \mu_{j\%K} \right)}{B \sum_{k=1}^K \alpha_k^{(0)} \exp \left(-X_i^\top \mu_k + \frac{1}{2} \mu_k^\top \mu_k \right)} \cdot \mathbf{V}^{(1)} \mathbf{h}_j^{(0)} \\ 986 \\ 987 \quad = \mathbf{h}_i^{(0)} + \frac{1}{B} \sum_{j=1}^N \hat{w}_{i,j\%K}^{(1)} \mathbf{V}^{(1)} \mathbf{h}_j^{(0)} \\ 988 \\ 989 \quad = \mathbf{h}_i^{(0)} + \sum_{j=1}^K \hat{w}_{ij}^{(1)} \mathbf{V}^{(1)} \mathbf{h}_j^{(0)} \\ 990 \\ 991 \quad = \mathbf{h}_i^{(0)} + \begin{bmatrix} \mathbf{0}_{d_0} \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{d_0+1} \\ \bar{\mathbf{w}}_i^{(1)} \\ \mathbf{0}_{D-(2d_0+2K_0+1)} \end{bmatrix}, \quad i \in [N].$$

1000 where $\bar{\mathbf{w}}_i^{(1)} = (\hat{w}_{i1}^{(1)}, \hat{w}_{i2}^{(1)}, \dots, \hat{w}_{iK}^{(1)}, 0, \dots, 0)^\top \in \mathbb{R}^{K_0}$.

1001 Then we use a two-layer MLP to approximate $\log x$ and clean all $\bar{\pi}_{\log}$, $\bar{\mu}_{i\%K}$ and $c_{i\%K}$, which is

$$1014 \quad \mathbf{h}_i^{(1)} = \text{MLP}_{\Theta_{\text{mlp}}^{(1)}}(\tilde{\mathbf{h}}_i^{(1)}) = \begin{bmatrix} \bar{X}_i \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{d_0+1} \\ \bar{\mathbf{w}}_i^{(1)} \\ \hat{\mathbf{w}}_{i\log}^{(1)} \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{D-(2d_0+5K_0+2)} \\ 1 \\ \mathbf{e}_{i\%K} \end{bmatrix}, \quad i \in [N],$$

1024 where $\hat{\mathbf{w}}_{i\log}^{(1)} = \widehat{\log \bar{\mathbf{w}}_i^{(1)}}$. Notice that although $\log x$ is not defined at 0, the MLP approximation is
 1025 well defined with some value which we do not care because we will not use it in the M-step. Similarly,

1026 for any $\ell \% 2 = 1, \ell \in \mathbb{N}_+$ we have
 1027

$$1028 \quad \mathbf{h}_i^{(\ell)} = \text{MLP}_{\Theta_{\text{mlp}}^{(\ell \% 2)}} \left(\left[\text{Attn}_{\Theta_{\text{attn}}^{(\ell \% 2)}}(\mathbf{H}^{(\ell-1)}) \right]_{:,i} \right) = \begin{bmatrix} \bar{X}_i \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{d_0+1} \\ \hat{\mathbf{w}}_i^{((\ell+1)/2)} \\ \hat{\mathbf{w}}_{i \log}^{((\ell+1)/2)} \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{D-(2d_0+5K_0+2)} \\ 1 \\ \mathbf{e}_{i \% K} \end{bmatrix}, \quad i \in [N],$$

$$1031 \quad 1032 \quad 1033 \quad 1034 \quad 1035 \quad 1036$$

1037 where $\hat{\mathbf{w}}_{i \log}^{((\ell+1)/2)} = \widehat{\log \hat{\mathbf{w}}_i}^{((\ell+1)/2)}$.
 1038

1039 In M-step, we consider the following attention structures: we similarly define matrices $\mathbf{Q}_m^{(2)}, \mathbf{K}_m^{(2)}$,
 1040 $\mathbf{V}_m^{(2)}, m = 1, 2$ such that
 1041

$$1042 \quad 1043 \quad \mathbf{Q}_1^{(2)} \mathbf{h}_j^{(1)} = \begin{bmatrix} \mathbf{e}_{j \% K} \\ \mathbf{0} \end{bmatrix}, \quad \mathbf{K}_1^{(2)} \mathbf{h}_i^{(1)} = \begin{bmatrix} \bar{\mathbf{w}}_{i \log}^{(1)} \\ \mathbf{0} \end{bmatrix}, \quad \mathbf{V}_1^{(2)} \mathbf{h}_i^{(1)} = \begin{bmatrix} \mathbf{0}_{d_0} \\ \mathbf{0}_{K_0} \\ \bar{X}_i \\ 0 \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{D-(2d_0+3K_0+1)} \end{bmatrix},$$

$$1044 \quad 1045 \quad 1046 \quad 1047 \quad 1048$$

1049 and

$$1050 \quad 1051 \quad \mathbf{Q}_2^{(2)} \mathbf{h}_j^{(1)} = \mathbf{0}, \quad \mathbf{K}_2^{(2)} \mathbf{h}_i^{(1)} = \mathbf{0}, \quad \mathbf{V}_2^{(2)} \mathbf{h}_i^{(1)} = \begin{bmatrix} \mathbf{0}_{d_0} \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{d_0+1} \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{K_0} \\ \hat{\mathbf{w}}_i^{(1)} \\ \mathbf{0}_{D-(2d_0+4K_0+1)} \end{bmatrix},$$

$$1052 \quad 1053 \quad 1054 \quad 1055 \quad 1056 \quad 1057$$

1058 Then we get

$$1059 \quad \tilde{\mathbf{h}}_j^{(2)} = \left[\text{Attn}_{\Theta_{\text{attn}}^{(2)}}(\mathbf{H}^{(1)}) \right]_{:,j} = \mathbf{h}_j^{(1)} + \sum_{m=1}^2 \sum_{i=1}^N \left[\text{softmax} \left(\left(\left(\mathbf{Q}_m^{(2)} \mathbf{h}_i^{(1)} \right)^\top \left(\mathbf{K}_m^{(2)} \mathbf{h}_j^{(1)} \right) \right)_{j=1}^N \right) \right]_j \cdot \mathbf{V}_m^{(2)} \mathbf{h}_i^{(1)}$$

$$1060 \quad 1061 \quad 1062 \quad 1063 \quad 1064 \quad 1065$$

$$= \mathbf{h}_j^{(1)} + \sum_{i=1}^N \frac{\hat{w}_{i \% K}^{(1)}}{\sum_{i=1}^N \hat{w}_{i \% K}^{(1)}} \cdot \mathbf{V}_1^{(2)} \mathbf{h}_i^{(1)} + \sum_{i=1}^N \frac{1}{N} \cdot \mathbf{V}_2^{(2)} \mathbf{h}_i^{(1)}$$

$$1066 \quad 1067 \quad 1068 \quad 1069 \quad 1070 \quad 1071 \quad 1072$$

$$= \mathbf{h}_j^{(1)} + \begin{bmatrix} \mathbf{0}_{d_0} \\ \mathbf{0}_{K_0} \\ \hat{\mu}_{j \% K}^{(1)} \\ 0 \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{D-(2d_0+3K_0+1)} \end{bmatrix} + \begin{bmatrix} \mathbf{0}_{d_0} \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{d_0+1} \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{K_0} \\ \bar{\pi}^{(1)} \\ \mathbf{0}_{D-(2d_0+4K_0+1)} \end{bmatrix},$$

$$1073 \quad 1074 \quad 1075 \quad 1076 \quad 1077 \quad 1078 \quad 1079$$

$$= \mathbf{h}_j^{(1)} + \begin{bmatrix} \mathbf{0}_{d_0} \\ \mathbf{0}_{K_0} \\ \hat{\mu}_{j \% K}^{(1)} \\ 0 \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{K_0} \\ \bar{\pi}^{(1)} \\ \mathbf{0}_{D-(2d_0+4K_0+1)} \end{bmatrix}, \quad j \in [N].$$

1080

1081

1082

1083 Similarly, we use a two-layer MLP to approximate $\log x$, x^2 and clean all $\bar{\mathbf{w}}_i$, $\bar{\mathbf{w}}_{i \log}$ and $\bar{\pi}_i$, which is

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

$$\mathbf{h}_j^{(2)} = \text{MLP}_{\Theta_{\text{mlp}}^{(2)}}(\tilde{\mathbf{h}}_i^{(2)}) = \begin{bmatrix} \bar{X}_j \\ \hat{\pi}_{\log}^{(1)} \\ \hat{\mu}_{j \% K}^{(1)} \\ \hat{c}_{j \% K}^{(1)} \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{D-(2d_0+5K_0+2)} \\ 1 \\ \mathbf{e}_{j \% K} \end{bmatrix}, j \in [N],$$

$$\text{where } \hat{\pi}_{\log}^{(1)} = \widehat{\log \hat{\pi}^{(1)}}, \hat{c}_{j \% K}^{(1)} = \|\hat{\mu}_{j \% K}^{(1)}\|_2^2.$$

Similarly, for any $\ell \% 2 = 0$, $\ell \in \mathbb{N}_+$ we have

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

Thus, we can get $\hat{\pi}^{(\ell)}$ and $\hat{\mu}_j^{(\ell)}$, $j \in [K]$ after 2ℓ layers of transformer constructed above. (The last-layer MLP block retains π as an output parameter without cleaning it.) Our transformer construction is summarized in Figure 9, which is the formal version of Figure 7 in Section 4.2.

1113

1114

1115

1116

1117

1118

Remark F.3. The output of transformer $\mathbf{H}^{(2L)}$ is a large matrix containing lots of elements. To get the estimated parameters, we need to extract specific elements. In details, $\mathbf{H}^{(2L)} = [\mathbf{h}_1^{(2L)}, \dots, \mathbf{h}_N^{(2L)}] \in \mathbb{R}^{D \times N}$, where

1119

$$\mathbf{h}_i^{(2L)} = \begin{bmatrix} \bar{X}_i \\ \hat{\pi}_{\log}^{(L)} \\ \hat{\mu}_{i \% K}^{(L)} \\ \hat{c}_{i \% K}^{(L)} \\ \mathbf{0}_{K_0} \\ \mathbf{0}_{K_0} \\ \hat{\pi}^{(L)} \\ \mathbf{0}_{D-(2d_0+5K_0+2)} \\ 1 \\ \mathbf{e}_{j \% K} \end{bmatrix}, i \in [N].$$

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

We use the following linear attentive pooling to get the parameters:

1131

1132

1133

$$\mathbf{O} = \frac{1}{N} (\mathbf{V}_o \mathbf{H}) ((\mathbf{K}_o \mathbf{H})^\top \mathbf{Q}_o) \in \mathbb{R}^{(d+K) \times K},$$

1134 where $\mathbf{Q}_o = [\mathbf{q}_{o1}, \dots, \mathbf{q}_{oK}] \in \mathbb{R}^{(d+K) \times K}$, $\mathbf{K}_o, \mathbf{V}_o \in \mathbb{R}^{(d+K) \times N}$ satisfying

$$1135 \mathbf{q}_{oi} = \begin{bmatrix} K \mathbf{e}_i \\ \mathbf{0}_d \end{bmatrix}, \mathbf{K}_o \mathbf{h}_j^{(2L)} = \begin{bmatrix} \mathbf{e}_{j \% K} \\ \mathbf{0}_d \end{bmatrix}, \mathbf{V}_o \mathbf{h}_j^{(2L)} = \begin{bmatrix} \hat{\boldsymbol{\pi}}^{(L)} \\ \hat{\mu}_{j \% K} \end{bmatrix}.$$

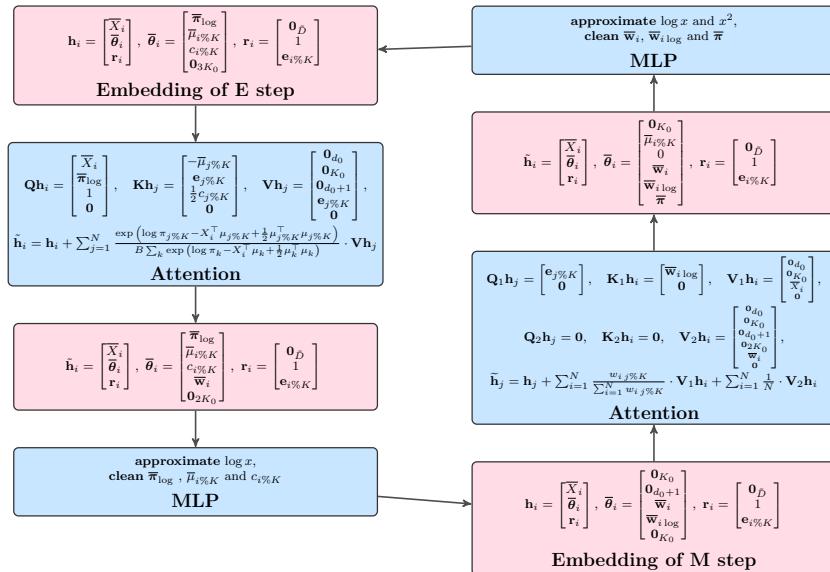
1138 Thus by $N/K \in \mathbb{N}$, we have

$$1139 \mathbf{o}_i = \frac{1}{N} \sum_{j \in [N]} \mathbf{q}_{oi}^\top (\mathbf{K}_o \mathbf{h}_j) \mathbf{V}_o \mathbf{h}_j = \frac{K}{N} \frac{N}{K} \begin{bmatrix} \hat{\boldsymbol{\pi}}^{(L)} \\ \hat{\mu}_i \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{\pi}}^{(L)} \\ \hat{\mu}_i \end{bmatrix} \in \mathbb{R}^{(d+K)}, i \in [K].$$

1142 Finally, we get

$$1143 \mathbf{O} = [\mathbf{q}_{o1}, \dots, \mathbf{q}_{oN}] = \begin{bmatrix} \hat{\boldsymbol{\pi}}^{(L)} & \hat{\boldsymbol{\pi}}^{(L)} & \dots & \hat{\boldsymbol{\pi}}^{(L)} \\ \hat{\mu}_1 & \hat{\mu}_2 & \dots & \hat{\mu}_K \end{bmatrix}.$$

1146 **E step:**



1147 Figure 9: Transformer Construction for Approximating EM Algorithm Iterations. The *pink box* represents the state of tokens, while the *blue box* represents the structure of different parts of the network. The term "clean" means setting all positions of the corresponding vector to zero.

F.3 CONVERGENCE RESULTS FOR EM ALGORITHM

F.3.1 CONVERGENCE RESULTS FOR POPULATION-EM ALGORITHM

1175 First, we review some notations. Recall that $\pi_{min} = \min_i \pi_i^*$, $\rho_\pi = \max_i \pi_i^* / \min_i \pi_i^*$, $R_{ij} = \| \mu_i^* - \mu_j^* \|$, $R_{min} = \min_{i \neq j} R_{ij}$ and $R_{max} = (\max_{i \neq j} R_{ij}) \vee (\max_{i \in [K]} \| \mu_i^* \|)$. Without the loss of generality, we assume that $R_{max} \geq 1$. For clarity, we restate assumption ((A1)), which is consistent with Kwon & Caramanis (2020).

1179 (A1) Suppose the GMM has parameters $\{(\pi_j^*, \mu_j^*) : j \in [K]\}$ such that

$$1181 R_{min} \geq C \cdot \sqrt{\log(\rho_\pi K)}, \quad (7)$$

1182 and suppose the mean initialization $\mu_1^{(0)}, \dots, \mu_K^{(0)}$ satisfies

$$1184 \forall i \in [K], \left\| \mu_i^{(0)} - \mu_i^* \right\| \leq \frac{R_{min}}{16}. \quad (8)$$

1186 Also, suppose the mixing weights are initialized such that

$$1187 \forall i \in [K], \left| \pi_i^{(0)} - \pi_i^* \right| \leq \pi_i / 2. \quad (9)$$

1188 For population-EM, the algorithm can be presented as
 1189

$$\begin{aligned} \text{(E-step):} \quad w_i(X) &= \frac{\pi_i \exp(-\|X - \mu_i\|^2/2)}{\sum_{j=1}^K \pi_j \exp(-\|X - \mu_j\|^2/2)}, \\ \text{(M-step):} \quad \pi_i^+ &= \mathbb{E}[w_i], \quad \mu_i^+ = \mathbb{E}[w_i X] / \mathbb{E}[w_i]. \end{aligned}$$

1194
 1195 The following results gives linear convergenve guarantees of population-EM, which comes from
 1196 Kwon & Caramanis (2020).
 1197

Theorem F.2 (Kwon & Caramanis (2020), Theorem 1, part i). *Let $C \geq 64$ be a universal constant for which assumption ((A1)) holds. Then, after one-step population-EM update, we have*

$$\forall i \in [K], |\pi_i^+ - \pi_i^*| \leq \pi_i^*/2, \quad \|\mu_i^+ - \mu_i^*\| \leq 1/2. \quad (10)$$

1201 Now we define
 1202

$$D_m = \max_{i \in [K]} (\|\mu_i - \mu_i^*\| \vee |\pi_i - \pi_i^*| / \pi_i^*),$$

1204 and
 1205

$$D_m^+ = \max_{i \in [K]} (\|\mu_i^+ - \mu_i^*\| \vee |\pi_i^+ - \pi_i^*| / \pi_i^*).$$

1207 The linear convergence of population-EM is stated by the following theorem.
 1208

Theorem F.3 (Kwon & Caramanis (2020), Theorem 1, part ii). *Let $C \geq 128$ be a large enough universal constant. Fix $0 < a < 1$. Suppose the separation condition (7) holds and suppose the initialization parameter satisfies $D_m \leq a$, then $D_m^+ \leq \beta D_m$ for some $0 < \beta < 1$.*

1212 **Remark F.4.** *Here the contraction parameter β is only dependent with C and a . In other words, if we fix $a \in (0, 1)$, then for any $\beta \in (0, 1)$, there exists a large enough C such that Theorem F.3 holds. For details, see Appendix E in Kwon & Caramanis (2020).*

1215 Combing Theorem F.2 and Theorem F.3, we can get the linear convergence of population-EM
 1216 algorithm.
 1217

1218 F.3.2 CONVERGENCE RESULTS FOR EMPIRICAL-EM ALGORITHM

1220 Now we consider the empirical-EM, i.e., Algorithm B.1. For convenience, the algorithm can be
 1221 presented as
 1222

$$\begin{aligned} \text{(E-step):} \quad w_i(X_\ell) &= w_{\ell i} = \frac{\pi_i \exp(-\|X_\ell - \mu_i\|^2/2)}{\sum_{j=1}^K \pi_j \exp(-\|X_\ell - \mu_j\|^2/2)} \\ \text{(M-step):} \quad \pi_i^+ &= \frac{1}{n} \sum_{l=1}^n w_i(X_\ell), \quad \mu_i^+ = \frac{\sum_{l=1}^n w_i(X_\ell) X_\ell}{\sum_{l=1}^n w_i(X_\ell)} = \frac{1}{n \pi_i^+} \sum_{l=1}^n w_i(X_\ell) X_\ell. \end{aligned}$$

1228 Similarly, we can define D_m and D_m^+ in empirical sense.
 1229

1230 For the linear convergence of empirical-EM, we have the following theorem.

1231 **Theorem F.4.** *Fix $0 < \delta, \beta < 1$ and $0 < a < 1$. Let $C \geq 128$ be a large enough universal constant. Suppose the separation condition (7) holds and suppose the initialization parameter satisfies $D_m \leq a$. If n is sufficient large such that*

$$\varepsilon_{unif} := \frac{\tilde{c}}{(1-a)\pi_{min}} \sqrt{\frac{Kd \log(\frac{\tilde{C}n}{\delta})}{n}} < a(1-\beta)$$

1238 where $\tilde{C} = 72K^2(\sqrt{d} + 2R_{max} + \frac{1}{1-a})^2$ and \tilde{c} is a universal constant. Then
 1239

$$D_m^+ \leq \beta D_m + \varepsilon_{unif} \leq a$$

1240 uniformly holds with probability at least $1 - \delta$.
 1241

1242 *Proof.* First, we have

$$\begin{aligned}
 \frac{|\pi_i^+ - \pi_i^*|}{\pi_i^*} &= \frac{1}{\pi_i^*} \left| \frac{1}{n} \sum_{l=1}^n w_i(X_\ell) - \pi_i^* \right| \\
 &\leq \frac{1}{\pi_i^*} \left(\left| \frac{1}{n} \sum_{l=1}^n w_i(X_\ell) - \mathbb{E}[w_i(X)] \right| + |\mathbb{E}[w_i(X)] - \pi_i^*| \right) \\
 &:= (I) + (II).
 \end{aligned}$$

1250 By Theorem F.3, we get

$$(II) = \frac{1}{\pi_i^*} |\mathbb{E}[w_i(X)] - \pi_i^*| \leq \tilde{\beta} D_m.$$

1254 And by Lemma F.2, we have

$$(I) = \frac{1}{\pi_i^*} \left| \frac{1}{n} \sum_{l=1}^n w_i(X_\ell) - \mathbb{E}[w_i(X)] \right| \leq \frac{\tilde{c}_1}{\pi_{\min}} \sqrt{\frac{Kd \log(\frac{\tilde{C}_1 n}{\delta_1})}{n}},$$

1258 where $\tilde{C}_1 = 18K^2(\sqrt{d} + 2R_{\max} + \frac{1}{1-a})$ and \tilde{c}_1 is a suitable universal constant. Thus, by taking
1259 $\tilde{\beta} = \beta$, $\delta_1 = \delta/2$ and suitable \tilde{c} , $|\pi_i^+ - \pi_i^*|/\pi_i^* \leq \beta D_m + \varepsilon_{unif} \leq a$, $\forall i \in [K]$.

1261 For the second term, we have

$$\begin{aligned}
 \|\mu_i^+ - \mu_i^*\| &= \left\| \frac{1}{n\pi_i^+} \sum_{l=1}^n w_i(X_\ell)(X_\ell - \mu_i^*) \right\| \\
 &\leq \frac{1}{\pi_i^+} \left(\left\| \frac{1}{n} \sum_{l=1}^n w_i(X_\ell)(X_\ell - \mu_i^*) - \mathbb{E}[w_i(X)(X - \mu_i^*)] \right\| + \|\mathbb{E}[w_i(X)(X - \mu_i^*)]\| \right) \\
 &:= (III) + (IV),
 \end{aligned}$$

1269 By Theorem F.3 and Remark F.4 we get,

$$\begin{aligned}
 (IV) &= \frac{1}{\pi_i^+} \|\mathbb{E}[w_i(X)(X - \mu_i^*)]\| \\
 &\stackrel{(i)}{\leq} \frac{1}{(1-a)\pi_i^*} \|\mathbb{E}[w_i(X)(X - \mu_i^*)]\| \\
 &= \frac{\mathbb{E}[w_i(X)]}{(1-a)\pi_i^*} \left\| \frac{\mathbb{E}[w_i(X)X]}{\mathbb{E}[w_i(X)]} - \mu_i^* \right\| \\
 &\leq \frac{1+a}{1-a} \tilde{\beta} D_m.
 \end{aligned}$$

1279 where (i) follows from $|\pi_i^+ - \pi_i^*|/\pi_i^* \leq a$. And by Lemma F.3, we have

$$\begin{aligned}
 (III) &= \frac{1}{\pi_i^+} \left(\left\| \frac{1}{n} \sum_{l=1}^n w_i(X_\ell)(X_\ell - \mu_i^*) - \mathbb{E}[w_i(X)(X - \mu_i^*)] \right\| \right) \\
 &\leq \frac{1}{(1-a)\pi_i^*} \left(\left\| \frac{1}{n} \sum_{l=1}^n w_i(X_\ell)(X_\ell - \mu_i^*) - \mathbb{E}[w_i(X)(X - \mu_i^*)] \right\| \right) \\
 &\leq \frac{\tilde{c}_2}{(1-a)\pi_{\min}} \sqrt{\frac{Kd \log(\frac{\tilde{C}_2 n}{\delta_2})}{n}},
 \end{aligned}$$

1289 where $\tilde{C} = 18K^2(\sqrt{d} + 2R_{\max} + \frac{1}{1-a})^2$ and \tilde{c} is a suitable universal constant. Thus, by taking
1290 $\tilde{\beta} = (1-a)/(1+a)\beta$, $\delta_2 = \delta/2$ and suitable \tilde{c} , $\|\mu_i^+ - \mu_i^*\| \leq \beta D_m + \varepsilon_{unif} \leq a$, $\forall i \in [K]$.

1292 In conclusion, if we take $\tilde{\beta} = (1-a)/(1+a)\beta$, $\tilde{c} = \tilde{c}_1 \vee \tilde{c}_2$, $C = C(\beta, a) \geq 128$ large enough
1293 such that Theorem F.3 holds, and take $\delta_1 = \delta_2 = \delta/2$ and use union bound argument, then we get
1294 $D_m^+ \leq \beta D_m + \varepsilon_{unif} \leq a$.

1295 \square

1296 We need the following technical lemma.
1297

1298 **Lemma F.1** (Segol & Nadler (2021), Lemma B.2.). Fix $0 < \delta < 1$. Let $B_1, \dots, B_K \subset \mathbb{R}^d$ be
1299 Euclidean balls of radii r_1, \dots, r_K . Define $\mathcal{B} = \bigotimes_{k=1}^K B_k \subset \mathbb{R}^{Kd}$ and $r = \max_{k \in [K]} r_k$. Let X be a
1300 random vector in \mathbb{R}^d and $W : \mathbb{R}^d \times \mathcal{B} \rightarrow \mathbb{R}^k$ where $k \leq d$. Assume the following hold:

1301 1. There exists a constant $L \geq 1$ such that for any $\theta \in \mathcal{B}, \varepsilon > 0$, and $\theta^\varepsilon \in \mathcal{B}$ which satisfies
1302 $\max_{i \in [K]} \|\theta_i - \theta_i^\varepsilon\| \leq \varepsilon$, then $\mathbb{E}_X [\sup_{\mu \in \mathcal{B}} \|W(X, \theta) - W(X, \theta^\varepsilon)\|] \leq L\varepsilon$.
1303 2. There exists a constant R such that for any $\theta \in \mathcal{B}$, $\|W(X, \theta)\|_{\psi_2} \leq R$.

1305 Let X_1, \dots, X_n be i.i.d. random vectors with the same distribution as X . Then there exists a
1306 universal constant \tilde{c} such that with probability at least $1 - \delta$,

$$1308 \sup_{\theta \in \mathcal{B}} \left\| \frac{1}{n} \sum_{\ell=1}^n W(X_\ell, \theta) - \mathbb{E}[W(X, \theta)] \right\| \leq R \sqrt{\tilde{c} \frac{Kd \log(1 + \frac{12nLr}{\delta})}{n}}. \quad (11)$$

1311 **Remark F.5.** There is one difference between Lemma F.1 and Lemma B.2. in Segol & Nadler (2021):
1312 in Lemma F.1, we use $1 + \frac{12nLr}{\delta}$ to replace $\frac{18nLr}{\delta}$, thus we avoid the condition $r_1, \dots, r_K \geq 1$.

1313 Hence we can get the uniform convergence of $w_i(X, \theta)$ and $w_i(X, \theta)(X - \mu_i^*)$, $i \in [K]$. Our proof
1314 is similar to Segol & Nadler (2021), except that we consider the variation of both π and μ . From now
1315 on, we denote $\theta_i = \{\pi_i, \mu_i\}$, $\theta = \{\theta_i\}_{i=1}^n$.

1316 **Lemma F.2.** Fix $0 < \delta < 1$ and $0 < a < 1$. Consider the parameter region $\mathcal{D}_a := \{D_m \leq a\}$. Let
1317 $X_1, \dots, X_n \stackrel{i.i.d.}{\sim} GMM(\pi^*, \mu^*)$, then with probability at least $1 - \delta$,

$$1320 \sup_{\theta \in \mathcal{D}_a} \left| \frac{1}{n} \sum_{\ell=1}^n w_i(X_\ell, \theta) - \mathbb{E}[w_i(X, \theta)] \right| \leq \tilde{c} \sqrt{\frac{Kd \log(\tilde{C}n)}{n}}, \quad \forall i \in [K], \quad (12)$$

1323 where $\tilde{C} = 18K^2(\sqrt{d} + 2R_{max} + \frac{1}{1-a})$ and \tilde{c} is a suitable universal constant.

1325 *Proof.* The proof is similar to the proof of Lemma 5.1 in Segol & Nadler (2021). For simplicity, we
1326 omit it. \square

1327 **Lemma F.3.** Fix $0 < \delta < 1$ and $0 < a < 1$. Consider the parameter region $\mathcal{D}_a := \{D_m \leq a\}$. Let
1328 $X_1, \dots, X_n \stackrel{i.i.d.}{\sim} GMM(\pi^*, \mu^*)$ with R_{min} satisfying (7), then with probability at least $1 - \delta$,

$$1331 \sup_{\theta \in \mathcal{D}_a} \left| \frac{1}{n} \sum_{\ell=1}^n w_i(X_\ell, \theta)(X_\ell - \mu_i^*) - \mathbb{E}[w_i(X, \theta)(X - \mu_i^*)] \right| \leq \tilde{c} \sqrt{\frac{Kd \log(\tilde{C}n)}{n}}, \quad \forall i \in [K], \quad (13)$$

1334 where $\tilde{C} = 36K^2(\sqrt{d} + 2R_{max} + \frac{1}{1-a})^2$ and \tilde{c} is a suitable universal constant.

1336 *Proof.* The proof is similar to the proof of Lemma 5.4 in Segol & Nadler (2021)(Notice that the
1337 condition (36) in Segol & Nadler (2021) is trivial in our case). For simplicity, we omit it. \square

1339 For the first step empirical-EM, we have the following results.

1340 **Theorem F.5.** Fix $0 < \delta < 1$ and $1/2 < a < 1$. Let $C \geq 128$ be a large enough universal constant
1341 for which assumption ((A1)) holds. If n is sufficient large such that

$$1343 \varepsilon_{step1} := \frac{\tilde{c}}{(1-a)\pi_{min}} \sqrt{\frac{R_{max}(R_{max} \vee d) \log(\frac{6K}{\delta})}{n}} < \left(a - \frac{1}{2}\right),$$

1346 where \tilde{c} is a universal constant. Then

$$1347 D_m^+ \leq \frac{1}{2} + \varepsilon_{step1} \leq a$$

1349 holds with probability at least $1 - \delta$.

1350 *Proof.* Notice that we only need simple concentration not uniform concentration in this theorem. We
1351 use the same definition of term (I), (II) as in the proof of Theorem F.4. First, by Theorem F.2, we
1352 have (II) $\leq 1/2$. Since $0 \leq w_i(X) \leq 1$, by a standard concentration of bounded variables, we can
1353 get

$$1354 \quad (I) \leq \frac{\tilde{c}_1}{\pi_{\min}} \sqrt{\frac{\log(\frac{K}{\delta_1})}{n}}, \forall i \in [K], \quad (14)$$

1355 where \tilde{c}_1 is a universal constant. Taking $\tilde{c} \geq \tilde{c}_1$ and $\delta_1 = \delta/2$, we have

$$1356 \quad \frac{|\pi_i^+ - \pi_i^*|}{\pi_i^*} \leq \frac{1}{2} + \frac{\tilde{c}}{\pi_{\min}} \sqrt{\frac{\log(\frac{2K}{\delta})}{n}} \leq a, \forall i \in [K].$$

1357 For the second term, we have

$$\begin{aligned} 1363 \quad \|\mu_i^+ - \mu_i^*\| &= \left\| \frac{1}{n\pi_i^+} \sum_{l=1}^n w_i(X_\ell) X_\ell - \mu_i^* \right\| \\ 1364 \quad &\leq \left\| \frac{1}{n\pi_i^+} \sum_{l=1}^n w_i(X_\ell) X_\ell - \frac{\mathbb{E}[w_i(X_\ell) X_\ell]}{\mathbb{E}[w_i(X_\ell)]} \right\| + \left\| \frac{\mathbb{E}[w_i(X_\ell) X_\ell]}{\mathbb{E}[w_i(X_\ell)]} - \mu_i^* \right\| \\ 1365 \quad &:= (V) + (VI). \end{aligned}$$

1366 By Theorem F.2, we have $(VI) \leq 1/2$. For (V) , by triangle inequality,

$$\begin{aligned} 1367 \quad (V) &\leq \left\| \frac{1}{n\pi_i^+} \sum_{l=1}^n w_i(X_\ell) X_\ell - \frac{1}{\pi_i^+} \mathbb{E}[w_i(X_\ell) X_\ell] \right\| + \left\| \frac{1}{\pi_i^+} \mathbb{E}[w_i(X_\ell) X_\ell] - \frac{\mathbb{E}[w_i(X_\ell) X_\ell]}{\mathbb{E}[w_i(X_\ell)]} \right\| \\ 1368 \quad &= \frac{1}{\pi_i^+} \left\| \frac{1}{n} \sum_{l=1}^n w_i(X_\ell) X_\ell - \mathbb{E}[w_i(X_\ell) X_\ell] \right\| + \frac{\|\mathbb{E}[w_i(X_\ell) X_\ell]\|}{\pi_i^+ \mathbb{E}[w_i(X_\ell)]} |\pi_i^+ - \mathbb{E}[w_i(X_\ell)]|. \quad (15) \end{aligned}$$

1369 Using Lemma B.1 and Lemma B.2 in Zhao et al. (2020), we can get $\|w_i(X_\ell) X_\ell\|_{\psi_2} \leq \|X_\ell\|_{\psi_2} \leq$
1370 $\tilde{c}_3 R_{\max}$, $\forall i \in [K]$. Hence by Lemma B.1 in Segol & Nadler (2021), with probability at least $1 - \delta_2$,

$$1371 \quad \left\| \frac{1}{n} \sum_{l=1}^n w_i(X_\ell) X_\ell - \mathbb{E}[w_i(X_\ell) X_\ell] \right\| \leq \tilde{c}_4 \sqrt{\frac{R_{\max} d \log(\frac{3K}{\delta_2})}{n}}, \forall i \in [K],$$

1372 where \tilde{c}_4 is an universal constant. And by Theorem F.2, we have

$$1373 \quad \frac{\|\mathbb{E}[w_i(X_\ell) X_\ell]\|}{\mathbb{E}[w_i(X_\ell)]} \leq R_{\max} + \frac{1}{2} \leq 2R_{\max}, \forall i \in [K].$$

1374 Finally, by (14),

$$1375 \quad |\pi_i^+ - \mathbb{E}[w_i(X_\ell)]| \leq \tilde{c}_1 \sqrt{\frac{\log(\frac{K}{\delta_1})}{n}}.$$

1376 Combining all terms together and taking $\delta_1 = \delta_2 = \delta/2$ we can bound (15) by

$$\begin{aligned} 1377 \quad (V) &\leq \frac{1}{\pi_i^+} \left(\tilde{c}_4 \sqrt{\frac{R_{\max} d \log(\frac{3K}{\delta_2})}{n}} + 2\tilde{c}_1 R_{\max} \sqrt{\frac{\log(\frac{K}{\delta_1})}{n}} \right) \\ 1378 \quad &\leq \frac{\tilde{c}_6}{(1-a)\pi_{\min}} \sqrt{\frac{R_{\max} (R_{\max} \vee d) \log(\frac{6K}{\delta})}{n}}. \end{aligned}$$

1379 Taking $\tilde{c} \geq \tilde{c}_6$, we get

$$1380 \quad \|\mu_i^+ - \mu_i^*\| \leq \frac{1}{2} + \frac{\tilde{c}}{(1-a)\pi_{\min}} \sqrt{\frac{R_{\max} (R_{\max} \vee d) \log(\frac{6K}{\delta})}{n}} \leq a.$$

1381 \square

1404 F.3.3 CONVERGENCE RESULTS FOR TRANSFORMER-BASED EM IN SECTION F.2
1405

1406 We first state some useful approximation lemmas.

1407 **Lemma F.4** (Lemma 9 in Mei (2024)). *For any $A > 0$, $\delta > 0$, take $M = \lceil 2\log A/\delta \rceil + 1 \in \mathbb{N}$. Then
1408 there exists $\{(a_j, w_j, b_j)\}_{j \in [M]}$ with*

1409
$$\sup_j |a_j| \leq 2A, \sup_j |w_j| \leq 1, \sup_j |b_j| \leq A, \quad (16)$$

1410

1411 such that defining $\log_\delta : \mathbb{R} \rightarrow \mathbb{R}$ by

1412
$$\log_\delta(x) = \sum_{j=1}^M a_j \cdot \text{ReLU}(w_j x + b_j),$$

1413

1414 we have \log_δ is non-decreasing on $[1/A, A]$, and

1415
$$\sup_{x \in [1/A, A]} |\log(x) - \log_\delta(x)| \leq \delta.$$

1416 **Remark F.6.** *There is a small improvement $M = \lceil 2\log A/\delta \rceil + 1$ compared to $M = \lceil 2A/\delta \rceil + 1$ in
1417 Mei (2024). Further more, it is easy to check that $\log_\delta(x) \leq -\log A$ for $x \in [0, 1/A]$.*1418 **Lemma F.5.** *For any $A > 0$, $\delta > 0$, take $M = \lceil 2A^2/\delta \rceil + 1 \in \mathbb{N}$. Then there exists
1419 $\{(a_j, w_j, b_j)\}_{j \in [M]}$ with*

1420
$$\sup_j |a_j| \leq 2A, \sup_j |w_j| \leq 1, \sup_j |b_j| \leq A, \quad (17)$$

1421

1422 such that defining $\phi_\delta : \mathbb{R} \rightarrow \mathbb{R}$ by

1423
$$\phi_\delta(x) = \sum_{j=1}^M a_j \cdot \text{ReLU}(w_j x + b_j),$$

1424

1425 we have ϕ_δ is non-decreasing on $[-A, A]$, and

1426
$$\sup_{x \in [-A, A]} |\phi_\delta(x) - x^2| \leq \delta.$$

1427

1428 *Proof.* Similar to Lemma F.4. Omitted. \square 1429 **Lemma F.6** (Lemma A.1 in Bai et al. (2023)). *Let $\beta \sim \mathcal{N}(0, I_d)$. Then we have*

1430
$$\mathbb{P}\left(\|\beta\|^2 \geq d(1 + \delta)^2\right) \leq e^{-d\delta^2/2}.$$

1431

1432 **Lemma F.7** (Lemma 18 in Lin et al. (2024)). *For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^d$, we have*

1433
$$\left\| \log\left(\frac{e^\mathbf{u}}{\|e^\mathbf{u}\|_1}\right) - \log\left(\frac{e^\mathbf{v}}{\|e^\mathbf{v}\|_1}\right) \right\|_\infty \leq 2\|\mathbf{u} - \mathbf{v}\|_\infty.$$

1434

1435 **Corollary F.1.** *For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^d$, we have*

1436
$$\left\| \frac{e^\mathbf{u}}{\|e^\mathbf{u}\|_1} - \frac{e^\mathbf{v}}{\|e^\mathbf{v}\|_1} \right\|_\infty \leq \exp(2\|\mathbf{u} - \mathbf{v}\|_\infty) - 1$$

1437

1438 *Proof.* This follows directly from Lemma F.7 and simple calculations. \square 1439 Now we propose the results for transformer-based EM. Similar to Section F.2, we use notations with
1440 superscript “ $\hat{\cdot}$ ” to represent the output of the transformer-based EM.1441 **Theorem F.6.** *Fix $0 < \delta < 1$ and $1/2 < a < 1$. Let $C \geq 128$ be a large enough universal constant
1442 for which assumption ((A1)) holds. If n is sufficient large and $\varepsilon \leq 1/100$ sufficient small such that*

1443
$$\frac{\tilde{c}_1}{(1-a)\pi_{\min}} \sqrt{\frac{R_{\max}(R_{\max} \vee d) \log(\frac{12K}{\delta})}{n}} + \tilde{c}_2 \left(R_{\max} + d \left(1 + \sqrt{\frac{2\log(\frac{2n}{\delta})}{d}} \right) \right) n\varepsilon < \frac{1}{2} \left(a - \frac{1}{2} \right),$$

1444

1445 where \tilde{c}_1, \tilde{c}_2 are universal constants. Then there exists a 2-layer transformer TF_Θ such that $\hat{D}_m^+ \leq a$
1446 holds with probability at least $1 - \delta$. Moreover, TF_Θ falls within the class \mathcal{F} with parameters
1447 satisfying:

1448
$$D = O(d_0 + K_0), D' \leq \tilde{O}(K_0 R_{\max}(R_{\max} + d_0)\varepsilon^{-1}), M = O(1), \log B_\Theta \leq O(K_0 R_{\max}(R_{\max} + d_0)).$$

1449

1458 *Proof.* Recall that $\hat{D}_m^+ = \max_{i \in [K]} (\|\hat{\mu}_i^+ - \mu_i^*\| \vee |\hat{\pi}_i^+ - \pi_i^*|/\pi_i^*)$. Thus
 1459

$$\begin{aligned} 1460 \quad \hat{D}_m^+ &\leq \max_{i \in [K]} (\|\hat{\mu}_i^+ - \mu_i^*\| \vee |\hat{\pi}_i^+ - \pi_i^*|/\pi_i^*) + \max_{i \in [K]} (\|\hat{\mu}_i^+ - \mu_i^+\| \vee |\hat{\pi}_i^+ - \pi_i^+|/\pi_i^*) \\ 1461 \\ 1462 \quad &= D_m^+ + \max_{i \in [K]} (\|\hat{\mu}_i^+ - \mu_i^+\| \vee |\hat{\pi}_i^+ - \pi_i^+|/\pi_i^*) \end{aligned}$$

1463
 1464 We first claim that with probability at least $1 - \delta/2$,

$$\max_{i \in [K]} (\|\hat{\mu}_i^+ - \mu_i^+\| \vee |\hat{\pi}_i^+ - \pi_i^+|/\pi_i^*) \leq \tilde{c}_2 \left(R_{\max} + d \left(1 + \sqrt{\frac{2 \log(\frac{2n}{\delta})}{d}} \right) \right) n\varepsilon. \quad (18)$$

1465
 1466 Then by Theorem F.5, with probability at least $1 - \delta$, we have
 1467

$$\begin{aligned} 1468 \quad \hat{D}_m^+ &\leq D_m^+ + \max_{i \in [K]} (\|\hat{\mu}_i^+ - \mu_i^+\| \vee |\hat{\pi}_i^+ - \pi_i^+|/\pi_i^*) \\ 1469 \\ 1470 \quad &\leq \frac{1}{2} + \frac{\tilde{c}}{(1-a)\pi_{\min}} \sqrt{\frac{R_{\max}(R_{\max} \vee d) \log(\frac{12K}{\delta})}{n}} + \tilde{c}_2 \left(R_{\max} + d \left(1 + \sqrt{\frac{2 \log(\frac{2n}{\delta})}{d}} \right) \right) n\varepsilon \\ 1471 \\ 1472 \quad &\leq a. \end{aligned}$$

1473 Now we only need to prove (18). By the construction in Section F.2, we can see that $w_{\ell i}$ in first step
 1474 can be well calculated, thus $|\hat{\pi}_i^+ - \pi_i^+| = 0$ and the error comes only from the calculation of $\{\hat{\mu}_i^+\}$.
 1475 Recall that $\mu_i^+ = \frac{\sum_{\ell=1}^n w_{\ell i} X_{\ell}}{\sum_{\ell=1}^n w_{\ell i}}$ and

$$\begin{aligned} 1476 \quad \hat{\mu}_i^+ &= \frac{\sum_{\ell=1}^n \exp(\widehat{\log}(w_{\ell i})) X_{\ell}}{\sum_{\ell=1}^n \exp(\widehat{\log}(w_{\ell i}))}. \end{aligned}$$

1477 Recall that
 1478

$$w_{\ell i} = \frac{\pi_i \exp(-\|X_{\ell} - \mu_i\|^2/2)}{\sum_{j=1}^K \pi_j \exp(-\|X_{\ell} - \mu_j\|^2/2)} = \frac{1}{1 + \sum_{j \neq i} \frac{\pi_j}{\pi_i} \exp((\mu_j - \mu_i)^T X_{\ell} - \|\mu_j\|^2/2 + \|\mu_i\|^2/2)}.$$

1479 By the initial condition (9) and (8), we have
 1480

$$1481 \quad \|\mu_j - \mu_i\| \leq R_{\max} + 2 * \frac{1}{16} R_{\min} = O(R_{\max}), \quad \|\mu_j\|^2 = O(R_{\max}^2).$$

1482 Since $X_{\ell} \stackrel{\text{i.i.d.}}{\sim} \text{GMM}(\pi^*, \mu^*)$, using Lemma F.6, with probability at least $1 - \delta/2$, we have
 1483

$$\sup_{\ell \in [n]} \|X_{\ell}\| \leq R_{\max} + d \left(1 + \sqrt{\frac{2 \log(\frac{2n}{\delta})}{d}} \right) = \tilde{O}(R_{\max} + d).$$

1484 Combine all things together, we get that with probability at least $1 - \delta/2$,
 1485

$$1486 \quad w_{\ell i}^{-1} \leq \exp(\tilde{O}(K_0 R_{\max}(R_{\max} + d_0))), \quad \forall \ell \in [n] \text{ and } i \in [K].$$

1487 Thus taking $A = \exp(\tilde{O}(K_0 R_{\max}(R_{\max} + d_0)))$ and $\delta = \varepsilon$ in Lemma F.4, we can get
 1488 $|\log -\widehat{\log}||_{[1/A, A]} \leq \varepsilon$. Then by Lemma F.7, we have
 1489

$$\begin{aligned} 1490 \quad \|\hat{\mu}_i^+ - \mu_i^+\| &= \left\| \frac{\sum_{\ell=1}^n \exp(\widehat{\log}(w_{\ell i})) X_{\ell}}{\sum_{\ell=1}^n \exp(\widehat{\log}(w_{\ell i}))} - \frac{\sum_{\ell=1}^n \exp(\log w_{\ell i}) X_{\ell}}{\sum_{\ell=1}^n \exp(\log w_{\ell i})} \right\| \\ 1491 \\ 1492 \quad &\leq \sum_{\ell=1}^n \left\| \frac{\exp(\widehat{\log}(w_{\ell i})) X_{\ell}}{\sum_{\ell=1}^n \exp(\widehat{\log}(w_{\ell i}))} - \frac{\exp(\log w_{\ell i}) X_{\ell}}{\sum_{\ell=1}^n \exp(\log w_{\ell i})} \right\| \end{aligned}$$

$$\begin{aligned}
& \leq \sup_{\ell \in [n]} \|X_\ell\| \left(\sum_{\ell=1}^n \left| \frac{\exp(\widehat{\log}(w_{\ell i}))}{\sum_{\ell=1}^n \exp(\widehat{\log}(w_{\ell i}))} - \frac{\exp(\log w_{\ell i})}{\sum_{\ell=1}^n \exp(\log w_{\ell i})} \right| \right) \\
& \leq n \left(R_{\max} + d + \sqrt{2d \log \left(\frac{2n}{\delta} \right)} \right) \left(\exp \left(2 \left\| \left(\widehat{\log}(w_{\ell i}) \right)_\ell - (\log(w_{\ell i}))_\ell \right\|_\infty \right) - 1 \right) \\
& \leq 4n \left(R_{\max} + d + \sqrt{2d \log \left(\frac{2n}{\delta} \right)} \right) \varepsilon, \quad \forall i \in [K].
\end{aligned}$$

Thus (18) is proved. The parameter bounds can be directly computed by the construction in Section F.2 and Lemma F.4. \square

Theorem F.7. Fix $0 < \delta, \beta < 1$ and $1/2 < a < 1$. Let $C \geq 128$ be a large enough universal constant. Suppose the separation condition (7) holds and suppose the initialization parameter input to transformer satisfies $D_m \leq a$. If n is sufficient large and $K_0 \varepsilon \leq 1/100$ sufficient small such that

$$\epsilon(n, \varepsilon, \delta, a) := \frac{\tilde{c}_1}{(1-a)\pi_{\min}} \sqrt{\frac{Kd \log(\frac{\tilde{C}n}{\delta})}{n}} + \tilde{c}_2 \left(\frac{1}{\pi_{\min}} + n \left(R_{\max} + d + \sqrt{2d \log \left(\frac{2n}{\delta} \right)} \right) \right) \varepsilon < a(1-\beta),$$

where \tilde{c}_1, \tilde{c}_2 are universal constants, $\tilde{C} = 144K^2(\sqrt{d} + 2R_{\max} + \frac{1}{1-a})^2$. Then there exists a 2-layer transformer TF_Θ such that

$$\hat{D}_m^+ \leq \beta D_m + \epsilon(n, \varepsilon, \delta, a) \leq a$$

uniformly holds with probability at least $1 - \delta$. Moreover, TF_Θ falls within the class \mathcal{F} with parameters satisfying:

$$D = O(d_0 + K_0), D' \leq \tilde{O}(K_0 R_{\max} (R_{\max} + d_0) \varepsilon^{-1}), M = O(1), \log B_\Theta \leq \tilde{O}(K_0 R_{\max} (R_{\max} + d_0)).$$

Proof. Similar to the proof of Theorem F.6, using Theorem F.4, we only need to prove that with probability at least $1 - \delta/2$,

$$\max_{i \in [K]} (\|\hat{\mu}_i^+ - \mu_i^+\| \vee |\hat{\pi}_i^+ - \pi_i^+| / \pi_i^*) \leq \tilde{c}_2 \left(\frac{1}{\pi_{\min}} + n \left(R_{\max} + d + \sqrt{2d \log \left(\frac{2n}{\delta} \right)} \right) \right) \varepsilon. \quad (19)$$

Define $u_\ell = (u_{\ell,1}, \dots, u_{\ell,K})^\top$, $\hat{u}_\ell = (\hat{u}_{\ell,1}, \dots, \hat{u}_{\ell,K})^\top$, where $u_{\ell,i} = \log \pi_i + \mu_i^\top X_\ell - 1/2 \|\mu_i\|^2$ and $\hat{u}_{\ell,i} = \widehat{\log \pi_i + \mu_i^\top X_\ell - 1/2 \|\mu_i\|^2}$. By the construction in Section F.2 and Corollary F.1, we have

$$\|\hat{\mathbf{w}}_\ell - \mathbf{w}_\ell\|_\infty = \left\| \frac{e^{\hat{u}_\ell}}{\|e^{\hat{u}_\ell}\|_1} - \frac{e^{u_\ell}}{\|e^{u_\ell}\|_1} \right\|_\infty \leq \exp(2\|\hat{u}_\ell - u_\ell\|_\infty) - 1, \quad \forall \ell \in [n].$$

Now taking $\delta = \varepsilon$, $A = ((1-a)\pi_{\min})^{-1}$ in Lemma F.4 and $\delta = \varepsilon/K$, $A = (R_{\max} + a)^2$ in Lemma F.5, we have $\|\hat{u}_\ell - u_\ell\|_\infty \leq 3\varepsilon/2$, hence

$$\|\hat{\mathbf{w}}_\ell - \mathbf{w}_\ell\|_\infty \leq \exp(2\|\hat{u}_\ell - u_\ell\|_\infty) - 1 \leq \exp(3\varepsilon) - 1 \leq 6\varepsilon, \quad \forall \ell \in [n].$$

Then by the construction in Section F.2, we have

$$|\hat{\pi}_i^+ - \pi_i^+| \leq 6\varepsilon, \quad \forall i \in [K]. \quad (20)$$

For the term $\|\hat{\mu}_i^+ - \mu_i^+\|$, we can calculate it similar to the proof of Theorem F.6. First, we recall that with probability at least $1 - \delta/2$,

$$w_{\ell i}^{-1} \leq \exp \left(\tilde{O}(K_0 R_{\max} (R_{\max} + d_0)) \right), \quad \forall \ell \in [n] \text{ and } i \in [K].$$

Similarly, for $\hat{w}_{\ell i}$, we can also get (just calculate again) that with probability at least $1 - \delta/2$,

$$\hat{w}_{\ell i}^{-1} \leq \exp \left(\tilde{O}(K_0 R_{\max} (R_{\max} + d_0)) \right), \quad \forall \ell \in [n] \text{ and } i \in [K].$$

1566 Then following the same argument in Theorem F.6, taking $A = \exp\left(\tilde{O}(K_0 R_{\max}(R_{\max} + d_0))\right)$
 1567 and $\delta = \varepsilon$ in Lemma F.4, we have also
 1568

$$1569 \quad \|\hat{\mu}_i^+ - \mu_i^+\| \leq 4n \left(R_{\max} + d + \sqrt{2d \log\left(\frac{2n}{\delta}\right)} \right) \varepsilon, \quad \forall i \in [K]. \quad (21)$$

1572 Combining (20) and (21), (19) is proved. The parameter bounds can be directly computed by the
 1573 construction in Section F.2, Lemma F.4, Lemma F.5 and the parameter A, δ taken in the proof.
 1574 \square
 1575

1576 F.4 PROOF OF THEOREM F.1 1577

1578 First, by Theorem F.6 and the first condition in Theorem F.1, there exist a 2-layer transformer TF_{Θ_1}
 1579 such that

$$1580 \quad D_{\Theta_1}^{\text{TF}} \leq a, \quad (22)$$

1582 holds with probability at least $1 - \delta/2$. Then using Theorem F.3, (22) and the second condition in
 1583 Theorem F.1, there 2-layer transformer TF_{Θ_2} such that

$$1584 \quad D_{\Theta_1 \cup \Theta_2}^{\text{TF}} \leq \beta D_{\Theta_1}^{\text{TF}} + \epsilon(n, \varepsilon, \delta/2, a) \leq a,$$

1585 uniformly holds with probability at least $1 - \delta/2$. Denote as $\Theta_2^L = \cup_{\ell \in [L]} \Theta_2$. Thus, for any $L \in \mathbb{N}$,
 1586 by reduction, we have

$$1588 \quad D_{\Theta_1 \cup \Theta_2^L}^{\text{TF}} \leq \beta^L D_{\Theta_1}^{\text{TF}} + (1 + \beta + \dots + \beta^{L-1}) \epsilon(n, \varepsilon, \delta/2, a),$$

1589 uniformly holds with probability at least $1 - \delta/2$. Combine all things together, we have, for any
 1590 $L \in \mathbb{N}$,

$$1592 \quad D_{\Theta_1 \cup \Theta_2^L}^{\text{TF}} \leq \beta^L D_{\Theta_1}^{\text{TF}} + (1 + \beta + \dots + \beta^{L-1}) \epsilon(n, \varepsilon, \delta/2, a) \\ 1593 \quad \leq \beta^L a + \frac{1}{1 - \beta} \epsilon(n, \varepsilon, \delta/2, a)$$

1595 holds with probability at least $1 - \delta$ (Note that the definitions of $\epsilon(\cdot)$ in Theorem F.7 and Theorem F.1
 1596 differ slightly). The parameter bounds can be directly computed by Theorem F.6 and Theorem F.7.
 1597 The theorem is proved.
 1598

1599 G FORMAL STATEMENT OF THEOREM 2 AND PROOFS 1600

1602 Following Section F, we implement Readin as an identity transformation and define Readout to
 1603 extract targeted matrix elements hence they are both fixed functions.
 1604

1605 G.1 FORMAL STATEMENT OF THEOREM 2

1606 In this section, we give the formal statement of Theorem 2. First, we need to introduce the embeddings
 1607 of the transformer. Let \mathbf{T} be the matrix representation of the cubic tensor T , which is
 1608

$$1609 \quad \mathbf{T} := [\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_d] := \begin{bmatrix} T_{:,1,1} & T_{:,2,1} & \dots & T_{:,d,1} \\ T_{:,1,2} & T_{:,2,2} & \dots & T_{:,d,2} \\ \vdots & \vdots & \ddots & \vdots \\ T_{:,1,d} & T_{:,2,d} & \dots & T_{:,d,d} \end{bmatrix} \in \mathbb{R}^{d^2 \times d},$$

1613 where $T_{:,i,j} = (T_{1,i,j}, T_{2,i,j}, \dots, T_{d,i,j}) \in \mathbb{R}^d$, $i, j \in [d]$. For dimension adaptation, we assume
 1614 $d \leq d_0$. The augment version of \mathbf{T} is defined as
 1615

$$1616 \quad \bar{\mathbf{T}} := [\bar{\mathbf{t}}_1, \bar{\mathbf{t}}_2, \dots, \bar{\mathbf{t}}_{d_0}] := \begin{bmatrix} \bar{T}_{:,1,1} & \bar{T}_{:,2,1} & \dots & \bar{T}_{:,d_0,1} \\ \bar{T}_{:,1,2} & \bar{T}_{:,2,2} & \dots & \bar{T}_{:,d_0,2} \\ \vdots & \vdots & \ddots & \vdots \\ \bar{T}_{:,1,d_0} & \bar{T}_{:,2,d_0} & \dots & \bar{T}_{:,d_0,d_0} \end{bmatrix} \in \mathbb{R}^{d_0^2 \times d_0}, \quad (23)$$

1620 where $\bar{T}_{:,i,j} \in \mathbb{R}^{d_0}$. If $i \leq d$ and $j \leq d$, $\bar{T}_{:,i,j} = [T_{:,i,j}^\top, \mathbf{0}_{d_0-d}^\top]^\top$; Else $\bar{T}_{:,i,j} = \mathbf{0}_{d_0}$. We construct
 1621 the following input sequence:
 1622

$$1623 \quad \mathbf{H} = \begin{bmatrix} \bar{\mathbf{t}}_1 & \bar{\mathbf{t}}_2 & \dots & \bar{\mathbf{t}}_d \\ \mathbf{p}_1 & \mathbf{p}_2 & \dots & \mathbf{p}_d \end{bmatrix} \in \mathbb{R}^{D \times d}, \quad \mathbf{p}_i = \begin{bmatrix} \bar{v}^{(0)} \\ \mathbf{e}_i \\ 1 \\ d \\ \mathbf{0}_{\tilde{D}} \end{bmatrix}, \quad (24)$$

1628 where $\bar{\mathbf{t}}_i \in \mathbb{R}^{d_0^2}$ is defined as (23), $\bar{v}^{(0)} = [v^{(0)\top}, \mathbf{0}_{d_0-d}^\top]^\top \in \mathbb{R}^{d_0}$, $\mathbf{e}_i \in \mathbb{R}^{d_0}$ denotes the i -th standard
 1629 unit vector in \mathbb{R}^{d_0} . We choose $D = O(d_0^2)$ and $\tilde{D} = D - d_0^2 - 2d_0 - 2$ to get the encoding above.
 1630 Then we give a rigorous definition of ReLU-activated transformer following Bai et al. (2023).
 1631

1632 **Definition 7** (ReLU-attention layer). *A (self-)attention layer activated by ReLU function with M
 1633 heads is denoted as $\text{Attn}_{\Theta_{\text{attn}}}(\cdot)$ with parameters $\Theta_{\text{attn}} = \{(\mathbf{V}_m, \mathbf{Q}_m, \mathbf{K}_m)\}_{m \in [M]} \subset \mathbb{R}^{D \times D}$. On
 1634 any input sequence $\mathbf{H} \in \mathbb{R}^{D \times N}$,*
 1635

$$1636 \quad \tilde{\mathbf{H}} = \text{Attn}_{\Theta_{\text{attn}}}^R(\mathbf{H}) := \mathbf{H} + \frac{1}{N} \sum_{m=1}^M (\mathbf{V}_m \mathbf{H}) \sigma((\mathbf{K}_m \mathbf{H})^\top (\mathbf{Q}_m \mathbf{H})) \in \mathbb{R}^{D \times N},$$

1637 *In vector form,*
 1638

$$1639 \quad \tilde{\mathbf{h}}_i = [\text{Attn}_{\Theta_{\text{attn}}}^R(\mathbf{H})]_i = \mathbf{h}_i + \sum_{m=1}^M \frac{1}{N} \sum_{j=1}^N \sigma((\mathbf{Q}_m \mathbf{h}_i)^\top (\mathbf{K}_m \mathbf{h}_j)) \mathbf{V}_m \mathbf{h}_j.$$

1641 *Here $\sigma(x) = x \vee 0$ denotes the ReLU function.*
 1642

1643 The MLP layer is the same as Definition 5. The ReLU-activated transformer is defined as follows.
 1644

1645 **Definition 8** (ReLU-activated transformer). *An L -layer transformer, denoted as $\text{TF}_{\Theta}^R(\cdot)$, is a composition
 1646 of L ReLU-attention layers each followed by an MLP layer:*
 1647

$$1647 \quad \text{TF}_{\Theta}^R(\mathbf{H}) = \text{MLP}_{\Theta_{\text{mlp}}^{(L)}} \left(\text{Attn}_{\Theta_{\text{attn}}^{(L)}}^R \left(\dots \text{MLP}_{\Theta_{\text{mlp}}^{(1)}} \left(\text{Attn}_{\Theta_{\text{attn}}^{(1)}}^R(\mathbf{H}) \right) \right) \right).$$

1649 *Above, the parameter $\Theta = (\Theta_{\text{attn}}^{(1:L)}, \Theta_{\text{mlp}}^{(1:L)})$ consists of the attention layers $\Theta_{\text{attn}}^{(\ell)} =$
 1650 $\{(\mathbf{V}_m^{(\ell)}, \mathbf{Q}_m^{(\ell)}, \mathbf{K}_m^{(\ell)})\}_{m \in [M^{(\ell)}]} \subset \mathbb{R}^{D \times D}$ and the MLP layers $\Theta_{\text{mlp}}^{(\ell)} = (\mathbf{W}_1^{(\ell)}, \mathbf{W}_2^{(\ell)}) \in \mathbb{R}^{D^{(\ell)} \times D} \times$
 1651 $\mathbb{R}^{D \times D^{(\ell)}}$.*
 1652

1653 Similar to Section 4.1, We consider the following function class of transformer.
 1654

$$1656 \quad \mathcal{F} := \mathcal{F}(L, D, D', M, B_{\Theta}) = \left\{ \text{TF}_{\Theta}^R, \|\Theta\| \leq B_{\Theta}, D^{(\ell)} \leq D', M^{\ell} \leq M, \ell \in [L] \right\}.$$

1658 Now we can give the formal statement of Theorem 2.
 1659

1660 **Theorem G.8** (Formal version of Theorem 2). *There exists a transformer TF_{Θ} with ReLU activation
 1661 such that for any $d \leq d_0$, $T \in \mathbb{R}^{d \times d \times d}$ and $v^{(0)} \in \mathbb{R}^d$, given the encoding (24), TF_{Θ} implements L
 1662 steps of (3) exactly. Moreover, TF_{Θ} falls within the class \mathcal{F} with parameters satisfying:*
 1663

$$1663 \quad D = D' = O(d_0^2), M = O(d_0), \log B_{\Theta} \leq O(1).$$

1664 **Remark G.1.** *In fact, Theorem G.8 is also hold for attention-only transformers since the MLP layer
 1665 do not use in the proof. To do that, we only need to add another head in every odd attention layer to
 1666 clean the terms $\{d\bar{v}_i\}$. For details, see the proof.*
 1667

1668 **Remark G.2.** *Readers might question why the normalization step is omitted in our theorem. The key
 1669 challenge is that we have absolutely no knowledge of a lower bound for $\|T(I, v^{(j)}, v^{(j)})\|$. Without
 1670 this bound, approximating the normalization step becomes infeasible.*
 1671

1672 **Remark G.3.** *The use of the ReLU activation function here is primarily for technical convenience
 1673 and does not alter the fundamental nature of the attention mechanism. Several studies have demonstrated
 1674 that transformers with ReLU-based attention perform comparably to those using softmax
 1675 attention (Shen et al., 2023; Bai et al., 2023; He et al., 2025a).*
 1676

1674 G.2 PROOF OF THEOREM G.8
1675

1676 *Proof.* For simplicity, we only proof the case that $\sigma(x) = x$ in the attention layer. For ReLU activated
1677 transformer, the result can be similarly proved by $\text{ReLU}(x) - \text{ReLU}(-x) = x$ and the $\sigma(x) = x$
1678 case. Hence we omit the notation σ in the following proof. We take $\mathbf{H}^{(0)} = \mathbf{H}$. In the first attention
1679 layer, consider the following attention structures:

$$1680 \quad \mathbf{Q}^{(1)} \mathbf{h}_i^{(0)} = \begin{bmatrix} \mathbf{e}_i \\ \mathbf{0} \end{bmatrix}, \quad \mathbf{K}^{(1)} \mathbf{h}_j^{(0)} = \begin{bmatrix} \bar{v}^{(0)} \\ \mathbf{0} \end{bmatrix}, \quad \mathbf{V}^{(1)} \mathbf{h}_j^{(0)} = \begin{bmatrix} \mathbf{0}_{d_0^2} \\ \mathbf{0}_{d_0} \\ 0 \\ 0 \\ d \\ \mathbf{0} \end{bmatrix}.$$

$$1681$$

$$1682$$

$$1683$$

$$1684$$

$$1685$$

1686 After the attention operation, we have

$$1687 \quad \mathbf{h}_i^{(1)} = \left[\text{Attn}_{\Theta_{\text{attn}}^{(1)}}^R(\mathbf{H}^0) \right]_{:,i} = \mathbf{h}_i^{(0)} + \frac{1}{d} \sum_{j=1}^d \left((\mathbf{Q}^{(1)} \mathbf{h}_i^{(0)})^\top (\mathbf{K}^{(1)} \mathbf{h}_j^{(0)}) \right) \mathbf{V}^{(1)} \mathbf{h}_j^{(0)} = \mathbf{h}_i^{(0)} + \begin{bmatrix} \mathbf{0}_{d_0^2} \\ \mathbf{0}_{d_0} \\ 0 \\ 0 \\ d \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \bar{\mathbf{t}}_i \\ \bar{v}^{(0)} \\ 1 \\ d \\ d\bar{v}_i^{(0)} \\ \mathbf{0} \end{bmatrix}, \quad i \in [d].$$

$$1688$$

$$1689$$

$$1690$$

$$1691$$

$$1692$$

1693 Then we use a two-layer MLP to implement identity operation, which is

$$1694 \quad \mathbf{h}_i^{(1)} = \text{MLP}_{\Theta_{\text{mlp}}^{(1)}}(\tilde{\mathbf{h}}_i^{(1)}) = \begin{bmatrix} \bar{\mathbf{t}}_i \\ \bar{v}^{(0)} \\ 1 \\ d \\ d\bar{v}_i^{(0)} \\ \mathbf{0} \end{bmatrix}, \quad i \in [d].$$

$$1695$$

$$1696$$

$$1697$$

$$1698$$

$$1699$$

1700 Now we use an attention layer with $d_0 + 1$ heads to implement the power iteration step of the cubic
1701 tensor. Consider the following attention structure:

$$1702 \quad \mathbf{Q}_m^{(2)} \mathbf{h}_i^{(1)} = \begin{bmatrix} \bar{v}_m^{(0)} \\ \mathbf{0} \end{bmatrix}, \quad \mathbf{K}_m^{(2)} \mathbf{h}_j^{(1)} = \begin{bmatrix} d\bar{v}_j^{(0)} \\ \mathbf{0} \end{bmatrix}, \quad \mathbf{V}_m^{(2)} \mathbf{h}_j^{(1)} = \begin{bmatrix} \mathbf{0}_{d_0^2} \\ \bar{T}_{:,j,m} \\ \mathbf{0} \end{bmatrix}, \quad m \in [d_0],$$

$$1703$$

$$1704$$

$$1705$$

1706 and

$$1707 \quad \mathbf{Q}_{d_0+1}^{(2)} \mathbf{h}_i^{(1)} = \begin{bmatrix} 1 \\ \mathbf{0} \end{bmatrix}, \quad \mathbf{K}_{d_0+1}^{(2)} \mathbf{h}_j^{(1)} = \begin{bmatrix} d \\ \mathbf{0} \end{bmatrix}, \quad \mathbf{V}_{d_0+1}^{(2)} \mathbf{h}_j^{(1)} = \begin{bmatrix} \mathbf{0}_{d_0^2} \\ -\bar{v}^{(0)} \\ \mathbf{0} \end{bmatrix}.$$

$$1708$$

$$1709$$

1710 After the attention operation, we have

$$1711 \quad \tilde{\mathbf{h}}_i^{(2)} = \left[\text{Attn}_{\Theta_{\text{attn}}^{(2)}}^R(\mathbf{H}^{(1)}) \right]_{:,i}$$

$$1712 \quad = \mathbf{h}_i^{(1)} + \sum_{m=1}^{d_0} \frac{1}{d} \sum_{j=1}^d \left((\mathbf{Q}_m^{(2)} \mathbf{h}_i^{(1)})^\top (\mathbf{K}_m^{(2)} \mathbf{h}_j^{(1)}) \right) \mathbf{V}_m^{(2)} \mathbf{h}_j^{(1)} + \frac{1}{d} \sum_{j=1}^d \left((\mathbf{Q}_{d_0+1}^{(2)} \mathbf{h}_i^{(1)})^\top (\mathbf{K}_{d_0+1}^{(2)} \mathbf{h}_j^{(1)}) \right) \mathbf{V}_{d_0+1}^{(2)} \mathbf{h}_j^{(1)}$$

$$1713 \quad = \mathbf{h}_i^{(1)} + \sum_{m=1}^{d_0} \frac{1}{d} \sum_{j=1}^d (d\bar{v}_m^{(0)} \bar{v}_j^{(0)}) \begin{bmatrix} \mathbf{0}_{d_0^2} \\ \bar{T}_{:,j,m} \\ \mathbf{0} \end{bmatrix} + \frac{1}{d} \sum_{j=1}^d d \begin{bmatrix} \mathbf{0}_{d_0^2} \\ -\bar{v}^{(0)} \\ \mathbf{0} \end{bmatrix}$$

$$1714 \quad = \mathbf{h}_i^{(1)} + \begin{bmatrix} \mathbf{0}_{d_0^2} \\ \bar{v}^{(1)} \\ \mathbf{0} \end{bmatrix} + \begin{bmatrix} \mathbf{0}_{d_0^2} \\ -\bar{v}^{(0)} \\ \mathbf{0} \end{bmatrix}$$

$$1715 \quad = \begin{bmatrix} \bar{\mathbf{t}}_i \\ \bar{v}^{(1)} \\ 1 \\ d \\ d\bar{v}_i^{(0)} \\ \mathbf{0} \end{bmatrix}, \quad i \in [d],$$

$$1716$$

$$1717$$

$$1718$$

$$1719$$

$$1720$$

$$1721$$

$$1722$$

$$1723$$

$$1724$$

$$1725$$

$$1726$$

$$1727$$

1728 where $\bar{v}^{(1)} = [v^{(1)\top}, \mathbf{0}_{d_0-d}^\top]^\top$ and $v^{(1)} = \sum_{j,m \in [d]} v_m^{(0)} v_j^{(0)} T_{:,j,m}$.
 1729

1730 Then we use a two-layer MLP to clean the term $d\bar{v}_i^{(0)}$, which is
 1731

$$1732 \quad \mathbf{h}_i^{(2)} = \text{MLP}_{\Theta_{\text{mlp}}^{(2)}}(\tilde{\mathbf{h}}_i^{(2)}) = \begin{bmatrix} \mathbf{t}_i \\ \bar{v}^{(1)} \\ 1 \\ d \\ \mathbf{0} \end{bmatrix}, \quad i \in [d].$$

$$1733$$

$$1734$$

$$1735$$

$$1736$$

1737 Similarly, for any $\ell \in \mathbb{N}_+$, we have
 1738

$$1739 \quad \mathbf{h}_i^{(2\ell)} = \left[\text{MLP}_{\Theta_{\text{mlp}}^{(2)}} \left(\text{Attn}_{\Theta_{\text{attn}}^{(2)}} \left(\text{MLP}_{\Theta_{\text{mlp}}^{(1)}} \left(\text{Attn}_{\Theta_{\text{attn}}^{(1)}} \left(\mathbf{H}^{(2\ell-2)} \right) \right) \right) \right) \right]_{:,i} = \begin{bmatrix} \bar{\mathbf{t}}_i \\ \bar{v}^{(\ell)} \\ 1 \\ d \\ \mathbf{0} \end{bmatrix}, \quad i \in [d].$$

$$1740$$

$$1741$$

$$1742$$

$$1743$$

1744 The parameter bounds can be directly computed by the construction above. The theorem is proved.
 1745 \square
 1746

1747 H MORE ON EMPIRICAL STUDIES

1748 H.1 MORE ON EXPERIMENTAL SETUPS

1749 **Anisotropic adjustments** We consider anisotropic Gaussian mixtures that takes the following
 1750 form: A K -component anisotropic Gaussian mixture distribution is defined with parameters $\boldsymbol{\theta} =$
 1751 $\boldsymbol{\pi} \cup \boldsymbol{\mu} \cup \boldsymbol{\sigma}$, where $\boldsymbol{\pi} := \{\pi_1^*, \pi_2^*, \dots, \pi_K^*\}$, $\pi_k^* \in \mathbb{R}$, $\boldsymbol{\mu} = \{\mu_1^*, \mu_2^*, \dots, \mu_K^*\}$, $\mu_k^* \in \mathbb{R}^d$, $k \in [K]$
 1752 and $\boldsymbol{\sigma} = \{\sigma_1^*, \sigma_2^*, \dots, \sigma_K^*\}$, $\sigma_k^* \in \mathbb{R}_+^d$, $k \in [K]$. A sample X_i from the aforementioned anisotropic
 1753 GMM is expressed as:

$$1754 \quad X_i = \mu_{y_i}^* + \sigma_{y_i}^* Z_i, \quad (25)$$

$$1755$$

1756 where $\{y_i\}_{i \in [N]}$ are iid discrete random variables with $\mathbb{P}(y = k) = \pi_k^*$ for $k \in [K]$ and $\{Z_i\}_{i \in [N]}$
 1757 are iid standard Gaussian random vector in \mathbb{R}^d . Analogous to that in the isotropic case and overload
 1758 some notations, we define an anisotropic GMM task to be $\mathcal{T} = (\mathbf{X}, \boldsymbol{\theta}, K)$.
 1759

1760 To adapt the TGMM framework to be compatible to anisotropic problems, we expand the output
 1761 dimension of the attentive pooling module from $(d + K) \times K$ to $(d + 2K) \times K$, with the additional
 1762 K rows reserved for the estimate $\hat{\boldsymbol{\sigma}}$ of $\boldsymbol{\sigma}$, with the corresponding estimation loss function augmented
 1763 with a scale estimation part:

$$1764 \quad \hat{L}_n(\boldsymbol{\Theta}) = \frac{1}{n} \sum_{i=1}^n \ell_\mu(\hat{\boldsymbol{\mu}}_i, \boldsymbol{\mu}_i) + \ell_\pi(\hat{\boldsymbol{\pi}}_i, \boldsymbol{\pi}_i) + \ell_\sigma(\hat{\boldsymbol{\sigma}}_i, \boldsymbol{\sigma}_i), \quad (26)$$

$$1765$$

$$1766$$

$$1767$$

$$1768$$

1769 where the loss function ℓ_σ is chosen as the mean-square loss. During the experiments, we inherit
 1770 configurations from those of isotropic counterparts, except for the calculation of the ℓ_2 -error metric,
 1771 where we additionally considered contributions from the estimation error of scales.
 1772

1773 **Configurations related to Mamba2 architecture** We adopt a Mamba2 Dao & Gu (2024) model
 1774 comprising 12-layers and 128-dimensional hidden states, with the rest hyper-parameters chosen so as
 1775 to approximately match the number of a 12-layer transformer with 128-dimensional hidden states.
 1776 As the Mamba series of models are essentially recurrent neural networks (RNNs), we tested two
 1777 different kinds of Readout design with either (i). the attentive pooling module as used in the case
 1778 of transformer backbone and (ii). a more natural choice of using simply the last hidden state to
 1779 decode all the estimates, as RNNs compress input information in an ordered fashion. We observe
 1780 from our empirical investigations that using attentive pooling yields better performance even with a
 1781 Mamba2 backbone. The other training configurations are cloned from those in TGMM experiments
 with transformer backbones.

1782 **Software and hardware infrastructures** Our framework is built upon PyTorch Paszke et al. (2019)
 1783 and transformers Wolf et al. (2020) libraries, which are open-source software released under
 1784 BSD-style¹ and Apache license². The code implementations will be open-sourced after the reviewing
 1785 process of this paper. All the experiments are conducted using 8 NVIDIA A100 GPUs with 80 GB
 1786 memory each.
 1787

1788 H.2 A COMPLETE REPORT REGARDING DIFFERENT EVALUATION METRICS

1789
 1790 In this section, we present complete reports of empirical performance regarding the evaluation
 1791 problems mentioned in section 3. Aside from the ℓ_2 -error metric that was reported in section 3.2, we
 1792 additionally calculated all the experimental performance under the following metrics:

1793 **Clustering accuracy** We compare estimated cluster membership with the true component assign-
 1794 ment, after adjusting for permutation invariance as mentioned in section 2.3.

1795 **Log-likelihood** We compute average log-likelihood as a standard metric in unsupervised statistical
 1796 estimation.
 1797

1798 The results are reported in figure 10, 11, 12, 13 and 14, respectively. According to the evaluations,
 1799 the learned TGMM models show comparable clustering accuracy against the spectral algorithm
 1800 and outperform EM algorithm when $K > 2$ across all comparisons. Regarding the log-likelihood
 1801 metric, TGMM demonstrates comparable performance with the other two classical algorithms in
 1802 comparatively lower dimensional cases. i.e., $d \in \{2, 8\}$, but underperforms both baselines in larger
 1803 dimensional problems. We conjecture that is might be due to the fact that EM algorithm is essentially
 1804 a maximum-likelihood algorithm Dempster et al. (1977), while the TGMM estimation objective (2)
 1805 is not explicitly related to likelihood-based training.

1806 H.3 ON THE IMPACT OF INFERENCE-TIME SAMPLE SIZE N

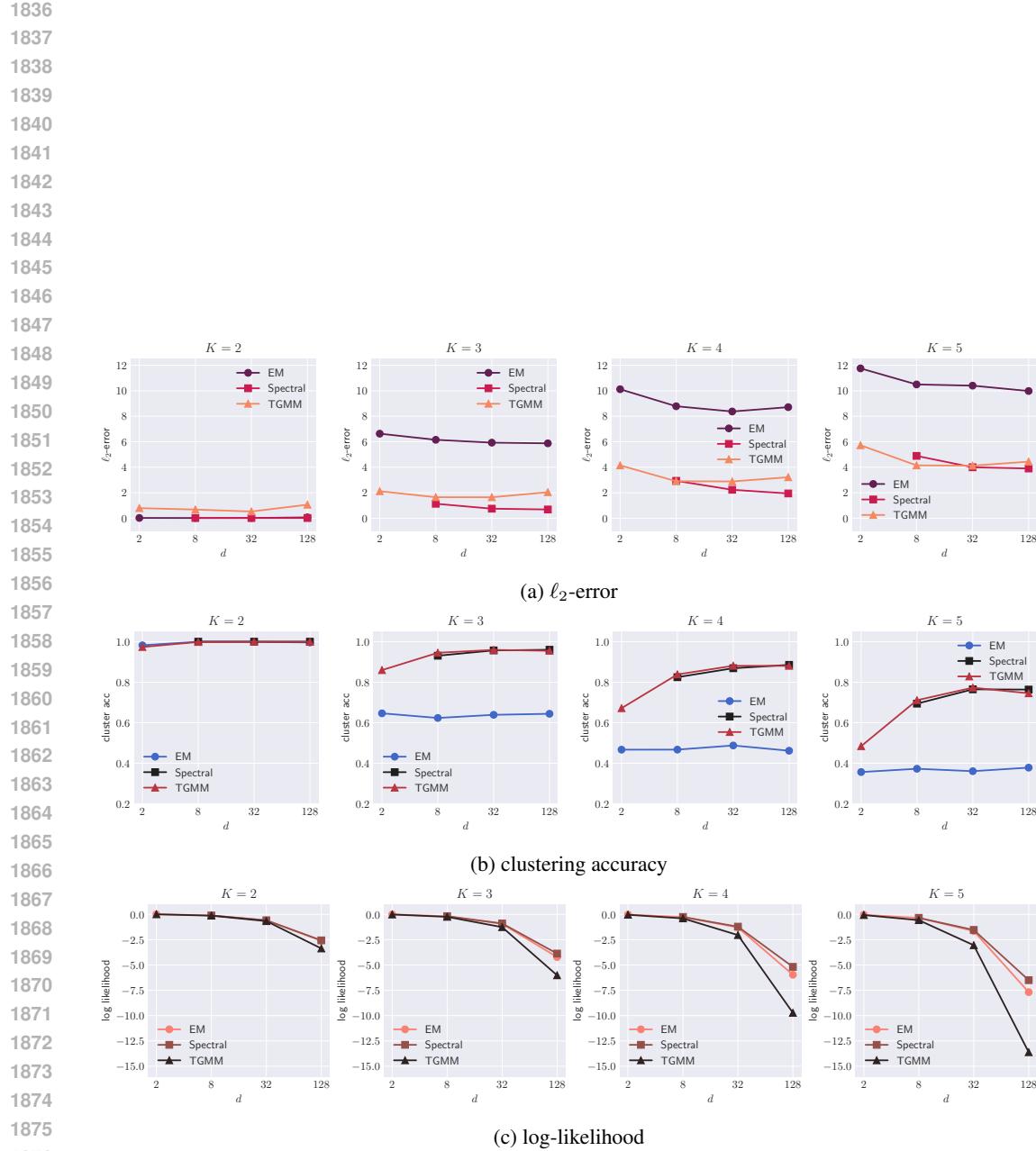
1807
 1808 Motivated by the classical statistical phenomenon that estimation quality tends to improve with
 1809 sample size, we test whether TGMM’s estimation performance increases as N goes up. We run
 1810 corresponding experiments by varying the sample size to be $N \in \{32, 64, 128\}$ during both train
 1811 and inference, while controlling other experimental configurations same as those in section 3.1. The
 1812 results are reported in ℓ_2 -error, clustering accuracy as log-likelihood and summarized in figure 15.
 1813 The results exhibit a clear trend that aligns with our hypothesis, justifying the TGMM learning
 1814 process as learning a statistically meaningful algorithm for solving GMMs.
 1815

1816 H.4 ON THE IMPACT OF BACKBONE SCALE

1817
 1818 The scaling phenomenon is among the mostly discussed topics in modern AI, as choosing a suitable
 1819 scale is often critical to the performance of transformer-based architectures like LLMs. In this
 1820 section we investigate the scaling properties of TGMM via comparing performances produced by
 1821 varying sizes of backbones that differ either in per-layer width (i.e., the dimension of attention
 1822 embeddings) or in the total number of layers L . With the rest hyper-parameters controlled to be
 1823 the same as those in section 3.1. The results are reported in three metrics and summarized in figure
 1824 16 and figure 17, respectively. According to these investigations, while in general a larger-sized
 1825 backbone yields slightly better performance as compared to smaller ones. The performance gaps
 1826 remain mild especially for tasks with relative lower complexity, i.e., $K = 2$. Consequently, even a
 1827 3-layer transformer backbone is able to achieve non-trivial learning performance for solving isotropic
 1828 GMMs, a phenomenon that was also observed in a recent work He et al. (2025b).
 1829
 1830
 1831
 1832
 1833
 1834

1835 ¹<https://github.com/pytorch/pytorch/blob/master/LICENSE>

2²<https://github.com/huggingface/transformers/blob/main/LICENSE>



1877 Figure 10: Performance comparison between TGMM and two classical algorithms, reported in three
1878 metrics.

1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

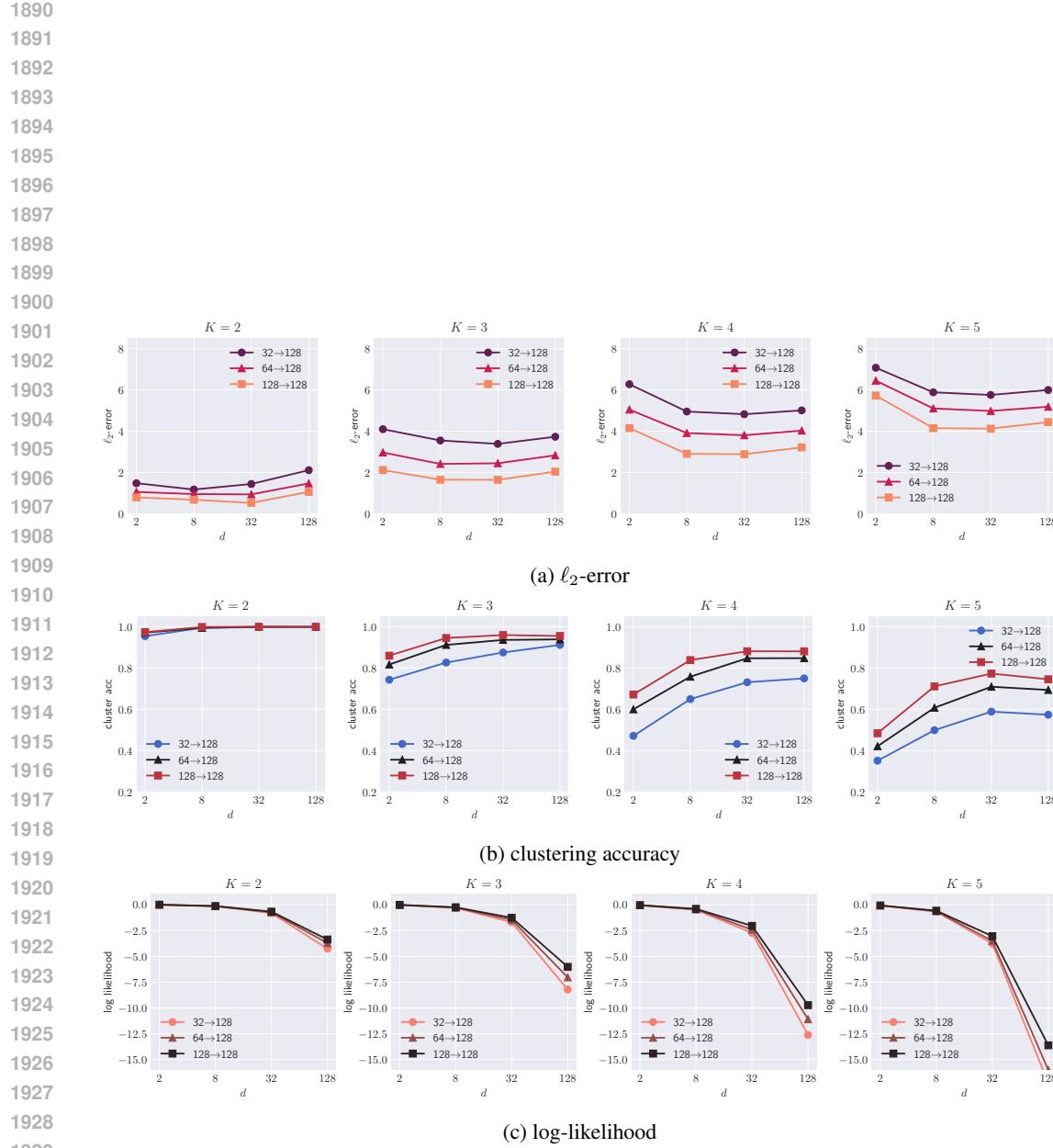


Figure 11: Assessments of TGMM under test-time task distribution shifts I: A line with $N_0^{\text{train}} \rightarrow N^{\text{test}}$ draws the performance of a TGMM model trained over tasks with sample size randomly sampled in $[N_0^{\text{train}}/2, N_0^{\text{train}}]$ and evaluated over tasks with sample size N^{test} . We can view the configuration $128 \rightarrow 128$ as an in-distribution test and rest as out-of-distribution tests.

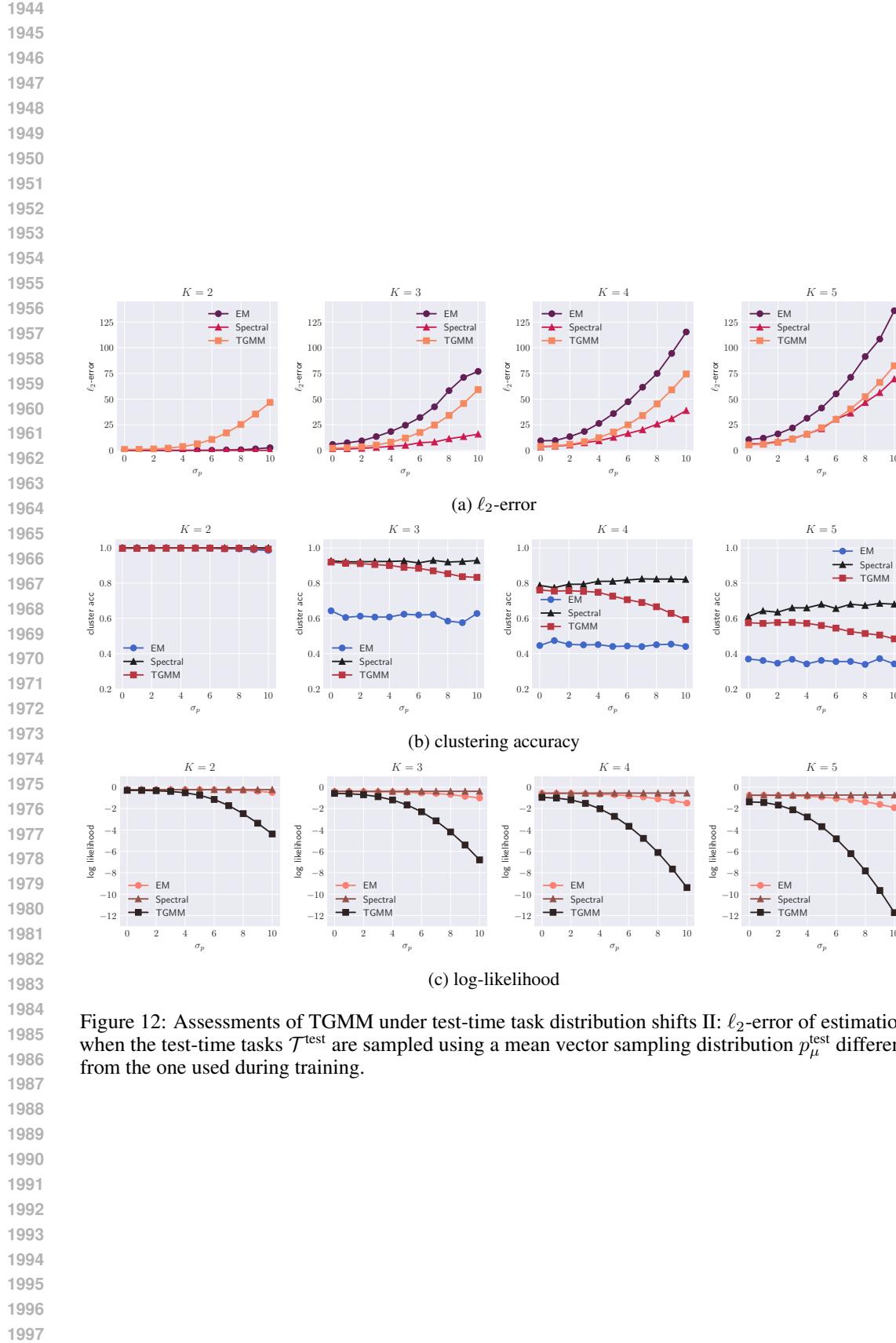


Figure 12: Assessments of TGMM under test-time task distribution shifts II: ℓ_2 -error of estimation when the test-time tasks $\mathcal{T}^{\text{test}}$ are sampled using a mean vector sampling distribution p_{μ}^{test} different from the one used during training.

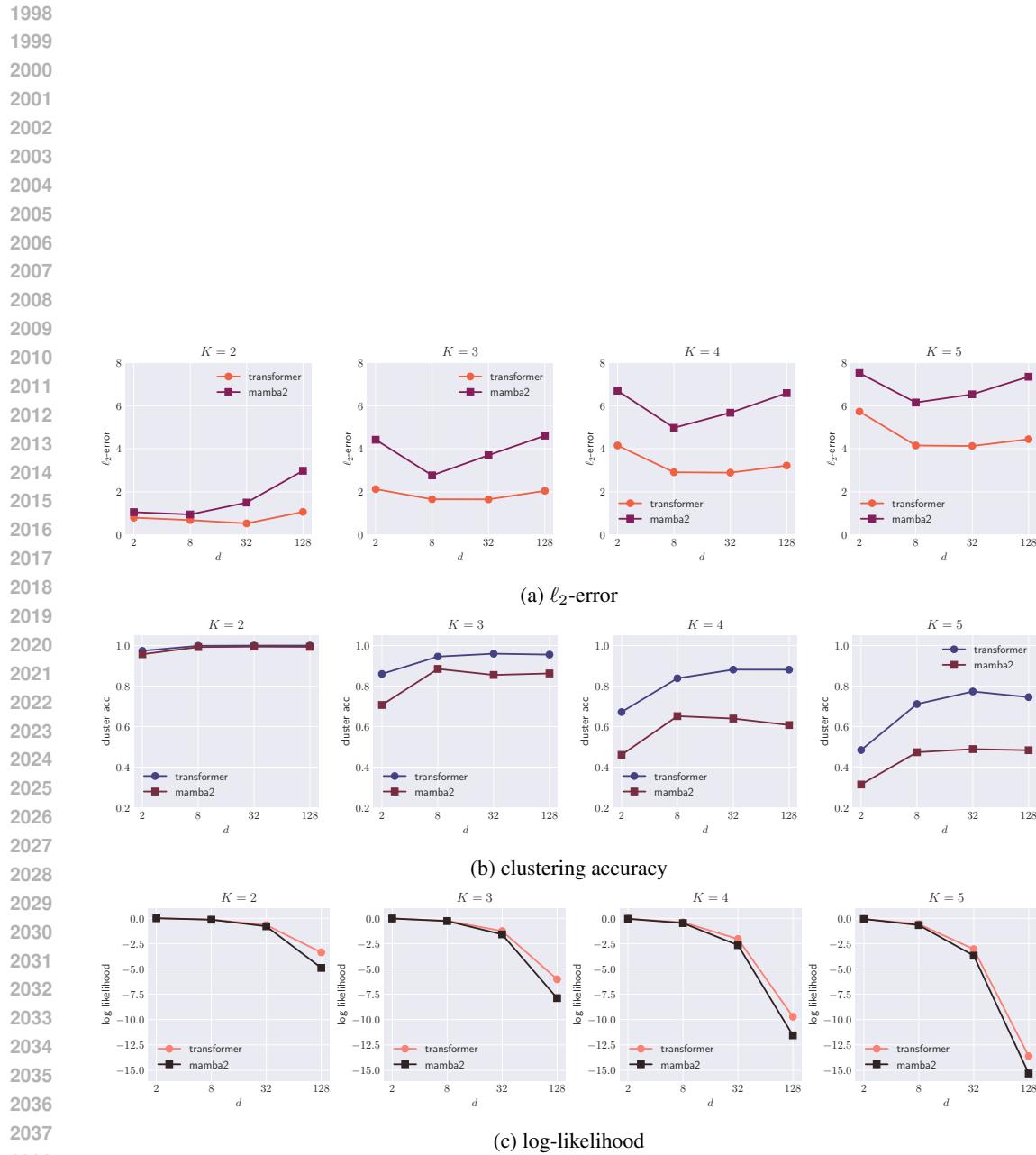


Figure 13: Performance comparisons between TGMM using transformer and Mamba2 as backbone, reported in three metrics,

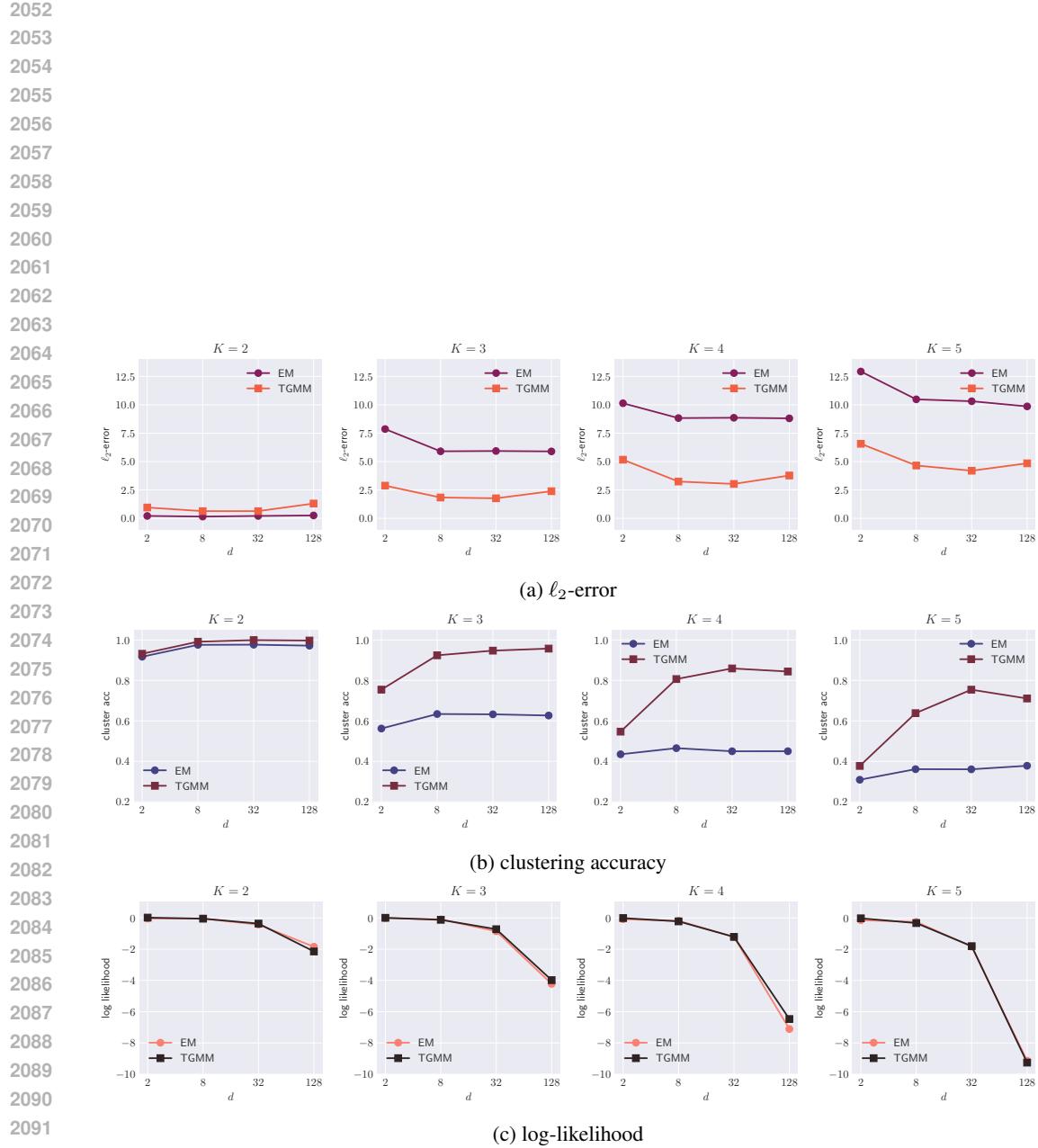


Figure 14: Performance comparison between TGMM and the EM algorithm on anisotropic GMM tasks, reported in three metrics

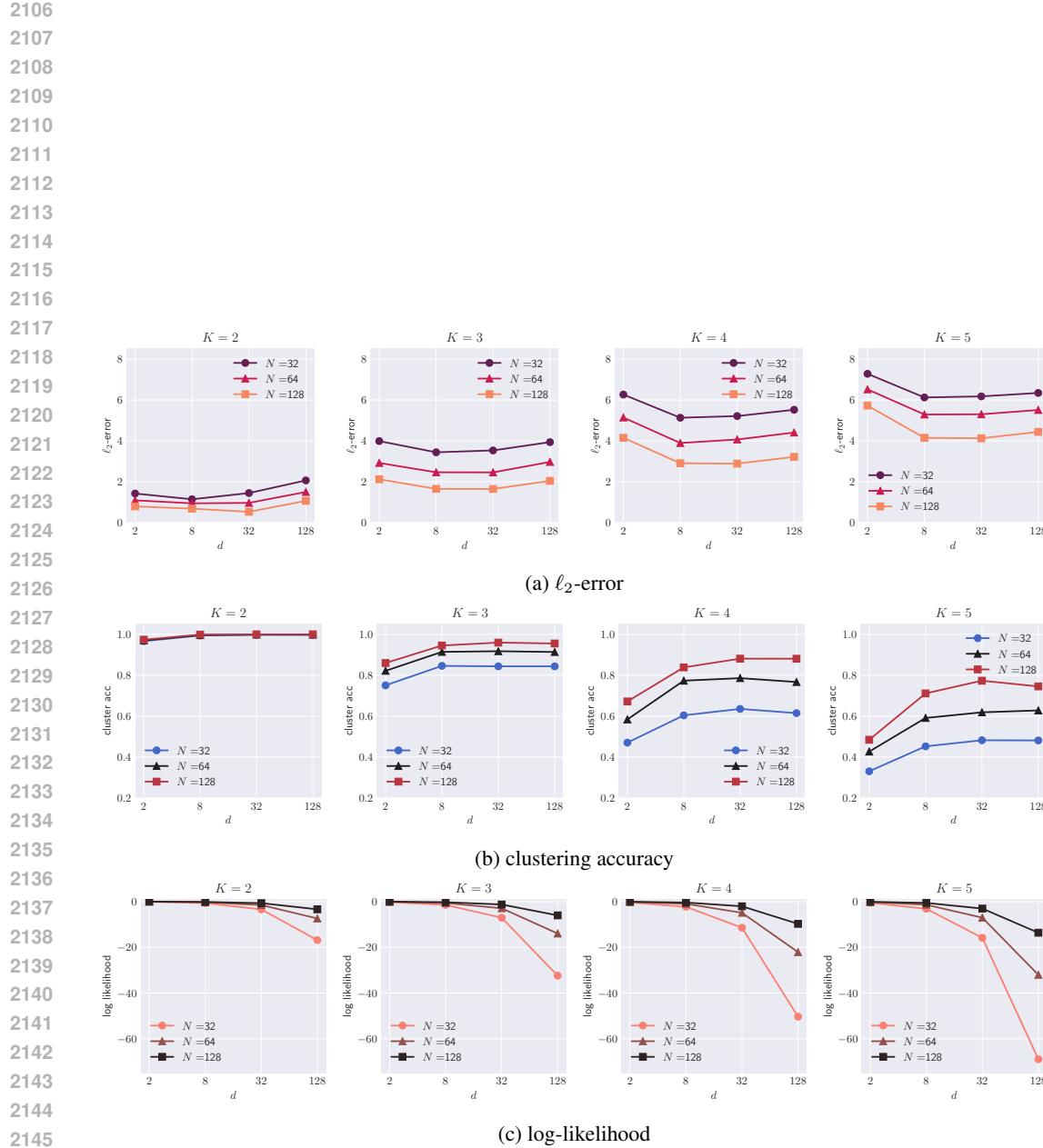


Figure 15: Performance comparison between TGMM models trained under varying configurations of sample-size. For example, $N = 64$ means that the model is trained over GMM tasks with (randomly chosen) sample sizes within the range $[32, 64]$ and tested on tasks with sample size 64.

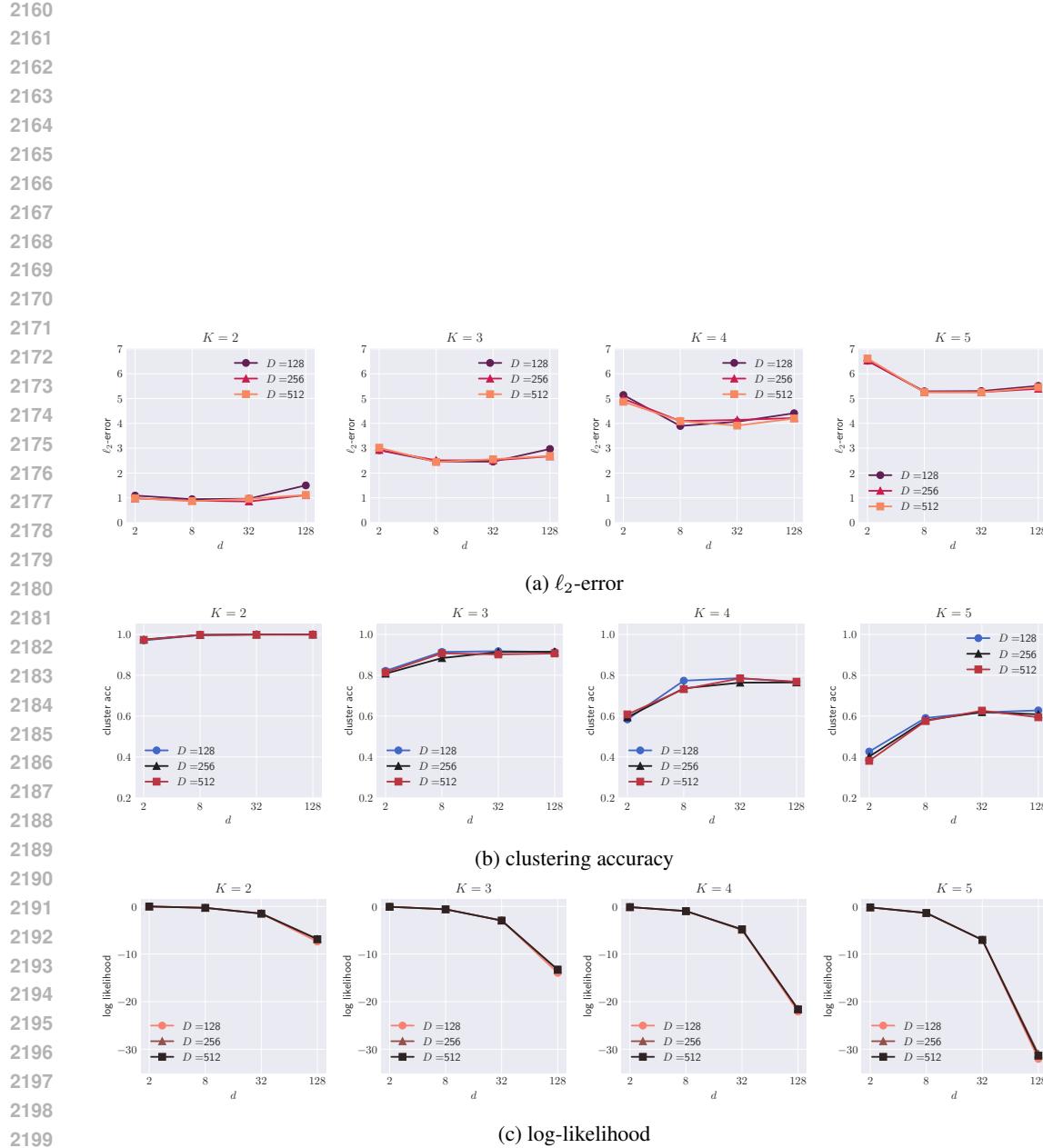


Figure 16: Performance comparison between TGMM under backbones of varying scales I: We fix embedding size at $d = 128$ and tested over different number of transformer layers $L \in \{3, 6, 12\}$. Results are reported in three metrics.

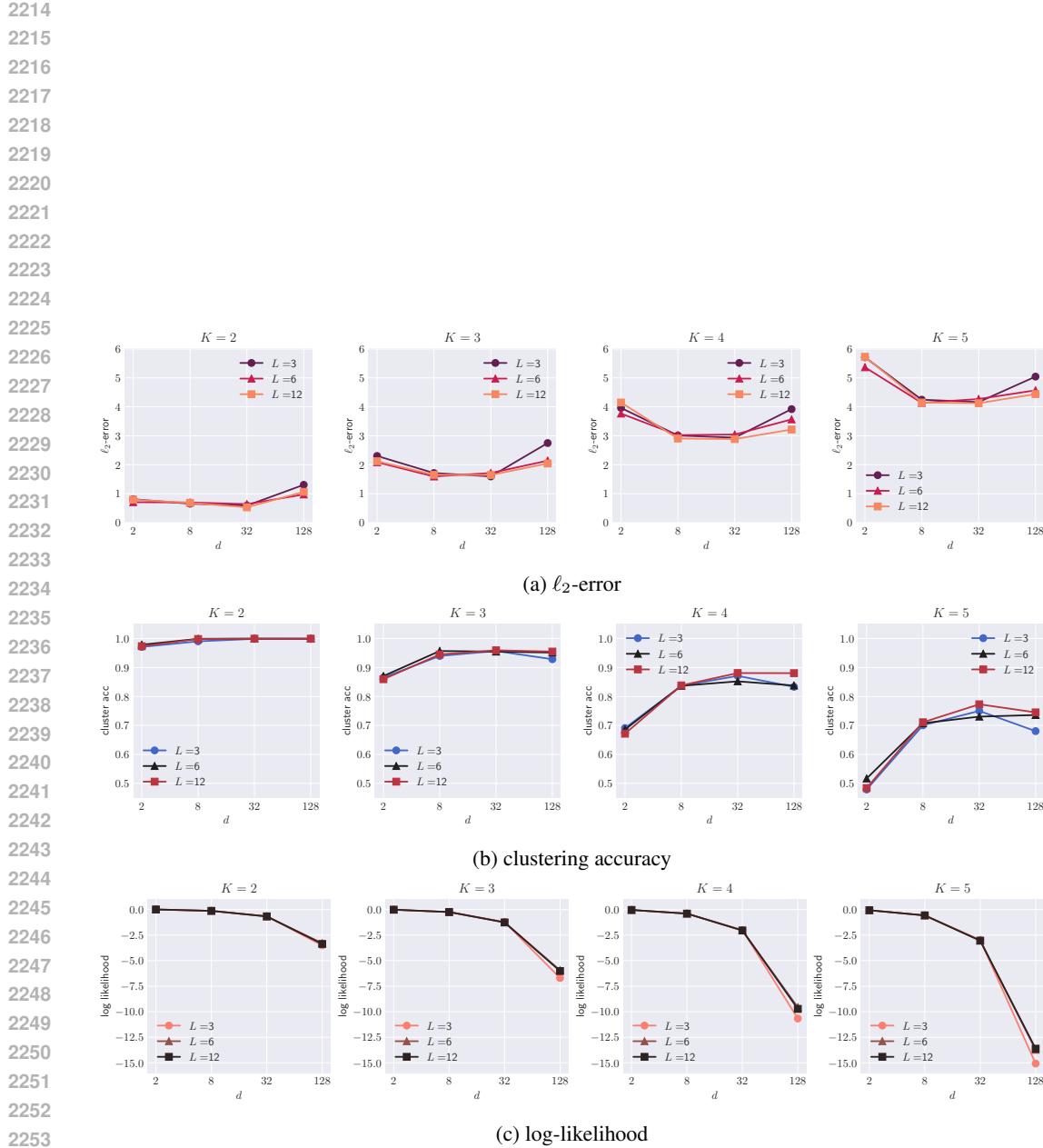


Figure 17: Performance comparison between TGMM under backbones of varying scales II: We fix the number of transformer layers at $L = 12$ and tested over different number of hidden states $d \in \{128, 256, 512\}$. Results are reported in three metrics.