
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRANSFORMERS AS UNSUPERVISED LEARNING ALGO-
RITHMS:
A STUDY ON GAUSSIAN MIXTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

The transformer architecture has demonstrated remarkable capabilities in modern
artificial intelligence, among which the capability of implicitly learning an internal
model during inference time is widely believed to play a key role in the understand-
ing of pre-trained large language models. However, most recent works have been
focusing on studying supervised learning topics such as in-context learning, leav-
ing the field of unsupervised learning largely unexplored. This paper investigates
the capabilities of transformers in solving Gaussian Mixture Models (GMMs), a
fundamental unsupervised learning problem through the lens of statistical esti-
mation. We propose a transformer-based learning framework called Transformer
for Gaussian Mixture Models (TGMM) that simultaneously learns to solve mul-
tiple GMM tasks using a shared transformer backbone. The learned models are
empirically demonstrated to effectively mitigate the limitations of classical meth-
ods such as Expectation-Maximization (EM) or spectral algorithms, at the same
time exhibit reasonable robustness to distribution shifts. Theoretically, we prove
that transformers can efficiently approximate both the Expectation-Maximization
(EM) algorithm and a core component of spectral methods—namely, cubic tensor
power iterations. These results not only improve upon prior work on approximat-
ing the EM algorithm, but also provide, to our knowledge, the first theoretical
guarantee that transformers can approximate high-order tensor operations. Our
study bridges the gap between practical success and theoretical understanding,
positioning transformers as versatile tools for unsupervised learning.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable success across various tasks in recent
years. Transformers(Vaswani et al., 2017), the dominant architecture in modern LLMs(Brown et al.,
2020), outperform many other neural network models in efficiency and scalability. Beyond language
tasks, transformers have also demonstrated strong performance in other domains, such as computer
vision(Han et al., 2023; Khan et al., 2022) and reinforcement learning(Li et al., 2023a). Given their
practical success, understanding the mechanisms behind transformers has attracted growing research
interest. Existing studies often treat transformers as algorithmic toolboxes, investigating their ability
to implement diverse algorithms(Von Oswald et al., 2023; Bai et al., 2023; Lin et al., 2024; Giannou
et al., 2025; Teh et al., 2025)–a perspective linked to meta-learning(Hospedales et al., 2021).

However, most research has focused on supervised learning settings, such as regression(Bai et al.,
2023) and classification(Giannou et al., 2025), leaving the unsupervised learning paradigm relatively
unexplored. Since transformer models are typically trained in a supervised manner, unsupervised
learning poses inherent challenges for transformers due to the absence of labeled data. Moreover,
given the abundance of unlabeled data in real-world scenarios, investigating the mechanisms of
transformers in unsupervised learning holds significant implications for practical applications. The
Gaussian mixture model (GMM) represents one of the most fundamental unsupervised learning tasks
in statistics, with a rich historical background(DAY, 1969; Aitkin & Wilson, 1980) and ongoing
research interest(Zhang et al., 2021; Manduchi et al., 2021; Löffler et al., 2021; Ndaoud, 2022;
Gribonval et al., 2021; Yu et al., 2021). Two primary algorithmic approaches are existing for solving
GMM problems: (1) likelihood-based methods employing the Expectation-Maximization (EM)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

algorithm(Dempster et al., 1977; Balakrishnan et al., 2017), and (2) moment-based methods utilizing
spectral algorithms(Hsu & Kakade, 2013; Anandkumar et al., 2014). However, both algorithms
have inherent limitations. The EM algorithm is prone to convergence at local optima and is highly
sensitive to initialization(Moitra, 2018; Jin et al., 2016). In contrast, while the spectral method is
independent of initialization, it requires the number of components to be smaller than the data’s
dimensionality—an assumption that restricts its applicability to problems involving many components
in low-dimensional GMMs(Hsu & Kakade, 2013).

In this work, we explore transformers for GMM parameter estimation to address two questions. (i)
Can Transformers provably work for GMM in-context? (ii) Can Transformers empirically overcome
the drawbacks of both EM algorithm and the spectral method? Our answers are affirmative. We find
that meta-trained transformers exhibit strong performance on GMM tasks without the aforementioned
limitations. Notably, we construct transformer-based solvers that efficiently solve GMMs with varying
component counts simultaneously. The experimental phenomena are further backed up by novel
theoretical establishments: We prove that transformers can effectively learn GMMs with different
components by approximating both the EM algorithm and a key component of spectral methods on
GMM tasks.

Main Contributions.
• We propose the TGMM framework that utilizes transformers to solve multiple GMM tasks with

varying numbers of components simultaneously during inference time. Through extensive ex-
perimentation, the learned TGMM model is demonstrated to achieve competitive and robust
performance over synthetic GMM tasks. Notably, TGMM outperforms the popular EM algorithm
in terms of estimation quality, and approximately matches the strong performance of spectral
methods while enjoying better flexibility.

• We establish theoretical foundations by proving that transformers can approximate both the EM
algorithm and a key component of spectral methods. Our approximation of the EM algorithm
fundamentally leverages the weighted averaging property inherent in softmax attention, enabling
simultaneous approximation of both the E and M steps. Notably, our approximation results also
hold across varying dimensions and mixture components in GMM.

• We proved that transformers (with RELU activation) can implement cubic tensor power iterations-
a crucial component of spectral algorithms for GMM. The proof is highly dependent on the
multi-head structure of transformers. To the best of our knowledge, this is the first theoretical
demonstration of transformers’ capacity for high-order tensor calculations.

Related works. Recent research has explored the mechanisms by which transformers can implement
various supervised learning algorithms. For instance, Akyürek et al. (2023), Von Oswald et al. (2023),
and Bai et al. (2023) demonstrate that transformers can perform gradient descent for linear regression
problems in-context. Lin et al. (2024) shows that transformers are capable of implementing Upper
Confidence Bound (UCB) algorithms, as well as other classical algorithms in reinforcement learning
tasks. Giannou et al. (2025) reveals that transformers can execute in-context Newton’s method for
logistic regression problems. Teh et al. (2025) illustrates that transformers can approximate Robbins’
estimator and solve Naive Bayes problems. Kim et al. (2024) studies the minimax optimality of
transformers on nonparametric regression. Some literature on density estimation using LLMs is
discussed in Section A.

Comparison with prior theoretical works in unsupervised learning setting. Several recent studies
have investigated the mechanisms of transformer-based models in mixture model settings(He et al.,
2025a; Jin et al., 2024; He et al., 2025b). Among these, He et al. (2025a) establishes that transformers
can implement Principal Component Analysis (PCA) and leverages this to GMM clustering. However,
their analysis is limited to the two-component case, restricting its broader applicability.

The paper Jin et al. (2024) investigates the in-context learning capabilities of transformers for mixture
linear models, a setting that differs from ours. Furthermore, their approximation construction of
the transformer is limited to two-component GMMs, leaving the general case unaddressed. While
they assume ReLU as the activation function–contrary to the conventional choice of softmax–their
theoretical proofs rely on a key lemma from prior work Pathak et al. (2024) that assumes softmax
activation, thereby introducing an inconsistency in their assumptions. The paper He et al. (2025b)
studies the performance of transformers on multi-class GMM clustering, a setting closely related
to ours. However, our work focuses on parameter estimation rather than clustering. We give a
discussion of our theoretical improvements over their work in detail in the following paragraph. From

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

an empirical perspective, their experiments are conducted on a small-scale transformer, which fails to
validate their theoretical claims.

Sharpness of our results. Our theoretical analysis fully leverages key architectural components
of Transformers: the query-key-value mechanism, multi-head attention, and the properties of the
activation function. It is worth pointing out that our result improves the prior work for EM ap-
proximation in several points: First, Our analysis shows that Transformers can approximate L-step
EM algorithms with just O(L) layers, a significant improvement over prior work (He et al., 2025b)
, which requires O(KL) layers (dependent on the number of components K). Second, unlike He
et al. (2025b), which needs number of attention heads M → +∞ to get valid bounds, our results
hold with M = O(1), aligning better with real-world designs. Third, our approximation bounds
scale polynomially in dimension d, unlike He et al. (2025b)’s exponential dependence–a crucial
improvement for high-dimensional settings. We believe our results and proofs can offer profound
insights for subsequent theoretical research on transformers.

Organization. The rest of paper is organized as follows. In Section 2, some background knowledge
is introduced. In Section 3, we present the experimental details and findings. The theoretical results
are proposed in Section 4, and some discussions are given in Section 5. The proofs and additional
experimental results are given in the appendix.

Notations. We introduce the following notations. Let [n] := {1, 2, · · · , n}. All vectors are
represented as column vectors unless otherwise specified. For a vector v ∈ Rd, we denote ∥v∥
as its Euclidean norm. For two sequences an and bn indexed by n, we denote an = O(bn) if there
exists a universal constant C such that an ≤ Cbn for sufficiently large n.

2 METHODOLOGY

2.1 PRELIMINARIES

The Gaussian mixture model (GMM) is a cornerstone of unsupervised learning in statistics, with
deep historical roots and enduring relevance in modern research. Since its early formalizations(DAY,
1969; Aitkin & Wilson, 1980), GMM has remained a fundamental tool for clustering and density
estimation, widely applied across diverse domains. Recent advances have further explored the
theoretical foundations of Gaussian Mixture Models (GMMs)(Löffler et al., 2021; Ndaoud, 2022;
Gribonval et al., 2021), extended their applications in incomplete data settings(Zhang et al., 2021),
and integrated them with deep learning frameworks(Manduchi et al., 2021; Yu et al., 2021). Due to
their versatility and interpretability, GMMs remain indispensable in unsupervised learning, effectively
bridging classical statistical principles with modern machine learning paradigms. We consider the
(unit-variance) isotropic Gaussian Mixture Model with K components, with its probability density
function as

p(x|θ) =
K∑

k=1

πkϕ(x;µk) , (1)

where ϕ(x;µ) is the standard Gaussian kernel, i.e. ϕ(x;µ) = 1
(2π)d/2

exp
(
− 1

2 (x− µ)⊤(x− µ)
)
.

The parameter θ is defined as θ = π ∪ µ, where π := {π1, π2, · · · , πK}, πk ∈ R and µ =
{µ1, µ2, · · · , µK}, µk ∈ Rd, k ∈ [K]. We take N samples X = {Xi}i∈[N] from model (1).
{Xi}i∈[N] can be also rewritten as

Xi = µyi + Zi,

where {yi}i∈[N] are i.i.d. discrete random variables with P(y = k) = πk for k ∈ [K] and {Zi}i∈[N]

are i.i.d. standard Gaussian random vector in Rd.

The EM algorithm(Dempster et al., 1977) remains the most widely used approach for GMM parameter
estimation. Due to space constraints, we propose the algorithm in Section B. Alternatively, the
spectral algorithm(Hsu & Kakade, 2013) offers an efficient moment-based approach that estimates
parameters through low-order observable moments. A key component of this method is cubic tensor
decomposition(Anandkumar et al., 2014). For brevity, we defer the algorithmic details to Section B.

Next, we give a rigorous definition of the transformer model. To maintain consistency with existing
literature, we adopt the notational conventions presented in Bai et al. (2023), with modifications

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

tailored to our specific context. We consider a sequence of N input vectors {hi}Ni=1 ⊂ RD, which can
be compactly represented as an input matrix H = [h1, . . . , hN] ∈ RD×N , where each hi corresponds
to a column of H (also referred to as a token).

Here we introduce several useful definitions and their full notations are given in Appendix C.
Definition 1 (Attention layer). A (self-)attention layer with M heads is denoted as AttnΘattn

(·) with
parameters Θattn = {(Vm,Qm,Km)}m∈[M] ⊂ RD×D.

Definition 2 (MLP layer). A (token-wise) MLP layer with hidden dimension D′ is denoted as
MLPΘmlp

(·) with parameters Θmlp = (W1,W2) ∈ RD′×D × RD×D′
.

Definition 3 (Transformer). An L-layer transformer, denoted as TFΘTF
(·), is a composition of L

self-attention layers each followed by an MLP layer:

TFΘTF
(H) = MLP

Θ
(L)
mlp

(
Attn

Θ
(L)
attn

(
· · ·MLP

Θ
(1)
mlp

(
Attn

Θ
(1)
attn

(H)
)))

.

2.2 THE TGMM ARCHITECTURE

A recent line of work(Xie et al., 2021; Garg et al., 2022; Bai et al., 2023; Akyürek et al., 2023; Li
et al., 2023b) has been studying the capability of transformer that functions as a data-driven algorithm
under the context of in-context learning (ICL). However, in contrast to the setups therein where
inputs consist of both features and labels, under the unsupervised GMM setup, there is no explicitly
provided label information. Therefore, we formulate the learning problem as learning an estimation
algorithm instead of learning a prediction algorithm as in the case of ICL. A notable property of
GMM is that the structure of the estimand depends on an unknown parameter K, which is often
treated as a hyper-parameter in GMM estimation(Titterington et al., 1985; McLachlan & Peel, 2000).
For clarity of representation, we define an isotropic Gaussian mixture task as T = (θ,X,K), where
X is a i.i.d. sample generated according to ground truth θ according to the isotropic GMM law and
K is the configuration used during estimation which we assume to be the same as the number of
components of the ground truth θ. The GMM task is solved via applying some algorithm A that
takes X and K as inputs and outputs an estimate of the ground truth θ̂ = A(X;K).

In this paper, we propose a transformer-based architecture, transformers-for-Gaussian-mixtures
(TGMM), as a GMM task solver that allows flexibility in its outputs, while at the same time being
parameter-efficient, as illustrated in Figure 1: A TGMM model supports solving s different GMM
tasks with K ∈ K := {K1, . . . ,Ks}. Given inputs N data points X ∈ Rd×N and a structure
configuration of the estimand K. TGMM first augments the inputs with auxiliary configurations
about K via concatenating it with a task embedding P = embed(K), i.e., H = [X||P], and use
a linear Readin layer to project the augmented inputs onto a shared hidden representation space
for several estimand structures {K1, . . . ,Ks}, which is then manipulated by a shared transformer
backbone that produces task-aware hidden representations. The TGMM estimates are then decoded by
task-specific Readout modules. More precisely, with target decoding parameters of K components,
the Readout module first performs an attentive-pooling operation(Lee et al., 2019):

O = (VoH)SoftMax
(
(KoH)⊤Qo

)
∈ R(d+K)×K ,

where Vo,Ko ∈ R(d+K)×D, Qo ∈ R(d+K)×K . The estimates for mixture probability are then
extracted by a row-wise mean-pooling of the first K rows of O, and the estimates for mean vectors
are the last d rows of O. We wrap the above procedure as {π̂k, µ̂k}i∈[K] = ReadoutΘout

(H).
TGMM is parameter-efficient in the sense that it only introduces extra parameter complexities of the
order O(sdD) in addition to the backbone. We give a more detailed explanation of the parameter
efficiency of TGMM in appendix Section D. We wrap the TGMM model into the following form:

TGMMΘ(X;K) = ReadoutΘout
(TFΘTF

(ReadinΘin
([X||embed(K)]))).

Above, the parameter Θ = (ΘTF,Θin,Θout) consists of the parameters in the transformer ΘTF and
the parameters in the Readin and the Readout functions Θin, Θout.

2.3 META TRAINING PROCEDURE

We adopt the meta-training framework as in Garg et al. (2022); Bai et al. (2023) and utilize diverse
synthetic tasks to learn the TGMM model. In particular, during each step of the learning process, we

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

TFReadin

K = K1

K = K2

...

K = Ks

GMM inputs Transformer backbone

Readout1

Readout2
...

Readouts

Readouts Outputs

{π̂k, µ̂k}K1

k=1

{π̂k, µ̂k}K2

k=1
...

{π̂k, µ̂k}Ks

k=1

Figure 1: Illustration of the proposed TGMM architecture: TGMM utilizes a shared transformer
backbone that supports solving s different kind of GMM tasks via a task-specific Readout strategies.

Algorithm 1 TaskSampler

Require: sampling distributions
pµ, pπ, pN , pK .

1: Sample the type of task (i.e., number of mix-
ture components) K ∼ pK .

2: Sample a GMM task according to the type
of task

θ = (µ,π),

µ ∼ pµ,π ∼ pπ,

where µ = {µ1, · · · , µK}, π =
{π1, · · · , πK}.

3: Sample the size of inputs N ∼ pN .
4: Sample the data points X =

(X1, . . . , XN)
i.i.d.∼ p(·|θ).

5: return An (isotropic) GMM task T =
(X,θ,K).

Algorithm 2 (Meta) Training procedure for
TGMM
Require: task dimension d, task types K =
{K1, . . . ,Ks}, number of tasks n per step,
number of steps T .

1: Initialize a TGMM model TGMMΘ(0) .
2: for t = 1 : T do
3: Sample n tasks {Ti}i∈[n] independently

using the TaskSampler from Algorithm 1.
4: Compute the training objective

L̂n

(
Θ(t−1)

)
as in (2).

5: Update Θ(t−1) into Θ(t) using any gra-
dient based training algorithm like AdamW.

6: end for
7: return Trained model TGMMΘ(T) .

first use a TaskSampler routine (described in Algorithm 1) to generate a batch of n tasks, with each
task having a probably distinct sample size. The TGMM model outputs estimates for each task, i.e.,
{µ̂k, π̂k}k∈[K] = TGMMΘ(X;K). Define π̂ := {π̂k}k∈[K] and µ̂ := {µ̂k}k∈[K]. For a batch of

tasks {Ti}i∈[n] = {Xi,θi,Ki}i∈[n], denote by θi = µi∪πi and θ̂i = µ̂i∪π̂i = TGMMΘ(Xi;Ki),
i ∈ [n]. Then the learning objective is thus:

L̂n(Θ) =
1

n

n∑

i=1

ℓµ(µ̂i,µi) + ℓπ(π̂i,πi). (2)

where ℓµ and ℓπ are loss functions for estimation of µ and π, respectively. We will by default use
square loss for ℓµ and cross entropy loss for ℓπ. Note that the task sampling procedure relies on
several sampling distributions pµ, pπ, pN , pK , which are themselves dependent upon some global
configurations such as the dimension d as well as the task types K. We will omit those dependencies
on global configurations when they are clear from context. The (meta) training procedure is detailed
in Algorithm 2.

3 EXPERIMENTS

In this section, we empirically investigate TGMM’s capability of learning to solve GMMs. We focus
on the following research questions (RQ):
RQ1 Effectiveness: How well do TGMM solve GMM problems, compared to classical algorithms?
RQ2 Robustness: How well does TGMM perform over test tasks unseen during training?
RQ3 Flexibility: Can we extend the current formulation by adopting alternative backbone architec-
tures or relaxing the isotropic setting to more sophisticated models like anisotropic GMM?

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.1 EXPERIMENTAL SETUP

We pick the default backbone of TGMM similar to that in Garg et al. (2022); Bai et al. (2023), with a
GPT-2 type transformer encoder(Radford et al., 2019) of 12 layers, 4 heads, and 128-dimensional
hidden state size. The task embedding dimension is fixed at 128. Across all the experiments, we
use AdamW(Loshchilov et al., 2017) as the optimizer and use both learning rate and weight decay
coefficient set to 10−4 without further tuning. During each meta-training step, we fix the batch size
to be 64 and train 106 steps. For the construction of TaskSampler, the sampling distributions are
defined as follows: For pK , We sample K uniformly from {2, 3, 4, 5}; For pµ, given dimension d
and number of components K, we sample each component uniformly from [−5, 5]d. Additionally,
to prevent collapsed component means(Ndaoud, 2022), we filter the generated mean vectors with a
maximum pairwise cosine similarity threshold of 0.8. For pπ , given K, we sample each πk uniformly
from [0.2, 0.8] and normalize them to be a probability vector; For pN , Given a maximum sample size
N0, we sample N uniformly from [N0/2, N0]. The default choice of N0 is 128. During evaluation,
we separately evaluate 4 tasks with 2, 3, 4, 5 components, respectively. With a sample size of 128 and
averaging over 1280 randomly sampled tasks.

Metrics. We use ℓ2-error as evaluation metrics in the experiments. We denote the output of the
TGMM as θ̂ := {π̂1, µ̂1, π̂2, µ̂2, · · · π̂K , µ̂K}. The rigorous definition is

1

K

∑

k∈[K]

(
1

d

∥∥µ̂σ̃(i) − µi
∥∥2 +

(
π̂σ̃(i) − πi

)2
)
,

where σ̃ is the permutation such that σ̃ = argminσ
∑
k∈[K]

∥∥µ̂σ(i) − µi
∥∥2. We obtain the per-

mutation via solving a linear assignment program using the Jonker-Volgenant algorithm(Crouse,
2016). We also report all the experimental results under two alternative metrics: cluster-classification
accuracy and log-likelihood in Section H.2.

3.2 RESULTS AND FINDINGS

RQ1: Effectiveness
We compare the performance of a learned TGMM with the classical EM algorithm and spectral
algorithm under 4 scenarios where the problem dimension ranges over {2, 8, 32, 128}. The results
are reported in Figure 2. We observe that all three algorithms perform competitively (reaching almost
zero estimation error) when K = 2. However, as the estimation problem gets more challenging as
K increases, the EM algorithm gets trapped in local minima and underperforms both spectral and
TGMM. Moreover, while the spectral algorithm performs comparably with TGMM, it cannot handle
cases when K > d, which is effectively mitigated by TGMM, with corresponding performances
surpassing those of the EM algorithm. This demonstrates the effectiveness of TGMM for learning an
estimation algorithm that efficiently solves GMM problems.

2 8 32 128

d

0

2

4

6

8

10

12

` 2
-e

rr
or

K = 2

EM

Spectral

TGMM

2 8 32 128

d

0

2

4

6

8

10

12

` 2
-e

rr
or

K = 3

EM

Spectral

TGMM

2 8 32 128

d

0

2

4

6

8

10

12

` 2
-e

rr
or

K = 4

EM

Spectral

TGMM

2 8 32 128

d

0

2

4

6

8

10

12

` 2
-e

rr
or

K = 5

EM

Spectral

TGMM

Figure 2: Performance comparison between TGMM and two classical algorithms, reported in ℓ2-error.

RQ2: Robustness To assess the robustness of the learned TGMM, we consider two types of test-time
distribution shifts:
1. Shifts in sample size N Under this scenario, we evaluate the learned TGMM model on tasks with
sample size N test that are unseen during training.
2. Shifts in sampling distributions Under this scenario, we test the learned TGMM model on tasks
that are sampled from different sampling distributions that are used during training. Specifically,
we use the same training sampling configuration as stated in Section 3.1 and test on the following

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

perturbed sampling scheme, with µ̃k = µk+σpεk, where µk
i.i.d.∼ Unif

(
[−5, 5]d

)
, εk

i.i.d.∼ N (0, Id),
k ∈ [K] and {εk}k∈[K] is independent with {µk}k∈[K].

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 2

32→128

64→128

128→128

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 3

32→128

64→128

128→128

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 4

32→128

64→128

128→128

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 5

32→128

64→128

128→128

Figure 3: Assessments of TGMM under test-time task distribution shifts I: A line with N train
0 → N test

draws the performance of a TGMM model trained over tasks with sample size randomly sampled
in [N train

0 /2, N train
0] and evaluated over tasks with sample size N test. We can view the configuration

128→ 128 as an in-distribution test and the rest as out-of-distribution tests.

In Figure 3, we report the assessments regarding shifts in sample size, where we set Ntest to be
128 and vary the training configuration N0 to range over {32, 64, 128}, respectively. The results
demonstrate graceful performance degradation of out-of-domain testing performance in comparison
to the in-domain performance. To measure performance over shifted test-time sampling distributions,
we vary the perturbation scale σp ∈ {0, 1, . . . , 10} with problem dimension fixed at d = 8. The
results are illustrated in Figure 4 along with comparisons to EM and spectral baselines. As shown
in the results, with the increase of the perturbation scale, the estimation problem gets much harder.
Nevertheless, the learned TGMM can still outperform the EM algorithm when K > 2. Both pieces
of evidence suggest that our meta-training procedure indeed learns an algorithm instead of overfitting
to some training distribution.

0 2 4 6 8 10
σp

0

25

50

75

100

125

` 2
-e

rr
or

K = 2

EM

Spectral

TGMM

0 2 4 6 8 10
σp

0

25

50

75

100

125

` 2
-e

rr
or

K = 3

EM

Spectral

TGMM

0 2 4 6 8 10
σp

0

25

50

75

100

125

` 2
-e

rr
or

K = 4

EM

Spectral

TGMM

0 2 4 6 8 10
σp

0

25

50

75

100

125

` 2
-e

rr
or

K = 5

EM

Spectral

TGMM

Figure 4: Assessments of TGMM under test-time task distribution shifts II: ℓ2-error of estimation
when the test-time tasks T test are sampled using a mean vector sampling distribution ptest

µ different
from the one used during training.

RQ3: Flexibility Finally, we initiate two studies that extend both the TGMM framework and the
(meta) learning problem of solving isotropic GMMs. In our first study, we investigated alternative
architectures for the TGMM backbone. Motivated by previous studies(Park et al., 2024) that demon-
strate the in-context learning capability of linear attention models such as Mamba series(Gu & Dao,
2023; Dao & Gu, 2024). We test replacing the backbone of TGMM with a Mamba2(Dao & Gu, 2024)
model with its detailed specifications and experimental setups listed in Section H.1. The results are
reported in Figure 5, suggesting that while utilizing Mamba2 as the TGMM backbone still yields
non-trivial estimation efficacy, it is in general inferior to transformer backbone under comparable
model complexity.

In our second study, we adapted TGMM to be compatible with more sophisticated GMM tasks via
relaxing the isotropic assumption. Specifically, we construct anisotropic GMM tasks via equipping it
with another scale sampling mechanism pσ, where for each task we sample σ ∼ softplus(σ̃) with σ̃
being sampled uniformly from [−1, 1]d. We adjust the output structure of TGMM accordingly so
that its outputs can be decoded into both estimates of both mean vectors, mixture probabilities, and
scales, which are detailed in Section H.1. Note that the spectral algorithm does not directly apply to
anisotropic setups, limiting its flexibility. Consequently, we compare TGMM with the EM approach
and plot results in Figure 6 with the ℓ2-error metric accommodating errors from scale estimation. The

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

results demonstrate a similar trend as in evaluations in the isotropic case, showcasing TGMM as a
versatile tool in GMM learning problems.

Additional experiments We postpone some further evaluations to Section H, where we present a
complete report consisting of more metrics and conduct several ablations on the effects of backbone
scales and sample sizes.

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 2

transformer

mamba2

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 3

transformer

mamba2

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 4

transformer

mamba2

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 5

transformer

mamba2

Figure 5: Performance comparisons between TGMM using transformer and Mamba2 as backbone,
reported in ℓ2-error.

2 8 32 128

d

0.0

2.5

5.0

7.5

10.0

12.5

` 2
-e

rr
or

K = 2

EM

TGMM

2 8 32 128

d

0.0

2.5

5.0

7.5

10.0

12.5

` 2
-e

rr
or

K = 3

EM

TGMM

2 8 32 128

d

0.0

2.5

5.0

7.5

10.0

12.5

` 2
-e

rr
or

K = 4

EM

TGMM

2 8 32 128

d

0.0

2.5

5.0

7.5

10.0

12.5

` 2
-e

rr
or

K = 5

EM

TGMM

Figure 6: Performance comparison between TGMM and the EM algorithm on anisotropic GMM
tasks, reported in ℓ2-error.
Remark 1. One might be concerned with the fairness of comparisons between TGMM pre-training
and EM/spectral method. We would like to point out that the only additional information that TGMM
receives during meta-training is the (implicitly provided) distributional information. The empirical
results show that TGMM can generalize beyond the meta-training distribution.

4 THEORETICAL UNDERSTANDINGS
In this section, we provide some theoretical understandings for the experiments.

4.1 UNDERSTANDING TGMM
We investigate the expressive power of transformers-for-Gaussian-mixtures(TGMM) as demonstrated
in Section 3. Our analysis presents two key findings that elucidate the transformer’s effectiveness
for GMM estimation: 1. Transformer can approximate the EM algorithm; 2. Transformer can
approximate the power iteration of cubic tensor.
Transformer can approximate the EM algorithm. We show that transformer can efficiently
approximate the EM algorithm (Algorithm B.1; see Section B) and estimate the parameters of GMM.
Moreover, we show that transformer with one backbone can handle tasks with different dimensions
and components simultaneously. The formal statement appears in Section F due to space limitations.
Theorem 1 (Informal). There exists a 2L-layer transformer TFΘ such that for any d ≤ d0, K ≤ K0

and task T = (X,θ,K) satisfying some regular conditions, given suitable embeddings, TFΘ

approximates EM algorithm L steps and estimates θ efficiently.

Transformer can approximate power iteration of cubic tensor. Since directly implementing the
spectral algorithm with transformers proves prohibitively complex, we instead demonstrate that
transformers can effectively approximate its core computational step–the power iteration for cubic
tensors (Algorithm 1 in Anandkumar et al. (2014); see Section B). Specifically, we prove that a
single-layer transformer can approximate the iteration step:

v(j+1) = T
(
I, v(j), v(j)

)
, j ∈ N, (3)

where I denotes the identity matrix and T represents the given cubic tensor. For technical tractability,
we assume the attention layer employs a ReLU activation function. The formal statement appears in
Section G due to space limitations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Theorem 2 (Informal). There exists a 2L-layer transformer TFΘ with ReLU activation such that for
any d ≤ d0, T ∈ Rd×d×d and v(0) ∈ Rd, given suitable embeddings, TFΘ implements L steps of
(3) exactly.
We give some discussion of the theorems in the following remarks.
Remark 2. (1) Theorem 1 demonstrates that a transformer architecture can approximate the EM
algorithm for GMM tasks with varying numbers of components using a single shared set of param-
eters (i.e., one backbone Θ). This finding supports the empirical effectiveness of TGMM (RQ1 in
Section 3.2). Additionally, Theorem 2 establishes that transformers can approximate power iterations
for third-order tensors across different dimensions, further corroborating the model’s ability to
generalize across GMMs with varying component counts.
(2) Theorem 1 holds uniformly over sample sizes N and sampling distributions under mild regularity
conditions, aligning with the observed robustness of TGMM (RQ2 in Section 3.2).
Remark 3. Different "readout" functions are also required to extract task-specific parameters in
our theoretical analysis, aligning with the architectural design described in Section 2.2. For further
discussion, refer to Remark F.3 in Section F.2.

4.2 PROOF IDEAS

Proof Idea of Theorem 1. We present a brief overview of the proof strategy for Theorem 1. Our
approach combines three key components: (1) the convergence properties of the population-EM
algorithm(Kwon & Caramanis, 2020), (2) concentration bounds between population and sample
quantities (established via classical empirical process theory), and (3) a novel transformer architecture
construction. The transformer design is specifically motivated by the weighting properties of the
softmax activation function, which naturally aligns with the EM algorithm’s update structure. For
intuitive understanding, Figure 7 provides a graphical illustration of this construction. The full proof
is in Section F.

…
Compute {wk(Xi)}i,k
via softmax attention

Attention Layer

Approximate log x,
clean some terms

MLP Layer

Compute {πk, µk}k
via softmax attention

Attention Layer

Approximate log x and x2,
clean some terms

MLP Layer

…

Estep Mstep

Figure 7: (Informal version)Transformer Construction for Approximating EM Algorithm Iterations.
The word "clean" means setting all positions of the corresponding vector to zero.

Proof Idea of Theorem 2. To approximate (3), we perform a two-dimensional computation within
a single-layer transformer. The key idea is to leverage the number of attention heads M to handle
one dimension while utilizing the Q,K, V structure in the attention layer. Specifically, let T =

(Ti,j,m)i,j,m∈[d] and v(j) = (v
(j)
i)i∈[d]. Then, (3) can be rewritten as v(j+1) =

∑
j,m∈[d] vjvlT:,j,m,

where T:,j,m = (Ti,j,m)i∈[d] ∈ Rd. This operation can be implemented using d attention heads,
where each head processes a dimension of size d (Figure 8). The complete construction and proof are
provided in Section G.

h̃i = hi +
1

d

d∑

m=1

d∑

j=1

σ
(〈

Qmhi , Kmhj

〉)
Vmhj vj+1 =

d∑

m=1

d∑

j=1

(
vm · vj

)
T:,j,m

Figure 8: Illustration of implementing (3) via a multi-head attention structure, where colored boxes
denote corresponding implementation components. Here σ denotes the ReLU function.

5 CONCLUSION AND DISCUSSIONS
In this paper, we investigate the capabilities of transformers in GMM tasks from both theoretical
and empirical perspectives. Our work is among the earliest studies to investigate the mechanism of
transformers in unsupervised learning settings. Our results establish fundamental theoretical guaran-
tees that Transformers can efficiently implement classical algorithms—such as the EM algorithm
and spectral methods. This is consistent with our empirical finding that the performance of our
meta-training algorithm can interpolate between EM and the spectral method. It also opens a room
for future improvement of attention-based meta-training algorithms in a broader class of unsupervised
learning problems. We discuss the limitations and potential future research directions in Section E.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Murray Aitkin and Granville Tunnicliffe Wilson. Mixture models, outliers, and the em algorithm.
Technometrics, 22(3):325–331, 1980.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=0g0X4H8yN4I.

Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Telgarsky. Tensor
decompositions for learning latent variable models. Journal of Machine Learning Research, 15
(80):2773–2832, 2014. URL http://jmlr.org/papers/v15/anandkumar14b.html.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statis-
ticians: Provable in-context learning with in-context algorithm selection. In Advances
in Neural Information Processing Systems, volume 36, pp. 57125–57211. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/b2e63e36c57e153b9015fece2352a9f9-Paper-Conference.pdf.

Sivaraman Balakrishnan, Martin J. Wainwright, and Bin Yu. Statistical guarantees for the EM
algorithm: From population to sample-based analysis. The Annals of Statistics, 45(1):77 – 120,
2017. doi: 10.1214/16-AOS1435. URL https://doi.org/10.1214/16-AOS1435.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS ’20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

David F Crouse. On implementing 2d rectangular assignment algorithms. IEEE Transactions on
Aerospace and Electronic Systems, 52(4):1679–1696, 2016.

Tri Dao and Albert Gu. Transformers are ssms: generalized models and efficient algorithms through
structured state space duality. In Proceedings of the 41st International Conference on Machine
Learning, pp. 10041–10071, 2024.

N. E. DAY. Estimating the components of a mixture of normal distributions. Biometrika, 56(3):
463–474, 12 1969. ISSN 0006-3444. doi: 10.1093/biomet/56.3.463. URL https://doi.org/
10.1093/biomet/56.3.463.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1–38, 1977.
ISSN 00359246. URL http://www.jstor.org/stable/2984875.

Rasool Fakoor, Pratik Chaudhari, Jonas Mueller, and Alexander J Smola. Trade: Transformers for
density estimation. arXiv preprint arXiv:2004.02441, 2020.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Angeliki Giannou, Liu Yang, Tianhao Wang, Dimitris Papailiopoulos, and Jason D. Lee. How well
can transformers emulate in-context newton’s method? In The 28th International Conference on
Artificial Intelligence and Statistics, 2025. URL https://openreview.net/forum?id=
cj5L29VWol.

Rémi Gribonval, Gilles Blanchard, Nicolas Keriven, and Yann Traonmilin. Statistical learning
guarantees for compressive clustering and compressive mixture modeling. Mathematical Statistics
and Learning, 3(2):165–257, 2021.

10

https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
http://jmlr.org/papers/v15/anandkumar14b.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/b2e63e36c57e153b9015fece2352a9f9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/b2e63e36c57e153b9015fece2352a9f9-Paper-Conference.pdf
https://doi.org/10.1214/16-AOS1435
https://doi.org/10.1093/biomet/56.3.463
https://doi.org/10.1093/biomet/56.3.463
http://www.jstor.org/stable/2984875
https://openreview.net/forum?id=cj5L29VWol
https://openreview.net/forum?id=cj5L29VWol

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang,
An Xiao, Chunjing Xu, Yixing Xu, Zhaohui Yang, Yiman Zhang, and Dacheng Tao. A survey
on vision transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(1):
87–110, 2023. doi: 10.1109/TPAMI.2022.3152247.

Yihan He, Yuan Cao, Hong-Yu Chen, Dennis Wu, Jianqing Fan, and Han Liu. Learning spectral
methods by transformers. arXiv preprint arXiv:2501.01312, 2025a.

Yihan He, Hong-Yu Chen, Yuan Cao, Jianqing Fan, and Han Liu. Transformers versus the em
algorithm in multi-class clustering. arXiv preprint arXiv:2502.06007, 2025b.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):
5149–5169, 2021.

Daniel Hsu and Sham M. Kakade. Learning mixtures of spherical gaussians: moment methods and
spectral decompositions. In Proceedings of the 4th Conference on Innovations in Theoretical
Computer Science, ITCS ’13, pp. 11–20, New York, NY, USA, 2013. Association for Computing
Machinery. ISBN 9781450318594. doi: 10.1145/2422436.2422439. URL https://doi.org/
10.1145/2422436.2422439.

Chi Jin, Yuchen Zhang, Sivaraman Balakrishnan, Martin J. Wainwright, and Michael I. Jordan.
Local maxima in the likelihood of gaussian mixture models: structural results and algorithmic
consequences. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS’16, pp. 4123–4131, Red Hook, NY, USA, 2016. Curran Associates Inc.
ISBN 9781510838819.

Yanhao Jin, Krishnakumar Balasubramanian, and Lifeng Lai. Provable in-context learning for mixture
of linear regressions using transformers. arXiv preprint arXiv:2410.14183, 2024.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and
Mubarak Shah. Transformers in vision: A survey. ACM Comput. Surv., 54(10s), September 2022.
ISSN 0360-0300. doi: 10.1145/3505244. URL https://doi.org/10.1145/3505244.

Juno Kim, Tai Nakamaki, and Taiji Suzuki. Transformers are minimax optimal nonparametric
in-context learners. Advances in Neural Information Processing Systems, 37:106667–106713,
2024.

Jeongyeol Kwon and Constantine Caramanis. The em algorithm gives sample-optimality for learning
mixtures of well-separated gaussians. In Proceedings of Thirty Third Conference on Learning
Theory, volume 125 of Proceedings of Machine Learning Research, pp. 2425–2487. PMLR, 09–12
Jul 2020.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In International
conference on machine learning, pp. 3744–3753. PMLR, 2019.

Wenzhe Li, Hao Luo, Zichuan Lin, Chongjie Zhang, Zongqing Lu, and Deheng Ye. A survey on
transformers in reinforcement learning. Transactions on Machine Learning Research, 2023a.
ISSN 2835-8856. URL https://openreview.net/forum?id=r30yuDPvf2. Survey
Certification.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International conference on
machine learning, pp. 19565–19594. PMLR, 2023b.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
ment learning via supervised pretraining. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=yN4Wv17ss3.

11

https://doi.org/10.1145/2422436.2422439
https://doi.org/10.1145/2422436.2422439
https://doi.org/10.1145/3505244
https://openreview.net/forum?id=r30yuDPvf2
https://openreview.net/forum?id=yN4Wv17ss3

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Toni Liu, Nicolas Boulle, Raphaël Sarfati, and Christopher Earls. Density estimation with llms: a
geometric investigation of in-context learning trajectories. In Y. Yue, A. Garg, N. Peng, F. Sha,
and R. Yu (eds.), International Conference on Representation Learning, volume 2025, pp. 22163–
22197, 2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/
file/380afe1a245a3b2134010620eae88865-Paper-Conference.pdf.

Matthias Löffler, Anderson Y Zhang, and Harrison H Zhou. Optimality of spectral clustering in the
gaussian mixture model. The Annals of Statistics, 49(5):2506–2530, 2021.

Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 5:5, 2017.

Laura Manduchi, Kieran Chin-Cheong, Holger Michel, Sven Wellmann, and Julia E. Vogt. Deep
conditional gaussian mixture model for constrained clustering. In Proceedings of the 35th Interna-
tional Conference on Neural Information Processing Systems, NIPS ’21, Red Hook, NY, USA,
2021. Curran Associates Inc. ISBN 9781713845393.

Geoffrey J McLachlan and David Peel. Finite mixture models. John Wiley & Sons, 2000.

Song Mei. U-nets as belief propagation: Efficient classification, denoising, and diffusion in generative
hierarchical models. ArXiv, abs/2404.18444, 2024. URL https://arxiv.org/abs/2404.
18444.

Ankur Moitra. Algorithmic aspects of machine learning. Cambridge University Press, 2018.

Mohamed Ndaoud. Sharp optimal recovery in the two component gaussian mixture model. The
Annals of Statistics, 50(4):2096–2126, 2022.

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
wook Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? a comparative study
on in-context learning tasks. In Proceedings of the 41st International Conference on Machine
Learning, pp. 39793–39812, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, pp. 8024–8035, 2019.

Reese Pathak, Rajat Sen, Weihao Kong, and Abhimanyu Das. Transformers can optimally learn
regression mixture models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=sLkj91HIZU.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Rylan Schaeffer, Mikail Khona, and Sanmi Koyejo. In-context learning of energy functions. In ICML
2024 Workshop on In-Context Learning, 2024. URL https://openreview.net/forum?
id=9QI3E2iaSD.

Nimrod Segol and Boaz Nadler. Improved convergence guarantees for learning Gaussian mixture
models by EM and gradient EM. Electronic Journal of Statistics, 15(2):4510 – 4544, 2021.

Kai Shen, Junliang Guo, Xu Tan, Siliang Tang, Rui Wang, and Jiang Bian. A study on relu and
softmax in transformer. arXiv preprint arXiv:2302.06461, 2023.

Anzo Teh, Mark Jabbour, and Yury Polyanskiy. Solving empirical bayes via transformers. arXiv
preprint arXiv:2502.09844, 2025.

D.M. Titterington, A.F.M. Smith, and U.E. Makov. Statistical Analysis of Finite Mixture Distributions.
Wiley, New York, 1985.

12

https://proceedings.iclr.cc/paper_files/paper/2025/file/380afe1a245a3b2134010620eae88865-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/380afe1a245a3b2134010620eae88865-Paper-Conference.pdf
https://arxiv.org/abs/2404.18444
https://arxiv.org/abs/2404.18444
https://openreview.net/forum?id=sLkj91HIZU
https://openreview.net/forum?id=9QI3E2iaSD
https://openreview.net/forum?id=9QI3E2iaSD

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, pp. 6000–6010, Red Hook, NY,
USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 35151–35174. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/v202/von-oswald23a.html.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Bin Yu, Chen Chen, Ren Qi, Ruiqing Zheng, Patrick J Skillman-Lawrence, Xiaolin Wang, Anjun Ma,
and Haiming Gu. scgmai: a gaussian mixture model for clustering single-cell rna-seq data based
on deep autoencoder. Briefings in bioinformatics, 22(4):bbaa316, 2021.

Yi Zhang, Miaomiao Li, Siwei Wang, Sisi Dai, Lei Luo, En Zhu, Huiying Xu, Xinzhong Zhu,
Chaoyun Yao, and Haoran Zhou. Gaussian mixture model clustering with incomplete data.
ACM Trans. Multimedia Comput. Commun. Appl., 17(1s), March 2021. ISSN 1551-6857. doi:
10.1145/3408318. URL https://doi.org/10.1145/3408318.

Ruofei Zhao, Yuanzhi Li, and Yuekai Sun. Statistical convergence of the EM algorithm on Gaussian
mixture models. Electronic Journal of Statistics, 14(1):632 – 660, 2020. doi: 10.1214/19-EJS1660.

Appendix

Table of Contents
A Literature on Density Estimation using LLMs 14

B Algorithm Details 14

C Full Notation of Network Architecture 14

D On the parameter efficiency of TGMM 16

E Limitations and future work directions 16

F Formal statement of Theorem 1 and proofs 17
F.1 Formal statement of Theorem 1 . 17
F.2 Construction of transformer architecture and formal version of Figure 7 18
F.3 Convergence results for EM algorithm . 22
F.4 Proof of Theorem F.1 . 30

G Formal statement of Theorem 2 and proofs 30

13

https://proceedings.mlr.press/v202/von-oswald23a.html
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.1145/3408318

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

G.1 Formal statement of Theorem 2 . 30
G.2 Proof of Theorem G.8 . 32

H More on empirical studies 33
H.1 More on experimental setups . 33
H.2 A complete report regarding different evaluation metrics 34
H.3 On the impact of inference-time sample size N 34
H.4 On the impact of backbone scale . 34

Organization of the Appendix. In Section B, we formally present the GMM algorithms referenced
in Section 2. We discuss the parameter efficiency of TGMM in Section D. Rigorous statements and
proofs of Theorem 1 and Theorem 2 are provided in Section F and Section G, respectively. Additional
experimental details are included in Section H.

Additional notations in the Appendix. The maximum between two scalars a, b is denoted as a ∨ b.
For a vector v ∈ Rd, let ∥v∥∞ := maxi∈[d] |vi| be its infinity norm. We use 0d to denote the zero
vector and ei ∈ Rd to denote the i-th standard unit vector in Rd. For a matrix A ∈ Rd1×d2 , we
denote ∥A∥2 := sup∥x∥2=1 ∥Ax∥ as its operator norm. We use Õ(·) to denote O(·) with hidden
log factors. For clarify, we denote the ground-truth parameters of GMM with a superscript ∗, i.e.
{π∗

k, µ
∗
k}k∈[K], throughout this appendix.

A LITERATURE ON DENSITY ESTIMATION USING LLMS

Recent studies have explored the capabilities of large language models (LLMs) for in-context
probability density estimation. For instance, Liu et al. (2025) interprets LLM learning as an adaptive
form of Kernel Density Estimation, revealing divergent learning trajectories compared to traditional
methods. Schaeffer et al. (2024) introduces a more general framework for in-context learning by
modeling unconstrained energy functions, enabling effective learning even when input and output
spaces are mismatched. Meanwhile, Fakoor et al. (2020) leverages self-attention mechanisms to
perform empirical density estimation across heterogeneous data types. Whereas these efforts prioritize
empirical performance in distribution estimation, our paper focuses on the theoretical expressive
power of transformers, specifically in the context of GMM estimation.

B ALGORITHM DETAILS

We state the classical algorithms of GMM mention in Section 2 in this section.

Algorithm B.1 EM algorithm for GMM

Require: {Xi, i ∈ [N]}, θ(0) = {π(0)
1 , µ

(0)
1 , · · ·π(0)

K , µ
(0)
K }

1: j ← 0
2: while not converge do
3: E-step: w(j+1)

k (Xi) =
π
(j)
k ϕ(Xi;µ

(j)
k)

∑
k∈[K] π

(j)
k ϕ(Xi;µ

(j)
k)

, i ∈ [N], k ∈ [K]

4: M-step: π(j+1)
k =

∑
i∈[N] w

(j+1)
k (Xi)

N , µ(j+1)
k =

∑
i∈[N] w

(j+1)
k (Xi)Xi

∑
i∈[N] w

(j+1)
k (Xi)

, k ∈ [K]

5: j ← j + 1
6: end while

C FULL NOTATION OF NETWORK ARCHITECTURE

Definition 4 (Attention layer). A (self-)attention layer with M heads is denoted as AttnΘattn
(·) with

parameters Θattn = {(Vm,Qm,Km)}m∈[M] ⊂ RD×D. On any input sequence H ∈ RD×N ,

H̃ = AttnΘattn
(H) := H+

∑M
m=1(VmH) softmax

(
(KmH)⊤(QmH)

)
∈ RD×N ,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm B.2 Spectral Algorithm for GMM

Require: {Xi, i ∈ [N]}
1: Compute the empirical moments M̂2 and M̂3 by

M̂2 =
1

N

∑

i∈[N]

Xi ⊗Xi − Id,

M̂3 =
1

N

∑

i∈[N]

Xi ⊗Xi ⊗Xi −
1

N

∑

i∈[N],j∈[d]

(Xi ⊗ ej ⊗ ej + ej ⊗Xi ⊗ ej + ej ⊗ ej ⊗Xi)

2: Do first K-th singular value decomposition(SVD) for M̂2: M̂2 ≈ UDU⊤ and let W = UD−1/2,
B = UD1/2

3: Do first K-th robust tensor decomposition (Algorithm 1 in Anandkumar et al. (2014), see
Algorithm B.3) for M̃3 = M̂3(W,W,W):

M̃3 ≈
∑

k∈[K]

λkv
⊗3
k

return π̂k = λ−2
k , µ̂k = λkBvk, k ∈ [K].

Algorithm B.3 Robust Tensor Power Method

Require: symmetric tensor T ∈ Rd×d×d, number of iterations L, N .
Ensure: the estimated eigenvector/eigenvalue pair; the deflated tensor.

1: for τ = 1 to L do
2: Draw v

(τ)
0 uniformly at random from the unit sphere in Rd.

3: for t = 1 to N do
4: Compute power iteration update:

5: v
(τ)
t :=

T (I,v
(τ)
t−1,v

(τ)
t−1)

∥T (I,v
(τ)
t−1,v

(τ)
t−1)∥

6: end for
7: end for
8: Let τ∗ := argmaxτ∈[L]{T (v(τ)N , v

(τ)
N , v

(τ)
N)}.

9: Do N power iteration updates (line 5) starting from v
(τ∗)
N to obtain v̂.

10: Set λ̂ := T̃ (v̂, v̂, v̂).
11: return the estimated eigenvector/eigenvalue pair (v̂, λ̂); the deflated tensor T̃ − λ̂v̂⊗3.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

In vector form,

h̃i = [AttnΘattn
(H)]i = hi +

∑M
m=1

∑N
j=1

[
softmax

((
(Qmhi)

⊤
(Kmhj)

)N
j=1

)]

j

Vmhj .

Here softmax is the activation function defined by softmax (v) =(
exp(v1)∑d
i=1 exp(vi)

, · · · , exp(vd)∑d
i=1 exp(vi)

)
for v ∈ Rd.

The Multilayer Perceptron(MLP) layer is defined as follows.

Definition 5 (MLP layer). A (token-wise) MLP layer with hidden dimension D′ is denoted as
MLPΘmlp

(·) with parameters Θmlp = (W1,W2) ∈ RD′×D × RD×D′
. On any input sequence

H ∈ RD×N ,

H̃ = MLPΘmlp
(H) := H+W2σ(W1H),

where σ : R→ R is the ReLU function. In vector form, we have h̃i = hi +W2σ(W1hi).

Then we can use the above definitions to define the transformer model.

Definition 6 (Transformer). An L-layer transformer, denoted as TFΘTF
(·), is a composition of L

self-attention layers each followed by an MLP layer:

TFΘTF
(H) = MLP

Θ
(L)
mlp

(
Attn

Θ
(L)
attn

(
· · ·MLP

Θ
(1)
mlp

(
Attn

Θ
(1)
attn

(H)
)))

.

Here the parameter ΘTF = (Θ
(1:L)
attn ,Θ

(1:L)
mlp) consists of the attention layers Θ

(ℓ)
attn =

{(V(ℓ)
m ,Q

(ℓ)
m ,K

(ℓ)
m)}m∈[M(ℓ)] ⊂ RD×D, the MLP layers Θ

(ℓ)
mlp = (W

(ℓ)
1 ,W

(ℓ)
2) ∈ RD(ℓ)×D ×

RD×D(ℓ)

.

D ON THE PARAMETER EFFICIENCY OF TGMM

Aside from its backbone, the extra parameters in a TGMM comprises the following:

Parameters in the task embedding module This part has a parameter count of s× dtask.

Parameters in the Readin layer This part has a parameter count of O((dtask + d)×D).

Parameters in the Readout layer This part has a parameter count of O(sdD), which comprises of
parameters from s distinct attention mechanisms.

As dtask is typically of the order O(D), we conclude that the total extra parameter complexity is of the
order O(sdD), which in practice is often way smaller than the parameter complexity of the backbone,
i.e., of the order O(LD2) Meanwhile, a naive implementation of adapting transformer architecture to
solve s distinct GMM tasks require a different transformer backbone. As the complexity of backbone
often dominate those of extra components, the TGMM implementation can reduce the parameter
complexity by an (approximate) factor of 1/s in practice.

E LIMITATIONS AND FUTURE WORK DIRECTIONS

First, while our theoretical analysis focuses on the approximation ability of transformers, the opti-
mization dynamics remain unexplored. This is a common theoretical challenge in ICL literature;
see Bai et al. (2023); Lin et al. (2024); Giannou et al. (2025). Second, approximating the full
spectral algorithm (Algorithm B.2; see Section B) presents a significant challenge, which we leave
for future work. Third, our study is limited to the expressivity of transformers on classical GMM
tasks; exploring their performance on other unsupervised learning tasks is an interesting direction
that warrants further investigation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

F FORMAL STATEMENT OF THEOREM 1 AND PROOFS

For analytical tractability, we implement Readin as an identity transformation and define Readout
to extract targeted matrix elements hence they are both fixed functions. Actually, we also need
"Readout" functions to get the estimated parameters for different tasks, see Remark F.3. To theoretical
convenience, we use the following norm of transformers, which differs slightly from the definition in
Bai et al. (2023).

|||Θ||| := max
ℓ∈[L]

{
max
m∈[M]

{∥∥∥Q(ℓ)
m

∥∥∥
2
,
∥∥∥K(ℓ)

m

∥∥∥
2
,
∥∥∥V(ℓ)

m

∥∥∥
2

}
+
∥∥∥W(ℓ)

1

∥∥∥
2
+
∥∥∥W(ℓ)

2

∥∥∥
2

}
.

Then the transformer class can be defined as

F := F(L,D,D′,M,BΘ) =
{
TFΘ, |||Θ||| ≤ BΘ, D(ℓ) ≤ D′,M (ℓ) ≤M, ℓ ∈ [L]

}
.

F.1 FORMAL STATEMENT OF THEOREM 1

First, we introduce some notations. We define πmin = mini π
∗
i , ρπ = maxi π

∗
i /mini π

∗
i . We use

Rij = ∥µ∗
i − µ∗

j∥ to denote the pairwise distance between components and Rmin = mini̸=j Rij ,
Rmax = (maxi̸=j Rij)∨

(
maxi∈[K] ∥µ∗

i ∥
)
. Without the loss of generality, we assume that Rmax ≥ 1.

For dimension and components adaptation, we assume d ≤ d0 and K ≤ K0. Since in practice the
sample size N is much larger than the number of components K, we assume that N is divisible by
K, i.e. N/K ∈ N. Otherwise, we only consider the first K⌊N/K⌋ samples and drop the others. We
encode X = {Xi}Ni=1 into an input sequence H as the following:

H =

[
X1 X2 . . . XN

p1 p2 . . . pN

]
∈ RD×N , pi =

[
θi
ri

]
, θi =



πlog

µi%K
ci%K
03K0


 ∈ Rd0+4K0+1, ri =

[
0D̃
1

ei%K

]
∈ RD−(2d0+3K0+1),

(4)
where Xi = [X⊤

i ,0
⊤
d0−d]

⊤, πlog = [π⊤
log,0

⊤
K0−K]⊤, µi%K = [µ⊤

i%K , 0⊤
d0−d]

⊤, ci%K ∈ R and
ei%K ∈ RK0 denotes the i%K-th standard unit vector. To match the dimension, D̃ = D − (2d0 +
5K0 + 2). We choose D = O(d0 +K0) to get the encoding above. For the initialization, we choose
πlog = logπ(0), µi = µ

(0)
i , ci = ∥µ(0)

i ∥22.

To guarantee convergence of the EM algorithm, we adopt the following assumption for the initializa-
tion parameters, consistent with the approach in Kwon & Caramanis (2020).

(A1) Suppose the GMM has parameters {(π∗
j , µ

∗
j) : j ∈ [K]} such that

Rmin ≥ C ·
√
log(ρπK),

and suppose the mean initialization µ
(0)
1 , ..., µ

(0)
K satisfies

∀i ∈ [K],
∥∥∥µ(0)

i − µ∗
i

∥∥∥ ≤ Rmin

16
.

Also, suppose the mixing weights are initialized such that

∀i ∈ [K],
∣∣∣π(0)
i − π∗

i

∣∣∣ ≤ πi/2.

We denote the output of the transformer TFΘ as θTF := {πTF
1 , µTF

1 , πTF
2 , µTF

2 , · · ·πTF
K , µTF

K} and assume
matched indices. Define

DTF
Θ := max

i∈[K]

{∥∥µTF
i − µ∗

i

∥∥ ∨
(∣∣πTF

i − π∗
i

∣∣ /πi
)}

.

Now we propose the theorem that transformer can efficient approximate the EM Algorithm (Algo-
rithm B.1), which is the formal version of Theorem 1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Theorem F.1. Fix 0 < δ, β < 1 and 1/2 < a < 1. Suppose there exists a sufficiently large universal
constant C ≥ 128 for which assumption (A1) holds. If N is suffcient large and ε ≤ 1/(100K0)
sufficient small such that

c̃1
(1− a)πmin

√
Rmax(Rmax ∨ d) log

(
24K
δ

)

N
+ c̃2


Rmax + d


1 +

√
2 log(4Nδ)

d




Nε <

1

2

(
a− 1

2

)
,

and

ϵ(N, ε, δ, a) :=
c̃3

(1− a)πmin

√
Kd log(C̃Nδ)

N
+ c̃4

(
1

πmin
+N

(
Rmax + d+

√
2d log

(
4N

δ

)))
ε < a(1− β),

hold, where c̃1-c̃4 are universal constants, C̃ = 288K2(
√
d+ 2Rmax +

1
1−a)

2. Then there exists a
2(L+ 1)-layer transformer TFΘ such that

DTF
Θ ≤ aβL +

1

1− β
ϵ(N, ε, δ, a) (5)

holds with probability at least 1 − δ. Moreover, TFΘ falls within the class F with parameters
satisfying:

D = O(d0 +K0), D
′ ≤ Õ

(
K0Rmax(Rmax + d0)ε

−1
)
,M = O(1), logBΘ ≤ Õ(K0Rmax(Rmax + d0)).

Notably, (5) holds for all tasks satisfying d ≤ d0 and K ≤ K0, where the parameters of transformer
Θ remains fixed across different tasks T .

Remark F.1. From Theorem F.1, if we take ε = Õ
(
N−3/2d−1/2

)
and L = O(logN), then we have

DTF
Θ ≤ Õ

(√
d

N

)
,

which matches the canonical parametric error rate.

Remark F.2. We give some explanations for the notations in Theorem F.1. Define

DpEM
j := max

i∈[K]

{∥∥∥µ̃(j)
i − µi

∥∥∥ ∨
(∣∣∣π̃(j)

i − πi

∣∣∣ /πi
)}

,

where {µ̃(j)
i , π̃

(j)
i }i∈[K] are the parameters obtained at the j-th iteration of the population-EM

algorithm (see Section F.3 for details). In the convergence analysis of the population-EM algorithm
(Kwon & Caramanis, 2020), it is shown that after the first iteration, the parameters lie in a small
neighborhood of the true parameters with high probability (i.e., DpEM

1 ≤ a for some 1/2 ≤ a < 1).
Furthermore, the authors prove that the algorithm achieves linear convergence (i.e., DpEM

j+1 ≤ βDpEM
j

for j ∈ N+ and some 0 < β < 1) with high probability if DpEM
1 ≤ a holds. Following their

notations, here a represents the radius of the neighborhood after the first iteration, while β is the
linear convergence rate parameter. Finally, ε controls the approximation error of the transformer.

F.2 CONSTRUCTION OF TRANSFORMER ARCHITECTURE AND FORMAL VERSION OF FIGURE 7

In this section, we give the transformer architecture construction in Theorem F.1. We denote
wij = wj(Xi), i ∈ [N], k ∈ [K] in this subsection for simplicity. Recall that we have assumed that
d ≤ d0, K ≤ K0 and N is divisible by K(N/K ∈ N). We first restate the encoding formulas in (4):

H =



X1 X2 . . . XN

θ1 θ2 . . . θN
p1 p2 . . . pN


 ∈ RD×N , θi =




πlog

µi%K
ci%K
wi

wi log

π



∈ Rd0+4K0+1, pi :=

[
0D−(2d0+5K0+2)

1
ei%K

]
∈ RD−(2d0+3K0+1),

(6)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where Xi = [X⊤
i ,0

⊤
d0−d]

⊤, πlog = [π⊤
log,0

⊤
K0−K]⊤, µi%K = [µ⊤

i%K , 0⊤
d0−d]

⊤, wi =

[w⊤
i ,0

⊤
K0−K]⊤, wi log = [w⊤

i log,0
⊤
K0−K]⊤, π = [π⊤,0⊤

K0−K]⊤, ci%K ∈ R and ei%K ∈ RK0 de-

notes the i%K-th standard unit vector. For the initialization, we choose πlog = logπ(0), µi = µ
(0)
i ,

ci = ∥µ(0)
i ∥22. and π = wi = wi log = 0K , i ∈ [K]. Finally, take H(0) = H which is defined in (6).

Then in E-step, we consider the following attention structures: we define matrices Q(1), K(1), V(1),
such that

Q(1)h
(0)
i =



Xi

πlog

1
0


 , K(1)h

(0)
j =



−µj%K
ej%K
1
2cj%K

0


 , V(1)h

(0)
j =




0d0
0K0

0d0+1

ej%K
0D−(2d0+2K0+1)


 ,

and use the standard softmax attention, thus

h̃
(1)
i =

[
Attn

Θ
(1)
attn

(H(0))
]
:,i

= h
(0)
i +

N∑

j=1

[
softmax

(((
Q(1)h

(0)
i

)⊤(
K(1)h

(0)
j

))N

j=1

)]

j

·V(1)h
(0)
j

= h
(0)
i +

N∑

j=1

α
(0)
j%K exp

(
−X⊤

i µj%K + 1
2µ

⊤
j%Kµj%K

)

B
∑K
k=1 α

(0)
k exp

(
−X⊤

i µk +
1
2µ

⊤
k µk

) ·V(1)h
(0)
j

= h
(0)
i +

1

B

N∑

j=1

ŵ
(1)
i j%KV(1)h

(0)
j

= h
(0)
i +

K∑

j=1

ŵ
(1)
ij V(1)h

(0)
j

= h
(0)
i +




0d0
0K0

0d0+1

ŵ
(1)

i
0D−(2d0+2K0+1)



, i ∈ [N].

where ŵ
(1)

i =
(
ŵ

(1)
i1 , ŵ

(1)
i2 , · · · , ŵ(1)

iK , 0, · · · , 0
)⊤
∈ RK0 .

Then we use a two-layer MLP to approximate log x and clean all πlog , µi%K and ci%K , which is

h
(1)
i = MLP

Θ
(1)
mlp

(
h̃
(1)
i

)
=




Xi

0K0

0d0+1

ŵ
(1)

i

ŵ
(1)

i log

0K0

0D−(2d0+5K0+2)

1
ei%K




, i ∈ [N],

where ŵ
(1)

i log = l̂ogŵ
(1)

i . Notice that although log x is not defined at 0, the MLP approximation is
well defined with some value which we do not care because we will not use it in the M-step. Similarly,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

for any ℓ%2 = 1, ℓ ∈ N+ we have

h
(ℓ)
i = MLP

Θ
(ℓ%2)
mlp

([
Attn

Θ
(ℓ%2)
attn

(H(ℓ−1))
]
:,i

)
=




Xi

0K0

0d0+1

ŵ
((ℓ+1)/2)

i

ŵ
((ℓ+1)/2)

i log

0K0

0D−(2d0+5K0+2)

1
ei%K




, i ∈ [N],

where ŵ
((ℓ+1)/2)

i log = l̂ogŵ
((ℓ+1)/2)

i .

In M-step, we consider the following attention structures: we similarly define matrices Q(2)
m , K(2)

m ,
V

(2)
m , m = 1, 2 such that

Q
(2)
1 h

(1)
j =

[
ej%K
0

]
, K

(2)
1 h

(1)
i =

[
ŵ

(1)

i log

0

]
, V

(2)
1 h

(1)
i =




0d0
0K0

Xi

0
0K0

0K0

0D−(2d0+3K0+1)



,

and

Q
(2)
2 h

(1)
j = 0, K

(2)
2 h

(1)
i = 0, V

(2)
2 h

(1)
i =




0d0
0K0

0d0+1

0K0

0K0

ŵ
(1)

i
0D−(2d0+4K0+1)



,

Then we get

h̃
(2)
j =

[
Attn

Θ
(2)
attn

(H(1))
]
:,j

= h
(1)
j +

2∑

m=1

N∑

i=1

[
softmax

(((
Q(2)
m h

(1)
i

)⊤(
K(2)
m h

(1)
j

))N

j=1

)]

j

·V(2)
m h

(1)
i

= h
(1)
j +

N∑

i=1

ŵ
(1)
i j%K∑N

i=1 ŵ
(1)
i j%K

·V(2)
1 h

(1)
i +

N∑

i=1

1

N
·V(2)

2 h
(1)
i

= h
(1)
j +




0d0
0K0

µ̂
(1)

j%K

0
0K0

0K0

0D−(2d0+3K0+1)



+




0d0
0K0

0d0+1

0K0

0K0

π̂
(1)

0D−(2d0+4K0+1)



,

= h
(1)
j +




0d0
0K0

µ̂
(1)

j%K

0
0K0

0K0

π̂
(1)

0D−(2d0+4K0+1)




, j ∈ [N].

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Similarly, we use a two-layer MLP to approximate log x, x2 and clean all wi, wi log and πi, which is

h
(2)
j = MLP

Θ
(2)
mlp

(
h̃
(2)
i

)
=




Xj

π̂
(1)

log

µ̂
(1)

j%K

ĉ
(1)
j%K

0K0

0K0

0K0

0D−(2d0+5K0+2)

1
ej%K




, j ∈ [N],

where π̂
(1)

log = l̂ogπ̂
(1)

, ĉ(1)j%K =
̂∥µ̂(1)
j%K∥22.

Similarly, for any ℓ%2 = 0, ℓ ∈ N+ we have

h
(ℓ)
j = MLP

Θ
(ℓ%2)
mlp

([
Attn

Θ
(ℓ%2)
attn

(H(ℓ−1))
]
:,j

)
=




Xj

π̂
(ℓ/2)

log

µ̂
(ℓ/2)

j%K

ĉ
(ℓ/2)
j%K

0K0

0K0

0K0

0D−(2d0+5K0+2)

1
ej%K




, j ∈ [N].

where π̂
(ℓ/2)

log = l̂ogπ̂
(ℓ/2)

, ĉ(ℓ/2)j%K =
̂∥µ̂(ℓ/2)
j%K∥22.

Thus, we can get π̂(ℓ) and µ̂
(ℓ)
j , j ∈ [K] after 2ℓ layers of transformer constructed above. (The last-

layer MLP block retains π as an output parameter without cleaning it.) Our transformer construction
is summarized in Figure 9, which is the formal version of Figure 7 in Section 4.2.

Remark F.3. The output of transformer H(2L) is a large matrix containing lots of elements.
To get the estimated parameters, we need to extract specific elements. In details, H(2L) =[
h
(2L)
1 , · · · ,h(2L)

N

]
∈ RD×N , where

h
(2L)
i =




Xi

π̂
(L)

log

µ̂
(L)

i%K

ĉ
(L)
i%K
0K0

0K0

π̂
(L)

0D−(2d0+5K0+2)

1
ej%K




, i ∈ [N].

We use the following linear attentive pooling to get the parameters:

O =
1

N
(VoH)

(
(KoH)⊤Qo

)
∈ R(d+K)×K ,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

where Qo = [qo1, · · · ,qoK] ∈ R(d+K)×K , Ko,Vo ∈ R(d+K)×N satisfying

qoi =

[
Kei
0d

]
, Koh

(2L)
j =

[
ej%K
0d

]
, Voh

(2L)
j =

[
π̂(L)

µ̂j%K

]
.

Thus by N/K ∈ N, we have

oi =
1

N

∑

j∈[N]

q⊤
oi(Kohj)Vohj =

K

N

N

K

[
π̂(L)

µ̂i

]
=

[
π̂(L)

µ̂i

]
∈ R(d+K), i ∈ [K].

Finally, we get

O = [qo1, · · · ,qoN] =

[
π̂(L) π̂(L) · · · π̂(L)

µ̂1 µ̂2 · · · µ̂K

]
.

E step:

hi =



Xi

θi

ri


 , θi =




πlog

µi%K
ci%K

03K0


 , ri =




0D̃
1

ei%K




Embedding of E step

Qhi =




Xi

πlog

1
0


 , Khj =




−µj%K

ej%K
1
2
cj%K

0


 , Vhj =




0d0
0K0

0d0+1

ej%K

0


 ,

h̃i = hi +
∑N

j=1

exp
(
log πj%K−X⊤

i µj%K+ 1
2
µ⊤
j%Kµj%K

)

B
∑

k exp (log πk−X⊤
i µk+

1
2
µ⊤
k
µk)

·Vhj

Attention

h̃i =



Xi

θi

ri


 , θi =




πlog

µi%K
ci%K

wi

02K0


 , ri =




0D̃
1

ei%K




approximate log x,
clean πlog , µi%K and ci%K

MLP

M step:

approximate log x and x2,
clean wi, wi log and π

MLP

h̃i =



Xi

θi

ri


 , θi =




0K0

µi%K
0
wi

wi log

π



, ri =




0D̃
1

ei%K




Q1hj =

[
ej%K

0

]
, K1hi =

[
wi log

0

]
, V1hi =




0d0
0K0
Xi
0


,

Q2hj = 0, K2hi = 0, V2hi =




0d0
0K0

0d0+1
02K0
wi
0


,

h̃j = hj +
∑N

i=1

wi j%K∑N
i=1 wi j%K

·V1hi +
∑N

i=1
1
N

·V2hi

Attention

hi =



Xi

θi

ri


 , θi =




0K0

0d0+1

wi

wi log

0K0


 , ri =




0D̃
1

ei%K




Embedding of M step

Figure 9: Transformer Construction for Approximating EM Algorithm Iterations. The pink box
represents the state of tokens, while the blue box represents the structure of different parts of the
network. The term "clean" means setting all positions of the corresponding vector to zero.

F.3 CONVERGENCE RESULTS FOR EM ALGORITHM

F.3.1 CONVERGENCE RESULTS FOR POPULATION-EM ALGORITHM

First, we review some notations. Recall that πmin = mini π
∗
i , ρπ = maxi π

∗
i /mini π

∗
i , Rij =

∥µ∗
i − µ∗

j∥, Rmin = mini̸=j Rij and Rmax = (maxi̸=j Rij) ∨
(
maxi∈[K] ∥µ∗

i ∥
)
. Without the

loss of generality, we assume that Rmax ≥ 1. For clarity, we restate assumption ((A1)), which is
consistent with Kwon & Caramanis (2020).

(A1) Suppose the GMM has parameters {(π∗
j , µ

∗
j) : j ∈ [K]} such that

Rmin ≥ C ·
√
log(ρπK), (7)

and suppose the mean initialization µ
(0)
1 , ..., µ

(0)
K satisfies

∀i ∈ [K],
∥∥∥µ(0)

i − µ∗
i

∥∥∥ ≤ Rmin

16
. (8)

Also, suppose the mixing weights are initialized such that

∀i ∈ [K],
∣∣∣π(0)
i − π∗

i

∣∣∣ ≤ πi/2. (9)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

For population-EM, the algorithm can be presented as

(E-step): wi(X) =
πi exp(−∥X − µi∥2/2)∑K
j=1 πj exp(−∥X − µj∥2/2)

,

(M-step): π+
i = E[wi], µ+

i = E[wiX]/E[wi].

The following results gives linear convergenve guarantees of population-EM, which comes from
Kwon & Caramanis (2020).

Theorem F.2 (Kwon & Caramanis (2020), Theorem 1, part i). Let C ≥ 64 be a universal constant
for which assumption ((A1)) holds. Then, after one-step population-EM update, we have

∀i ∈ [K], |π+
i − π∗

i | ≤ π∗
i /2, ∥µ+

i − µ∗
i ∥ ≤ 1/2. (10)

Now we define
Dm = max

i∈[K]
(∥µi − µ∗

i ∥ ∨ |πi − π∗
i |/π∗

i) ,

and
D+
m = max

i∈[K]

(
∥µ+

i − µ∗
i ∥ ∨ |π+

i − π∗
i |/π∗

i

)
.

The linear convergence of population-EM is stated by the following theorem.

Theorem F.3 (Kwon & Caramanis (2020), Theorem 1, part ii). Let C ≥ 128 be a large enough
universal constant. Fix 0 < a < 1. Suppose the separation condition (7) holds and suppose the
initialization parameter satisfies Dm ≤ a, then D+

m ≤ βDm for some 0 < β < 1.

Remark F.4. Here the contraction parameter β is only dependent with C and a. In other words, if
we fix a ∈ (0, 1), then for any β ∈ (0, 1), there exists a large enough C such that Theorem F.3 holds.
For details, see Appendix E in Kwon & Caramanis (2020).

Combing Theorem F.2 and Theorem F.3, we can get the linear convergence of population-EM
algorithm.

F.3.2 CONVERGENCE RESULTS FOR EMPIRICAL-EM ALGORITHM

Now we consider the empirical-EM, i.e., Algorithm B.1. For convenience, the algorithm can be
presented as

(E-step): wi(Xℓ) = wℓi =
πi exp(−∥Xℓ − µi∥2/2)∑K
j=1 πj exp(−∥Xℓ − µj∥2/2)

(M-step): π+
i =

1

n

n∑

l=1

wi(Xℓ), µ
+
i =

∑n
l=1 wi(Xℓ)Xℓ∑n
l=1 wi(Xℓ)

=
1

nπ+
i

n∑

l=1

wi(Xℓ)Xℓ.

Similarly, we can define Dm and D+
m in empirical sense.

For the linear convergence of empirical-EM, we have the following theorem.

Theorem F.4. Fix 0 < δ, β < 1 and 0 < a < 1. Let C ≥ 128 be a large enough universal constant.
Suppose the separation condition (7) holds and suppose the initialization parameter satisfies Dm ≤ a.
If n is suffcient large such that

εunif :=
c̃

(1− a)πmin

√
Kd log(C̃nδ)

n
< a(1− β)

where C̃ = 72K2(
√
d+ 2Rmax +

1
1−a)

2 and c̃ is a universal constant. Then

D+
m ≤ βDm + εunif ≤ a

uniformly holds with probability at least 1− δ.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. First, we have

|π+
i − π∗

i |
π∗
i

=
1

π∗
i

∣∣∣∣∣
1

n

n∑

l=1

wi(Xℓ)− π∗
i

∣∣∣∣∣

≤ 1

π∗
i

(∣∣∣∣∣
1

n

n∑

l=1

wi(Xℓ)− E [wi(X)]

∣∣∣∣∣+ |E [wi(X)]− π∗
i |
)

:= (I) + (II).

By Theorem F.3, we get

(II) =
1

π∗
i

|E [wi(X)]− π∗
i | ≤ β̃Dm.

And by Lemma F.2, we have

(I) =
1

π∗
i

∣∣∣∣∣
1

n

n∑

l=1

wi(Xℓ)− E [wi(X)]

∣∣∣∣∣ ≤
c̃1

πmin

√
Kd log(C̃1n

δ1
)

n
,

where C̃1 = 18K2(
√
d + 2Rmax +

1
1−a) and c̃1 is a suitable universal constant. Thus, by taking

β̃ = β. δ1 = δ/2 and suitable c̃, |π+
i − π∗

i |/π∗
i ≤ βDm + εunif ≤ a, ∀i ∈ [K].

For the second term, we have

∥µ+
i − µ∗

i ∥ =
∥∥∥∥∥

1

nπ+
i

n∑

l=1

wi(Xℓ)(Xℓ − µ∗
i)

∥∥∥∥∥

≤ 1

π+
i

(∥∥∥∥∥
1

n

n∑

l=1

wi(Xℓ)(Xℓ − µ∗
i)− E[wi(X)(X − µ∗

i)]

∥∥∥∥∥+ ∥E[wi(X)(X − µ∗
i)]∥

)

:= (III) + (IV),

By Theorem F.3 and Remark F.4 we get,

(IV) =
1

π+
i

∥E[wi(X)(X − µ∗
i)]∥

(i)

≤ 1

(1− a)π∗
i

∥E[wi(X)(X − µ∗
i)]∥

=
E[wi(X)]

(1− a)π∗
i

∥∥∥∥
E[wi(X)X]

E[wi(X)]
− µ∗

i

∥∥∥∥

≤ 1 + a

1− a
β̃Dm.

where (i) follows from |π+
i − π∗

i |/π∗
i ≤ a. And by Lemma F.3, we have

(III) =
1

π+
i

(∥∥∥∥∥
1

n

n∑

l=1

wi(Xℓ)(Xℓ − µ∗
i)− E[wi(X)(X − µ∗

i)]

∥∥∥∥∥

)

≤ 1

(1− a)π∗
i

(∥∥∥∥∥
1

n

n∑

l=1

wi(Xℓ)(Xℓ − µ∗
i)− E[wi(X)(X − µ∗

i)]

∥∥∥∥∥

)

≤ c̃2
(1− a)πmin

√
Kd log(C̃2n

δ2
)

n
,

where C̃ = 18K2(
√
d + 2Rmax + 1

1−a)
2 and c̃ is a suitable universal constant. Thus, by taking

β̃ = (1− a)/(1 + a)β, δ2 = δ/2 and suitable c̃, ∥µ+
i − µ∗

i ∥ ≤ βDm + εunif ≤ a, ∀i ∈ [K].

In conclusion, if we take β̃ = (1 − a)/(1 + a)β, c̃ = c̃1 ∨ c̃2, C = C(β, a) ≥ 128 large enough
such that Theorem F.3 holds, and take δ1 = δ2 = δ/2 and use union bound argument, then we get
D+
m ≤ βDm + εunif ≤ a.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

We need the following technical lemma.

Lemma F.1 (Segol & Nadler (2021), Lemma B.2.). Fix 0 < δ < 1. Let B1, . . . , BK ⊂ Rd be
Euclidean balls of radii r1, . . . , rK . Define B = ⊗Kk=1Bk ⊂ RKd and r = maxk∈[K] rk. Let X be a
random vector in Rd and W : Rd × B → Rk where k ≤ d. Assume the following hold:

1. There exists a constant L ≥ 1 such that for any θ ∈ B, ε > 0, and θε ∈ B which satisfies
maxi∈[K] ∥θi − θεi ∥ ≤ ε, then EX

[
supµ∈B ∥W (X, θ)−W (X, θε)∥

]
≤ Lε.

2. There exists a constant R such that for any θ ∈ B, ∥W (X, θ)∥ψ2
≤ R.

Let X1, . . . , Xn be i.i.d. random vectors with the same distribution as X . Then there exists a
universal constant c̃ such that with probability at least 1− δ,

sup
θ∈B

∥∥∥∥∥
1

n

n∑

ℓ=1

W (Xℓ, θ)− E [W (X, θ)]

∥∥∥∥∥ ≤ R

√

c̃
Kd log

(
1 + 12nLr

δ

)

n
. (11)

Remark F.5. There is one difference between Lemma F.1 and LemmaB.2. in Segol & Nadler (2021):
in Lemma F.1, we use 1 + 12nLr

δ to replace 18nLr
δ , thus we avoid the condition r1, · · · , rK ≥ 1.

Hence we can get the uniform convergence of wi(X, θ) and wi(X, θ)(X − µ∗
i), i ∈ [K]. Our proof

is similar to Segol & Nadler (2021), except that we consider the variation of both π and µ. From now
on, we denote θi = {πi, µi}, θ = {θi}ni=1.

Lemma F.2. Fix 0 < δ < 1 and 0 < a < 1. Consider the parameter region Da := {Dm ≤ a}. Let
X1, · · · , Xn

i.i.d.∼ GMM(π∗, µ∗), then with probability at least 1− δ,

sup
θ∈Da

∣∣∣∣∣
1

n

n∑

ℓ=1

wi(Xℓ, θ)− E[wi(X, θ)]

∣∣∣∣∣ ≤ c̃

√
Kd log(C̃nδ)

n
, ∀i ∈ [K], (12)

where C̃ = 18K2(
√
d+ 2Rmax +

1
1−a) and c̃ is a suitable universal constant.

Proof. The proof is similar to the proof of Lemma 5.1 in Segol & Nadler (2021). For simplicity, we
omit it.

Lemma F.3. Fix 0 < δ < 1 and 0 < a < 1. Consider the parameter region Da := {Dm ≤ a}. Let
X1, · · · , Xn

i.i.d.∼ GMM(π∗, µ∗) with Rmin satisfying (7), then with probability at least 1− δ,

sup
θ∈Da

∣∣∣∣∣
1

n

n∑

ℓ=1

wi(Xℓ, θ)(Xℓ − µ∗
i)− E[wi(X, θ)(Xℓ − µ∗

i)]

∣∣∣∣∣ ≤ c̃

√
Kd log(C̃nδ)

n
, ∀i ∈ [K], (13)

where C̃ = 36K2(
√
d+ 2Rmax +

1
1−a)

2 and c̃ is a suitable universal constant.

Proof. The proof is similar to the proof of Lemma 5.4 in Segol & Nadler (2021)(Notice that the
condition (36) in Segol & Nadler (2021) is trivial in our case). For simplicity, we omit it.

For the first step empirical-EM, we have the following results.

Theorem F.5. Fix 0 < δ < 1 and 1/2 < a < 1. Let C ≥ 128 be a large enough universal constant
for which assumption ((A1)) holds. If n is suffcient large such that

εstep1 :=
c̃

(1− a)πmin

√
Rmax(Rmax ∨ d) log

(
6K
δ

)

n
<

(
a− 1

2

)
,

where c̃ is a universal constant. Then

D+
m ≤

1

2
+ εstep1 ≤ a

holds with probability at least 1− δ.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Proof. Notice that we only need simple concentration not uniform concentration in this theorem. We
use the same definition of term (I), (II) as in the proof of Theorem F.4. First, by Theorem F.2, we
have (II) ≤ 1/2. Since 0 ≤ wi(X) ≤ 1, by a standard concentration of bounded variables, we can
get

(I) ≤ c̃1
πmin

√
log(Kδ1)

n
, ∀i ∈ [K], (14)

where c̃1 is a universal constant. Taking c̃ ≥ c̃1 and δ1 = δ/2, we have

|π+
i − π∗

i |
π∗
i

≤ 1

2
+

c̃

πmin

√
log
(
2K
δ

)

n
≤ a,∀i ∈ [K].

For the second term, we have

∥µ+
i − µ∗

i ∥ =
∥∥∥∥∥

1

nπ+
i

n∑

l=1

wi(Xℓ)Xℓ − µ∗
i

∥∥∥∥∥

≤
∥∥∥∥∥

1

nπ+
i

n∑

l=1

wi(Xℓ)Xℓ −
E[wi(Xℓ)Xℓ]

E[wi(Xℓ)]

∥∥∥∥∥+
∥∥∥∥
E[wi(Xℓ)Xℓ]

E[wi(Xℓ)]
− µ∗

i

∥∥∥∥

:= (V) + (V I).

By Theorem F.2, we have (V I) ≤ 1/2. For (V), by triangle inequality,

(V) ≤
∥∥∥∥∥

1

nπ+
i

n∑

l=1

wi(Xℓ)Xℓ −
1

π+
i

E[wi(Xℓ)Xℓ]

∥∥∥∥∥+
∥∥∥∥

1

π+
i

E[wi(Xℓ)Xℓ]−
E[wi(Xℓ)Xℓ]

E[wi(Xℓ)]

∥∥∥∥

=
1

π+
i

∥∥∥∥∥
1

n

n∑

l=1

wi(Xℓ)Xℓ − E[wi(Xℓ)Xℓ]

∥∥∥∥∥+
∥E[wi(Xℓ)Xℓ]∥
π+
i E[wi(Xℓ)]

∣∣π+
i − E[wi(Xℓ)]

∣∣ . (15)

Using Lemma B.1 and Lemma B.2 in Zhao et al. (2020), we can get ∥wi(Xℓ)Xℓ∥ψ2
≤ ∥Xℓ∥ψ2

≤
c̃3Rmax, ∀i ∈ [K]. Hence by Lemma B.1 in Segol & Nadler (2021), with probability at least 1− δ2,

∥∥∥∥∥
1

n

n∑

l=1

wi(Xℓ)Xℓ − E[wi(Xℓ)Xℓ]

∥∥∥∥∥ ≤ c̃4

√√√√Rmaxd log
(

3K
δ2

)

n
, ∀i ∈ [K],

where c̃4 is an universal constant. And by Theorem F.2, we have
∥E[wi(Xℓ)Xℓ]∥

E[wi(Xℓ)]
≤ Rmax +

1

2
≤ 2Rmax, ∀i ∈ [K].

Finally, by (14),

∣∣π+
i − E[wi(Xℓ)]

∣∣ ≤ c̃1

√
log(Kδ1)

n
.

Combining all terms together and taking δ1 = δ2 = δ/2 we can bound (15) by

(V) ≤ 1

π+
i


c̃4

√√√√Rmaxd log
(

3K
δ2

)

n
+ 2c̃1Rmax

√
log(Kδ1)

n




≤ c̃6
(1− a)πmin

√
Rmax(Rmax ∨ d) log

(
6K
δ

)

n
.

Taking c̃ ≥ c̃6, we get

∥µ+
i − µ∗

i ∥ ≤
1

2
+

c̃

(1− a)πmin

√
Rmax(Rmax ∨ d) log

(
6K
δ

)

n
≤ a.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

F.3.3 CONVERGENCE RESULTS FOR TRANSFORMER-BASED EM IN SECTION F.2

We first state some useful approximation lemmas.
Lemma F.4 (Lemma 9 in Mei (2024)). For any A > 0, δ > 0, take M = ⌈2logA/δ⌉+1 ∈ N. Then
there exists {(aj , wj , bj)}j∈[M] with

sup
j
|aj | ≤ 2A, sup

j
|wj | ≤ 1, sup

j
|bj | ≤ A, (16)

such that defining logδ : R→ R by

logδ(x) =

M∑

j=1

aj · ReLU(wjx+ bj),

we have logδ is non-decreasing on [1/A,A], and
sup

x∈[1/A,A]

| log(x)− logδ(x)| ≤ δ.

Remark F.6. There is a small improvement M = ⌈2 logA/δ⌉+ 1 compared to M = ⌈2A/δ⌉+ 1
in Mei (2024). Further more, it is easy to check that logδ(x) ≤ − logA for x ∈ [0, 1/A].
Lemma F.5. For any A > 0, δ > 0, take M = ⌈2A2/δ⌉ + 1 ∈ N. Then there exists
{(aj , wj , bj)}j∈[M] with

sup
j
|aj | ≤ 2A, sup

j
|wj | ≤ 1, sup

j
|bj | ≤ A, (17)

such that defining ϕδ : R→ R by

ϕδ(x) =

M∑

j=1

aj · ReLU(wjx+ bj),

we have ϕδ is non-decreasing on [−A,A], and

sup
x∈[−A,A]

|ϕδ(x)− x2| ≤ δ.

Proof. Similar to Lemma F.4. Omitted.

Lemma F.6 (Lemma A.1 in Bai et al. (2023)). Let β ∼ N (0, Id). Then we have

P
(
∥β∥2 ≥ d(1 + δ)2

)
≤ e−dδ

2/2.

Lemma F.7 (Lemma 18 in Lin et al. (2024)). For any u,v ∈ Rd, we have∥∥∥∥log
(

eu

∥eu∥1

)
− log

(
ev

∥ev∥1

)∥∥∥∥
∞
≤ 2 ∥u− v∥∞ .

Corollary F.1. For any u,v ∈ Rd, we have∥∥∥∥
eu

∥eu∥1
− ev

∥ev∥1

∥∥∥∥
∞
≤ exp (2 ∥u− v∥∞)− 1

Proof. This follows directly from Lemma F.7 and simple calculations.

Now we propose the results for transformer-based EM. Similar to Section F.2, we use notations with
superscript “ˆ ” to represent the output of the transformer-based EM.
Theorem F.6. Fix 0 < δ < 1 and 1/2 < a < 1. Let C ≥ 128 be a large enough universal constant
for which assumption ((A1)) holds. If n is sufficient large and ε ≤ 1/100 sufficient small such that

c̃1
(1− a)πmin

√
Rmax(Rmax ∨ d) log

(
12K
δ

)

n
+ c̃2


Rmax + d


1 +

√
2 log(2nδ)

d




nε <

1

2

(
a− 1

2

)
,

where c̃1, c̃2 are universal constants. Then there exists a 2-layer transformer TFΘ such that D̂+
m ≤ a

holds with probability at least 1 − δ. Moreover, TFΘ falls within the class F with parameters
satisfying:

D = O(d0 +K0), D
′ ≤ Õ

(
K0Rmax(Rmax + d0)ε

−1
)
,M = O(1), logBΘ ≤ O(K0Rmax(Rmax + d0)).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Proof. Recall that D̂+
m = maxi∈[K]

(
∥µ̂+

i − µ∗
i ∥ ∨ |π̂+

i − π∗
i |/π∗

i

)
. Thus

D̂+
m ≤ max

i∈[K]

(
∥µ+

i − µ∗
i ∥ ∨ |π+

i − π∗
i |/π∗

i

)
+ max
i∈[K]

(
∥µ̂+

i − µ+
i ∥ ∨ |π̂+

i − π+
i |/π∗

i

)

= D+
m + max

i∈[K]

(
∥µ̂+

i − µ+
i ∥ ∨ |π̂+

i − π+
i |/π∗

i

)

We first claim that with probability at least 1− δ/2,

max
i∈[K]

(
∥µ̂+

i − µ+
i ∥ ∨ |π̂+

i − π+
i |/π∗

i

)
≤ c̃2


Rmax + d


1 +

√
2 log(2nδ)

d




nε. (18)

Then by Theorem F.5, with probability at least 1− δ, we have

D̂+
m ≤ D+

m + max
i∈[K]

(
∥µ̂+

i − µ+
i ∥ ∨ |π̂+

i − π+
i |/π∗

i

)

≤ 1

2
+

c̃

(1− a)πmin

√
Rmax(Rmax ∨ d) log

(
12K
δ

)

n
+ c̃2


Rmax + d


1 +

√
2 log(2nδ)

d




nε

≤ a.

Now we only need to prove (18). By the construction in Section F.2, we can see that wℓi in first step
can be well calculated, thus |π̂+

i − π+
i | = 0 and the error comes only from the calculation of {µ̂+

i }.
Recall that µ+

i =
∑n

ℓ=1 wℓiXℓ∑n
ℓ=1 wℓi

and

µ̂+
i =

∑n
ℓ=1 exp

(
l̂og(wℓi)

)
Xℓ

∑n
l=1 exp

(
l̂og(wℓi)

) .

Recall that

wℓi =
πi exp(−∥Xℓ − µi∥2/2)∑K
j=1 πj exp(−∥Xℓ − µj∥2/2)

=
1

1 +
∑
j ̸=i

πj

πi
exp

(
(µj − µi)

⊤
Xl − ∥µj∥2/2 + ∥µi∥2/2

) .

By the initial condition (9) and (8), we have

∥µj − µi∥ ≤ Rmax + 2 ∗ 1

16
Rmin = O(Rmax), ∥µj∥2 = O(R2

max).

Since Xℓ
i.i.d.∼ GMM(π∗, µ∗), using Lemma F.6, with probability at least 1− δ/2, we have

sup
ℓ∈[n]

∥Xℓ∥ ≤ Rmax + d


1 +

√
2 log(2nδ)

d


 = Õ(Rmax + d).

Combine all things together, we get that with probability at least 1− δ/2,

w−1
ℓi ≤ exp

(
Õ(K0Rmax(Rmax + d0))

)
, ∀ℓ ∈ [n] and i ∈ [K].

Thus taking A = exp
(
Õ(K0Rmax(Rmax + d0))

)
and and δ = ε in Lemma F.4, we can get

| log−l̂og|
∣∣
[1/A,A]

≤ ε. Then by Lemma F.7, we have

∥µ̂+
i − µ+

i ∥ =

∥∥∥∥∥∥

∑n
ℓ=1 exp

(
l̂og(wℓi)

)
Xℓ

∑n
l=1 exp

(
l̂og(wℓi)

) −
∑n
ℓ=1 exp (logwℓi)Xℓ∑n
ℓ=1 exp (logwℓi)

∥∥∥∥∥∥

≤
n∑

ℓ=1

∥∥∥∥∥∥

exp
(
l̂og(wℓi)

)
Xℓ

∑n
l=1 exp

(
l̂og(wℓi)

) − exp (logwℓi)Xℓ∑n
ℓ=1 exp (logwℓi)

∥∥∥∥∥∥

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

≤ sup
ℓ∈[n]

∥Xℓ∥




n∑

ℓ=1

∣∣∣∣∣∣

exp
(
l̂og(wℓi)

)

∑n
l=1 exp

(
l̂og(wℓi)

) − exp (logwℓi)∑n
ℓ=1 exp (logwℓi)

∣∣∣∣∣∣




≤ n

(
Rmax + d+

√
2d log

(
2n

δ

))(
exp

(
2
∥∥∥
(
l̂og(wℓi)

)
ℓ
− (log(wℓi))ℓ

∥∥∥
∞

)
− 1

)

≤ 4n

(
Rmax + d+

√
2d log

(
2n

δ

))
ε, ∀i ∈ [K].

Thus (18) is proved. The parameter bounds can be directly computed by the construction in
Section F.2 and Lemma F.4.

Theorem F.7. Fix 0 < δ, β < 1 and 1/2 < a < 1. Let C ≥ 128 be a large enough universal
constant. Suppose the separation condition (7) holds and suppose the initialization parameter input
to transformer satisfies Dm ≤ a. If n is suffcient large and K0ε ≤ 1/100 sufficient small such that

ϵ(n, ε, δ, a) :=
c̃1

(1− a)πmin

√
Kd log(C̃nδ)

n
+ c̃2

(
1

πmin
+ n

(
Rmax + d+

√
2d log

(
2n

δ

)))
ε < a(1− β),

where c̃1, c̃2 are universal constants, C̃ = 144K2(
√
d+2Rmax+

1
1−a)

2. Then there exists a 2-layer
transformer TFΘ such that

D̂+
m ≤ βDm + ϵ(n, ε, δ, a) ≤ a

uniformly holds with probability at least 1 − δ. Moreover, TFΘ falls within the class F with
parameters satisfying:

D = O(d0 +K0), D
′ ≤ Õ

(
K0Rmax(Rmax + d0)ε

−1
)
,M = O(1), logBΘ ≤ Õ(K0Rmax(Rmax + d0)).

Proof. Similar to the proof of Theorem F.6, using Theorem F.4, we only need to prove that with
probability at least 1− δ/2,

max
i∈[K]

(
∥µ̂+

i − µ+
i ∥ ∨ |π̂+

i − π+
i |/π∗

i

)
≤ c̃2

(
1

πmin
+ n

(
Rmax + d+

√
2d log

(
2n

δ

)))
ε. (19)

Define uℓ = (uℓ,1, · · · , uℓ,K)⊤, ûℓ = (ûℓ,1, · · · , ûℓ,K)⊤, where uℓ,i = log πi + µ⊤
i Xℓ − 1/2∥µi∥2

and ûℓ,i = l̂ogπi + µ⊤
i Xℓ − 1/2∥̂µi∥2 By the construction in Section F.2 and Corollary F.1, we have

∥ŵℓ −wℓ∥∞ =

∥∥∥∥
eûℓ

∥eûℓ∥1
− euℓ

∥euℓ∥1

∥∥∥∥
∞
≤ exp (2∥ûℓ − uℓ∥∞)− 1, ∀ℓ ∈ [n].

Now taking δ = ε, A = ((1− a)πmin)
−1 in Lemma F.4 and δ = ε/K, A = (Rmax + a)2 in

Lemma F.5, we have ∥ûℓ − uℓ∥∞ ≤ 3ε/2, hence

∥ŵℓ −wℓ∥∞ ≤ exp (2∥ûℓ − uℓ∥∞)− 1 ≤ exp(3ε)− 1 ≤ 6ε, ∀ℓ ∈ [n].

Then by the construction in Section F.2, we have

|π̂+
i − π+

i | ≤ 6ε, ∀i ∈ [K]. (20)

For the term ∥µ̂+
i − µ+

i ∥, we can calculate it similar to the proof of Theorem F.6. First, we recall that
with probability at least 1− δ/2,

w−1
ℓi ≤ exp

(
Õ(K0Rmax(Rmax + d0))

)
, ∀ℓ ∈ [n] and i ∈ [K].

Similarly, for ŵℓ,i, we can also get(just calculate again) that with probability at least 1− δ/2,

ŵ−1
ℓi ≤ exp

(
Õ(K0Rmax(Rmax + d0))

)
, ∀ℓ ∈ [n] and i ∈ [K].

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Then following the same argument in Theorem F.6, taking A = exp
(
Õ(K0Rmax(Rmax + d0))

)

and and δ = ε in Lemma F.4, we have also

∥µ̂+
i − µ+

i ∥ ≤ 4n

(
Rmax + d+

√
2d log

(
2n

δ

))
ε, ∀i ∈ [K]. (21)

Combining (20) and (21), (19) is proved. The parameter bounds can be directly computed by the
construction in Section F.2, Lemma F.4, Lemma F.5 and the parameter A, δ taken in the proof.

F.4 PROOF OF THEOREM F.1

First, by Theorem F.6 and the first condition in Theorem F.1 , there exist a 2-layer transformer TFΘ1

such that

DTF
Θ1
≤ a, (22)

holds with probability at least 1− δ/2. Then using Theorem F.3, (22) and the second condition in
Theorem F.1, there 2-layer transformer TFΘ2

such that

DTF
Θ1∪Θ2

≤ βDTF
Θ1

+ ϵ(n, ε, δ/2, a) ≤ a,

uniformly holds with probability at least 1− δ/2. Denote as ΘL
2 = ∪ℓ∈[L]Θ2. Thus, for any L ∈ N,

by reduction, we have

DTF
Θ1∪ΘL

2
≤ βLDTF

Θ1
+
(
1 + β + · · ·+ βL−1

)
ϵ(n, ε, δ/2, a),

uniformly holds with probability at least 1 − δ/2. Combine all things together, we have, for any
L ∈ N,

DTF
Θ1∪ΘL

2
≤ βLDTF

Θ1
+
(
1 + β + · · ·+ βL−1

)
ϵ(n, ε, δ/2, a)

≤ βLa+
1

1− β
ϵ(n, ε, δ/2, a)

holds with probability at least 1− δ (Note that the definitions of ϵ(·) in Theorem F.7 and Theorem F.1
differ slightly). The parameter bounds can be directly computed by Theorem F.6 and Theorem F.7.
The theorem is proved.

G FORMAL STATEMENT OF THEOREM 2 AND PROOFS

Following Section F, we implement Readin as an identity transformation and define Readout to
extract targeted matrix elements hence they are both fixed functions.

G.1 FORMAL STATEMENT OF THEOREM 2

In this section, we give the formal statement of Theorem 2. First, we need to introduce the embeddings
of the transformer. Let T be the matrix representation of the cubic tensor T , which is

T := [t1, t2, · · · , td] :=




T:,1,1 T:,2,1 · · · T:,d,1

T:,1,2 T:,2,2 · · · T:,d,2

...
...

. . .
...

T:,1,d T:,2,d · · · T:,d,d


 ∈ Rd

2×d,

where T:,i,j = (T1,i,j , T2,i,j , · · · , Td,i,j) ∈ Rd, i, j ∈ [d]. For dimension adaptation, we assume
d ≤ d0. The augment version of T is defined as

T :=
[
t1, t2, · · · , td0

]
:=




T :,1,1 T :,2,1 · · · T :,d0,1

T :,1,2 T :,2,2 · · · T :,d0,2

...
...

. . .
...

T :,1,d0 T :,2,d0 · · · T :,d0,d0


 ∈ Rd

2
0×d0 , (23)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

where T :,i,j ∈ Rd0 . If i ≤ d and j ≤ d, T :,i,j =
[
T⊤
:,i,j ,0

⊤
d0−d

]⊤
; Else T :,i,j = 0d0 . We construct

the following input sequence:

H =

[
t1 t2 . . . td
p1 p2 . . . pd

]
∈ RD×d, pi =




v(0)

ei
1
d
0D̃


 , (24)

where ti ∈ Rd20 is defined as (23), v(0) =
[
v(0)⊤,0⊤

d0−d
]⊤ ∈ Rd0 , ei ∈ Rd0 denotes the i-th standard

unit vector in Rd0 . We choose D = O(d20) and D̃ = D − d20 − 2d0 − 2 to get the encoding above.
Then we give a rigorous definition of ReLU-activated transformer following Bai et al. (2023).

Definition 7 (ReLU-attention layer). A (self-)attention layer activated by ReLU function with M
heads is denoted as AttnΘattn

(·) with parameters Θattn = {(Vm,Qm,Km)}m∈[M] ⊂ RD×D. On
any input sequence H ∈ RD×N ,

H̃ = AttnRΘattn
(H) := H+ 1

N

∑M
m=1(VmH)σ

(
(KmH)⊤(QmH)

)
∈ RD×N ,

In vector form,

h̃i =
[
AttnRΘattn

(H)
]
i
= hi +

∑M
m=1

1
N

∑N
j=1 σ

(
(Qmhi)

⊤
(Kmhj)

)
Vmhj .

Here σ(x) = x ∨ 0 denotes the ReLU function.

The MLP layer is the same as Definition 5. The ReLU-activated transformer is defined as follows.

Definition 8 (ReLU-activated transformer). An L-layer transformer, denoted as TFRΘ(·), is a compo-
sition of L ReLU-attention layers each followed by an MLP layer:

TFRΘ(H) = MLP
Θ

(L)
mlp

(
AttnR

Θ
(L)
attn

(
· · ·MLP

Θ
(1)
mlp

(
AttnR

Θ
(1)
attn

(H)
)))

.

Above, the parameter Θ = (Θ
(1:L)
attn ,Θ

(1:L)
mlp) consists of the attention layers Θ

(ℓ)
attn =

{(V(ℓ)
m ,Q

(ℓ)
m ,K

(ℓ)
m)}m∈[M(ℓ)] ⊂ RD×D and the MLP layers Θ(ℓ)

mlp = (W
(ℓ)
1 ,W

(ℓ)
2) ∈ RD(ℓ)×D ×

RD×D(ℓ)

.

Similar to Section 4.1, We consider the following function class of transformer.

F := F(L,D,D′,M,BΘ) =
{
TFRΘ, |||Θ||| ≤ BΘ, D(ℓ) ≤ D′,M ℓ ≤M, ℓ ∈ [L]

}
.

Now we can give the formal statement of Theorem 2.

Theorem G.8 (Formal version of Theorem 2). There exists a transformer TFΘ with ReLU activation
such that for any d ≤ d0, T ∈ Rd×d×d and v(0) ∈ Rd, given the encoding (24), TFΘ implements L
steps of (3) exactly. Moreover, TFΘ falls within the class F with parameters satisfying:

D = D′ = O(d20),M = O(d0), logBΘ ≤ O(1).

Remark G.1. In fact, Theorem G.8 is also hold for attention-only transformers since the MLP layer
do not use in the proof. To do that, we only need to add another head in every odd attention layer to
clean the terms {dvi}. For details, see the proof.

Remark G.2. Readers might question why the normalization step is omitted in our theorem. The key
challenge is that we have absolutely no knowledge of a lower bound for

∥∥T
(
I, v(j), v(j)

)∥∥. Without
this bound, approximating the normalization step becomes infeasible.

Remark G.3. The use of the ReLU activation function here is primarily for technical convenience
and does not alter the fundamental nature of the attention mechanism. Several studies have demon-
strated that transformers with ReLU-based attention perform comparably to those using softmax
attention(Shen et al., 2023; Bai et al., 2023; He et al., 2025a).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

G.2 PROOF OF THEOREM G.8

Proof. For simplicity, we only proof the case that σ(x) = x in the attention layer. For ReLU activated
transformer, the result can be similarly proved by ReLU(x) − ReLU(−x) = x and the σ(x) = x
case. Hence we omit the notation σ in the following proof. We take H(0) = H. In the first attention
layer, consider the following attention structures:

Q(1)h
(0)
i =

[
ei
0

]
, K(1)h

(0)
j =

[
v(0)

0

]
, V(1)h

(0)
j =




0d20
0d0
0
0
d
0



.

After the attention operation, we have

h̃
(1)
i =

[
AttnR

Θ
(1)
attn

(
H0
)]

:,i
= h

(0)
i +

1

d

d∑

j=1

((
Q(1)h0

i

)⊤(
K(1)h0

j

))
V(1)h0

j = h
(0)
i +




0d20
0d0
0
0

dv
(0)
i
0



=




ti
v(0)

1
d

dv
(0)
i
0



, i ∈ [d].

Then we use a two-layer MLP to implement identity operation, which is

h
(1)
i = MLP

Θ
(1)
mlp

(
h̃
(1)
i

)
=




ti
v(0)

1
d

dv
(0)
i
0



, i ∈ [d].

Now we use an attention layer with d0 + 1 heads to implement the power iteration step of the cubic
tensor. Consider the following attention structure:

Q(2)
m h

(1)
i =

[
v
(0)
m

0

]
, K(2)

m h
(1)
j =

[
dv

(0)
j

0

]
, V(2)

m h
(1)
j =




0d20
T :,j,m

0


 , m ∈ [d0],

and

Q
(2)
d0+1h

(1)
i =

[
1
0

]
, K

(2)
d0+1h

(1)
j =

[
d
0

]
, V

(2)
d0+1h

(1)
j =




0d20
−v(0)
0


 .

After the attention operation, we have

h̃
(2)
i =

[
AttnR

Θ
(2)
attn

(
H(1)

)]
:,i

= h
(1)
i +

d0∑

m=1

1

d

d∑

j=1

((
Q(2)
m h

(1)
i

)⊤(
K(2)
m h

(1)
j

))
V(2)
m h

(1)
j +

1

d

d∑

j=1

((
Q

(2)
d0+1h

(1)
i

)⊤(
K

(2)
d0+1h

(1)
j

))
V

(2)
d0+1h

(1)
j

= h
(1)
i +

d0∑

m=1

1

d

d∑

j=1

(
dv(0)m v

(0)
j

)



0d20
T :,j,m

0


+

1

d

d∑

j=1

d




0d20
−v(0)
0




= h
(1)
i +



0d20
v(1)

0


+




0d20
−v(0)
0




=




ti
v(1)

1
d

dv
(0)
i
0



, i ∈ [d],

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

where v(1) =
[
v(1)⊤,0⊤

d0−d
]⊤

and v(1) =
∑
j,m∈[d] v

(0)
m v

(0)
j T:,j,m.

Then we use a two-layer MLP to clean the term dv
(0)
i , which is

h
(2)
i = MLP

Θ
(2)
mlp

(
h̃
(2)
i

)
=




ti
v(1)

1
d
0


 , i ∈ [d].

Similarly, for any ℓ ∈ N+, we have

h
(2ℓ)
i =

[
MLP

Θ
(2)
mlp

(
Attn

Θ
(2)
attn

(
MLP

Θ
(1)
mlp

(
Attn

Θ
(1)
attn

(
H(2ℓ−2)

))))]
:,i

=




ti
v(ℓ)

1
d
0


 , i ∈ [d].

The parameter bounds can be directly computed by the construction above. The theorem is proved.

H MORE ON EMPIRICAL STUDIES

H.1 MORE ON EXPERIMENTAL SETUPS

Anisotropic adjustments We consider anisotropic Gaussian mixtures that takes the following
form: A K-component anisotropic Gaussian mixture distribution is defined with parameters θ =
π ∪ µ ∪ σ, where π := {π∗

1 , π
∗
2 , · · · , π∗

K}, π∗
k ∈ R, µ = {µ∗

1, µ
∗
2, · · · , µ∗

K}, µ∗
k ∈ Rd, k ∈ [K]

and σ = {σ∗
1 , σ

∗
2 , · · · , σ∗

K}, σ∗
k ∈ Rd+, k ∈ [K]. A sample Xi from the aforementioned anisotropic

GMM is expressed as:

Xi = µ∗
yi + σ∗

yiZi, (25)

where {yi}i∈[N] are iid discrete random variables with P(y = k) = π∗
k for k ∈ [K] and {Zi}i∈[N]

are iid standard Gaussian random vector in Rd. Analogous to that in the isotropic case and overload
some notations, we define an anisotropic GMM task to be T = (X,θ,K).

To adapt the TGMM framework to be compatible to anisotropic problems, we expand the output
dimension of the attentive pooling module from (d+K)×K to (d+ 2K)×K, with the additional
K rows reserved for the estimate σ̂ of σ, with the corresponding estimation loss function augmented
with a scale estimation part:

L̂n(Θ) =
1

n

n∑

i=1

ℓµ(µ̂i,µi) + ℓπ(π̂i,πi) + ℓσ(σ̂i,σi), (26)

where the loss function ℓσ is chosen as the mean-square loss. During the experiments, we inherit
configurations from those of isotropic counterparts, except for the calculation of the ℓ2-error metric,
where we additionally considered contributions from the estimation error of scales.

Configurations related to Mamba2 architecture We adopt a Mamba2 Dao & Gu (2024) model
comprising 12-layers and 128-dimensional hidden states, with the rest hyper-parameters chosen so as
to approximately match the number of a 12-layer transformer with 128-dimensional hidden states.
As the Mamba series of models are essentially recurrent neural networks (RNNs), we tested two
different kinds of Readout design with either (i). the attentive pooling module as used in the case
of transformer backbone and (ii). a more natural choice of using simply the last hidden state to
decode all the estimates, as RNNs compress input information in an ordered fashion. We observe
from our empirical investigations that using attentive pooling yields better performance even with a
Mamba2 backbone. The other training configurations are cloned from those in TGMM experiments
with transformer backbones.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Software and hardware infrastructures Our framework is built upon PyTorch Paszke et al. (2019)
and transformers Wolf et al. (2020) libraries, which are open-source software released under
BSD-style 1 and Apache license 2. The code implementations will be open-sourced after the reviewing
process of this paper. All the experiments are conducted using 8 NVIDIA A100 GPUs with 80 GB
memory each.

H.2 A COMPLETE REPORT REGARDING DIFFERENT EVALUATION METRICS

In this section, we present complete reports of empirical performance regarding the evaluation
problems mentioned in section 3. Aside from the ℓ2-error metric that was reported in section 3.2, we
additionally calculated all the experimental performance under the following metrics:

Clustering accuracy We compare estimated cluster membership with the true component assign-
ment, after adjusting for permutation invariance as mentioned in section 2.3.

Log-likelihood We compute average log-likelihood as a standard metric in unsupervised statistical
estimation.

The results are reported in figure 10, 11, 12, 13 and 14, respectively. According to the evaluations,
the learned TGMM models show comparable clustering accuracy against the spectral algorithm
and outperform EM algorithm when K > 2 across all comparisons. Regarding the log-likelihood
metric, TGMM demonstrates comparable performance with the other two classical algorithms in
comparatively lower dimensional cases. i.e., d ∈ {2, 8}, but underperforms both baselines in larger
dimensional problems. We conjecture that is might be due to the fact that EM algorithm is essentially
a maximum-likelihood algorithm Dempster et al. (1977), while the TGMM estimation objective (2)
is not explicitly related to likelihood-based training.

H.3 ON THE IMPACT OF INFERENCE-TIME SAMPLE SIZE N

Motivated by the classical statistical phenomenon that estimation quality tends to improve with
sample size, we test whether TGMM’s estimation performance increases as N goes up. We run
corresponding experiments by varying the sample size to be N ∈ {32, 64, 128} during both train
and inference, while controlling other experimental configurations same as those in section 3.1. The
results are reported in ℓ2-error, clustering accuracy as log-likelihood and summarized in figure 15.
The results exhibit a clear trend that aligns with our hypothesis, justifying the TGMM learning
process as learning a statistically meaningful algorithm for solving GMMs.

H.4 ON THE IMPACT OF BACKBONE SCALE

The scaling phenomenon is among the mostly discussed topics in modern AI, as choosing a suitable
scale is often critical to the performance of transformer-based architectures like LLMs. In this
section we investigate the scaling properties of TGMM via comparing performances produced by
varying sizes of backbones that differ either in per-layer width (i.e., the dimension of attention
embeddings) or in the total number of layers L. With the rest hyper-parameters controlled to be
the same as those in section 3.1. The results are reported in three metrics and summarized in figure
16 and figure 17, respectively. According to these investigations, while in general a larger-sized
backbone yields slightly better performance as compared to smaller ones. The performance gaps
remain mild especially for tasks with relative lower complexity, i.e., K = 2. Consequently, even a
3-layer transformer backbone is able to achieve non-trivial learning performance for solving isotropic
GMMs, a phenomenon that was also observed in a recent work He et al. (2025b).

1https://github.com/pytorch/pytorch/blob/master/LICENSE
2https://github.com/huggingface/transformers/blob/main/LICENSE

34

https://github.com/pytorch/pytorch/blob/master/LICENSE
https://github.com/huggingface/transformers/blob/main/LICENSE

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

2 8 32 128

d

0

2

4

6

8

10

12

` 2
-e

rr
or

K = 2

EM

Spectral

TGMM

2 8 32 128

d

0

2

4

6

8

10

12

` 2
-e

rr
or

K = 3

EM

Spectral

TGMM

2 8 32 128

d

0

2

4

6

8

10

12

` 2
-e

rr
or

K = 4

EM

Spectral

TGMM

2 8 32 128

d

0

2

4

6

8

10

12

` 2
-e

rr
or

K = 5

EM

Spectral

TGMM

(a) ℓ2-error

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 2

EM

Spectral

TGMM

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 3

EM

Spectral

TGMM

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 4

EM

Spectral

TGMM

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 5

EM

Spectral

TGMM

(b) clustering accuracy

2 8 32 128

d

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g

lik
el

ih
o

o
d

K = 2

EM

Spectral

TGMM

2 8 32 128

d

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g

lik
el

ih
o

o
d

K = 3

EM

Spectral

TGMM

2 8 32 128

d

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g

lik
el

ih
o

o
d

K = 4

EM

Spectral

TGMM

2 8 32 128

d

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g

lik
el

ih
o

o
d

K = 5

EM

Spectral

TGMM

(c) log-likelihood

Figure 10: Performance comparison between TGMM and two classical algorithms, reported in three
metrics.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 2

32→128

64→128

128→128

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 3

32→128

64→128

128→128

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 4

32→128

64→128

128→128

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 5

32→128

64→128

128→128

(a) ℓ2-error

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 2

32→128

64→128

128→128

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 3

32→128

64→128

128→128

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 4

32→128

64→128

128→128

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 5

32→128

64→128

128→128

(b) clustering accuracy

2 8 32 128

d

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g

lik
el

ih
o

o
d

K = 2

32→128

64→128

128→128

2 8 32 128

d

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g

lik
el

ih
o

o
d

K = 3

32→128

64→128

128→128

2 8 32 128

d

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g

lik
el

ih
o

o
d

K = 4

32→128

64→128

128→128

2 8 32 128

d

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g

lik
el

ih
o

o
d

K = 5

32→128

64→128

128→128

(c) log-likelihood

Figure 11: Assessments of TGMM under test-time task distribution shifts I: A line with N train
0 → N test

draws the performance of a TGMM model trained over tasks with sample size randomly sampled
in [N train

0 /2, N train
0] and evaluated over tasks with sample size N test. We can view the configuration

128→ 128 as an in-distribution test and rest as out-of-distribution tests.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10
σp

0

25

50

75

100

125

` 2
-e

rr
or

K = 2

EM

Spectral

TGMM

0 2 4 6 8 10
σp

0

25

50

75

100

125

` 2
-e

rr
or

K = 3

EM

Spectral

TGMM

0 2 4 6 8 10
σp

0

25

50

75

100

125

` 2
-e

rr
or

K = 4

EM

Spectral

TGMM

0 2 4 6 8 10
σp

0

25

50

75

100

125

` 2
-e

rr
or

K = 5

EM

Spectral

TGMM

(a) ℓ2-error

0 2 4 6 8 10
σp

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 2

EM

Spectral

TGMM

0 2 4 6 8 10
σp

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 3

EM

Spectral

TGMM

0 2 4 6 8 10
σp

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 4

EM

Spectral

TGMM

0 2 4 6 8 10
σp

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 5

EM

Spectral

TGMM

(b) clustering accuracy

0 2 4 6 8 10
σp

−12

−10

−8

−6

−4

−2

0

lo
g

lik
el

ih
o

o
d

K = 2

EM

Spectral

TGMM

0 2 4 6 8 10
σp

−12

−10

−8

−6

−4

−2

0

lo
g

lik
el

ih
o

o
d

K = 3

EM

Spectral

TGMM

0 2 4 6 8 10
σp

−12

−10

−8

−6

−4

−2

0

lo
g

lik
el

ih
o

o
d

K = 4

EM

Spectral

TGMM

0 2 4 6 8 10
σp

−12

−10

−8

−6

−4

−2

0

lo
g

lik
el

ih
o

o
d

K = 5

EM

Spectral

TGMM

(c) log-likelihood

Figure 12: Assessments of TGMM under test-time task distribution shifts II: ℓ2-error of estimation
when the test-time tasks T test are sampled using a mean vector sampling distribution ptest

µ different
from the one used during training.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 2

transformer

mamba2

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 3

transformer

mamba2

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 4

transformer

mamba2

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 5

transformer

mamba2

(a) ℓ2-error

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 2

transformer

mamba2

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 3

transformer

mamba2

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 4

transformer

mamba2

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 5

transformer

mamba2

(b) clustering accuracy

2 8 32 128

d

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g

lik
el

ih
o

o
d

K = 2

transformer

mamba2

2 8 32 128

d

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g

lik
el

ih
o

o
d

K = 3

transformer

mamba2

2 8 32 128

d

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g

lik
el

ih
o

o
d

K = 4

transformer

mamba2

2 8 32 128

d

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g

lik
el

ih
o

o
d

K = 5

transformer

mamba2

(c) log-likelihood

Figure 13: Performance comparisons between TGMM using transformer and Mamba2 as backbone,
reported in three metrics.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

2 8 32 128

d

0.0

2.5

5.0

7.5

10.0

12.5

` 2
-e

rr
or

K = 2

EM

TGMM

2 8 32 128

d

0.0

2.5

5.0

7.5

10.0

12.5

` 2
-e

rr
or

K = 3

EM

TGMM

2 8 32 128

d

0.0

2.5

5.0

7.5

10.0

12.5

` 2
-e

rr
or

K = 4

EM

TGMM

2 8 32 128

d

0.0

2.5

5.0

7.5

10.0

12.5

` 2
-e

rr
or

K = 5

EM

TGMM

(a) ℓ2-error

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 2

EM

TGMM

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 3

EM

TGMM

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 4

EM

TGMM

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 5

EM

TGMM

(b) clustering accuracy

2 8 32 128

d

−10

−8

−6

−4

−2

0

lo
g

lik
el

ih
o

o
d

K = 2

EM

TGMM

2 8 32 128

d

−10

−8

−6

−4

−2

0

lo
g

lik
el

ih
o

o
d

K = 3

EM

TGMM

2 8 32 128

d

−10

−8

−6

−4

−2

0

lo
g

lik
el

ih
o

o
d

K = 4

EM

TGMM

2 8 32 128

d

−10

−8

−6

−4

−2

0

lo
g

lik
el

ih
o

o
d

K = 5

EM

TGMM

(c) log-likelihood

Figure 14: Performance comparison between TGMM and the EM algorithm on anisotropic GMM
tasks, reported in three metrics

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 2

N =32

N =64

N =128

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 3

N =32

N =64

N =128

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 4

N =32

N =64

N =128

2 8 32 128

d

0

2

4

6

8

` 2
-e

rr
or

K = 5

N =32

N =64

N =128

(a) ℓ2-error

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 2

N =32

N =64

N =128

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 3

N =32

N =64

N =128

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 4

N =32

N =64

N =128

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 5

N =32

N =64

N =128

(b) clustering accuracy

2 8 32 128

d

−60

−40

−20

0

lo
g

lik
el

ih
o

o
d

K = 2

N =32

N =64

N =128

2 8 32 128

d

−60

−40

−20

0

lo
g

lik
el

ih
o

o
d

K = 3

N =32

N =64

N =128

2 8 32 128

d

−60

−40

−20

0

lo
g

lik
el

ih
o

o
d

K = 4

N =32

N =64

N =128

2 8 32 128

d

−60

−40

−20

0

lo
g

lik
el

ih
o

o
d

K = 5

N =32

N =64

N =128

(c) log-likelihood

Figure 15: Performance comparison between TGMM models trained under varying configurations of
sample-size. For example, N = 64 means that the model is trained over GMM tasks with (randomly
chosen) sample sizes within the range [32, 64] and tested on tasks with sample size 64.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

2 8 32 128

d

0

1

2

3

4

5

6

7

` 2
-e

rr
or

K = 2

D =128

D =256

D =512

2 8 32 128

d

0

1

2

3

4

5

6

7

` 2
-e

rr
or

K = 3

D =128

D =256

D =512

2 8 32 128

d

0

1

2

3

4

5

6

7

` 2
-e

rr
or

K = 4

D =128

D =256

D =512

2 8 32 128

d

0

1

2

3

4

5

6

7

` 2
-e

rr
or

K = 5

D =128

D =256

D =512

(a) ℓ2-error

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 2

D =128

D =256

D =512

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 3

D =128

D =256

D =512

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 4

D =128

D =256

D =512

2 8 32 128

d

0.2

0.4

0.6

0.8

1.0

cl
u

st
er

ac
c

K = 5

D =128

D =256

D =512

(b) clustering accuracy

2 8 32 128

d

−30

−20

−10

0

lo
g

lik
el

ih
o

o
d

K = 2

D =128

D =256

D =512

2 8 32 128

d

−30

−20

−10

0

lo
g

lik
el

ih
o

o
d

K = 3

D =128

D =256

D =512

2 8 32 128

d

−30

−20

−10

0

lo
g

lik
el

ih
o

o
d

K = 4

D =128

D =256

D =512

2 8 32 128

d

−30

−20

−10

0

lo
g

lik
el

ih
o

o
d

K = 5

D =128

D =256

D =512

(c) log-likelihood

Figure 16: Performance comparison between TGMM under backbones of varying scales I: We fix
embedding size at d = 128 and tested over different number of transformer layers L ∈ {3, 6, 12}.
Results are reported in three metrics.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

2 8 32 128

d

0

1

2

3

4

5

6

` 2
-e

rr
or

K = 2

L =3

L =6

L =12

2 8 32 128

d

0

1

2

3

4

5

6

` 2
-e

rr
or

K = 3

L =3

L =6

L =12

2 8 32 128

d

0

1

2

3

4

5

6

` 2
-e

rr
or

K = 4

L =3

L =6

L =12

2 8 32 128

d

0

1

2

3

4

5

6

` 2
-e

rr
or

K = 5

L =3

L =6

L =12

(a) ℓ2-error

2 8 32 128

d

0.5

0.6

0.7

0.8

0.9

1.0

cl
u

st
er

ac
c

K = 2

L =3

L =6

L =12

2 8 32 128

d

0.5

0.6

0.7

0.8

0.9

1.0

cl
u

st
er

ac
c

K = 3

L =3

L =6

L =12

2 8 32 128

d

0.5

0.6

0.7

0.8

0.9

1.0

cl
u

st
er

ac
c

K = 4

L =3

L =6

L =12

2 8 32 128

d

0.5

0.6

0.7

0.8

0.9

1.0

cl
u

st
er

ac
c

K = 5

L =3

L =6

L =12

(b) clustering accuracy

2 8 32 128

d

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g

lik
el

ih
o

o
d

K = 2

L =3

L =6

L =12

2 8 32 128

d

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g

lik
el

ih
o

o
d

K = 3

L =3

L =6

L =12

2 8 32 128

d

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g

lik
el

ih
o

o
d

K = 4

L =3

L =6

L =12

2 8 32 128

d

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g

lik
el

ih
o

o
d

K = 5

L =3

L =6

L =12

(c) log-likelihood

Figure 17: Performance comparison between TGMM under backbones of varying scales II: We
fix the number of transformer layers at L = 12 and tested over different number of hidden states
d ∈ {128, 256, 512}. Results are reported in three metrics.

42

	Introduction
	Methodology
	Preliminaries
	The TGMM architecture
	Meta training procedure

	Experiments
	Experimental Setup
	Results and findings

	Theoretical understandings
	Understanding TGMM
	Proof Ideas

	Conclusion and discussions
	Appendix
	 Appendix
	Literature on Density Estimation using LLMs
	Algorithm Details
	Full Notation of Network Architecture
	On the parameter efficiency of TGMM
	Limitations and future work directions
	Formal statement of Theorem 1 and proofs
	Formal statement of Theorem 1
	Construction of transformer architecture and formal version of Figure 7
	Convergence results for EM algorithm
	Convergence results for population-EM algorithm
	Convergence results for empirical-EM algorithm
	Convergence results for transformer-based EM in Section D.2

	Proof of Theorem D.1

	Formal statement of Theorem 2 and proofs
	Formal statement of Theorem 2
	Proof of Theorem E.8

	More on empirical studies
	More on experimental setups
	A complete report regarding different evaluation metrics
	On the impact of inference-time sample size N
	On the impact of backbone scale

