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Abstract

Machine Unlearning has emerged as a significant area of research, focusing on ‘removing’
specific subsets of data from a trained model. Fine-tuning (FT) methods have become
one of the fundamental approaches for approximating unlearning, as they effectively retain
model performance. However, it is consistently observed that naive FT methods struggle
to forget the targeted data. In this paper, we present the first theoretical analysis of FT
methods for machine unlearning within a linear regression framework, providing a deeper
exploration of this phenomenon. Our analysis reveals that while FT models can achieve zero
remaining loss, they fail to forget the forgetting data, as the pretrained model retains its
influence and the fine-tuning process does not adequately mitigate it. To address this, we
propose a novel Retention-Based Masking (RBM) strategy that constructs a weight saliency
map based on the remaining dataset, unlike existing methods that focus on the forgetting
dataset. Our theoretical analysis demonstrates that RBM not only significantly improves
unlearning accuracy (UA) but also ensures higher retaining accuracy (RA) by preserving
overlapping features shared between the forgetting and remaining datasets. Experiments
on synthetic and real-world datasets validate our theoretical insights, showing that RBM
outperforms existing masking approaches in balancing UA, RA, and disparity metrics.

1 Introduction

Machine Unlearning has emerged as a prominent area that focuses on protecting individual privacy during
the model training process, particularly adhering to legislation such as ‘the right to be forgotten’ (Rosen,
2011)) under the General Data Protection Regulation (GDPR) (Hoofnagle et al., [2019). That is, it removes
certain training samples from the trained model upon their users’ data deletion request. A natural approach
to machine unlearning is to retrain the model from scratch, excluding the data that needs to be forgotten;
this is known as exact unlearning. However, this method is highly computationally inefficient. To address
this challenge, previous research has proposed a more relaxed definition of machine unlearning, where the
unlearned model only needs to be approximately similar to one retrained from scratch. This led to the
development of approzimate unlearning methods, such as Fine-Tuning (Warnecke et al.l 2021 |Golatkar,
et all |2020a), Gradient Ascent (Graves et al. [2021; |Thudi et al., 2022), Fisher Forgetting (Becker & Liebig;,
2022; |Golatkar et al., |2020al), and Influence Unlearning(Izzo et al.| [2021)).

Fine-tuning, as one of the most widely used approaches in approximate unlearning, has demonstrated its
empirical effectiveness. However, it can be observed in many studies (Kurmanji et al., |2024; Warnecke et al.)
2021; |Golatkar et al., 2020a} |Liu et al.l |2024; Sharma et al., 2024) and our investigations in Table [1| that
while fine-tuning may maintain the utility of the model on remaining data, it struggles to forget the targeted
data. This raises a natural question:

Why does fine-tuning fail to unlearn the forgetting data?

To answer this question, we revisit the machine unlearning problem with a simple yet fundamental over-
parameterized linear regression model and explore the behavior of fine-tuning through a theoretical perspec-
tive. Our main contributions can be summarized as follows.
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Table 1: Cifar-10 Class-wise Forgetting Performance Comparing Retrain and Naive FT (Fine-Tuning)
Method. The table compares Retrain and FT on CIFAR-10 across multiple evaluation metrics: Unlearn-
ing Accuracy (UA), Retaining Accuracy (RA), MIA-Efficacy, Test Accuracy (TA), Avg. Disparity, and
Run-Time. Values in brackets indicate the gap between FT and the golden model (i.e., Retrain). Further
explanations are provided in Section

Cifar-10 Class-wise Forgetting

Methods UA RA MIA-Efficacy TA Avg. Disparity Run Time
Retrain 100.00;&0‘00 100.00i0_00 100.00i0_00 94.81:(:()‘()9 0.00 82.00
FT 8.364+3.03(91.64)  40.7648.03(59.24)  99.9240.03(0.08)  94.4140.29(0.40) 37.84 2.53

e Theoretical Understanding of Fine-Tuning. We provide the first theoretical analysis of FT
methods in the context of machine unlearning within a linear regression framework. Specifically,
1) Based on the assumption of distinct features (Assumption , our theoretical observations,
which align with empirical studies, show that the remaining loss for the fine-tuning model is zero,
matching that of the golden model. Moreover, the loss of the fine-tuning model on the forgetting
dataset consistently remains zero, diverging from the performance of the golden model. 2) we
extend our analysis to a more complex case when the dataset retained for model retraining shares
overlapping features with the forgetting dataset. This challenges assumptions of distinct feature
sets across datasets, yet the previous conclusions remain valid in this case. More discussion refers
to Section [3

e Understanding the Benefits of Masking in Fine-Tuning. Our analysis shows that naive
fine-tuning (FT) methods fail to unlearn the forgetting data because the pretrained model retains
information about this data, and the fine-tuning process does not effectively alter that retention.
To address this, we propose removing the forgetting component to mitigate its retention in the pre-
trained model, an approach that aligns with the masking concept proposed in existing work Fan et al.
(2023)), which directly masks the forgetting data. However, one critical case is omitted: when the
remaining data and forgetting data share similar features, it becomes unclear whether those shared
features should be preserved. In Section {4 our work proves: 1) Masking on the pretrained model
can significantly improve unlearning accuracy while preserving the retaining accuracy. 2) When
considering overlapping features, retaining them does not substantially affect unlearning accuracy,
but discarding them compromises the retaining accuracy.

e« Retention-Based Masking. Building on the aforementioned analysis, we propose a novel
Retention-Based Masking (RBM) strategy that constructs the weight saliency map based on the
remaining dataset instead of the forgetting dataset.

To validate our theoretical results, we conduct experiments on both synthetic and real-world datasets.
First, all mask-based methods significantly improve UA compared to the naive FT method. Addi-
tionally, RBM preserves overlapping features by constructing masks based on the remaining dataset,
achieving higher RA than forgetting-based methods. Furthermore, RBM consistently achieves lower
average disparity, effectively balancing unlearning and retaining objectives.

1.1 Related Work

Machine Unlearning Methods. (Cao & Yang| (2015) first defined “Unlearning” as the removal of a sample
that produces the same output on the dataset as if the sample had never been trained. The natural way
to solve the problem is to retrain a model from scratch in response to each data deletion request. However,
retraining is not feasible due to the limited time and constrained resources. |Ginart et al.[ (2019) provided
a relaxed definition inspired by Differential Privacy (Dwork et all|2014), which only requires the unlearned
model to produce results similar to those of retrain-from-scratch models. This led to the development of
“approximate unlearning” methods, offering more efficient computational designs for machine unlearning.
Guo et al.| (2019)); [Izzo et al. (2021); Neel et al.| (2021)); [Ullah et al. (2021)); [Sekhari et al.| (2021)) provide
theoretical error guarantees by focusing on the empirical risk minimization problem under this probabilistic
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notion of unlearning. |Golatkar et al.| (2020a) proposed an information-based procedure to remove knowledge
from the trained weights, without access to the original training data. Further, |Golatkar et al.| (2020b))
approximated the weights inspired by NTK theory, addressing situations where the Hessian is not informative
about where the model will converge into a null space. Mehta et al.|(2022) avoid the computation of Hessian
by introducing a method only computing conditional independence, which identifies the Markov Blanket of
parameters requiring updates. [Thudi et al.| (2022)) proposed a regularizer to reduce the ‘verification error,’
which represents the distance between the unlearned model and a retrained-from-scratch model. [Kurmanji
et al.| (2024) bears a novel teacher-student formulation to achieve better performance towards unbounded
unlearning problems. [Liu et al.| (2024) considers model sparsity by pruning weights before the unlearning
process, thereby introducing a new unlearning paradigm. |Shen et al. (2024) incorporates the variational
inference and contrastive learning approaches to address the lack of supervision information (label-agnostic).

Machine Unlearning Theory. For approximate unlearning, Neel et al.[(2021));Thudi et al.| (2022]) explored
algorithms for empirical risk minimization objectives, while |Sekhari et al.| (2021) studied population risk
minimization problems, providing theoretical guarantees on both the effectiveness of unlearning and the
privacy of the data subjects. |Guo et al.| (2019); | Zhang et al.[ (2022 provided the certified radius with respect
to data changes before and after removals, as well as the certified budget for data removals. For exact
unlearning, [Ullah et al| (2021) introduced the notion of algorithmic stability, called Total Variation (TV)
stability, which is suited for achieving exact unlearning. This concept was further extended to the federated
setting by (Che et al.| (2023)); Tao et al.| (2024). However, existing theoretical work has primarily focused on
utility guarantees, with limited analysis explaining the successes and failures of fine-tuning methods.

Notations: In this paper, we adhere to a consistent notation style for clarity. We use boldface lower letters
such as x, w for vectors, and boldface capital letters (e.g. A, H) for matrices. Let ||A||2 denote the spectral
norm of A and ||v||z denote the Euclidean norm of v. For two vectors u and v, their inner product is
denoted by (u,v) or u'v. For two matrices A and B of appropriate dimension, their inner product is
defined as (A, B) := tr(ATB). For a positive semi-definite (PSD) matrix A and a vector v of appropriate
dimension, we write ||v||% := v Av. Denote by P,, the projection onto the space of a matrix X,,, i.e.,
P, =X (X, X)X .

2 Machine Unlearning in Linear Models

Let D = {(x;,y:)}!, be a training dataset consisting of n data points, where x; represents the feature
vector, and y; is the response variable for each data point in the dataset D. Assume that each pair (x;,y;)
is a realization of the linear regression model: y = x"w,, with w, € R? being the optimal model parameter
in the overparameterized regime (n < d). Machine Unlearning aims to remove (or scrub) the influence of
specific training data from a trained machine learning (ML) model. Let Dy = {(x;,:)}.2; C D represents a
subset whose influence we want to scrub, termed the forgetting dataset. Accordingly, the complement of Dy,
termed the remaining dataset, is D, = {(x;,¥) i, 41 = D\Dy. The forgetting data can be represented by

stacking the feature vectors and response variables as follows:
X, = Rdxnf ,_ T Rnfxl
f = [X17X27”~7an]€ uyf Ca [y17y27'°'aynf] €
Similarly, it also holds for the remaining data:
Xy = [an'i‘l’ Xnp42,--- 7Xn} € RdX(n_nf)a yr = [ynf-i-lv Yng+2;--- 7yn]T € R<n_nf)><1

The overall dataset X and y are composed separately by concatenating X, X and y,,y;.

Learning Procedure We consider the machine unlearning problem based on the fine-tuning method divid-
ing the learning process into two distinct phases: Original Training and Fine-tuning (Unlearning). During the
original training phase, we train a model on n data points X € R%*™ and obtain an original model w, by opti-
mizing L(w,, D), where L(w, D) is defined as the mean-squared-error (MSE) loss: L(w, D) £ 1| XTw—y||3.
For the fine-tuning (unlearning) phase, we initialize with the original parameter w, and proceed to retrain
the model specifically on a subset of the remaining dataset D; C D, by optimizing L(wy, D), where w; is
the unlearn model by fine-tuning.
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Since we work in the overparameterized regime, where n < d, each w can perfectly fit the dataset. We
can express each solution w to the following optimization problems for Original training (OT), Unlearn via
fine-tuning (FT) and Golden unlearning (GU) respectively:

OT: w, = argmin|[wls, st y=X'w (1)
w

FT: w; = argmin|w — w2, st y,=Xw (2)
w

GU: w, = argmin||w|2, s.t. y, = X,/ w (3)
w

Our goal is to evaluate how the fine-tuning solution w; differs from the golden model solution w, which
refers to retraining the model parameters from scratch over the remaining dataset D,.. Existing work has
assessed machine unlearning performance from various perspectives (Graves et al., [2021; |Becker & Liebig;,
2022; |Golatkar et all 2020a; Song et al.l 2019). In this paper, we focus particularly on the Unlearning Loss
(UL) and Remaining Loss (RL), which refers to the model performance on the forgetting and remaining
dataset respectively. These losses are defined as:

1 1
RL: L(w,DT):n—HXTTw—yTH; UL: L(W,Df):EHX}rW—ny%.

3 Naive Fine-Tuning Methods Fail To Unlearn

In empirical studies (Kurmanji et al., |2024; [Warnecke et all [2021; |Golatkar et al., 2020a) and Table |1} it
can be observed that fine-tuning may retain the utility of a model but struggles to forget. In this section,
we revisit this phenomenon in a simplified setting, aiming to gain a basic understanding of why the vanilla
fine-tuning method succeeds in retaining the model’s utility on the remaining dataset but fails to forget the
targeted data it was trained on.

3.1 Distinct Features

To simplify our analysis, we first consider distinct features with the following assumption:

Assumption 3.1. The datasets Xy and X, possess distinct non-zero features, which can be denoted as
X =[RT,0] and XJT = [0,F ], where R C R%"*("=7s) and F C R¥ *" correspond to the non-zero parts,
d, and dy are the distinct feature numbers for remaining and forgetting data, respectively, and it satisfied
that d, +dy = d.

The assumption implies that each of these datasets contains features that are unique to each dataset—there
is no overlap in the features present in Xy and X,. The construction of X; and X, can be achieved by
rearranging the samples in the matrix to group non-zero features into distinct blocks. Without loss of
generality, we assume a structure where each matrix contains only one zero block to clear the analysis. It
can be obtained immediately from Assumption that w, = wi + w,, where w! and w, are the optimal
solution such that yf = X]Twic and y" = X w?’. In an ideal scenario for classification tasks, each class
possesses its own unique set of features that distinctly differentiates it from other classes. We later extended
our analysis to overlapping features in Section 3.2

Theorem 3.2. Suppose a model is trained by the procedure[q and[3 separately. Under the Assumption
it holds that

r

« RL: L(wy,D,) =0, UL : L(w;,Dy) = 0;

e RL: L(wg,D,) =0, UL: L(wy, Dy) = |[wl]|?

T -
Xfo
ng

Here, wy refers to the unlearned model via fine-tuning, w, refers to the model parameter retrained from
scratch, RL and UL refer to the remaining loss on the remaining data and the unlearning loss on the
forgetting data.
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Theorem presents two interesting observations: 1) The fine-tuning model can perform perfectly on the
remaining dataset, which indicates that the information from training data has been preserved from the
original model, w,, to the unlearned model via fine-tuning, w;. 2) The loss of the fine-tuning model on
the forgetting dataset consistently remains zero, which diverges from the performance of the golden model.
This suggests that the fine-tuning model is unable to forget the information it previously acquired from w,,
which may be contradicted by catastrophic forgetting in continual learning (Parisi et all) 2019} |Ding et al.|

2024).

To illustrate the behavior of fine-tuning during the unlearning process more clearly, we consider the projective
nature of learning. Firstly, the solution of Equation can be represented as

wy = (I-Py)w, + Pyw], (4)

where Py is the projection space of Xy, the I — Py is the corresponding orthogonal space, and the w, can be
also represented w, = Pw, with P being the projection space of X. According to the property of projection
Corollary [B:I] multiplying any data matrix by a projection matrix preserves the components of the data
that lie within the subspace defined by the projection. Moreover, under the distinct features assumption [3.1
it holds that

w, = Pw’ + (P — P,)w/. (5)

Therefore, the unlearned model w,; from Equation decomposed into two components for the unlearning
process: the first part, wi, preserves the accuracy on the remaining data, while the second part, wi , also
ensures accuracy on the forget data. However, the projection of w! onto the fine-tuning space P; has no

effect, ultimately resulting in the unlearned model w; being exactly the same as the pretrained
model w,. The proof of Theorem [3.2]is provided in Appendix
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Figure 1: Machine Unlearning Performance via (Masked) Fine-tuning with (without) Overlapping Features.
Section and Figure present the relationship between machine unlearning loss (i.e. RA, UA) and
the number of fine-tuning data samples under distinct features and overlapping features assumptions, using
naive FT method. In contrast, Figure[lc|and Figure [ld|show the same relationship using masked fine-tuning
methods, as discussed in Section @

3.2 Overlapping Features

In practical scenarios, training datasets often deviate from ideal classifications, introducing complexities such
as overlapping features between subsets. This challenges assumptions of distinct feature sets across datasets.
Therefore, we extend our previous analysis to address the presence of overlapped features. In the following,
we begin by defining overlapped features.

Assumption 3.3. The datasets Xy and X, possess d, overlapped features, which can be structured as
follows: X! = [R",L],0] and X}r =[0,Ly,F "], where R C R4 *" and F C R% *"s represent the distinct
features of the remaining and forgetting data, respectively. L; C R%erX"r and Ly C R%ar*"s denote the
overlapped parts.

Similarly to Assumption @ d, and dy are the distinct feature numbers for remaining and forgetting data,
while the equation d,. +d;qp+ds = d holds. It can also indicates that the optimal solution can be decomposed
into w, = wi + w'? + w” such that y/ = XJT (wl + W) and y" = X, (wh + wiPy.
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Theorem 3.4. Suppose a model is trained by the procedure[d and[3 separately. Under the Assumption
it holds that

e RL: L(wy, D) =0, UL: L(wy, Dy) = 0;

« RL: L(wy,D,) =0, UL: L(wg, Dy) = |[Pywl + Powl™ — (wl + wi)[ oo
nf f

Theorem [3.4]shows that the previous conclusions remain valid under the assumptions of overlapping features,
as the information from all training data, including forget data, is preserved from the pretrained model, w,,
to the unlearned model through fine-tuning, w;. Consequently, the loss on both the remaining dataset and
the forgetting dataset for the fine-tuning model is zero. Additionally, an interesting observation is that the

number of overlapping features does not impact the unlearning accuracy of the fine-tuning model. The proof
of Theorem [3:4] is provided in Appendix [B.3]

Both Theorem [3.2] and Theorem [3.4] present similar findings regarding the performance of the unlearned
model through fine-tuning. We run a synthetic experiment to validate these results (more experimental
details in Appendix . In Section and Figure both distinct and overlapping feature assumptions
demonstrate the same results: 1) The remaining loss of fine-tuning model w; and golden model w, is zero,
indicating that the fine-tuning model performs equivalently to the golden model, successfully retaining the
model’s utility on the remaining dataset. 2) The unlearning loss of the fine-tuning model consistently remains
at zero, differing from the golden model, suggesting that the fine-tuning model fails to forget the information
obtained from the pretrained model. These empirical findings align well with our theoretical analysis.

4 Eliminating Forgetting Data Features from Pre-Trained Model Enhances
Unlearning

Compared to the golden model w, = P,w/, the unlearned model can be viewed as having an additional
second term as
w; = Pw’ 4+ (P — Py)w/.

This additional term (P — Pt)wf represents the residual influence of the data intended to be forgotten on
the unlearned model, contributing to the unlearning accuracy (UA) gap between w; and the golden model
Wwg. A natural approach to mitigate this gap might involve making the fine-tuning space converge toward
the pretraining space-that is, aligning P; with P,.. However, this strategy is inefficient and contradictory,
as it would lead to the optimal solution for the fine-tuning dataset becoming identical to that of the entire
dataset, undermining the purpose and benefits of fine-tuning.

Inspired by the formulation of the unlearned model:
W = (I — Pt)Wo + PtW:

To mitigate the UA gap between the fine-tuning model and the golden model, it becomes evident that the
remaining portion of the pretrained model does not contribute to UA. Specifically, the components of the
pretrained model w, associated with the forgetting data (Wﬁf ) do not enhance performance on the remaining
dataset D,.. Therefore, if we can eliminate the forgetting component—specifically by removing the wi
term from w,—the divergence can be addressed. In the following, we provide a formal description of this
modification. Consider the same learning procedure Equation to obtain the pretrained model w,. Prior
to unlearning through fine-tuning, we modify w, by removing components associated with the forgetting
data. Specifically, we construct a modified model W, as follows:

1. Distinct Features Scenario. When the features of D, and Dy are distinct, we construct W, by
retaining only the components corresponding to D, and setting the rest to zero. Formally, we define w, as
Ww.[0: d,.] = w,[0 : d,] or equivalently can be understood as:

v, ] w,li], if i € features of D,,
1l =
0, otherwise.
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2. Overlapping Features Scenario. When features overlap across D, and Dy, we consider two cases:

. Option A (Retaining Overlapping Features): We retain the overlapping features between D, and
Dy, which can be expressed as W,[0 : d, + diap| = Wo[0 : dy + djap] or equivalently

woli], if i € features of
Woli] = D,. U overlapping features,

0, otherwise.
. Option B (Discarding Overlapping Features): We discard the overlapping features, which can be
expressed as W/ [0 : d,] = w,[0 : d,] or equivalently

woli], if i € features of D,
0, otherwise.

Theorem 4.1. Let w, be a pretrained model obtained the overall dataset D = D, U Dy. Before performing
unlearning (fine-tuning), we modify w, to remove the components associated with Dy as described above.
Then, using the modified models W, (W) in the unlearning process yields

1. In the distinct features scenario (i.e., under the Assumption , we have:
RL: L(y, Dy) = 0; UL: L1, Dp) = [ Wl s
iy

2. In the overlapping features scenario (i.c., under Assumption , we have:

e Option A (Retaining Overlapping Features):
RL: L(W,D,) =0;

UL: L(v1, D) = [Pwr + Pw? — (w! 4 wi)[2 .
nyg f

e Option B (Discarding Overlapping Features):

RL: LW, D) = | = P)wi|%

UL: LW, Dy) = [P + Pew™ — (wl 4 w2y v
’!Lf

According to Theorem [4.1] under the distinct features assumption, the masked unlearned model achieves
the same remaining and unlearning loss as the golden model. Furthermore, when considering overlapping
features, if the overlapped component from the pretrained model is retained, the remaining loss remains
zero, as with the golden model, while the unlearning loss differs only in the projection component. This
difference can be considered negligible when applied to w} and w'? due to the model assumption. Figure
and Figure [Id] verify our theoretical conclusions. However, if the overlapped component is discarded from
the pretrained model, the remaining loss is no longer zero, and there is a small change to the unlearning
loss that can be overlooked. These findings offer several insights into the design of machine unlearning
algorithms: 1) Masking on the pretrained model can significantly improve unlearning accuracy
while preserving the retaining accuracy. If we can identify the component of the pretrained model
related to the forgetting data, applying masking to this component can further enhance UA. Our theorem
also explains recent related works, such as [Liu et al.| (2024); Fan et al| (2023|), which apply a mask to
the pretrained model either randomly or by regularizing the weights associated with the forgetting data
to provide better unlearn performance. These methods share the same underlying principle discussed here.
However, one overlook a critical scenario: when the remaining data and forgetting data share similar features,
it becomes unclear whether those shared features should be retained. As shown in Theorem [£1] our work
provides a clear resolution to this question. 2) When considering overlapping features, retaining
them does not substantially affect unlearning accuracy, but discarding them compromises the
retaining accuracy. As shown in Theorem the remaining loss can not retain zero unless the remaining
data X, can be fully represented by the fine-tuning space, meaning P;X, = X,. Additionally, as the
number of overlapping features increases, the impact on both remaining and unlearning loss becomes more
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Figure 2: Comparison of Machine Unlearning Loss with and without Overlapping Features. Figure
retains overlapping features from the pretrained model, showing the matching performance between masked
w; model and golden model w,; Figure @ discards the overlapping features, showing a decline in retaining
accuracy.

significant. Discarding too many overlapping components can lead to instability in the retaining accuracy,
as the model loses essential information needed to represent D,., which in turn causes the remaining loss to
increase. Figure [ and Figure [2] validate our theoretical findings. The proof of Theorem [£1]is provided in

Appendix [B:4]
5 Rethinking Masking in Approximate Unlearning

5.1 Discarding Overlapping Features May Harm Retaining Accuracy

In Section [4] we show that once the components of the pretrained model related to the forgetting data are
identified and removed, unlearning accuracy can be significantly improved. In practice, an existing work
shares the same principles as discussed above. Specifically, it constructs the desired weight
saliency map by leveraging the gradient of a loss function with respect to the model weights on the forgetting
dataset:

my =1 (IVwL (Wi D)y, 127) (6)
where 1(g > ~) is an element-wise indicator function that outputs 1 for the i-th element if g; > ~ and 0
otherwise, | - | denotes the element-wise absolute value operation, and > 0 is a hard threshold. Variables

with larger gradients, which are highly associated with the forgetting dataset, are identified and subsequently
masked. Then, the unlearn model can be updated by:

Wy, =my; O (Aw +w,) + (1 —my) © w,, (7)

salient weights original weights

where w, represents the original model, 1 denotes an all-one vector and Aw is optimized by the following
problem:

minL Wy, ) :=E(e.y) w0, 7y [lom(Wu %, 4] + QB ey op, [lom (W5 %, 9), (8)
where 3’ is the random label of the image x different from y, « is a regularization parameter and £cg is the
cross-entropy (CE) loss for supervised classification.

However, Equation ([7)) overlooks the scenario where the remaining data and the forgetting data share similar
model weights, making it unclear whether those weights should be preserved. In Theorem [I.1] we demon-
strate that when considering overlapping features (features shared between the remaining dataset and the
forgetting dataset), retaining them is more beneficial than discarding them, which contrasts slightly with

the approach in (2023). Specifically, we show that discarding overlapping features compromises
retaining accuracy while retaining them ensures better performance for the remaining dataset.
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Based on this analysis, we propose an alternative principle-Retention-Based Masking: the weight saliency
map should be constructed based on the remaining dataset rather than the forgetting dataset:

1-m.=1-1 (|VWL (W; Dr)| ew, 1> ’y) . (9)
Therefore, the unlearn model will be updated by

Wy, =(1-m;) O (AW +w,)+ m Ow, . (10)
——
salient weights original weights

Here, Aw is optimized using Equation with the retention-based mask, which combines the forgetting
loss on the random labels of forgotten data with the retaining loss on the remaining data.

Table 2: Cifar-10, Cifar-100 Comparison. We evaluate the unlearning performance on Cifar datasets
using Dense models only. Evaluation metrics from Section [5.1] are employed. Metrics are reported as mean
+ standard deviation across five seeds. (UA: Unlearning Acc., RA: Retaining Acc., TA: Test Acc.)

Cifar-10 Random Forgetting

Methods UA MIA-Efficacy RA TA Avg. Disparity Run Time (min)
Retrain 5.804+0.12 13.9140.15 100.00+0.00 94.3040.13 0.00 82.15
FT 0.1840.04(5.62) 1.7010.10(12.21)  99.9210.07(0.08)  94.2540.15(0.05) 4.48 2.51
SalUn 2.3810.31(3.42) 15.4540.14(1.54) 99.62+0.22(0.38) 94.114¢.23(0.19) 1.39 2.50
Ours 3.2410.12(2.56)  14.2210.11(0.31)  99.7240.20(0.28) _ 93.9010.10(0.40) 0.88 2.50
Cifar-10 Class-wise Forgetting
Methods UA MIA-Efficacy RA TA Avg. Disparity Run Time (min)
Retrain 100.0040.00 100.0040.00 100.0040.00 94.81+0.09 0.00 82.00
FT 8.3613.03(91.64)  40.7645.03(59.24)  99.9210.03(0.08)  94.414.20(0.40) 37.84 2.50
SalUn 99.7840.15(0.22)  100.0040.00(0.00)  99.4710.95(0.53)  93.5510.44(1.26) 0.50 2.50
Ours 99.98+0.02(0.02) _100.0010.00(0.00) _ 99.69+0.50(0.31)  93.4450.30(1.37) 0.42 250
Cifar-100 Random Forgetting
Methods UA MIA-Efficacy RA TA Avg. Disparity Run Time (min.)
Retrain 24.7540.11 49.68+0.35 99.98+0.01 74.57+0.06 0.00 82.33
FT 0.1110.03(24.64) 5.6640.47(44.02)  99.9740.01(0.01)  75.4510.17(0.88) 16.65 2.50
SalUn 27.7510.35(3.00)  71.4210.11(21.74)  98.6510.20(1.33)  68.9710.30(5.60) 7.91 1.3
Ours 23.5310.22(1.22)  69.0240.00(19.34)  98.7410.12(1.24) _ 69.1640.11(5.41) 6.80 i3
Cifar-100 Class-wise Forgetting
Methods UA MIA-Efficacy RA TA Avg. Disparity Run Time (min)
Retrain 100.00+0.00 100.00+0.00 99.98+0.01 73.7540.20 0.00 82.22
FT 11.5547.1(88.45)  59.33117.57(40.67)  99.7810.05(0.20)  74.6110.30(0.86) 32.55 2.52
SalUn 100.00£0.00(0.00)  100.0040.00(0.00)  99.6310.10(0.35)  74.7640.51(1.01) 0.35 2.50
Ours 100.0040.00(0.00) _ 100.00+0.00(0.00) _ 99.90+0.06(0.08)  74.47+0.72(0.72) 0.19 250

5.2 Experiment

In the following, we verify our theoretical insights by evaluating the effectiveness of the mask-based FT
machine unlearning methods through numerical experiments.

Datasets and Models. Our baseline methods include the naive fine-tuning approach (Golatkar et al.
2020aj; Warnecke et all [2021)) and SalUn (Fan et al. [2023), both implemented on ResNet-18 (He et al.
2016). For comparison, we also include the golden retrained model as a reference. Our experiments will
focus on image classification using the CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-100
. More details on the experimental setup will be provided in Appendix

Evaluation Metrics. We follow the existing work to assess machine unlearning performance from different
aspects (Golatkar et al.l [2020a} |Graves et al.| [2021}; [Thudi et al.| 2022} [Liu et al.| 2024} |[Sharma et al., [2024;
Zhu et al., 2024). Specifically, we focus on the following evaluation metrics:

e Unlearning accuracy (UA): We define UA(w;) = 1 — Accp,(w;) as (2024)), measuring
how effectively the model has forgotten the targeted data. Here Accp,(w;) is the accuracy of the
unlearned model on the forgetting dataset.

o Membership inference attack (MIA) on Dy (MIA-Efficacy): The efficacy of MIA on the forget
dataset, which assesses whether the model still retains any identifiable information about the for-
getting data.
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o Retaining accuracy (RA): The accuracy of the model on the remaining dataset D, after unlearning,
measuring how well the model retains its performance from the pretrained model.

o Testing accuracy (TA): The accuracy of the model on the independent test dataset, indicating its
generalization ability after unlearning.

o Average Disparity (Avg. Disparity): The mean absolute difference between the performance metrics
of the unlearned model and the retrained model, calculated across all evaluation aspects.

o Run-time efficiency (RTE): RTE evaluates the computational efficiency of the unlearning process,
including the run-time cost taken to execute the unlearning procedure.

Note that a smaller performance gap between the unlearned model and the golden retrained model indicates
the better performance of approximate unlearning.

Masking Strategies Enhance Unlearning Accuracy in Naive Fine-Tuning. The performance of
Retention-Based Masking (Ours) and Forgetting-Based Masking (SalUn) against Fine-Tuning highlights
how masking significantly improves unlearning accuracy, measured as the distance from the retrained model.
Specifically, in CIFAR-10 Class-wise Forgetting, naive fine-tuning exhibits a significant gap of 91.64 compared
to the retrained model, which is drastically reduced by SalUn (0.22) and further refined by RBM to 0.02.
Similarly, for CIFAR-100 Class-wise Forgetting, fine-tuning shows a large gap of 87.96, reduced to 0.00 by
SalUn and maintained by RBM at 0.00. In random forgetting scenarios, in CIFAR-10 Random Forgetting,
fine-tuning achieves a gap of 5.62, while SalUn reduces this to 3.42 and RBM further minimizes it to 2.56.
A similar trend is observed for CIFAR-100 Random Forgetting, where fine-tuning starts with a gap of 24.64,
SalUn reduces it to 3.00, and RBM achieves a further improvement to 1.22. These results demonstrate
that masking strategies, whether leveraging forgetting-based or retention-based saliency, are essential for
enhancing unlearning accuracy in naive fine-tuning.

Retention-Based Masking Improves Retaining Accuracy. Next, we compare retention-based masking
(Ours) and forgetting-based masking (SalUn) to evaluate how different masking approaches impact retaining
accuracy, measured by the distance from the retrained model. For CIFAR-10 Random Forgetting, SalUn
achieves a gap of 0.38, while RBM improves it to 0.28. For CIFAR-100 Random Forgetting, SalUn shows a
gap of 1.33, whereas RBM significantly reduces it to 1.24. In class-wise forgetting scenarios, RBM consistently
maintains an advantage: for CIFAR-10 Classwise Forgetting, SalUn achieves a gap of 0.53 compared to 0.31
for RBM. Similarly, for CIFAR-100 Class-wise Forgetting, SalUn achieves a gap of 0.35, while RBM further
improves this to 0.08. These results underscore that the retention-based saliency approach is more effective
in preserving the performance of the remaining dataset, aligning with our theoretical insights in Theorem [4.1]

Retention-Based Masking Minimizes Average Disparity Across Tasks. In addition to improving
retaining accuracy, RBM also reduces average disparity across all tasks. For CIFAR-10 Random Forgetting,
RBM reduces the disparity to 0.88, compared to 1.39 for SalUn. Similarly, in CIFAR-~100 Random Forgetting,
RBM achieves a reduced disparity of 6.80, lower than 7.91 for SalUn. In CIFAR-10 Classwise Forgetting,
RBM reduces the disparity to 0.42, compared to 0.50 for SalUn. For CIFAR-100 Class-wise Forgetting, RBM
achieves an exceptionally low disparity of 0.19, significantly lower than 0.35 for SalUn. These results further
validate the robustness of RBM in effectively balancing retaining and unlearning objectives.

6 Conclusion

In conclusion, we present the first theoretical analysis of fine-tuning methods for machine unlearning within
a linear regression framework. Our analysis, covering two scenarios—distinct and overlapping feature
sets—demonstrates that while fine-tuning can achieve optimal retaining accuracy, it fails to fully unlearn the
forgetting dataset. This failure arises from the pretrained model retaining information about the forgetting
data. To address this, we propose a theoretical solution and introduce Retention-Based Masking (RBM), a
strategy that constructs masks based on the remaining dataset to preserve overlapping features. Our experi-
mental results demonstrate that RBM achieves a better balance between unlearning and retaining objectives
compared to existing masking approaches.
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A Experimental Details

A.1 Verification via Simulation

To empirically validate the theoretical findings presented in Theorem Theorem and Theorem
regarding the performance of unlearned models through fine-tuning, we first conducted a series of synthetic
experiments.
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Data Generation. We constructed two data matrices, X, and Xy, representing the remaining data and
the forgetting data, respectively. The remaining data matrix, X:— , was structured as [RT, LI,O], and the
forgetting data matrix, XJT, as [0,Lj ,FT], where L] = LJ = 0 to enforce the non-overlapping case. Here,
RT and F" are random matrices corresponding to different feature sets, and the zeros represent the distinct
features across the datasets. We set the total number of data points to n = 40 and the total number of
features to d = 40. The remaining data consisted of n, = 30 samples with d, = 20 features, while the
forgetting data comprised ny = 10 samples with dy = d — d, = 20 features. To simulate a controlled
environment, we fixed the number of overlapping features to dj,, = 0 and d;4, = 8 for non-overlapping case

and overlapping case, respectively.

Label Generation. We generated the true coefficient vector w, € R? by sampling from a standard normal
distribution. The labels were created using a linear regression model without added noise:y = X w,. The
labels were partitioned into y, and yy, corresponding to the remaining and forgetting data, respectively.

Model Training. To compare the effects of fine-tuning, we considered two models: the fine-tuning model
w; and the golden model w,. Specifically, w; was obtained by fine-tuning on a subset of the remaining data,
denoted as Xy, which consisted of the first n; data points from X,.. The value of n; varied from 1 to n, — 1
to study the impact of the fine-tuning data size. The initial model w, was derived from the entire dataset
X and calculated by the Equation . w, was trained from scratch on the entire remaining data X, and
computed by solving Equation . If considering the masked case in synthetic data, the masked pretrained
model will be constructed by zeroing out the coefficients corresponding to the forgetting data features with
(without) overlapping features.

Evaluation Metrics. The performance of the models was assessed using the Mean Squared Error (MSE)
on both the remaining and forgetting data:

« Remaining Data Loss (RA Loss):MSEra(w) = ;L[| X,w — y,[|?

o Unlearning Data Loss (UA Loss):MSEua (w) = %HXfw —yrl?

Experimental Results Figure [lc/and Figure[Ld|illustrate that the masked fine-tuning method discussed in
Section [] can significantly improve unlearning accuracy while preserving the retaining accuracy. Specifically,
both the remaining loss and unlearning loss of W, perfectly match those of the golden model under both
distinct and overlapping feature scenarios. Additionally, Figure[2] present comparisons of machine unlearning
loss for different approaches to handling overlapping features: Figure [2a] retains overlapping features from
the pretrained model, demonstrating matching performance between the masked w; model and golden model
wg; whereas Figure @ discards the overlapping features, resulting in a decline in retaining accuracy. These
empirical results align well with our theoretical findings.

A.2 Additional Real-world Details

Experimental Setup. We conduct our evaluations using the ResNet-18 backbone across the methods. The
network is initially trained for classification over the CIFAR datasets for 182 epochs with an initial learning
rate of 0.1 following a cosine decay schedule. For the unlearning procedure, the learning rate is set to 0.02 for
our method and 0.013 for the SalUn method, following the recommendations from the official repository. We
set the number of unlearning epochs to 10. However, we observe that both methods benefit from a reduced
number of unlearning epochs (5) in the random forgetting scenario on CIFAR-100. We set the sparsity at
50%. Unlearning using the fine-tuning method employs a learning rate of 0.01 for 10 epochs. All methods
utilize the SGD optimizer.

Visualization of Remaining Data and Forgetting Data Features. The visualization in Figure |3| uses
t-SNE to project feature representations of the forgetting and remaining data in CIFAR-10 and CIFAR-100
datasets. The red points correspond to forgetting data, and the blue points represent remaining data. This
visualization aims to demonstrate that, in class-wise datasets, the unlearning task for a specific class may
involve distinct features. In such cases, naive fine-tuning (FT) methods tend to contribute less towards
forgetting the class and focus more on retaining features from the pretrained model.
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Figure 3: Visualization of Remaining Data and Forgetting Data Features Across Various Dataset. Figures
focus on classes 3, 6, and 9 in CIFAR-10 and Figures@-@focus on classes 30, 60, and 90 in CIFAR-100.

B Proofs

B.1 Useful properties

Before presenting the detailed proofs of the theorems, we first introduce several useful properties of the
projection matrix and the minimum norm solution.

Property 1 (Projection properties). Let P be a projection operator that projects onto a subspace X C R4*",
Then, P holds the following properties:

1. Symmetric: P =PT;
2. Idempotent: P2 = P;

3. I — P is also a projection operator, projecting onto the subspace orthogonal to X. Therefore,
I-P)P=0;

4. Let v € R? be an arbitrary vector, it holds that (I - P)v|? = v (I-P)?v = v (I - P)v =
[v]? = [PVl

5. Contraction: ||Pv| <|v|, holding in equality if and only if Pv = v.

Proof. See (Zarantonello, [1971)) for the proofs and for more properties. O

Corollary B.1 (Projection Matrix properties). Let P = X(XTX)"!XT P, P, P, be the corresponding
projection operator for X, X,., X, X, respectively. Under Assumption the remaining(forgetting) dataset

OR | and Xy = OF ], where R C R¥*(=n1) gnd F C RY X" correspond

to the non-zero parts. Then, it holds that:

matriz can be denoted as X, = |
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[ RRTR)"'RT 0 B ,
1. P - |: 0 F(FTF)—IFT - PT + Pf’
[RR™R)'RT 0 [o 0 .
2 Pr= [ 0 0| "Pr=10 FETR)FT |

3. X(I-P)=(I-P)X =0, and the conclusion also holds for P, P ¢, Py with X,., X, X; respectively;

4. For any matriz A that is a submatriz of X, it holds that A = PA, where P is the projection space
of X. Moreover, if P4 is the projection space of A, it holds that PPy = Py, i.e. X, P = X,,
XsP=X;, X, Py =X;P, =0.

Proof of Corollary Firstly, based on the data composition, the overall dataset holds X = | l; 12 ]
Therefore, it follows:
PoxXTX) X7 =B Oy BT O R0 RE 0
0 F 0 F'''o F 0 FT
_[R 0 I (R"TR)™! 0 I RT 0 ]
0 F 0 (FTF)~! o FT "

The remaining Projection matrices can be obtained by similar computations.
Additionally, we have X(I-P) = (I -P)X = X(I - X(X"X)"!XT) =0.

Moreover, since A is a submatrix of X, it can be represented as A = XC for some selective matrix C.
Therefore, we have:

PA=X(X'X) 'X'XC=XC=A.
Meanwhile, it also holds that

PP, =X(X'X)"'X"XC(C'X'XC)"'C"XT =XC(C'TX'XC)"'C'X' T =Py.

X, and X are submatrices of X, each with disjoint spaces. The projection of X, onto the space of Xy
should be zero.

X, Py =X, Xp(X;X;) "X} =0.
O
Corollary B.2 (Minimum Norm Solution 1). Let P,P,, P, Py be the corresponding projection operator for

X, X, X, X respectively. Then, the solution to the optimization problem Equation , FEquation and
Equation can be represented by:

1. Under Assumptz'on w, =Pw,, w, = (I-P,)w, +P,w,, and w, = P, w’;

2. Under Assumptionm wo = Pw,, w, = (I — P))w, + Py(W, + W), and w, = P.(w’ + w'?);

3. X,Tw!: =0 and X;w: =0.

Proof of Corollary According to the method of Lagrange multipliers and the problem setup, it is
easy to obtain the first two conclusions. For the last one, we have:

X wl =[R",0lw/ =0 and X}—W: =[0,F"]w" =0.
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B.2 Proof of Theorem

Let us first focus on the performance of the golden model. Based on the definition of unlearning accuracy
and retaining accuracy, we have

1 1 1
RL:  L(wg,D;) = —[IX[wy —y,||* = — X P,w] - X w{|* = — X (P, —~D)w|> =0,
Ny Ny Ny
where the second equality arises from the model setting and Proposition [B.2] while the penultimate equality
is due to the properties of the projection matrix. According to Corollary we have

1 1 i .
UL L(wg, D) = X wy =yl = X Pl = X

1 2

ng

‘[O,FT] { RER'R)'RT 0

r B

1
= —[Xfwl|*.
ny
Similarly, for the fine-tuning model, it holds that
1 1
RL:  L(wy, D;) = n—||Xth —yol?= n*”XrT((I —Pi)w, + Pywl) — X[ wl|?
1
= LIXT (= POP(W, + w!) + Pow?) — X w2
Ny

1
= X (Pl (P~ Pw!) - X wi?

=0.

1 1
UL: L(wy, Dy) = E”X’th —ysl? = EHX}((I —Py)w, + Pewl) — X wl|?
1
= TTfIIXJT[(I —P,)Pw. + Pw] — wl]||?
1
= o X (T=POP + Pdw + X (I~ PP — Tw]|?
1
= —|X;Pw] + X;Pw] — X;w/]|]?
ny
= 0’
where the penultimate equality comes from X;—Pt = X}FPT = 0, and the last equality follows from X;P =
T . . :
X
B.3 Proof of Theorem 3.4

Due to the assumption of overlapping features, the projection properties of the dataset matrix will be slightly
different. Specifically, it holds that:

Corollary B.3 (Projection Matrix properties’). Let P = X(XTX)" !XT, P,,P;,P; be the corresponding
projection operator for X, X,, X ¢, X, respectively. Under Assumption it holds that:

[ RR'TR+L{L)'RT RR'R+L/L)'L] o0
2.P.=| Li(RTR+L/L)'RT Ly(RTR+L/L))"'L] 0 |;
0 0 0

0 0 0
3. P;=| 0 Ly(F'F+LJLy)'L] Ly(F F+LJLy) 'F' | ;
0 F(F'F+LjLy) 'Ly F(F F+LjLy) 'F'
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3. X(I-P)=(I-P)X =0, and the conclusion also holds for P, P Py with X, X, X respectively;

4. For any matriz A is the submatrixz of X, it holds that A = PA, where P is the projection space of
X. Moreover, if P4 is the projection space of A, it holds that PPy = P 4.

Proof of Corollary Proof of Corollary [B23] follows the proof of Corollary [B-1] directly. O

Now we are ready to go through the proof of Theorem [3.4] Similar to the non-overlapping case, the golden
model holds that

RL: L(wgy, D,)

1 1
X wy = yel? = X P (W wl) = X (w4 wl)
( (
1
= X (P, D)Wl + Wi =0,
Ny

where the second equality also arises from the model setting and Proposition [B:2] while the penultimate
equality is due to the properties of the projection matrix. According to Corollary [B-3] we have

1 1 T a; a
UL:  L(wy, Dy) = n—fIIX}Wg —ysl*= nffIIXIPr(W* +wiP) = X[ (wl + wl)|?
where X ] P,w’ and X]P,w."” follows that

RR'R+L/L)'RT RR'R+L{L)'L]
X;Pw,=[0L;,F'] | LLR'R+L{L)'R"T Liy(RTR+L/L)"'L] 0
0 0 0 0

=L, Li(R'R+L{L)'R"w/|

o
o

and

RR'R+L{L)'RT RR'R+L{L)"'L] o0
X;Pwi? =[0,L;,F'] | Li(R'TR+L{L;)"'RT Li(R"TR+L{L;)"'L{
0 0 0

=L, L;(R"R+L{ L) 'L wior.

o
oJo

For the fine-tuning, the retaining accuracy follows:

1
RL: L(ws, Dy) = —| X we |

1
= — X (T = Po)w, + Po(wl + wl?)) = X[ (w] + wi)|?
ny

1

= X (L= P (v, — ] — wler)
1

= X (= PP -~ D (w] +wlr)

=0.
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The last equality derives from that the facts the projection matrix is commutative matrix and the last
property holds in Corollary For the unlearning accuracy, it holds that

1
UL: L(w, Dy) = n—fHX}wt -yl

1
= ;IIX;((I = Pi)w, + Py(wl +w,P)) — X (wl + wir)|?
!

1

= L XT (1= Py (P(W] + wieP - wl)) + Py(wl +wit?)) = X] (w] +wle?)|
!
1 .

= X (P = PO (W, + Wi + wl)) + Py(wl + wl?)) = X (w] 4+ wier) |2
f

1
(P =Dw? + Pwl + (P — I - Py)wl]|?

I
ik
\N

1
—IXTP,wi2
L IXf P
:0,

where the penultimate equality is due to Corollary [B23] and the last equality comes from the fact X; enjoys
the same data structure as X; such that:

X;Pyw/

. Rr(RJR7y +Li;Lip)'R)  Rp(R;Rr+LipLip) 'Lip 0 0
=[0,Ly,F'] | Lips(R.Ry +LipLig) 'R} Lip(RJRr +LigLip) 'Lip O 0

0 0 0 O
0
= [LoLip(RfRy + LipLip) 'R}, Ly Lip (R Ry + LigLip) 'Ly7,0] | O
O

=0.

B.4 Proof of Theorem [4.1]

For the non-overlapping case, we have that the retaining accuracy follows:

RL: L(wy,D,)

1 1 N r r
— X Wi =y = =X (L= P, + Pewl) = X wi?
Ny Ny

1 A r
= X (TP (W, - wi)|?

1
= —[X] (I=Py)(P — DwI|* = 0.

T

For the unlearning accuracy, it holds that

1 1 . .
UL: L(w¢, Dy) ;fIIX,th — sl = nffl\XI((I —P)W, + Pyw)) - Xjwl|?

1
;IIX;[(I —P,)Pw + P,w — wl]|?
f

1
EHX?[(I ~ PP +PiJw] - X[wl]|”

1
— X Pwl — X wl]?
ny

1
W ;-

18
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For the overlapping case, it holds that
RL: L(w;,D,) = niruxjwt —y.l?
_ n%uxj((l — Py)W, + Py(w] + wlP)) — X[ (w] + wlr) |2
= %HX’T(I —Py)(W, — W, — wi?)|?

1
= X[ (I PP - T)(w! - wior) | = 0.

UL: L(wy,Dy) = nlfHXIWt — vyl
= XTI = P, + Py i) = X (] wle)
- nlfHX?«I —P)(P(w] + wWi)) + Py(w] + wi?)) — X [ (w] +wr)?
- nlfHXI-«P —P)(wl + W) + Po(wl + wi'?)) = X (wl + wier) |
_ nlfnx}[(P ~ w4+ Pw] - wl]|]?
_ n1f||P(w1: +wieP) — (wl + Wi 3

The proof is then complete.
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