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ABSTRACT

As the quality of large language models has improved, there has been increased
interest in using them to model non-linguistic tokens. For example, the Decision
Transformer recasts agentic decision making as a sequence modeling problem,
using a decoder-only LLM to model the distribution over the discrete action space
for an Atari agent. However, when adapting LLMs to non-linguistic domains, it
remains unclear if softmax over discrete bins captures the continuous structure of
the tokens and the potentially complex distributions needed for high quality token
generation. We introduce a neural network layer, constructed using Fourier series,
which we can easily substitute for any linear layer if we want the outputs to have a
more continuous structure. We perform extensive analysis on synthetic datasets, as
well as on large-scale decision making and time series forecasting tasks. We also
provide theoretical evidence that this layer can better learn signal from data while
ignoring high-frequency noise. All of our results support the effectiveness of our
proposed Fourier head in scenarios where the underlying data distribution has a
natural continuous structure. For example, the Fourier head improves a Decision
Transformer agent’s returns across four benchmark Atari games by as much as
377%, and increases a state-of-the-art times series foundation model’s forecasting
performance by 3.5% across 20 benchmarks unseen during training. We release
our implementation at https://nategillman.com/fourier-head.

Fourier Head Learns Higher Quality Densities

Figure 1: We task an MLP with learning to approximate a continuous bimodal density using a
categorical distribution and a cross-entropy objective. We observe that a standard linear head fails
to distinguish between the two modes, and overfits to high-frequency noise in the training set. In
contrast, our proposed Fourier head learns a smoother, more accurate categorical distribution.

1 INTRODUCTION

Human language can be viewed as a discretization for a continuous, often probabilistic represen-
tation of the world that is construed in our mind (Spivey, 2008). The continuous structure can be
partially captured by language models with their token embeddings, where “nearby” tokens are em-
bedded to have latent representations with high cosine similarities. The embeddings themselves are
acquired as a result of the data-driven learning process. Can we, based on rich prior knowledge
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about the continuous world, inform the language model about the underlying continuity of its in-
puts, like the fact that the word “emerald” is more similar to “shamrock” than “pine” when they are
used to describe different shades of green? As large language models (LLMs) have evolved into
“foundation models” that are adapted to a diverse range of tasks, tokens that are a priori continuous
are more essential than ever, for example for arithmetic computations (Liu et al., 2023), decision
making with continuous or discrete actions (Chen et al., 2021), future anticipation and time-series
forecasting (Ansari et al., 2024), or simply drawing random numbers given a probability distribu-
tion (Hopkins et al., 2023).

We view the problem of informing LLMs to utilize the continuity prior from the perspective of prob-
ability density estimation. For simplicity, we adopt the standard next token prediction framework
whose training objective is softmax cross-entropy. Assuming non-overlapping vocabulary, continu-
ous values can be discretized via binning (Ansari et al., 2024). On one hand, the linear head adopted
by LLMs independently projects each token into probabilities, and has the expressive power to flex-
ibly approximate arbitrary probability density functions subject to the “quantization” errors. The
linear head however does not consider any continuous structure that resides among the tokens (i.e.
a random re-shuffle of the tokens in the vocabulary would not change the predictions). On the other
hand, a head based on a parameterized distribution (e.g. Gaussian or Gaussian Mixtures) naturally
incorporates the continuous structure, but is often too simple (and overly “smooth”) to account for
multi-modal distributions for future prediction or decision making. Can we design a head that is
both expressive and incorporates continuous structures?

We introduce the Fourier head, motivated by Fourier series as universal function approximators.
The Fourier head learns a continuous probability density function, and returns a discrete ap-
proximation of it. Intuitively, returning a discretization of a continuous density in this way allows
the classification head to better model the low-frequency signals from the training data, because the
Fourier head is forced to approximate the categorical distributions using a finite number of frequen-
cies. At a high level, the Fourier head inputs x ∈ Rn, uses a linear layer to learn the coefficients
for a Fourier series with N frequencies over [−1, 1], and quantizes the interval [−1, 1] into m equal
bins. Then, the Fourier head evaluates the learned Fourier PDF at those m bin center points, and
returns those m likelihoods as a categorical distribution. The Fourier head builds upon the Fourier
Basis Density Model (De la Fuente et al., 2024).

Our main contributions are as follows.

Contribution #1: We reveal the underlying principle on the trade-off between the Fourier head’s
expressive power and the “smoothness” of the predicted distributions. We prove a theorem which
demonstrates a scaling law for the Fourier head. Namely, as we increase the quantity of Fourier
coefficients learned by the Fourier head, the layer can model increasingly complicated distributions;
however, the Fourier head will necessarily fit to more high-frequency noise, thereby outputting cat-
egorical distributions which are less smooth.

Contribution #2: We propose a practical implementation of the Fourier head capable of sequential
prediction tasks by modeling complex multi-modal distributions. Additionally, we propose strate-
gies to improve the layer’s performance, including Fourier coefficient norm regularization, weight
initialization, and the choice of how many Fourier frequencies to use.

Contribution #3: We demonstrate the effectiveness of the Fourier head on two large scale tasks,
where intuitively a continuity inductive bias over the output dimensions ought to help the model’s
generation performance. In the first task, an offline RL agent which uses a decoder-only transformer
to model the next-action distribution for an Atari agent, we improve returns across four benchmark
games by as much as 377%. In the second, we outperform a state-of-the-art time series foundation
model on zero-shot forecasting by 3.5% across a benchmark of 20 datasets unseen during training.

2 FOURIER HEAD

2.1 FOURIER HEAD: MOTIVATION

When practitioners apply LLMs to model complex probability distributions over non-linguistic to-
kens, a standard technique is to quantize the latent space into m tokens and learn a conditional
categorical distribution over those tokens. We share two examples here:
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Example 1: The Decision Transformer (Chen et al., 2021) models an Atari agent’s behavior in the
Seaquest game by learning a categorical distribution over the 18 possible actions (move left, move
right, shoot left, etc.). They use an decoder-only transformer architecture.

Example 2: The Chronos time series foundation model (Ansari et al., 2024) models the distribution
of next numerical values by quantizing the closed interval [−15, 15] into 4096 bins, and learning a
categorical distribution over those bins. They use an encoder-decoder transformer.

In a pure language modeling task, token ID 1000 and token ID 1001 likely represent unrelated
words. However, in a task where the token IDs represent numerical values, the token ID 1000 and
1001 would represent numbers that are close together.

The final layers of an LLM for such a task are generally a linear layer, followed by softmax, fol-
lowed by cross-entropy loss. We hypothesize that in scenarios where nearby token IDs encode
similar items, an inductive bias that encourages them to have similar probabilities will improve per-
formance. A generic linear layer learns an unstructured categorical distribution and thereby allows
more arbitrary probabilities. In this work, we propose to give the model this inductive bias by let-
ting the classification head learn a categorical distribution as the discretization of a continuous
learned function from a suitably flexible class. We consider the very flexible class of truncated
Fourier series with N frequencies. These are functions of the form

f(x) = a0 +

N∑
k=1

(
ak cos(kπx) + bk sin(kπx)

)
. (2.1)

Fourier series are a classical tool for solving quantitative problems (Stein & Shakarchi, 2003) be-
cause functions like Equation 2.1 are universal function approximators, with the approximation
improving as N increases.

2.2 FOURIER HEAD: DEFINITION

We now propose a replacement for the generic linear layer token classification head, built using
Fourier series. We call our replacement the Fourier Series Classification Head, or the Fourier
head for short. The Fourier head inputs any vector x ∈ Rn, and outputs a categorical distribution
in Rm. For a high level summary of how it works–the Fourier head inputs x ∈ Rm, uses a linear
layer to extract the coefficients for a Fourier series over [−1, 1], quantizes the interval [−1, 1] into
m equal bins, evaluates the learned Fourier PDF at those m bin centerpoints, and returns those
m likelihoods as a categorical distribution. We formally define this layer in Algorithm 1. The
Fourier head is constructed using the Fourier Basis Density Model from (De la Fuente et al., 2024).
For more details on the original method (e.g. justification for how learning the autocorrelation
coefficients guarantees that the Fourier series has integral 1, and justification for normalizing the
Fourier coefficients by ℜ(c0)) we refer the author to (De la Fuente et al., 2024). We direct the
curious reader to Appendix C.1 for a low-dimensional demonstration of the Fourier head in action.

2.3 FOURIER HEAD: CONSIDERATIONS FOR TRAINING

We highlight the main design choices of the Fourier head so that users may apply it most effectively.

Training objective: The Fourier head inputs a signal x ∈ Rn and extracts from that signal an inter-
mediate representation of a probability distribution px(z) defined over z ∈ [−1, 1]. This probability
distribution has a closed formula equal to a Fourier series. In our experiments, we optimize the pa-
rameters of the Fourier PDF by discretizing it over the latent space and training using cross-entropy
loss. However, we should note that the Fourier layer allows MLE training directly on continuous
values, by evaluating the Fourier PDF directly on the ground truth value in the latent space. But for
consistency of comparison, and to demonstrate how easy it is to swap the Fourier head with a linear
layer, we use softmax cross-entropy loss as the objective.

Choice of hyperparameter N : The Fourier head has one crucial hyperparameter–namely, the num-
ber of frequencies. How should one choose this in practice? We offer Theorem 3.3 as guiding
principle beyond simple trial and error. This result provides a scaling law which formalizes the
smoothness-expressive power trade-off in choosing the number of frequencies. In general, using
more frequencies leads to more expressive power, and generally better success metrics, but at the
cost of a learning less smooth densities, as well as more model parameters.
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Algorithm 1 Fourier head
Hyperparameters: the input dimension n, output dimension m, number of frequencies N
Initialization: define a linear layer A : Rn → R2(N+1) // maps input to autocorrelation coefficients

INPUT x = (x1, . . . , xn) ∈ Rn

(α0, β0, . . . , αN , βN )← Ax

ak ← αk + iβk ∈ C, for every k = 0, . . . , N // compute autocorrelation coefficients

ck ←
∑N−k

ℓ=0 aℓa
∗
ℓ+k ∈ C, for every k = 0, . . . , N // compute Fourier coefficients

p(z) = 1
2 + ℜ

(∑N
k=1

ck
ℜ(c0)

exp(ikπz)
)

// define Fourier PDF over [−1, 1]

bk ← −1 + 1+2k
m , for every k = 0, . . . ,m− 1 // define m bin centerpoints

yk ← p(bk)∑m−1
j=0 p(bj)

, for every k = 0, . . . ,m− 1 // evaluate PDF at m bin centerpoints

OUTPUT (y1, . . . ym) ∈ Rm // by design,
∑m

k=1 yk = 1 and each yk ≥ 0

Fourier regularization: For a given number of frequencies N , there could be many learned Fourier
models that fit the given data equally well. To encourage a smoother learned model and penalize
unnecessary high frequency content, we follow (De la Fuente et al., 2024) and add a regularization
term that measures the total squared variation for the Fourier model, to prevent higher order Fourier
coefficients from growing too large during training. This helps ensure that the learned Fourier PDF
doesn’t overfit to noise in the data, and therefore has a bias towards learning smoother densities. In
the notation from Algorithm 1, this means adding a regularization term of γ · 2π

2

m

∑m
k=1 k

2|ck|2 to
the loss function, where γ is a hyperparameter. When picking regularization strength, we find that
in the low-frequency domain (e.g. frequencies in the single digits) using γ = 0 works best, and in
the high-frequency domain (e.g. greater than 10 frequencies), using γ = 10−6 works best.

Binning strategy: The choice of data binning can impact performance. As discussed, the Fourier
head should only be applied when nearby bins are ‘similar’ in some sense, requiring a semantically
meaningful bin ordering. When bins represent quantized numerical values over a continuous la-
tent space, a ‘mixed-precision’ binning strategy can improve performance. For example, to model
values in [−15, 15] with most data in [−1, 10], allocating more bins to the dense interval improves
performance. Given m total bins, a hyperparameter d ∈ [0, 1) controls allocation, with ⌊d · m⌋
bins for the sparse interval and the rest for the dense range (estimated from training data). Fourier
theory supports this approach, as increasing precision in dense regions de-localizes the quantized
data distribution, localizing the Fourier spectrum. This accelerates higher frequency decay, enabling
effective learning with lower-frequency Fourier heads. Separately, we note that (De la Fuente et al.,
2024) suggests re-parameterizing the periodic domain to the real line, though we do not use this in
our work.

Weight initialization: The learned parameters for the Fourier head consist of the learned linear
layer which extracts autocorrelation parameters ak. In PyTorch, linear layers use He initialization
(He et al., 2015) by default, which ensures that the linear layer outputs values close to zero in
expectation. Similarly, initializing the Fourier densities to be uniform p(z) ≈ 1/2 improves learning
dynamics. We accomplish this by dividing the weights and biases by a large number, such as 1000,
after He initialization; this guarantees that the linear layer outputs very small values, so that Fourier
coefficients output from the autocorrelation step are very small as well.

3 THEORETICAL ANALYSIS OF FOURIER HEAD

3.1 “SMOOTHNESS”: A METRIC FOR HIGH FREQUENCY CONTENT

In this subsection we propose a smoothness metric which inputs a categorical distribution y =
(y1, . . . , ym) ∈ Rm, and assigns a numerical value depending on how smooth it is. The score will
output 0 if y is the smoothest possible categorical distribution, and larger values if y is less smooth.
We will first specify what we mean by “smooth”:
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Heuristic 3.1. We say a function is smooth if it contains very little high-frequency information.

For example, the uniform categorical distribution contains no high-frequency information, so it is
the smoothest possible function, and should get a smoothness score of 0. In contrast, a categorical
distribution containing samples from sin(100πx) contains lots of high frequency information, so it
should get a smoothness score greater than 0. We seek to define a metric which measures smoothness
according to Heuristic 3.1.

We will first develop a smoothness metric in the general case of a function f : [a, b] → R, then
specialize to case of the discrete categorical distribution that we consider in the paper. If we let
ασ ∈ R be weights satisfying

∫∞
0

ασdσ = 1, and D be some measure of discrepancy such as L2,
and let gσ(x) ∗ f(x) denote the convolution of f(x) with a Gaussian kernel of standard deviation σ,
then it is reasonable to define the smoothness of f to be the quantity

s(f) :=

∫ ∞

0

∫ b

a

ασD[f(x), gσ(x) ∗ f(x)]dxdσ. (3.1)

In this expression, the discrepancy D[f(x), gσ(x) ∗ f(x)] measures how different f(x) is from a
Gaussian-smoothed version of itself. Because the Gaussian is a low-pass filter, we can interpret
Equation 3.1 as saying, at a high level, that a function is “smooth” if it doesn’t change that much
when you remove high frequency content from it.

In our experiments, we consider discrete categorical distributions, and wish to tractably quantify
their smoothness. Accordingly, we define a specific case of this as follows.
Definition 3.2 (Smoothness metric for categorical distributions). Suppose y = (y1, . . . , ym) ∈ Rm

is a categorical distribution, so every yk ≥ 0 and
∑m

k=1 yk = 1. Denote by gσ ∈ R2m−1 the discrete
Gaussian kernel of standard deviation σ and radius m− 1. Define the weights ασ = 6/π2σ2. Then
we define the smoothness of y to be the constant

s(y) :=

∞∑
σ=1

ασ∥y − gσ ∗ y∥2. (3.2)

We direct the curious reader to Appendix B, where we conduct additional experiments to justify this
choice of smoothness metric for our experiments.

3.2 A SCALING LAW FOR THE FOURIER HEAD, IN FREQUENCY-ASPECT

In this subsection, we share a theorem that analyzes the quality of the Fourier head as the quantity of
frequencies changes. We refer to this as the Fourier head scaling law as it quantifies the trade-off
between modeling capacity and smoothness as the number of frequencies increases. On one hand, it
is a celebrated result from Fourier analysis that a Fourier series with a greater number of frequencies
models a larger class of functions; but on the other hand, we show that increasing frequencies also
incurs loss in smoothness. This is to be expected, as we designed our smoothness metric with the
intention of identifying a distribution as less smooth if it contains more high-frequency information.
Theorem 3.3. (Fourier head scaling law.) Consider a Fourier head with input dimension n, output
dimension m, and N frequencies. Suppose that 1≪ N < m

2 . Then the following are true:

1. (Increasing N improves modeling power.) As N increases, the Fourier head is capable of
learning a larger class of densities.

2. (Increasing N degrades smoothness.) Consider an input to the Fourier head x ∈ Rn, and
denote by fx : [−1, 1]→ R the optimal conditional distribution that we would like the Fourier
head to approximate for this input. Suppose that there exists some t ≥ 2 such that the Fourier
coefficients of fx decay on the order of 1/kt. Denote by fx,N the truncation of fx to its first
N frequencies, denote by b⃗ ∈ Rm the m bin centerpoints in [−1, 1], and denote by y(N) =

fx,N (⃗b)/(fx,N (b0) + · · · + fx,N (bm−1)) ∈ Rm the discretization of fx,N into m bins. Then,
there exist constants C1, C2 > 0 such that

s(y(N)) = C1 −
C2

N2t−1
+O(1/N2t). (3.3)
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Toy Example: Learned Conditional Distribution vs True Conditional Distribution

Figure 2: Comparison between the PMFs learned by the linear head, GMM head, and the Fourier
head, for two of the datasets in the toy example–Gaussian and Beta. (The GMM dataset is in
Figure 1.) We observe that the Fourier head learns a smoother categorical distribution than the
linear head over its predicted values. Furthermore, the Fourier head better fits the true conditional
PDF; this is reflected in the KL divergence and smoothness metrics.

Note that the smoothness scaling law asymptotic in Equation 3.3 shows that as N increases, so does
s(y(N)). Further, note that if the Fourier spectrum of the underlying distribution decays quicker
(controlled by t) then the rate at which smoothness degrades is slower; this is because if what we
are learning has little high frequency content, then increasing the frequencies shouldn’t affect the
smoothness of the learned distribution very much. In part (2), our assumption that the Fourier coef-
ficients decay at least quadratically is reasonable since if fx is at least twice continuously differen-
tiable, we already know its Fourier coefficients corresponding to the k-th frequency are in O(1/k2)
(Stein & Shakarchi, 2003, Ch.2, Cor. 2.4). Our Fourier weight decay regularization helps toward
ensuring that this condition is met in practice as well. We include a full proof in Appendix A.

4 TOY EXAMPLES

4.1 LEARNING A CONTINUOUS CONDITIONAL DISTRIBUTION

We demonstrate the advantage of using the Fourier head to learn a probability distribution for a
simple task: learning the conditional distribution of the third number in the sequence given the first
two. Here we will use q(z) to denote the quantization of z.

Dataset: We create 3 synthetic datasets, which we name Gaussian, GMM-2, and Beta. Each
dataset consists of 5000 quantized triples {(q(x), q(y), q(z))} ⊆ [ − 1, 1]3. Crucially, z is sampled
from a distribution which is conditioned on x and y, and we have an explicit closed formula for this
distribution. By design, the Gaussian dataset is unimodal in z, whereas the more challenging GMM-
2 and Beta datasets are not unimodal. Full details about the datasets can be found in Appendix C.2.

Task: Predict the conditional distribution of q(z) given the quantized tuple (q(x), q(y)).

Model architecture: Our model is an MLP with ReLU activations and one hidden layer, which
maps R2 → R64 → R32 → R50. The output of the model has dimension 50 because we quantize
the interval [−1, 1] into 50 bins. We consider two baselines alongside the Fourier model. For the
first baseline, the classification head is a linear layer; for the second baseline, the classification head
is a Gaussian model mixture classification layer with two Gaussians, where the means and standard
deviations are learned; for the Fourier model, the classification head is the Fourier head. We sweep
over frequencies N = 2, 4, . . . , 20, and consider regularization γ ∈ {0, 10−6}. We train those
models via cross-entropy loss.1 We also consider a regression-based model, trained using MSE.

Model evaluation: We use three metrics for evaluation. Our first metric is the average KL di-
vergence DKL(q(P(x, y))||M(q(x), q(y))), where P(x, y) is the fixed conditional distribution of z
given (x, y); q(P(x, y)) is the quantized approximation of P(x, y), obtained by evaluating the den-

1Note that we also demonstrate the possibility of training a continuous version of the Fourier head, using
a maximum-likelihood based objective. Accordingly, we carry out experiments in the continuous domain
analogous to those we did in the quantized domain; for more details, see Appendix C.3.
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KL Divergence (↓) Smoothness (↓)
Dataset Linear Fourier Linear Fourier
Gaussian 0.170 ± 0.052 0.116 ± 0.043 0.116 ± 0.049 0.057 ± 0.011
GMM-2 0.238 ± 0.032 0.146 ± 0.033 0.068 ± 0.022 0.038 ± 0.007
Beta 0.234 ± 0.032 0.191 ± 0.016 0.127 ± 0.044 0.076 ± 0.021

Table 1: We compare metrics between the linear head, and the Fourier head with 12 frequencies and
no regularization, for every dataset in our toy example. We observe that the Fourier head outperforms
the linear head across all metrics. Notably, using Fourier head improves the KL divergence (the
primary success metric) on average by approximately 40%. We aggregate metrics over 4 different
seeds and report the standard deviation.

Using Llama-3.1-8B-Instruct to Simulate Gaussian Sampling

Figure 3: We demonstrate that the baseline Llama model does a poor job simulating Gaussian sam-
pling, as measured by the Total Variation Distance between the ground truth quantized Gaussian
histogram, and the empirical histogram of samples. We find that LoRA fine-tuning improves the
results by a factor of ≈ 2.07, and that using the Fourier head improves the output distribution by a
factor of ≈ 4.86.

sity function of P(x, y) at the bin centers, multiplying by the bin width, and finally scaling by the
sum of the likelihoods; and M(q(x), q(y)) denotes the predicted categorical conditional distribution
of q(z). Our second metric is smoothness. And our third metric is MSE, where we consider the
expected value of q(z) under the learned categorical distribution as a prediction for q(z).

Results: The metrics for the best performing model on each dataset are reported in Table 1. Figure
2 presents sample visualizations of the learned conditional distributions alongside the true densities.
And in Appendix C.2, we present the results of a study on the impact of number of frequencies
and Fourier regularization. Notably, this study provides empirical evidence for the Fourier head
scaling law in Theorem 3.3, as it demonstrates that for all datasets, as frequency increases, the
smoothness degrades, and model performance improves until it reaches a saturation point. Crucially,
we observe that the Fourier head flexibly learns all three distributions better than the linear baseline
does. We note that the Fourier head outperforms the linear head on MSE as well; we include a
complete comparison with both Linear and GMM head baselines in Appendix C.2. Additionally,
in Figure 10 (Appendix), we demonstrate that the regression model simply regresses to the mean
of the conditional distribution. Accordingly, the regression model performs well for the unimodal
Gaussian dataset, and it performs poorly for the bimodal datasets GMM-2 and Beta.

4.2 ARE LLMS RANDOM NUMBER GENERATORS?

Suppose that we query an LLM with the following prompt, repeatedly: “The following is a list of
normally distributed random numbers in the interval [-1, 1] with mean 0.55 and std 0.10: 0.57,
0.36, ”. Would the model outputs be approximately Gaussian? In this empirical study, we simulate
Gaussian sampling using the Llama-3.1-8B-Instruct model (Dubey et al., 2024). We demonstrate
that this language model struggles to generate high quality numerical Gaussian samples. We con-
sider two possible interventions: LoRA fine-tuning the base Llama model, and LoRA fine-tuning
the base model while also replacing the linear classification head with a Fourier head. We find that
LoRA fine-tuning improves the learned distribution significantly, and replacing the linear head with
the Fourier head improves the distributions even further. We present an illustrative example of this
phenomenon in Figure 3. See Appendix C.4 for experiment details and some related works.
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5 LARGE-SCALE STUDY: OFFLINE REINFORCEMENT LEARNING

The Decision Transformer (Chen et al., 2021) reframes reinforcement learning as sequentially mod-
eling rewards, states, and actions. We evaluate its performance on the Seaquest game from the Atari
(Bellemare et al., 2013) benchmark. The Seaquest game contains 18 actions, with two groups of
eight actions that have a natural “closeness” metric defined on them: move left, up left, up, up right,
right, down right, down, down left; as well as shooting in those eight directions. The original ar-
chitecture uses a decoder-only language model (Radford et al., 2018) to encode context and map
it through a linear layer, producing a categorical distribution over actions. At test time, the agent
samples from this distribution to select its next action. We replace the linear classification head with
a Fourier head, introducing a prior that semantically similar actions (e.g., ‘move left’ and ‘move
up left’) should have similar likelihoods. Our results show the Fourier head improves returns by as
much as 46% in the reward-conditioned setting, using identical training hyperparameters.

Task: In the Seaquest game, the agent moves a submarine to avoid enemies, shoot at enemies, and
rescue divers. We consider this task in the Offline RL setting. The agent observes the past states,
actions, and rewards, as well as the return-to-go, and attempts to predict the action that matches
what an agent operating like the dataset would likely do. We also consider three other Atari games
with the same action space: BankHeist, DoubleDunk, and Gravitar.

Dataset: We use the same dataset from the original Decision Transformer implementation (Chen
et al., 2021). This dataset consists of 500k transitions experienced by an online deep Q-network
agent (Mnih et al., 2015) during training on the Seaquest game.

Model architecture: (Chen et al., 2021) used the GPT-1 model (Radford et al., 2018) to autoregres-
sively encode the context, which is then fed through a linear layer of dimension 18, and the model
ultimately optimizes the cross-entropy loss between the action logits and the ground truth action
from the dataset. We refer to this model as the linear baseline. To create our Fourier-N version, we
simply replace the linear head with a Fourier head with N frequencies and Fourier regularization
γ = 10−6. In our experiments we consider frequencies N ∈ {2, 4, 6, 8, . . . , 30, 32}.

Normalized Returns for Decision Transformer Agent

Atari Game
Classification Head BankHeist DoubleDunk Gravitar Seaquest
Linear head −0.09± 0.05 −72.72± 33.08 1.32± 0.17 2.53± 0.63
Fourier head 0.92± 0.33 45.45± 36.36 4.98± 0.93 3.70± 0.47

Table 2: We present returns obtained by the Decision Transformer agent using the linear baseline,
and the Fourier head, across the four Atari games. We compute the returns (mean and standard
deviation) by averaging over four seeds. Across all these games, the Fourier head significantly
improves the normalized returns obtained by the agent.

Figure 4: We present empirical results for how the quantity of Fourier frequencies impacts returns
and smoothness for the imitation learning task. For normalized returns, higher is better; for smooth-
ness, lower is better. We can see that the Fourier agent achieves higher normalized returns than
the linear baseline agent when sufficiently many Fourier frequencies are used, while still learning
smoother next-action distributions.
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Model Evaluation: We present results for the linear baseline and Fourier-N head (N ∈
2, 4, 6, 8, . . . , 30, 32) across four Atari games, showing mean reward totals for rollouts at the best
epoch across four seeds. Table 2 demonstrates significant return gains with the Fourier head. For ex-
ample, Seaquest returns increase by up to 46.2%, while Gravitar sees as much as a 377% boost. Fig-
ure 4 shows improved Seaquest performance as the number of frequencies grows, with learned PMFs
becoming less smooth, aligning with Theorem 3.3. Qualitative results in Figure 13 (Appendix) high-
light the smoother PMFs produced by the Fourier head. Additional results for BankHeist, Double-
Dunk, and Gravitar in Figure 16 (Appendix) confirm that the Fourier agent consistently outperforms
the linear baseline while maintaining smoother next-action distributions.

Ablations: We analyze whether model size has any effect on the relative performance of the Linear
head and the Fourier head. The results in Figure 14 (Appendix) demonstrate that, across model
sizes, the Decision Transformer with a Fourier head is better at learning high-quality next action
distributions than the Decision Transformer with a Linear head. We also analyze whether dataset
size has any effect on the relative performance of the Linear head and the Fourier head, and obtain a
similar result. In Figure 15 (Appendix) we show that, across dataset sizes, the Decision Transformer
agent with the Fourier head achieves larger returns than the agent with a linear head.

6 LARGE-SCALE STUDY: PROBABILISTIC TIME SERIES FORECASTING

The Chronos time series foundation models (Ansari et al., 2024) “learn the language of time se-
ries”. They do this by approaching time series forecasting as language modeling, by tokenizing the
quantized number line, learning token embeddings for each of those quantized values, and finally
learning a categorical distribution to decide what the next value ought to be. This model is built
on top of the encoder-decoder T5 model (Raffel et al., 2020). In particular, this model normalizes
time series values to the range [−15, 15] and quantizes this interval into 4096 tokens. As usual for
language modeling, the final layer is a linear map which learns a categorical distribution over next
tokens. In particular, we observe that token i represents a number very close to tokens i − 1 and
i + 1. However, we note that there is no inductive bias in the T5 architecture which pushes their
likelihoods to be similar. This is not a hypothetical problem; in Figure 17 (Appendix), we can see
that the linear next-token prediction PMFs fit to the noise, and appear very jagged.

The motivation for replacing the linear head with the Fourier head is to “smooth” out the
distribution in the left side of Figure 17, to help the forecasting model better learn the signal,
and ignore the noise. In this figure, we can see that the Fourier head accomplishes this successfully.

In this section, we study how the performance of the Chronos time series foundation model changes
when we pre-train using the Fourier head, instead of the linear head. For all of the frequencies that
we consider, the Fourier head outperforms the Chronos linear baseline on the MASE metric, while
learning next token multinomials which are at least 8x smoother, with fewer parameters than the
baseline.

Dataset: We use the same training dataset for large-scale pretraining that Ansari et al. (2024) used.
We gather an evaluation benchmark of 20 time series datasets which were not seen during train-
ing. These 20 come from the zero-shot eval from (Ansari et al., 2024). The reader can check
Appendix D.2 for details on the training and evaluation datasets we used.

Model architecture: We use the Chronos model, which is built using the T5 architecture (Raffel
et al., 2020). The original model has a linear classification head. For our study, we will replace
this with a Fourier head with frequencies N = 64, 128, 256, 550. We use mixed precision binning;
this is informed by an analysis of the Fourier spectrum of the next-token distribution, as described in
Section 2.3. We also use Fourier weight decay regularization with γ = 10−6. For the task, the model

Chronos Time Series Model MASE (↓) WQL (↓) Smoothness (↓)
Linear 0.883 0.750 0.1689 ± 0.1087
Fourier-550 0.852 0.749 0.0283 ± 0.0224

Table 3: We present large-scale experiments on Chronos time series forecasting. The best-
performing Fourier model outperforms the linear baseline both terms of the continuity of the learned
probability mass functions (smoothness) for the quality of the forecasts (MASE, WQL).

9



Published as a conference paper at ICLR 2025

learns to input time series context of length 512, and output a probabilistic forecast of length 64. At
test time, the model chooses the next numerical token by sampling from the next-token distribution

Model evaluation: We have two sets of metrics: model performance from (Ansari et al., 2024)
(MASE measures the accuracy of median forecast, and WQL measures the quality of the proba-
bilistic forecast), as well as our smoothness metric. Our Fourier metrics in Table 3 demonstrate that
every Fourier model outperforms the linear baseline for MASE and smoothness. Furthermore, for
the largest Fourier model that we consider, Fourier outperforms linear on WQL as well.

Ablations: The results in Table 8 (Appendix) show that mixed precision binning and regularization
improve the MASE and smoothness for the Fourier head, and that using more Fourier frequencies
improves MASE and WQL. Additionally, we show that the Fourier head yields more accurate fore-
casts than the linear head across dataset sizes and model sizes (Figures 18 and 19, Appendix).

7 RELATED WORK

LLMs outside of natural language domains: LLMs are often adapted to domains beyond natural
language, as general purpose sequence models. For example, they have been used in protein syn-
thesis (Madani et al., 2023), time series forecasting (Ansari et al., 2024; Das et al., 2024; Jin et al.,
2024; Nate Gruver & Wilson, 2023; Requeima et al., 2024; Jia et al., 2024; Zhou et al., 2023; Wang
et al., 2024), music generation (Dhariwal et al., 2020; Agostinelli et al., 2023; Copet et al., 2023;
Yuan et al., 2024), and as well as in decision making (Li et al., 2022; Chen et al., 2021).

We consider three categories to adapt LLMs to non-language domains: when the output of a
language-trained LLM is used as a feature for some out-of-domain task; when a language-pretrained
LLM is fine-tuned on a domain-specific task; and when an LLM architecture is trained on a domain-
specific dataset from scratch. Our work directly considers the latter method of LLM adaptation,
particularly in settings where the outputs approximate continuous values. We note that using LLMs
to model numerical functions has seen success in continuing sequences (Mirchandani et al., 2023)
but has been challenging for modeling samplers for probability distributions (Hopkins et al., 2023).
In a related direction, Razeghi et al. (2022) found that model performance on numerical reason-
ing tasks is correlated with the frequency of specific numbers in its corpus. Further, some have
re-framed continuous regression as a descretized classification problem to leverage LLMs in numer-
ical modeling contexts (Song et al., 2024) or RL contexts (Farebrother et al., 2024). While even
frozen LLMs with no further training show interesting empirical results as regressors (Vacareanu
et al., 2024), there is a conceptual mismatch between the downstream task and model construc-
tion because tokenized numerical values trained using cross-entropy loss does not explicitly enforce
numerical relationships between the tokens.

Fourier series in neural networks: Many works leverage the Fourier transform as a data pre-
processing step or a deterministic transformation within the network, or use Fourier analysis to
motivate design choices. It is far less common to learn the Fourier series directly. De la Fuente
et al. (2024) learned marginal univariate densities parameterized using a Fourier basis; our work
extends their Fourier Basis Density model to multivariate settings with an autoregressive scheme.
Our method learns conditional univariate densities using a Fourier basis, where the coefficients of the
Fourier density model are input dependent. Sitzmann et al. (2020) proposed sinusoidal activation
functions, which can be seen as learning the frequencies of a Fourier series; in contrast, we fix
the frequencies to the canonoical choice {1, 2, . . . , N}, and learn the amplitudes. This allows the
Fourier head to more directly benefit from approximation results from Fourier analysis.

8 CONCLUSION

We propose the Fourier head and demonstrate its positive impact on performance on several tasks.
We prove a scaling law that characterizes the trade-off between the model’s expressivity and the
smoothness of its output distribution. The Fourier head is a modular architecture that can be easily
added to existing models that would benefit from the continuity inductive bias that the head imparts.
The Fourier head extends the already extensive reach of LLMs into more diverse, numerical, and
probabilistic domains. Future work includes exploring alternative training objectives that do not
depend on discretizing probability density functions, and incorporating the Fourier head in general-
purpose LLM training, where the head can be adaptively employed when needed.

10
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9 REPRODUCIBILITY STATEMENT

We have made efforts to ensure reproducibility. In Algorithm 1 we provide all the mathematical
details that one needs to reproduce the Fourier head. In Appendix D.2 we prove our scaling law,
Theorem 3.3, in full detail, and we list all assumptions in the statement of the theorem. Additionally,
we have released the research code on GitHub: https://github.com/nate-gillman/
fourier-head.
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A PROOF OF FOURIER HEAD SCALING LAW, THEOREM 3.3

In this section we prove Theorem 3.3, the Fourier head scaling law. To do this, we must first discuss
the Nyquist-Shannon Sampling Theorem. This result states that in order to avoid distortion of a
signal (such as aliasing) the sampling rate must be at least twice the bandwidth of the signal. In the
setting of the Fourier head, our sampling rate is m/2 because we have m bins uniformly spaced in
(−1, 1), and the bandwidth is N/2 because the frequency of sin(πNx) is N/2. Thus the Nyquist
Theorem requires us to have

m/2 ≥ 2 · (N/2) = N

in order for the higher order frequency content learned by our model to not be fallacious when we are
learning from only m bins. This justifies why we only theoretically study the case 1 ≪ N < m/2
in the scaling law.

A.1 DEFINITIONS

Consider an input x ∈ Rn to the Fourier head, and denote by fx : [−1, 1] → R the optimal
conditional distribution that we would like the Fourier head to approximate for this input. We will
assume that fx is periodic, since the Fourier head learns a 2-periodic Fourier density. We denote
by fx,N the truncation of the Fourier series of fx to its first N frequencies. Note that fx,N also
integrates to 1 over [−1, 1] since its first Fourier coefficient is the same as that of fx. Further, fx,N is
non-negative on [−1, 1] since its Fourier coefficients, being a subsequence of the coefficients of fx,
are non-negative definite; a periodic function with non-negative definite Fourier coefficients is non-
negative by Herglotz’s Theorem (Brockwell & Davis, 1991, Corollary 4.3.2). For completeness, we
will recall the convolution formulas, specialized to the cases we consider in our argument.

Definition A.1 (Discrete convolution). Let bj := −1 + 2j+1
m , 0 ≤ j < m be the center points of

the m bins in (−1, 1), and let us denote b⃗ := (b0, . . . , bm−1). Denote by Gσ(z) := e−z2/2σ2

√
2πσ

the
Gaussian PDF with standard deviation σ. Then the discrete Gaussian convolution filter of radius
m− 1 is

gσ :=
Gσ([1−m, 2−m, 3−m, . . . ,m− 1])

S(m,σ)
∈ R2m−1, (A.1)
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where the normalization constant is

S(m,σ) :=

m−1∑
k=1−m

Gσ(k). (A.2)

The discrete convolution of gσ ∈ R2m−1 and fx,N (⃗b) ∈ Rm is the vector (gσ ∗ fx,N )(⃗b) ∈ Rm

whose j’th coordinate is given by

(gσ ∗ fx,N )(bj) =
1

S(m,σ)

m−1∑
k=1−m

Gσ(k) · fx,N (bj−k) . (A.3)

Definition A.2 (Continuous convolution). The continuous Gaussian convolution filter g̃σ : [ −
2, 2]→ R>0 is

g̃σ(z) =
G 2σ

m
(z)

S(m,σ)
=

m

2S(m,σ)
Gσ

(mz

2

)
. (A.4)

This function g̃σ(z) is a normalized truncation of a Gaussian PDF with mean 0 and standard devia-
tion 2σ/m. The continuous convolution of g̃σ : [−2, 2] and the periodic function fx,N : [−1, 1]→ R
is

g̃σ ∗ fx,N (z) :=

∫ 2

−2

g̃σ(u)fx,N (z − u) du. (A.5)

A.2 OVERVIEW OF PROOF

In this subsection, we provide an overview of the proof of Theorem 3.3 by presenting the statements
of the lemmata that we will need, and connecting each one to the overall argument. In the next
subsection, we rigorously prove the scaling law by careful applications of these lemmata. And in
the following subsection, we will rigorously prove each of the lemmata.

This first lemma allows us to replace the discrete Gaussian convolution in the definition with a
continuous Gaussian convolution.
Lemma A.3. (Discrete convolution is close to continuous convolution) If we define the constant
B1(m,σ) := 1 + Gσ(m)

S(m,σ) , then we have that

∥fx,N (⃗b)− gσ ∗ fx,N (⃗b)∥2 = ∥B1(m,σ)fx,N (⃗b)− g̃σ ∗ fx,N (⃗b)∥2 +
√
mO(1/N2t+1). (A.6)

Furthermore, B1(m,σ) satisfies the following bound, uniformly in σ,

B1(m,σ) ≤ 1 +
1

2m− 1
. (A.7)

This next lemma, a standard result from analytic number theory allows us to upper bound the sums
of the norms of the Fourier series coefficients. This is proved in various places, see e.g. (Tao, 2014,
Equation 21).
Lemma A.4 (Asymptotic expansion of Riemann zeta function). Consider the Riemann zeta function
ζ(t) :=

∑∞
k=1

1
kt . If t ≥ 2, then

N∑
k=1

1

kt
= ζ(t)− 1

t− 1

1

N t−1
+O(1/N t). (A.8)

This next lemma allows us to extract the main asymptotic behavior in the scaling law.
Lemma A.5. (Main term asymptotic) Denote by a0(x) the constant coefficient of fx,N . Let us
suppose that the Fourier coefficients of fx,N decay like B3(x)/k

t, and define the constant

B2(σ,m, x) :=
√
a0(x)2B1(m,σ)2 + 2B1(m,σ)2B3(x)2ζ(2t). (A.9)

Then we know that
∥B1(m,σ)fx,N (⃗b)− g̃σ ∗ fx,N (⃗b)∥2 (A.10)

=
√
m

(
B2(σ,m, x)− B1(m,σ)2B3(x)

2

2t− 1
· 1

N2t−1
+O(1/N2t)

)
. (A.11)

Furthermore, B2(σ,m, x) is bounded from above and below as a function of σ and m.

15



Published as a conference paper at ICLR 2025

This final lemma allows us to relate the continuous case, where our analysis works out easier, to the
discrete case, where our smoothness metric is actually defined.
Lemma A.6. (The average value of the truncated Fourier PDF is 1/2) If N < m/2, then

m−1∑
j=0

fx,N (bj) =
m

2
. (A.12)

A.3 PROVING THEOREM 3.3 USING THE LEMMATA

We now prove the theorem that provides a scaling law for the Fourier head. This result quantifies
the trade-off between modeling capacity and smoothness as the number of frequencies increases.
In order to prove this, we must assume that fx, the conditional distribution being learned by the
Fourier head, is sufficiently smooth. For example, if fx is twice continuously differentiable, then the
Fourier coefficients corresponding to the k-th frequency of fx are in O(1/k2) (Stein & Shakarchi,
2003, Ch.2, Cor. 2.4). Thus, our assumption that the Fourier coefficients decay quadratically is
reasonable, and our Fourier weight decay regularization helps ensure that this condition is met in
practice as well. In our theorem, we generalize this hypothesis to the cases where the Fourier
coefficients corresponding to the k-th frequency of fx are in O(1/kt).
Theorem 3.3. (Fourier head scaling law.) Consider a Fourier head with input dimension n, output
dimension m, and N frequencies. Suppose that 1≪ N < m

2 . Then the following are true:

1. (Increasing N improves modeling power.) As N increases, the Fourier head is capable of
learning a larger class of densities.

2. (Increasing N degrades smoothness.) Consider an input to the Fourier head x ∈ Rn, and
denote by fx : [−1, 1]→ R the optimal conditional distribution that we would like the Fourier
head to approximate for this input. Suppose that there exists some t ≥ 2 such that the Fourier
coefficients of fx decay on the order of 1/kt. Denote by fx,N the truncation of fx to its first
N frequencies, denote by b⃗ ∈ Rm the m bin centerpoints in [−1, 1], and denote by y(N) =

fx,N (⃗b)/(fx,N (b0) + · · · + fx,N (bm−1)) ∈ Rm the discretization of fx,N into m bins. Then,
there exist constants C1, C2 > 0 such that

s(y(N)) = C1 −
C2

N2t−1
+O(1/N2t). (3.3)

Proof of Claim 2 of Theorem 3.3. We can estimate that

s(y(N)) =
1∑m−1

j=0 fx,N (bj)

∞∑
σ=1

ασ∥fx,N (⃗b)− gσ ∗ fx,N (⃗b)∥2 (Definition 3.2)

=
1∑m−1

j=0 fx,N (bj)

∞∑
σ=1

ασ

(
∥B1(m,σ)fx,N (⃗b)− (g̃σ ∗ fx,N )(⃗b)∥2 (Lemma A.3)

+
√
mO(1/N2t+1)

)
=

√
m∑m−1

j=0 fx,N (bj)

∞∑
σ=1

ασ

(
B2(σ,m, x)− B1(m,σ)2B3(x)

2

(2t− 1)N2t−1
(Lemma A.5)

+O(1/N2t) +O(1/N2t+1)
)

=
2√
m
·
(
C3 −

C4

N2t−1
+O(1/N2t)

)
. (Lemmata A.5, A.6)

In the last step we used the convergence of the respective series (which follows from boundedness
of B2(σ,m, x) and B1(m,σ) in σ) and we assigned C3 and C4 to be those sums. This completes
the proof.

Proof of Claim 1 of Theorem 3.3. The proof of this claim is more straightforward. For any function
f on [−1, 1] that is at least twice continuously differentiable, we know that the Fourier series of f
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converges uniformly and absolutely to f (Stein & Shakarchi, 2003, Ch. 2, Cor. 2.4). In other words,
the function fN being learnt by the Fourier head converges uniformly and absolutely to f .

A.4 PROVING THE LEMMATA

In this subsection, we will restate and prove Lemmata A.3, A.5, and A.6.

Lemma A.3. (Discrete convolution is close to continuous convolution) If we define the constant
B1(m,σ) := 1 + Gσ(m)

S(m,σ) , then we have that

∥fx,N (⃗b)− gσ ∗ fx,N (⃗b)∥2 = ∥B1(m,σ)fx,N (⃗b)− g̃σ ∗ fx,N (⃗b)∥2 +
√
mO(1/N2t+1). (A.6)

Furthermore, B1(m,σ) satisfies the following bound, uniformly in σ,

B1(m,σ) ≤ 1 +
1

2m− 1
. (A.7)

Proof of Lemma A.3. Extending fx,N periodically to [−2, 2], we can compute that the continuous
convolution g̃σ ∗ fx,N (z) is

(g̃σ ∗ fx,N )(z) =

∫ 2

−2

g̃σ(u)fx,N (z − u) du (A.13)

=
m

2S(m,σ)

∫ 2

−2

Gσ

(mu

2

)
fx,N (z − u) du (A.14)

=
1

S(m,σ)

∫ m

−m

Gσ(s)fx,N

(
z − 2s

m

)
ds, (A.15)

where in the third step we applied the change of variables s = mu
2 . We claim that this is precisely

a continuous approximation of the discrete convolution in Definition 3.2. To see this, we will apply
the Euler-Maclaurin formula. This formula says that the integral in Equation A.15 is a Riemann
sum over rectangles of width 1 evaluated at the right endpoints of each interval, minus an error term
E(m,σ), as follows:

(g̃σ ∗ fx,N )(bj) + E(m,σ) =
1

S(m,σ)

m∑
k=1−m

Gσ(k) · fx,N
(
bj −

2k

m

)
(A.16)

=
1

S(m,σ)

m∑
k=1−m

Gσ(k) · fx,N
(
−1 + 2j + 1

m
− 2k

m

)
(A.17)

=
1

S(m,σ)

m∑
k=1−m

Gσ(k) · fx,N
(
−1 + 2(j − k) + 1

m

)
(A.18)

=
1

S(m,σ)

(
m−1∑

k=1−m

Gσ(k) · fx,N (bj−k) +Gσ(m)fx,N (bj−m)

)
(A.19)

=
1

S(m,σ)
(S(m,σ) · (gσ ∗ fx,N )(bj) +Gσ(m)fx,N (bj)) (A.20)

= (gσ ∗ fx,N )(bj) +
1

S(m,σ)
Gσ(m)fx,N (bj), (A.21)

where the error term is defined as

E(m,σ) :=
1

S(m,σ)

∫ m

−m

d
(
Gσ(s)fx,N

(
z − 2s

m

))
ds

P1(s) ds (A.22)

+
1

2S(m,σ)
(Gσ(m)fx,N (z − 2)−Gσ(−m)fx,N (z + 2)) , (A.23)
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where P1(s) := s − ⌊s⌋ − 1/2 is the periodized Bernoulli polynomial. We will now estimate this
error term. Note that since Gσ is an even function and fx,N is periodic with period 2, the difference
in A.23 is 0. Therefore, we can compute that

E(m,σ) =
1

S(m,σ)

∫ m

−m

G′
σ(s)P1(s)fx,N

(
z − 2s

m

)
ds (A.24)

− 2

mS(m,σ)

∫ m

−m

Gσ(s)P1(s)f
′
x,N

(
z − 2s

m

)
ds. (A.25)

Using the triangle inequality, we can bound E(m,σ) in terms of convolutions with g̃σ:

|E(m,σ)| ≤ 1

S(m,σ)

∣∣∣∣∫ m

−m

G′
σ(s)P1(s)fx,N

(
z − 2s

m

)
ds

∣∣∣∣ (A.26)

+
1

S(m,σ)

∣∣∣∣∫ m

−m

Gσ(s)P1(s)f
′
x,N

(
z − 2s

m

)
−2
m

ds

∣∣∣∣ (A.27)

≤ 1

S(m,σ)

(
m

2σ2

∫ m

−m

Gσ(s)fx,N

(
z − 2s

m

)
ds+ (A.28)

+
1

m

∫ m

−m

Gσ(s)

∣∣∣∣f ′
x,N

(
z − 2s

m

)∣∣∣∣ ds
)

(A.29)

=
m

2σ2
(g̃σ ∗ fx,N )(z) +

1

m
(g̃σ ∗

∣∣f ′
x,N

∣∣)(z), (A.30)

where in Equation A.29 we used that |P1(s)| ≤ 1/2 and that |G′
σ(s)| = |s|Gσ(s)/σ

2 ≤
mGσ(s)/σ

2 for s ∈ [−m,m].

Note that since g̃σ is a truncated Gaussian on [−2, 2], it is infinitely differentiable on the open set
(−2, 2), however, it is not differentiable at the endpoints −2 and 2 when treated as a 4-periodic
function. This technical difficulty can be resolved using mollifiers: we can replace g̃σ with g̃σ ∗ φϵ,
where {φϵ} is a family of mollifiers indexed by ϵ > 0. The key properties of a mollifier are that
g̃σ ∗ φϵ is infinitely differentiable as a 4-periodic function for all ϵ > 0 and limϵ→0 g̃σ ∗ φϵ = g̃σ
(Stein & Shakarchi, 2005, Ch. 3). We are ultimately interested in only bounds on absolute values
of g̃σ convolved with various functions, and since absolute values are continuous and inequalities
are preserved under taking limits, all our bounds are still true. In particular, this shows that the k’th
Fourier coefficients of g̃σ decay faster than any polynomial. And on the other hand, by assumption
we know that the Fourier coefficients of fx,N decay on the order of 1/kt; and we know that |f ′

x,N | is
continuous and 2π periodic, so its Fourier coefficients converge. So by the convolution theorem, we
can deduce that the Fourier coefficients of g̃ ∗fx,N and g̃σ ∗|f ′

x,N | decay faster than any polynomial.
Summed over the N frequencies, this shows that |g̃σ ∗ fx,N (x)| and |g̃σ ∗

∣∣f ′
x,N

∣∣ (z)| decay faster
than any polynomial as well. Since m is fixed and σ ≥ 1, this implies that

|E(m,σ)| = O(1/N2t+1). (A.31)

Using Definition A.1 and Equation A.16, we have that

gσ ∗ fx,N (bj) =
1

S(m,σ)

m∑
k=1−m

Gσ(k) · fx,N
(
bj −

2k

m

)
− 1

S(m,σ)
Gσ(m)fx,N (bj) (A.32)

= (g̃σ ∗ fx,N )(bj) + E(m,σ)− 1

S(m,σ)
Gσ(m)fx,N (bj). (A.33)

If we define C1(m,σ) := Gσ(m)
S(m,σ) , then Equation A.33 combined with A.31 together imply that∣∣∣gσ ∗ fx,N (bj)− g̃σ ∗ fx,N (bj) + C1(σ,m)fx,N (bj)

∣∣∣ = O(1/N2t+1). (A.34)
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Finally, we can estimate that

∥fx,N (⃗b)− gσ ∗ fx,N (⃗b)∥2 (A.35)

= ∥fx,N (⃗b)− g̃σ ∗ fx,N (⃗b) + C1(σ,m)fx,N (⃗b)∥2 (A.36)

+ ∥gσ ∗ fx,N (⃗b)− g̃σ ∗ fx,N (⃗b) + C1(m,σ)fx,N (⃗b)∥ (A.37)

= ∥fx,N (⃗b)− g̃σ ∗ fx,N (⃗b) + C1(m,σ)fx,N (⃗b)∥2 +
√
m∥O(1/N2t+1)∥2 (A.38)

= ∥(1 + C1(m,σ))fx,N (⃗b)− g̃σ ∗ fx,N (⃗b)∥2 +
√
mO(1/N2t+1). (A.39)

This completes the first part of the proof. For the second part of the proof, since S(m,σ) ≥ (2m−
1)Gσ(m− 1), we can estimate that

B1(m,σ) ≤ 1 +
Gσ(m)

(2m− 1)Gσ(m− 1)
≤ 1 +

1

2m− 1
e−(2m−1)/2σ2

≤ 1 +
1

2m− 1
. (A.40)

This completes the proof.

Lemma A.5. (Main term asymptotic) Denote by a0(x) the constant coefficient of fx,N . Let us
suppose that the Fourier coefficients of fx,N decay like B3(x)/k

t, and define the constant

B2(σ,m, x) :=
√
a0(x)2B1(m,σ)2 + 2B1(m,σ)2B3(x)2ζ(2t). (A.9)

Then we know that

∥B1(m,σ)fx,N (⃗b)− g̃σ ∗ fx,N (⃗b)∥2 (A.10)

=
√
m

(
B2(σ,m, x)− B1(m,σ)2B3(x)

2

2t− 1
· 1

N2t−1
+O(1/N2t)

)
. (A.11)

Furthermore, B2(σ,m, x) is bounded from above and below as a function of σ and m.

Proof of Lemma A.5. We will first argue that B2(σ,m, x), as a function of σ and m, is bounded from
above and below. Indeed, from its definition, B2(σ,m, x) ≥

√
a0(x)2B1(m,σ)2 ≥ |a0(x)|. But

the Fourier PDF has integral 1 over [−1, 1], so its constant term is a0(x) = 1/2. This implies that
B2(σ,m, x) ≥ 1/2. To see B2(σ,m, x) is bounded from above, we simply recall that in Lemma A.3
we showed that |B1(m,σ)| ≤ 2, which implies that |B2(σ,m, x)| ≤

√
4a0(x)2 + 8B3(x)2ζ(2t).

This shows that B2(σ,m, x) is bounded above and below as a function of m and σ, as claimed.

Now, let (d0(x), . . . , dm−1(x)) ∈ Rm be the discrete Fourier transform of (B1(m,σ)fx,N − g̃σ ∗
fx,N )(⃗b) ∈ Rm. For notational simplicity, we will write B1 = B1(m,σ) as long as σ is fixed. By
Plancherel’s Theorem, we have

m−1∑
j=0

|(B1fx,N − g̃σ ∗ fx,N )(bj)|2 =
1

m

m−1∑
k=0

|dk(x)|2 . (A.41)

Let hσ,j be the Fourier coefficients of g̃σ , treated as a periodic function with period 4, and defined
over [−2, 2]:

g̃σ(z) =

∞∑
j=−∞

hσ,je
πijz/2. (A.42)

Since fx,N is defined over [−1, 1] and is periodic with period 2, we can likewise treat it as a function
over [−2, 2] with period 4, in which case we can rewrite its Fourier series as

fx,N (z) =

2N∑
j=−2N

ãj(x)e
πijz/2, (A.43)

where

ãj(x) =

{
aj/2(x) if j ≡ 0 (mod 2)

0 else.
(A.44)
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Then, by the Convolution Theorem, we have

(B1fx,N − g̃σ ∗ fx,N )(bl) =

2N∑
j=−2N

ãj(x)(B1 − hσ,j) · eπijbl/2 (A.45)

=

N∑
k=−N

ã2k(x)(B1 − hσ,2k) · eπikbl (A.46)

=

N∑
k=−N

ak(x)(B1 − hσ,2k) · eπikbl , (A.47)

where in the second equality we used the fact that ãj is 0 for odd j and therefore re-indexed using
k = j/2. Thus, using the definition of DFT along with Equation A.47, we get

dk(x) =

m−1∑
l=0

(B1fx,N − g̃σ ∗ fx,N )(bl) · e−2πikl/m (A.48)

=

m−1∑
l=0

N∑
j=−N

aj(x)(B1 − hσ,2j)e
πijbl · e−2πikl/m (A.49)

=

N∑
j=−N

aj(x)(B1 − hσ,2j)

m−1∑
l=0

eπij(−1+ 2l+1
m ) · e−2πikl/m (A.50)

=

N∑
j=−N

aj(x)(B1 − hσ,2j) · eπij(−1+1/m)
m−1∑
l=0

e2πi(j−k)l/m. (A.51)

First, we claim that at most a single summand (in j) is represented. Towards this, we note that

m−1∑
l=0

e2πi(j−k)l/m =

{
0 j ̸≡ k (mod m)

m j ≡ k (mod m).
(A.52)

Then, we note that since 0 < N < m/2, for each 0 ≤ k < m, there is at most one j ∈ {−N,−N +
1, . . . , N}, such that j ≡ k (mod m). This shows that there is at most a single summand. We will
now find the exact formula for each summand. We consider three cases.

• Case 1: 0 ≤ k ≤ N . In this case, j = k satisfies j ≡ k (mod m), so this index gives the
exponential sum of m.

• Case 2: N < k < m − N . In this case, k is too large to be an index in the sum, so we
can’t choose j = k; the next smallest equivalent value is j = k −m, which satisfies j ≡ k
(mod m). But N −m < j < −N in this case, so k is too small to be an index in the sum;
therefore, every exponential sum is zero in this range.

• Case 3: m−N ≤ k ≤ m− 1. In this case, j = k−m satisfies j ≡ k (mod m). We have
−N ≤ j ≤ 1, so this is a valid index in the sum.

This gives the following closed formula:

dk(x) =


m · ak(x)(B1 − hσ,2k)e

πik(−1+1/m) 0 ≤ k ≤ N

0 N < k < m−N

m · ak−m(B1 − hσ,2(k−m))e
πi(k−m)(−1+1/m) m−N ≤ k ≤ m− 1.

(A.53)
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Using this closed formula in A.41, we obtain
m−1∑
j=0

|(B1fx,N − g̃σ ∗ fx,N )(bj)|2 (A.54)

=
1

m

N∑
k=0

∣∣∣m · ak(x)(B1 − hσ,2k)e
πik(−1+1/m)

∣∣∣2 (A.55)

+
1

m

m−1∑
k=m−N

∣∣∣m · ak−m(B1 − hσ,2(k−m))e
πi(k−m)(−1+1/m)

∣∣∣2 (A.56)

= m

N∑
k=0

|ak(x)(B1 − hσ,2k)|2 +m

m−1∑
k=m−N

∣∣ak−m(B1 − hσ,2(k−m))
∣∣2 , (A.57)

where in the last step we used that
∣∣eπik(1−1/m)

∣∣ = 1 =
∣∣eπi(k−m)(1−1/m)

∣∣ since they are both
complex exponentials. Now, since g̃σ is a real and even function, we know that its Fourier coeffi-
cients hσ,k are real. Further, since g̃σ is infinitely differentiable, we also know that hσ,k = O(1/kt)
(in fact they decay faster than 1/kp for any p ≥ 1). Thus, using that |ak(x)| decays like B3(x)/k

t,
we see

|ak(x)(B1 − hσ,2k)|2 = |ak(x)|2 (B2
1 − 2hσ,2k(x) + h2

σ,2k) (A.58)

=
B2

3B
2
1

k2t
+O

(
1

k2t(2k)t

)
+O

(
1

k2t(2k)2t

)
. (A.59)

From A.59, it is clear that since we are interested in only the dominant asymptotic, we can safely
ignore the higher order terms coming from the hσ,k. As a result, we can estimate that

m−1∑
j=0

|(B1fx,N − g̃σ ∗ fx,N )(bj)|2 ≈ mB2
1a0(x)

2 +m

N∑
k=1

B2
3B

2
1

k2t
+m

m−1∑
k=m−N

B2
3B

2
1

(k −m)2t

(A.60)

= ma0(x)
2B2

1 +m

N∑
k=1

B2
3B

2
1

k2t
+m

−1∑
k=−N

B2
3B

2
1

k2t
(A.61)

= ma0(x)
2B2

1 +m

N∑
k=1

B2
3B

2
1

k2t
+m

N∑
k=1

B2
3B

2
1

k2t
(A.62)

= ma0(x)
2B2

1 + 2m
N∑

k=1

B2
3B

2
1

k2t
. (A.63)

Next, we note that our asymptotic in Lemma A.4, applied at 2t, yields

N∑
k=1

1

k2t
= ζ(2t)− 1

2t− 1

1

N2t−1
+O(1/N2t). (A.64)

Substituting this into A.63, we obtain
m−1∑
j=0

|(B1fx,N − g̃σ ∗ fx,N )(bj)|2 (A.65)

= ma0(x)
2B2

1 + 2mB2
1B

2
3

(
ζ(2t)− 1

2t− 1

1

N2t−1
+O(1/N2t)

)
(A.66)

= m

(
B2

2 −
2B2

1B
2
3

2t− 1

1

N2t−1
+B2

1B
2
3O(1/N2t)

)
(A.67)

= m

(
B2

2 −
2B2

1B
2
3

2t− 1

1

N2t−1
+O(1/N2t)

)
, (A.68)
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where we defined B2 = B2(σ,m, x) :=
√
a0(x)2B2

1 + 2B2
1B

2
3ζ(2t) as in the statement of the

Lemma, and in the third line we applied Lemma A.3 to estimate that B1 ≤ 2, and we used that
B3 = B3(x) only depends on x. Then, using the Taylor expansion (1 + x)1/2 = 1 + x

2 + O(x2)
about 0, we can estimate thatm−1∑

j=0

|(B1fx,N − g̃σ ∗ fx,N )(bj)|2
1/2

(A.69)

=

(
mB2

2 −
m2B2

1B
2
3

2t− 1

1

N2t−1
+mO(1/N2t)

)1/2

(A.70)

=
√
mB2

(
1− 2B2

1B
2
3

(2t− 1)B2
2

1

N2t−1
+

1

B2
2

O(1/N2t)

)1/2

(A.71)

=
√
mB2

(
1− 1

2
· 2B2

1B
2
3

(2t− 1)B2
2

1

N2t−1
+O(1/N2t)

)
(A.72)

=
√
m

(
B2 −

B2
1B

2
3

2t− 1
· 1

N2t−1
+O(1/N2t)

)
. (A.73)

To justify our application of the Taylor expansion, we note that N ≫ 1, and B2 = B2(σ,m, x) is
bounded below as a function of σ and m. This completes the proof.

Lemma A.6. (The average value of the truncated Fourier PDF is 1/2) If N < m/2, then
m−1∑
j=0

fx,N (bj) =
m

2
. (A.12)

Proof of Lemma A.6. Denote by ak the Fourier coefficients of fx,N . We can compute that

m−1∑
j=0

fx,N (bj) =

m−1∑
j=0

N∑
k=−N

ake
iπk(−1+ 2j+1

m ) (A.74)

=

N∑
k=−N

ake
−iπke

iπk
m

m−1∑
j=0

e
2πijk

m . (A.75)

Note that by hypothesis, N < m/2, which implies that |k| < m for every outer sum index k. We
consider two cases; if k = 0, then the innermost summand is e

2πijk
m = 1; and if k ̸= 0, then the

innermost sum is a truncated geometric series with first term 1, common ratio e
2πik
m , and m terms.

In summary, the innermost summand is
m−1∑
j=0

e
2πijk

m =

{
m k = 0

0 k ̸= 0,
(A.76)

which implies that
∑m−1

j=0 fx,N (bj) = ma0. But a0 = 1/2 because fx,N is a PDF implies it has
average value 1/2 over [−1, 1]. This completes the proof.

B SMOOTHNESS METRIC

We will examine how the proposed smoothness metric Equation 3.1 behaves in a toy example setting
to gain intuition for its behavior. Consider a square wave, which can be expressed as an infinite sum
of odd integer harmonics that decay in amplitude proportional to their frequency:

f(x) =
4

π

∞∑
n=1,3,5,...

1

n
sin
(nπx

L

)
. (B.1)

Here, the wavelength is 2L (Weisstein, 2024).
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We construct a truncated version of the square wave with a finite and fixed number of frequencies.
The waveform will slowly approach its jagged, square shape as more sine waves are added. We
frame these increasingly jagged waves as discretized multinomial densities to simulate the output of
the Fourier head. To do this, we simply set the height to zero when the wave crest becomes negative
and normalize the sum to 1. The output of this transformation for a few representative waveforms is
pictured in Figure 5.

Figure 5: Truncated square waves framed as densities and their smoothness.

Intuitively, the truncated square wave with a single sine wave ought to be the smoothest. Thus our
metric in this context should be smallest at that point, and increase monotonically as we add more
sine waves. The plot in 6 demonstrates that this is indeed the case.

Choice of L2 Distance over L1 Distance: The proposed smoothness metric Equation 3.1 permits
a general measure of discrepancy D, and we’ve chosen D to be L2 distance as indicated in 3.2. We
empirically observe that L2 distance better preserves monotonicity than the L1 for higher frequency
content, thus motivating this choice. With a sample rate of 2048Hz, the L1 distance exhibits some
undesirable warping when our square-wave multinomial uses over 80 sine waves (see Figure 6). A
Fourier head in a practical setting may possess several more than 80 frequencies; accordingly, we
favor the L2 distance as our discrepancy measure.

Alternative Notions of Smoothness: In validating our choice of smoothness metric, we compare it
to the spectral entropy (Inouye et al., 1991), which has a similar purpose in quantifying the “smooth-
ness” of the frequency content of a signal. Spectral entropy is defined as the Shannon entropy of the
power spectral density of a sampled signal f , which is defined as follows:

H(f ;N) =
∑
n∈N

p(n) log2

(
1

p(n)

)
= −

∑
n∈N

Sn

Stotal
log2

(
Sn

Stotal

)
(B.2)

Here, N is the number of Fourier frequencies and S is the power of a frequency n ∈ N ; Sn is the
power spectrum of the nth frequency, and Stotal is the power of the signal using all N frequencies.
For some frequency at index n, Sn/Stotal is called its relative power and

∑
n∈N

Sn

Stotal
= 1 enables

us to consider each frequency’s power as a probability.

In the discrete case, the maximum entropy distribution is the uniform distribution. Thus, white
noise will have the highest spectral entropy. This has the consequence that power spectral densities
have more high frequency information will have lower entropy than that of white noise, provided
that there is a relationship between amplitude and frequency. More concretely, blue noise, which is
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Figure 6: Values of the smoothness metric 3.2 on our square-wave-like multinomials as we increase
the number of sine waves. We desire the value of this metric to be close to zero when there are few
sine waves, and be monotonically increasing with each additional wave, indicating that adding more
high frequency content results in a less smooth distribution. On the right, we can see that L1 as a
discrepancy measure leads to non-monotonicity, motivating our choice of L2 distance in measuring
our results.

defined by the amplitude increasing proportionally to the frequency, will have lower spectral entropy
than white noise. We sought a metric that always quantified ‘sharper’ signals like blue noise as less
smooth. In Table 4, we frame sampled noises of different types as multinomial distributions to
match our model setting by normalizing their amplitudes to be in [0, 1] and normalizing their sum to
1. Our noise types are defined before normalization, in order of smoothest to sharpest:

• Brown: S ∝ 1
F 2

• Pink: S ∝ 1
F

• White: S ∼ N (0, 1)

• Blue: S ∝ F

where S is the power density and F is the frequency. To obtain samples of each type, we first
generate white noise. We do this by sampling a Gaussian with mean 0 and standard deviation 1
to obtain amplitudes for t samples. We then apply the Fourier transform, and multiply (or divide)
the amplitudes of each component by their frequency, and apply the inverse Fourier transform to
recover the waveform. Finally we adjust the range of amplitudes of the signal to be within [0, 1] and
normalize the sum to 1.

Discrepancy Noise Mean ± Std. Deviation Diff Delta Desired Delta
L2 Brown 0.0003 ± 0.0001 n/a n/a n/a
L2 Pink 0.0017 ± 0.0002 0.0014 + +
L2 White 0.0034 ± 0.0003 0.0016 + +
L2 Blue 0.0038 ± 0.0003 0.0005 + +
Spectral Entropy Brown 0.4516 ± 0.0894 n/a n/a n/a
Spectral Entropy Pink 0.3878 ± 0.0603 -0.0638 - +
Spectral Entropy White 0.4266 ± 0.0614 0.0388 + +
Spectral Entropy Blue 0.4191 ± 0.0583 -0.0076 - +

Table 4: Smoothness measurements for four types of noise bootstrap aggregated over 1,000 trials.
The color red emphasizes how the value of Spectral Entropy is undesirably not monotonic increasing
for what we consider increasingly “sharp” noise types.

24



Published as a conference paper at ICLR 2025

C ADDITIONAL EXPERIMENT DETAILS, TOY EXAMPLES

C.1 MOTIVATING EXAMPLE: AUDIO SPECTROGRAM TRANSFORMER

To illustrate a simple problem setting where the design of the Fourier head is appropriate, we use
it as a drop-in replacement for a linear classification head in the Audio Spectrogram Transformer
(Gong et al., 2021). We consider the task of beats per minute (BPM) classification for metronome-
like audio samples (Wei et al., 2024) within the tempo range {50, 51, . . . , 210}. While this task is
not difficult, we use this audio classification task to illustrate some of the design choices one can
make when using the Fourier head. In this case, it is natural to group the BPMs into contiguous bins
{[50, 54], [55, 59], . . . } and use the Fourier head to classify them. These bins have a natural contin-
uous structure, which is where the Fourier head performs well. We also expect that the categorical
distribution over possible BPMs for a given audio clip ought to be unimodal and therefore require
few frequencies to approximate. In fact, our best performing model for this example uses only one
frequency.

We initialize the Audio Spectrogram Transformer with pretrained weights from AudioSet (Gem-
meke et al., 2017), and we train two different models–one with a standard linear classification head,
and one with the Fourier head. The Fourier head outperforms the linear classification head by an
F1 score improvement of +118%. We attribute this success to the inductive bias of continuity that
the Fourier head imparts. In Figure 7 we present the learned probability masses of both heads on
the same input sample. This graph illustrates that the Fourier head learns smoother PMFs than the
linear head, a concept which we will later formalize and explore.

Audio Classification Task: Learned Linear vs. Fourier PMFs

Figure 7: Comparison between the PMF learned by the linear head, and the Fourier head with
2 frequencies, for the toy BPM classification task, on a single audio example. We observe that
the Fourier head learns a smoother categorical distribution over its predicted values, and is better
centered around the ground truth label. We also note the small mini-sine wave artifacting on the left
side of the Fourier model, which tends to occur when using few frequencies.

C.2 LEARNING A CONTINUOUS DENSITY

Here we provide full details of the datasets used in our toy example of learning a known conditional
distribution.

Dataset: We create a synthetic dataset D = {(q(x), q(y), q(z))} ⊂ R3 as follows. Fix a probability
distribution P1 = P1(x) that is parameterized by one variable and a second distribution P2 =
P2(x, y) parameterized by two variables. Fix an interval I ⊂ R. Sample x uniformly from I ,
sample y ∼ P1(x), and finally sample z ∼ P2(x, y). We can repeat this sampling procedure N
times to obtain a set of N triples for which we know the conditional distribution of z given x and
y. Finally, we quantize this set to a fixed number of uniformly spaced bins in the range [−1, 1] to
obtain the dataset DP1,P2 . We will denote the quantization of z by q(z). We quantize into 50 bins
and our dataset has size 5000, with a 80-20 split between the train and test set. We describe three
choices for the distributions we used to create our datasets. We fix I = [−0.8, 0.8] and σ2 = 0.01
in all of them.

1. Gaussian dataset: P1(x) = N (x, σ2), and P2(x, y) = N (y, σ2).
2. GMM-2 dataset: P1 = Uniform(I), and P2(x, y) is a GMM centered at x and y with

variance σ2.
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3. Beta dataset: P1(x) = N (x, σ2), and P2(x, y) ∼ U({±1}) × Beta(100 |x| , 100 |y|),
where U({±1}) denotes the Rademacher distribution supported on {±1} with probability
1/2 each.

Additional results: In Figure 8, we present results from training over a range of frequencies, and for
each frequency we ran experiments with and without Fourier regularization. In Table 6 we present
results on the MSE metric, that show that the Fourier head outperforms the linear classification head.

Figure 8: We study how the quantity of Fourier frequencies impacts KL divergence and smoothness
for the toy example on each dataset. For both KL divergence and smoothness, lower is better. We
observe that the Fourier models with and without regularization performed similarly to each other,
and outperformed the linear baseline. We also note that the 50% error bars are larger for the linear
baseline model; this indicates that the Fourier models (both with and without regularization) are in
general more stable. This is in contrast to our large scale time series forecasting experiments, where
we find that regularization helps; this is likely because those experiments use an order of magnitude
more frequencies, and their conditional distributions are more complicated. While the GMM head
has better KL divergence on the Gaussian and GMM-2 datasets, which is to be expected, the Fourier
model (both with and without regularization) eventually has the best KL divergence on the Beta
dataset, since it is non-Gaussian Notice also how on each of the datasets, the smoothness degrades
as frequency increases, in a fashion that follows the asymptotic from our Theorem 3.3.

C.3 MLE-BASED FOURIER HEAD

We carry out experiments in the continuous domain analogous to those we did in the quantized
domain from the toy example.

Dataset: We use the same synthetic datasets–Gaussian, GMM-2, and Beta–as in the previous sub-
section, except we do not quantize the data into bins.

Task: Predict the conditional distribution of z given (x, y).

Model architecture: Our model is an MLP with one hidden layer and the final layer is an MLE-
based Fourier head which returns the 2N +1 learned real coefficients of the Fourier series, mapping
R2 → R64 → R32 → R2N+1. Alongside the Fourier-MLE model, we consider a baseline where
the final layer is a Gaussian model mixture whose means and standard deviations are learned using
an MLE objective. For the MLE-Fourier model, we sweep over frequencies N = 2, 4, . . . , 20 and
regularization γ ∈ {0, 10−6}.
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Figure 9: We study how the quantity of Fourier frequencies impacts KL divergence and perplex-
ity for the toy example on each dataset for the MLE experiments. For both KL divergence and
perplexity, lower is better. We observe that the Fourier models with and without regularization per-
formed similarly to each other. While the GMM head has better KL divergence on the Gaussian and
GMM-2 datasets, which is to be expected, the Fourier model (both with and without regularization)
has the best KL divergence on the Beta dataset for sufficiently large Fourier frequencies, since it is
non-Gaussian.

KL Divergence (↓)
Dataset Linear GMM Fourier
Gaussian 0.170 ± 0.052 0.026 ± 0.011 0.116 ± 0.043
GMM-2 0.238 ± 0.032 0.030 ± 0.006 0.146 ± 0.033
Beta 0.234 ± 0.032 0.407 ± 0.012 0.191 ± 0.016

Smoothness (↓)
Dataset Linear GMM Fourier
Gaussian 0.116 ± 0.049 0.068 ± 0.012 0.057 ± 0.011
GMM-2 0.068 ± 0.022 0.043 ± 0.009 0.038 ± 0.007
Beta 0.127 ± 0.044 0.061 ± 0.003 0.076 ± 0.021

Table 5: KL divergence and Smoothness for the three classification heads (Linear, GMM, and
Fourier) on each of the three synthetic datasets (Gaussian, GMM-2, Beta). As expected, the GMM
head achieves the best KL divergence on the Gaussian and GMM-2 datasets, as their conditional dis-
tributions are Gaussian. However, the Fourier head has the best KL divergence on the Beta dataset.
This demonstrates the flexibility of the Fourier head in modeling non-Gaussian distributions as well.

Model evaluation: We use two metrics for evaluation. The first metric is the average KL divergence
DKL(P(x, y)∥M(x, y)), where P(x, y) is the fixed conditional distribution of z given (x, y) and
M(x, y) denotes the predicted probability density function of z. Our second metric is perplexity,
which is the exponential of the average negative log likelihood of the test set.

Results: The metrics for the best performing model on each dataset are reported in Table 7. Figure
11 presents sample visualizations of the learned conditional distributions alongside the true densities.
While, as expected, the GMM-MLE head outperforms the Fourier-MLE head on the Gaussian and
GMM-2 datasets due to the Gaussian nature of the datasets, the Fourier-MLE head outperforms
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Toy Example: MSE (↓)

Classification Head
Dataset Pointwise Regression Linear GMM Fourier
Gaussian 0.010 ± 0.001 0.013 ± 0.001 0.010 ± 0.001 0.012 ± 0.001
GMM-2 0.121 ± 0.004 0.126 ± 0.004 0.120 ± 0.004 0.123 ± 0.005
Beta 0.275 ± 0.009 0.276 ± 0.008 0.273 ± 0.009 0.275 ± 0.008

Table 6: We compare the MSE between the linear head, GMM head, and the Fourier head with 12
frequencies and no regularization, for every dataset in the toy example. We also include a Pointwise
Regression model baseline, whose base architecture is same as the classification heads, except the
last classification layer is replaced with a dense layer having output dimension 1. We train the
Pointwise Regression model using MSE. For a given dataset, the MSE values across all of the
models is roughly similar. This is because the pointwise regression model tends to regress to the
mean, as does the expected value of each of the classification heads.

Toy Example: Ground Truth Conditional Distribution vs. Pointwise Regression Output

Figure 10: We present some examples of the ground truth conditional distribution versus the point
predicted by the Pointwise Regression model. The regression model simply regresses to the mean
of the conditional distribution. Accordingly, the regression model performs extremely well for the
unimodal Gaussian dataset, and it performs poorly for the bimodal datasets GMM-2 and Beta.

the GMM-MLE head on the Beta dataset, highlighting the flexibility of the Fourier-MLE head in
learning a large variety of probability distributions. In Appendix C.2, we present the results of a
study on the impact of number of frequencies and Fourier regularization in the MLE setting.

KL Divergence (↓) Perplexity (↓)
Dataset GMM-MLE Fourier-MLE GMM-MLE Fourier-MLE
Gaussian 0.012 ± 0.002 0.034 ± 0.003 0.410 ± 0.014 0.422 ± 0.019
GMM-2 0.018 ± 0.001 0.072 ± 0.005 0.702 ± 0.015 0.740 ± 0.014
Beta 0.257 ± 0.03 0.130 ± 0.005 0.623 ± 0.035 0.542 ± 0.017

Table 7: We compare metrics between the GMM-MLE head, and the Fourier-MLE head with 12
frequencies and no regularization, for every dataset in our toy example. We aggregate metrics over
4 different seeds and report the standard deviation.

C.4 ARE LLMS RANDOM NUMBER GENERATORS?

Dataset: We create a training dataset using the prompt template: “The following is a list of normally
distributed random numbers in the interval [-1, 1] with mean µ and std σ: x1, x2, ” and response
template: “x3”, where (µ, σ) ∈ {(−0.55, 0.10), (−0.03, 0.24), (0.42, 0.16), (0.55, 0.10)}, and each

28



Published as a conference paper at ICLR 2025

Figure 11: Comparison between the PDFs learned by the GMM-MLE head and the Fourier-MLE
head for each of the datasets in the toy example. While GMM-MLE outperforms Fourier-MLE on
the Gaussian and GMM-2 datasets, Fourier-MLE performs better on the Beta dataset.

xi ∼ N (µ, σ). We write each number using two decimal places. Our training dataset consists of
256 such (prompt, response) pairs, divided evenly among the four distributions.

Model Architecture: We consider three different models: the original Llama-3.1-8B-Instruct model
Dubey et al. (2024), the original model after LoRA fine-tuning, and the original model where we
replace the linear classification head with the Fourier head and perform LoRA fine-tuning. For the
Fourier head, we use an output dimension of 200 and the original latent space [−1, 1] because of
our chosen decimal precision. We conduct LoRA fine-tuning for 16 epochs with a learning rate of
3 ∗ 10−4 and a linear decay schedule, and a batch size of 64. We release all of our training code on
our project page.

Model Evaluation: We compute two metrics: the first is Total Variation Distance; we define this
to be one half of the L∞ distance between the ground truth quantized Gaussian histogram, and the
empirical histogram of samples, quantized into 20 bins. Our second metric is the Quantity of Unique
Samples. In Figure 3 we present example histograms for each of the three models that we consider
for the median TVD in each class. Those results demonstrate that the Fourier head learns a more
accurate PMF. And in Figure 12 we demonstrate that the Fourier head model consistently obtains
a lower TVD and a greater diversity of samples. We hypothesize that the LoRA-finetuned baseline
model has fewer diverse samples because it memorizes training data instead of learning the actual
distribution. In contrast, the Fourier head is forced to learn a continuous distribution, and samples
directly from that distribution.

Related works which consider LLMs as random number generators: Gu et al. (2024) explores
probability distribution sampling in LLMs in the context of behavioral simulation, which demon-
strates an application of using LLMs as random number generators. And Paruchuri et al. (2024)
explores the tasks of using LLMs for estimating percentiles, drawing samples, and calculating prob-
abilities. Lastly, Hopkins et al. (2023) explores sampling from numerical probability distributions
using LLMs, but they only consider a single non-uniform density, namely the normal distribution
N(0.5, 0.2887). They find that LLMs don’t perform well at this task, but they don’t thoroughly
investigate model-based interventions. In contrast, we thoroughly investigate the impact of fine-
tuning, and replacing the token classification head one with a better inductive bias for modeling
complex probability distributions.
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Figure 12: We demonstrate that the Fourier head model consistently obtains a lower total variation
distance, as well as a greater diversity of samples. For TVD (top), lower is better, because lower
values indicate that the learned distribution is closer to the ground truth distribution. And for quantity
of samples (bottom), higher is better, because lower values indicate that the LM has just memorizes
specific numbers instead of performing sampling. We present here the mean values across the four
distributions, for all ten seeds. We can see that the Fourier head obtains more diverse samples, and
learns a distribution closer to the ground truth.

D ADDITIONAL EXPERIMENT DETAILS, LARGE-SCALE EXAMPLES

D.1 DECISION TRANSFORMER

Following the original Decision Transformer implementation, we trained on 500k transitions ob-
served by a DQN agent during training, for 5 epochs. We trained on the same model size as the
original implementation (a GPT-1 model with approximately 2.012M parameters) which takes about
4 hours on a single GPU. We can see that in Figure 13 that the PMFs learned by the Fourier head
are smoother. In Figure 16 we present results for more Atari games. In Figure 14, we present results
from an ablation study of the model size. The results demonstrate that, across model sizes, the Deci-
sion Transformer with a Fourier head is better at learning high-quality next action distributions than
the Decision Transformer with a linear head. And in Figure 15, we present results from an ablation
study of the dataset size, which show that the Fourier head obtains larger returns than the Linear
classification head across dataset sizes.

D.2 CHRONOS

In Figure 17 we present a learned next-token PMF from a linear Chronos model, and a next-token
PMF from a Chronos model which uses the linear head. The Fourier head is about 4x smoother. In
Table 8 we present results from an ablation study on the quantity of Fourier frequencies, choice of
regularization, and binning strategy. We followed the original Chronos implementation, keeping all
hyperparameters the same. In particular, we trained for 200k steps, on the same model size as the
original implementation (the T5 model with approximately 20M parameters) and this takes about 48
hours on 8 GPUs. See Table 9 for the datasets we used to train and evaluate Chronos.
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Figure 13: We present example next action distributions for a single step in the Decision Transformer
test split. The Fourier agent with 8 frequencies produces a “clump” of actions that is semantically
meaningful. Namely, this agent almost certainly wants to shoot in the down right or right direction,
presumably because there is a submarine in that direction. In contrast, the linear agent’s next-action
distribution doesn’t clearly depict a strategy, and incorrectly assigns higher likelihoods to incorrect
actions. Because the Fourier head outputs a smoother PMF, it learns to concentrate more probability
mass near the correct action.

Figure 14: We present an ablation study on the effect of the model size on the relative performance of
the Fourier head and the Linear head. The results demonstrate that, across model sizes, the Decision
Transformer with a Fourier head is better at learning high-quality next action distributions than the
Decision Transformer with a linear head.
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Fourier Head Ablation Study: Dataset Size

Figure 15: In this ablation study, we analyze whether dataset size has any effect on the relative
performance of the Linear head and the Fourier head. Our results show that, across dataset sizes, the
Decision Transformer agent with a Fourier head achieves larger returns than the linear head on the
Seaquest game.

Chronos Time Series Model MASE (↓) WQL (↓) Smoothness (↓)
Linear 0.883 0.750 0.1689 ± 0.1087
Fourier-64 0.875 0.798 0.0032 ± 0.0012
Fourier-128 0.872 0.767 0.0068 ± 0.0035
Fourier-256 0.859 0.755 0.0139 ± 0.0087
Fourier-550 0.852 0.749 0.0283 ± 0.0224
Fourier-550 (no regularization) 0.861 0.753 0.0286 ± 0.0219
Fourier-550 (uniform precision binning) 0.873 0.747 0.0395 ± 0.0252

Table 8: We present large-scale experiments on Chronos time series forecasting. Notably, every
Fourier model outperforms the linear baseline on MASE and smoothness metrics. We can see that
within the Fourier model class, decreasing the number of frequencies lets you trade off the continuity
of the learned probability mass functions (smoothness) for the quality of the forecasts (MASE,
WQL). In the bottom two rows, we present an ablation for our large-scale experiments on Chronos
time series forecasting. The best overall performing Fourier-550 model uses Fourier regularization
and mixed precision binning, which are both techniques informed by Fourier analysis. We observe
that both of these interventions improve the MASE, but have minimal effect on the WQL. Note that
the choice of binning strategy doesn’t affect the performance of the linear baseline.
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Figure 16: We present empirical results for how the quantity of Fourier frequencies impacts returns
and smoothness for additional imitation learning games. For normalized returns, higher is better; for
smoothness, lower is better. We can see that for the BankHeist, DoubleDunk, and Gravitar games,
the Fourier agent consistently achieves higher normalized returns than the linear baseline agent,
while still learning smoother next-action distributions.

Figure 17: We present the next token value distribution for a single forecasted timestep on the
Tourism Monthly dataset. We observe that the Fourier head’s learned conditional distribution is
smoother, fitting signal more robustly, whereas the linear head overfits to the noise, and is therefore
more jagged. We note that the x-axis represents the bins in the latent space [−1, 1]; the x-axis values
for the Fourier head are lower because the linear head uses uniform binning, and the Fourier head
uses mixed precision binning.
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Fourier Head Ablation Study: Chronos Dataset Size

Figure 18: In this ablation study, we analyze whether dataset size has any effect on the relative
performance of the linear head and the Fourier head for the probabilistic time series task. Our results
show that, across dataset sizes, the Fourier head yields more accurate forecasts than the linear head.
For the dataset sizes 1.1 × 105, 1.1 × 106, and 1.1 × 107, we report the average MASE across
four seeds; for the dataset size 1.1 × 108 we report the MASE from Table 3. We generate the plot
following (Kaplan et al., 2020) and observe a similar power-law scaling behavior for both methods,
with the Fourier head consistently outperforming the linear head.

Fourier Head Ablation Study: Chronos Model Size

Figure 19: In this ablation study, we analyze whether model size has any effect on the relative
performance of the linear head and the Fourier head for the probabilistic time series forecasting
task. Our results show that, across model sizes, the Fourier head yields more accurate forecasts than
the linear head. For the model sizes 1.25M, 2.5M, 5M, and 10M, we report the average MASE
across three seeds; for the model size 20M we report the MASE from Table 3. We generate the plot
following (Kaplan et al., 2020) and observe a similar power-law scaling behavior for both methods,
with the Fourier head consistently outperforming the linear head.
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Table 9: All datasets that are used for our time series forecasting experiments. We built our time
series forecasting experiments on top of Chronos (Ansari et al., 2024), and this table is mostly
copied from their paper. The datasets are partitioned according to how they are used for training and
evaluation of models: pretraining-only data is only used for training; evaluation data is not used in
training models, but only for evaluation (final H observations). All of our evaluation datasets came
from the zero-shot evaluation set from Chronos.

Dataset Domain Freq. # Series Series Length Prediction
min avg max Length (H)

Pretraining
Brazilian Cities Temperature nature M 12 492 757 1320 -
Mexico City Bikes transport 1H 494 780 78313 104449 -
Solar (5 Min.) energy 5min 5166 105120 105120 105120 -
Solar (Hourly) energy 1H 5166 8760 8760 8760 -
Spanish Energy and Weather energy 1H 66 35064 35064 35064 -
Taxi (Hourly) transport 1H 2428 734 739 744 -
USHCN nature 1D 6090 5906 38653 59283 -
Weatherbench (Daily) nature 1D 225280 14609 14609 14610 -
Weatherbench (Hourly) nature 1H 225280 350633 350639 350640 -
Weatherbench (Weekly) nature 1W 225280 2087 2087 2087 -
Wiki Daily (100k) web 1D 100000 2741 2741 2741 -
Wind Farms (Daily) energy 1D 337 71 354 366 -
Wind Farms (Hourly) energy 1H 337 1715 8514 8784 -

Evaluation
Australian Electricity energy 30min 5 230736 231052 232272 48
CIF 2016 banking 1M 72 28 98 120 12
Car Parts retail 1M 2674 51 51 51 12
Hospital healthcare 1M 767 84 84 84 12
M1 (Monthly) various 1M 617 48 90 150 18
M1 (Quarterly) various 3M 203 18 48 114 8
M1 (Yearly) various 1Y 181 15 24 58 6
M3 (Monthly) various 1M 1428 66 117 144 18
M3 (Quarterly) various 3M 756 24 48 72 8
M3 (Yearly) various 1Y 645 20 28 47 6
M4 (Quarterly) various 3M 24000 24 100 874 8
M4 (Yearly) various 1Y 23000 19 37 841 6
M5 retail 1D 30490 124 1562 1969 28
NN5 (Daily) finance 1D 111 791 791 791 56
NN5 (Weekly) finance 1W 111 113 113 113 8
Tourism (Monthly) various 1M 366 91 298 333 24
Tourism (Quarterly) various 1Q 427 30 99 130 8
Tourism (Yearly) various 1Y 518 11 24 47 4
Traffic transport 1H 862 17544 17544 17544 24
Weather nature 1D 3010 1332 14296 65981 30
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