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ABSTRACT

Graph Neural Networks (GNNs) typically rely on neighborhoods as the founda-
tion of message passing. While simple and effective, neighborhoods limit ex-
pressivity, often no stronger than the Weisfeiler–Lehman (WL) test. We propose
the Grothendieck Graph Neural Networks (GGNN) framework, an algebraic plat-
form that generalizes neighborhoods into covers, offering flexible alternatives for
defining message-passing strategies. GGNN translates covers into matrices, sim-
ilar to how adjacency matrices encode neighborhoods, enabling both theoretical
analysis and practical implementation. Within this framework, we introduce the
cover of sieves, inspired by category theory, which captures rich topological fea-
tures. Based on this cover, we design Sieve Neural Networks (SNN), which pro-
duce the matrix form of the cover of sieves, generalizing the adjacency matrix.
Experiments show that SNN achieves zero failures on graph isomorphism tasks
(SRG, CSL, BREC) and improves topology-aware evaluation via a label propa-
gation probe. These results demonstrate GGNN’s ability to serve as a principled
foundation for designing topology-aware GNNs.

1 INTRODUCTION

The concept of neighborhood plays a central role in most Graph Neural Network (GNN) archi-
tectures, serving as the foundation for message passing (Gilmer et al., 2017). This reliance is not
arbitrary: neighborhoods provide comprehensive coverage of the graph structure, leveraging the
adjacency matrix to facilitate efficient and systematic aggregation of local information. However,
this local perspective comes with limitations. In particular, many GNNs have an expressive power
bounded by the WL test (Sato, 2020), (Xu et al., 2019), limiting the ability of GNNs to capture
broader topological structures.

To address the limitations of neighborhoods, researchers have proposed alternatives that incorporate
richer structural information. One direction uses concepts from algebraic topology, such as simpli-
cial complexes and higher-order faces, to capture interactions beyond pairs of nodes (Bodnar et al.,
2021b), (Bodnar et al., 2021a), (Hajij et al., 2023), (Papillon et al., 2025). Another line of work re-
lies on specific patterns or subgraphs (e.g., motifs) to encode characteristic structures as the basis for
topologically-aware message passing (Bouritsas et al., 2023), (Ai et al., 2022). While these methods
enrich the local perspective, they often depend on handcrafted definitions or combinatorial choices.
In contrast, neighborhoods themselves arise from a precise algebraic definition, suggesting that a
more systematic algebraic generalization may provide a broader and more principled foundation.

We argue that an algebraic viewpoint provides such a foundation. Unlike topological constructs or
handcrafted patterns, algebraic generalizations of neighborhoods can preserve their simplicity while
extending their flexibility. Building on this insight, our work introduces an algebraic extension of
neighborhoods that retains ease of use while enabling more expressive message-passing strategies.
Our main contributions are as follows.

• Algebraic generalization of neighborhoods. We extend the conventional notion of neigh-
borhoods by introducing the concept of covers for graphs. This generalization provides a
principled and flexible foundation for understanding graph structure.
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• The GGNN framework. We develop the Grothendieck Graph Neural Networks (GGNN)
framework, an algebraic platform that creates, refines, and transforms covers into their
matrix forms, recovering the adjacency matrix as a special case. GGNN offers a systematic
way to design new message-passing strategies.

• Sieve Neural Networks (SNN). As a concrete instantiation of GGNN, we introduce Sieve
Neural Networks (SNN), based on a cover inspired by sieves in category theory. SNN
exemplifies how an algebraic concept (sieves) can be translated into an architecture for
message passing while preserving invariance.

• Topology-aware evaluation (our probe). In addition to evaluating SNN on graph isomor-
phism task, we design a topology-encoding benchmark based on a special case of Label
Propagation (LP) (Zhu & Ghahramani, 2002; Huang et al., 2020) with one propagation
step (α = 1). Here LP is used not as a learning algorithm but as a controlled probe to
directly compare covers with neighborhoods. On citation networks and ogbn-arxiv, sieve
covers consistently and substantially outperform the neighborhood cover, highlighting the
advantage of covers in capturing topological structure in large graphs.

2 COVERS AND THEIR MATRIX INTERPRETATIONS

In this section we develop the notion of covers for graphs and show how to interpret them as matrices,
laying the groundwork for the GGNN framework. We begin by assigning to each directed subgraph
its matrix representation, establishing a bijection between directed subgraphs and their associated
matrices. We then introduce two monoids: Mod(G), generated by directed subgraphs, and Mom(G),
generated by their matrix representations. This allows us to extend the representation map to a
monoidal homomorphism

Tr : Mod(G) −→ Mom(G).

We prove that Tr is invariant under graph isomorphisms (via Change-of-Order mappings) and pro-
vides an algebraic description of a graph that is unique up to isomorphism. These results form the
theoretical foundation of the GGNN framework.

2.1 MATRIX REPRESENTATIONS OF DIRECTED SUBGRAPHS

We consider undirected graphs G = (V,E) whose node set V is equipped with a fixed ordering.
Our first step is to formalize directed subgraphs of G and to define their matrix representations.

Definition 2.1.1. (1) A path p from node vp1
to node vpm

is an ordered sequence

vp1
, ep1

, vp2
, ep2

, . . . , vpm−1
, epm−1

, vpm
,

where each epi connects vpi and vpi+1 .

(2) A directed subgraph D of G is a connected, acyclic subgraph in which each edge is assigned a
direction.

Neighborhoods as a special case. A neighborhood can be seen as a directed subgraph obtained by
orienting all incident edges into a fixed node (see Figure 4). In the adjacency matrix, each column
corresponds to such a neighborhood; isolating the neighborhood of a node amounts to zeroing out
the other columns.

Matrix representation of a directed subgraph. We extend the neighborhood-as-column view to
arbitrary directed subgraphs by encoding direction-respecting reachability.

Definition 2.1.2. Let D be a directed subgraph of G = (V,E).

1. Define a relation ≤D on V by vi ≤D vj iff there exists a path in D that respects edge
directions and starts at vi and ends at vj .

2. The matrix representation of D is the |V | × |V | matrix MD with (MD)ij = 1 if vi ≤D vj
and (MD)ij = 0 otherwise.

2
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The requirement that paths respect directions is essential: all walks counted by MD must follow
the edge orientations in D. Intuitively, a directed subgraph specifies an allowable message-flow
pattern; its matrix MD realizes this pattern. In this sense, matrices from directed subgraphs serve
as structured alternatives to the standard adjacency matrix used in neighborhood-based message
passing.

Figure 1: Directed subgraphs and their matrices. Two directed subgraphs of a graph G (left) are
shown: D̂ (middle) and D̄ (right). Their matrix representations are X and Y , respectively. Each
directed subgraph encodes a distinct strategy for propagating information; the matrices X and Y
make these strategies directly usable in message passing.

Representation map. Definition 2.1.2 induces a map from directed subgraphs to matrices:

Rep : DirSub(G) −→ MatRep(G),

where DirSub(G) is the set of directed subgraphs of G and MatRep(G) is the image (subset) of
Mat|V |(R) consisting of matrices that arise from directed subgraphs via Definition 2.1.2.

Theorem 2.1.3. The map Rep is an isomorphism between DirSub(G) and MatRep(G). In partic-
ular, each directed subgraph is uniquely determined by its matrix representation, and conversely
every matrix in MatRep(G) corresponds to a unique directed subgraph.

2.2 DEFINING COVERS FOR GRAPHS: AN ALGEBRAIC PLATFORM

While we can cover a graph G by picking elements from DirSub(G) and map each to a matrix
via Rep, this space is limited: DirSub(G) is relatively small and its elements do not combine well.
For instance, the union of the directed subgraphs D̂ and D̄ in Figure 1 is not a directed subgraph
(multiple directed paths appear between some node pairs). Hence no matrix image exists for such
a combination, which prevents its direct use in a message-passing scheme. This makes it hard to
design diverse, meaningful strategies using only DirSub(G).

Step 1: enlarge the space via a multigraph monoid. To combine directed subgraphs systemat-
ically, we first endow them with an algebraic operation. A natural choice is to define C

⊕
D for

C,D ∈ DirSub(G) as the directed multigraph obtained by taking the union of their node sets and
the disjoint union of their directed edge sets. Let

Mult(G) =
{ k⊕

i=1

Di : k ≥ 1, Di ∈ DirSub(G)
}
.

Then (Mult(G),
⊕

) is a commutative monoid. This construction enlarges the object set, but it
treats edges as independent and is largely insensitive to path structure: paths in C

⊕
D are simply

concatenations of available directed edges, with little inheritance from the path sets of C and D. As
a result,

⊕
alone provides limited control for crafting new message-passing strategies.

Step 2: add path sensitivity via a non-commutative monoid. To encode which paths are al-
lowed, not only which edges exist, we augment multigraphs with explicit path sets. Define

SMult(G) =
{
(M,S) : M ∈ Mult(G), S ⊆ Paths(M)

}
,

and define a binary operation • by (M,S)• (N,T ) =
(
M
⊕

N, S ⋆T
)
, where S ⋆T is the union

of the sets S, T , and the collection of paths constructed by the composition of paths in S followed
by paths in T . Since edges of M

⊕
N come from a disjoint union, paths in S and T remain disjoint

subsets of Paths(M
⊕

N).
Theorem 2.2.1. (SMult(G), •) is a non-commutative monoid.

3
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Non-commutativity comes from the order of path composition inside ⋆: if (M,S) and (N,T ) have
composable paths, then generally (M,S) • (N,T ) ̸= (N,T ) • (M,S); if they have no composable
paths, ⋆ reduces to set union.

Example 2.2.2. Let d : u→v and e : v→w be directed edges. Then d • e and e • d share the same
edge multiset (d

⊕
e), but differ in allowed paths: d • e contains a path from u to w (via d then e),

whereas e • d does not. Thus the order of composition matters.

Step 3: a representable submonoid for covers. Elements (M,S) ∈ SMult(G) can be read as
message-passing strategies: M fixes the directed multigraph over which messages may travel, and S
specifies which directed paths are allowed. However, not every such pair admits a matrix representa-
tion compatible with an extension of Rep. To retain implementability, we restrict to the submonoid
generated by genuine directed subgraphs, embedded via D 7→

(
D,Paths(D)

)
.

Definition 2.2.3. For a graph G, the monoid of directed subgraphs is the submonoid Mod(G) ⊆
SMult(G) generated by DirSub(G).

Hence each (M,S) ∈ Mod(G) can be written as

(M,S) = D1 • · · · •Dk, M =

k⊕
i=1

Di, S = Paths(D1) ⋆ · · · ⋆ Paths(Dk).

In the next subsection we show that all elements of Mod(G) admit matrix representations via an
extension of Rep, which makes them suitable for implementation.

Definition 2.2.4. A cover of G is a finite collection of elements of Mod(G).

A cover thus specifies a family of message-passing strategies: each element constrains allowed paths
locally, and the collection provides a flexible, task-dependent view of the graph (we do not require
covering all nodes/edges). Because Mod(G) is infinite and • is non-commutative, this space is ex-
pressive enough to encode a wide range of perspectives on how information should flow. Moreover,
the following result shows that directed edges suffice as generators, so complex strategies can be
built compositionally.

Theorem 2.2.5. Directed edges generate Mod(G).

2.3 FROM COVERS TO MATRICES: AN ALGEBRAIC PERSPECTIVE

Our goal in this section is to extend the representation map Rep from directed subgraphs to arbitrary
elements of Mod(G), so that a cover can be transformed into a collection of matrices. This requires
a matrix-side operation that mirrors the path-composition on Mod(G).

A monoid on matrices. Let Matn(R) be the set of n× n real matrices. Define a binary operation

A ◦B := A + B + AB.

Theorem 2.3.1. (Matn(R), ◦) is a monoid.

We now take the submonoid generated by MatRep(G) inside (Mat|V |(R), ◦).
Definition 2.3.2. The monoid of matrix representations of G is the submonoid (Mom(G), ◦) of
(Mat|V |(R), ◦) generated by MatRep(G).

Extending Rep to covers. Elements of Mod(G) are built by composing directed subgraphs with
•. The map below sends such compositions to matrices by replacing each directed subgraph Di with
its matrix Rep(Di) and each • with ◦.
Theorem 2.3.3. The mapping Tr : Mod(G) −→ Mom(G),

(M,S) = D1 •D2 • · · · •Dk 7−→ A = A1 ◦A2 ◦ · · · ◦Ak,

where Di ∈ DirSub(G) and Ai = Rep(Di), is a surjective monoidal homomorphism.

4
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Interpretation (path counting). In the proof of Theorem 2.3.3 one sees that Tr acts as a path
counter: for (M,S) ∈ Mod(G), the (i, j) entry of Tr(M,S) equals the number of paths in S from
vi to vj . Thus, covers become collections of matrices in the same way that neighborhoods give rise
to the adjacency matrix, but now with explicit control over composed paths. Although we were not
able to show that Tr is an isomorphism, it extends an isomorphism on DirSub(G) and will be shown
in the next subsection to characterize graphs up to isomorphism, supporting its use as a faithful
matrix transformation of covers.
Example 2.3.4. In Figure 1, let D̂ and D̄ be two directed subgraphs of G with matrix representations
X and Y . Using •, we may form new strategies D̂ • D̄ and D̄ • D̂. Their matrix transforms are
obtained as follows:

Tr(D̂ • D̄) = Tr(D̂) ◦ Tr(D̄) = X ◦ Y, Tr(D̄ • D̂) = Tr(D̄) ◦ Tr(D̂) = Y ◦X.

Since ◦ is generally non-commutative in this context, the two results differ, reflecting the order-
sensitivity of path composition in the underlying cover construction.

3 GROTHENDIECK GRAPH NEURAL NETWORKS FRAMEWORK

3.1 ALGEBRAIC FOUNDATIONS OF GRAPHS

We have introduced two monoids associated with a graph and a monoidal homomorphism between
them. We now ask: to what extent do these algebraic objects describe the underlying graph? To
address this, we first formalize how reordering node indices acts on the matrix space and verify that
this action is compatible with our monoidal structures.

Change-of-Order mappings. A matrix A ∈ Matn(R) represents a linear map Rn → Rn with
respect to the standard basis. If we reorder the standard basis of Rn (equivalently, relabel the co-
ordinates), the matrix representation of the same linear map is obtained by reindexing the rows and
columns of A. Any linear isomorphism f : Matn(R) → Matn(R) arising in this way is called
a Change-of-Order mapping (see Example C.0.3). Intuitively, this captures the effect of node
relabeling at the matrix level.
Proposition 3.1.1. Suppose f : Matn(R) → Matn(R) is a Change-of-Order mapping. Then f
preserves the standard algebraic operations on matrices: it is compatible with monoidal operation
◦, with matrix multiplication, and with element-wise (Hadamard) multiplication.

Relating graph isomorphisms and algebra. A graph isomorphism f : G → H is a bijection on
nodes that preserves edges, and therefore corresponds to a reordering of node indices. Hence it in-
duces a Change-of-Order mapping CO(f) : Mat|VG|(R) → Mat|VH |(R). The next result shows that
this relabeling is compatible with our monoidal constructions and with the translation to matrices.
Theorem 3.1.2. Every graph isomorphism f : G → H induces monoidal isomorphisms Mod(f) :
Mod(G) → Mod(H) and Mom(f) : Mom(G) → Mom(H) such that the following diagram
commutes, where ι denotes the inclusions:

Mod(G)
TrG //

Mod(f)

��

Mom(G)

Mom(f)

��

� � ι // Mat|VG|(R)

CO(f)

��
Mod(H)

TrH

// Mom(H)
� �

ι
// Mat|VH |(R)

(1)

A converse direction. We also have a partial converse: if a Change-of-Order mapping identifies
the matrix-level monoids of two graphs, then the graphs are isomorphic.
Theorem 3.1.3. Let G and H be graphs with |VG| = |VH | = n, and let f : Matn(R) → Matn(R)
be a Change-of-Order mapping. If the restriction of f to Mom(G) is an isomorphism onto Mom(H),
then G and H are isomorphic.

3.2 DEFINITION OF THE GGNN FRAMEWORK

Theorems 3.1.2 and 3.1.3 establish the key invariance principle underlying our construction. In Di-
agram 1, an isomorphism between graphs G and H corresponds to the vertical homomorphisms

5
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being isomorphisms; equivalently, a relabeling of nodes in a graph induces isomorphic transfor-
mations both on a cover and on its matrix transformation. Consequently, the horizontal arrows in
the diagram provide an algebraic description that is unique up to graph isomorphism. Leveraging
this observation, we formalize the Grothendieck Graph Neural Networks (GGNN) framework as the
following algebraic pipeline:
Definition 3.2.1. For a graph G = (V,E), the GGNN framework is the composition

Mod(G)
Tr // Mom(G)

� � ι // Mat|V |(R) (2)

How GGNN is used. The framework exposes three actions: (i) choose a cover in Mod(G); (ii)
translate it to matrices via Tr; (iii) optionally enrich the resulting collection inside Mat|V |(R) using
the allowed operations from Proposition 3.1.1. See Appendix D for more details.

Neighborhoods as a special case. The framework recovers standard message passing from neigh-
borhoods:
Theorem 3.2.2. The collection of neighborhoods forms a cover in Mod(G) and, under Tr, maps to
the adjacency matrix in Mat|V |(R).

Remarks. (i) A graph can be characterized by the submonoid generated by its neighborhoods; see
Appendix G.1. (ii) We compare GGNN with higher-order GNN families in Appendix E.

4 SIEVE NEURAL NETWORKS: A MODEL WITHIN THE GGNN FRAMEWORK

Inspired by sieves in category theory (MacLane & Moerdijk, 1994), we instantiate the GGNN frame-
work with a concrete cover that yields the Sieve Neural Network (SNN). For each node v, we
construct a family of outward-expanding substructures, formalized as elements of Mod(G), which
together form a sieve-inspired cover of the graph. This cover generalizes the standard neighbor-
hood view by admitting multiple direction-respecting pathways for information exchange. Via the
matrix map Tr, the cover is translated into operators used for message passing, exposing richer topo-
logical relationships than adjacency-based aggregation while remaining permutation-consistent. In
what follows, we define the sieve and cosieve elements, assemble the cover, and derive the SNN
architecture from their matrix transformations.

4.1 COVER OF SIEVES FOR GRAPHS

Constructing sieve elements in Mod(G). Fix a node v and build breadth-first “layers” around v:

N0(v) = {v}, N1(v) = N(v), Nk(v) =
( ⋃
u∈Nk−1(v)

N(u)
)
\

k−1⋃
i=0

Ni(v) (k ≥ 2).

For each k ≥ 1, orient all edges toward v across consecutive layers and collect them as

Mk(v) = {w→u : wu ∈ E, w ∈ Nk(v), u ∈ Nk−1(v) }, M0(v) = ∅.

Edges in the same Mk(v) are pairwise non-composable (each goes from layer k to k−1), so the
order in which they are combined is irrelevant. Define

Dk(v) := •
e∈Mk(v)

e

and assemble the depth-k sieve element

Sieve(v, k) := Dk(v) •Dk−1(v) • · · · •D1(v) •D0(v),

where D0(v) is the identity of Mod(G); see Figure 2. Since the layers eventually empty, there exists
k0 with Nk0+1(v) = ∅, hence Sieve(v, k) stabilizes for k ≥ k0. We denote this saturated element
by Sieve(v,−1) := Sieve(v, k0). To construct the opposite sieve, reverse the directions in each
Mk(v): let Mop

k (v) be Mk(v) with all edges reversed and set

Dop
k (v) := •

e∈Mop
k (v)

e, CoSieve(v, ℓ) := Dop
0 (v) •Dop

1 (v) • · · · •Dop
ℓ (v).

6
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Figure 2: Sieve construction. Left: a graph G. Middle: Sieve(v, 3) = D3(v) • D2(v) • D1(v)
around v; yellow, red, and black edges indicate D1(v), D2(v), and D3(v), respectively. Right: a
graph H; the element CoSieve(u, 1)•Sieve(v, 2) ∈ Mod(H) specifies allowed interactions between
u and v in SNN(α, (1, 2)).

The cover of sieves. For every node v in G, collect all depth-truncated and saturated sieve and
co-sieve elements:

Sieve(v, 0), Sieve(v, 1), . . . , Sieve(v,−1) and CoSieve(v, 0), CoSieve(v, 1), . . . , CoSieve(v,−1).

The cover of sieves is the finite collection containing these elements for all nodes v in G.

Matrix interpretation of the cover of sieves. Apply the monoidal homomorphism Tr to obtain
matrices:

Image(v, k) := Tr
(
Sieve(v, k)

)
, CoImage(v, ℓ) := Tr

(
CoSieve(v, ℓ)

)
.

Since Tr is monoidal,

Image(v, k) = Tr
(
Dk(v) •Dk−1(v) • · · · •D0(v)

)
= Tr

(
Dk(v)

)
◦ Tr

(
Dk−1(v)

)
◦ · · · ◦ Tr

(
D0(v)

)
.

(3)

Within a fixed layer i, edges in Mi(v) are not composable, so for distinct e, c ∈ Mi(v) we have
Tr(e)Tr(c) = Tr(c)Tr(e) = 0. Hence, by Theorem H.5.1,

Tr
(
Di(v)

)
= Tr

(
•

e∈Mi(v)
e
)
= ◦

e∈Mi(v)
Tr(e) =

∑
e∈Mi(v)

Tr(e),

i.e., Tr
(
Di(v)

)
is obtained from the adjacency matrix by keeping only entries corresponding to

directed edges in Mi(v). Moreover, CoImage(v, ℓ) = Image(v, ℓ)⊤ (transpose), so it suffices to
compute one of them. Algorithms for these computations are given in Appendix F.4. In addition,
Appendix G.2 shows that the submonoid generated by this cover determines the graph.

Invariance. The cover of sieves is stable under graph isomorphisms, and the induced matrices
transform accordingly.

Theorem 4.1.1. If f : G → H is a graph isomorphism, then Mod(f)
(
Sieve(v, k)

)
=

Sieve
(
f(v), k

)
and Mom(f)

(
Image(v, k)

)
= Image

(
f(v), k

)
.

4.2 DESIGN AND CONSTRUCTION OF THE MODEL

Building on the cover of sieves and its matrix interpretation, we define the Sieve Neural Network
(SNN) in two variants of increasing flexibility. A detailed comparison with MPNNs is provided in
Appendix F.

Variant SNN(α, (l, k)). In the α variant, for each ordered pair of nodes (vi, vj) we interpret
CoSieve(vi, l) as a sender and Sieve(vj , k) as a receiver. The admissible transmissions from vi
to vj are precisely the paths allowed by the composed element CoSieve(vi, l) • Sieve(vj , k), (see
Figure 2). Under the map Tr, the number of such paths equals the (i, j) entry of CoImage(vi, l) ◦
Image(vj , k). To obtain a scale-aware score, we normalize by the sending capacity of vi and the
receiving capacity of vj : let

ri =
∑
q

(
CoImage(vi, l)

)
iq
, cj =

∑
p

(
Image(vj , k)

)
pj
.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Then the output matrix of SNN(α, (l, k)) on G is S(α) with S
(α)
ij =

(
CoImage(vi,l) ◦ Image(vj ,k)

)
ij

ri cj
.

Intuitively, S(α)
ij is the fraction of realized paths relative to a node-pair–specific capacity. If the

normalization is omitted, we denote the model by SNNo(α, (l, k)).

Variant SNN(β, (l1, . . . , lt)). The β variant aggregates information globally by summing over
node-centered images and co-images, alternating sender/receiver roles across depths. The model
output is S(β) = Su1 ◦ Su2 ◦ · · · ◦ Sut, where Sui =

∑
v∈V CoImage(v, li) for odd i and Sui =∑

v∈V Image(v, li) for even i, with 1 ≤ i ≤ t.

How SNN is used. SNN is applied once as a preprocessing step to transform each graph: we
replace its adjacency matrix with the corresponding SNN output (either S(α) or S(β)). The trans-
formed dataset can then be fed to any message-passing GNN, substituting the traditional neighbor-
hood cover with the sieve cover. The time complexity of this transformation is analyzed in Ap-
pendix F.3.

Invariance. The model respects graph isomorphisms (node relabelings), making it suitable for
graph isomorphism and classification tasks.
Theorem 4.2.1. SNN is invariant under graph isomorphism.

5 EXPERIMENTS

To show how a shift in perspective improves graph understanding, we conduct a comprehensive
evaluation of SNN on two tasks: (i) graph isomorphism and (ii) a topology-encoding probe.

5.1 GRAPH ISOMORPHISM.

We evaluate SNN on standard isomorphism benchmarks to test its ability to distinguish non-
isomorphic graphs and to compare against WL-style limits. Throughout, we use the β variants in
strong (saturated) settings, and we do not train any parameters: each graph G is mapped once to an
SNN output matrix S(G), from which we compute simple permutation-invariant summaries as em-
beddings. By invariance, isomorphic graphs yield identical embeddings; non-identical embeddings
imply non-isomorphism.1

SR (Strongly Regular graphs). We use all publicly available collections of strongly regu-
lar graphs from Brendan McKay’s Graph Data (archived). SR graphs are challenging since
3-WL cannot fully distinguish them (Bodnar et al., 2021b). For each collection, we apply
SNN(β, (−1,−1,−1)) to every graph G and compute a 6-dimensional embedding from S(G):(
det(S), Min(S),Mean(S), Var(S), Mean(diag(S)), Var(diag(S))

)
. By invariance and The-

orem 3.1.2, det(S) is preserved under relabeling, so isomorphic graphs match. Within each collec-
tion, SNN assigns distinct embeddings to all graphs, yielding a 0% failure rate; see Table 1.

CSL (Circular Skip Links). CSL contains 150 4-regular graphs partitioned into 10 isomorphism
classes and is widely used to probe GNN expressivity (Murphy et al., 2019; Dwivedi et al., 2023).
We run SNN(β, (−1)) on each graph and use Sum(S) (sum of all entries of S) as a permutation-
invariant scalar embedding. The resulting values perfectly separate the 10 classes: graphs within a
class share the same value; graphs from different classes do not.

BREC. BREC (Wang & Zhang, 2024) contains 400 pairs of non-isomorphic graphs divided into
four categories (60 Basic, 140 Regular, 100 Extension, and 100 CFI), with cases that remain indis-
tinguishable even under the 4-WL test. For each graph G, we apply SNN(β, (−1,−1,−1,−1)) and
construct the same type of embedding as used in the SR experiment. Across all BREC pairs, SNN
consistently assigns distinct embeddings to the two graphs in each pair, yielding a 0% failure rate
(Table 1).

1In practice we compare embeddings with a small numerical tolerance. The depth “−1” denotes the satu-
rated sieve (Section 4).
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Table 1: Left: Failure rates of 3-WL and SNN across Strongly Regular graphs. Right: Number of
distinguished pairs on BREC. Baseline values from Wang & Zhang (2024).

Graph Category 3-WL (%) SNN (%) Graph Category 3-WL (%) SNN (%)
SRG(25,12,5,6) 100 0 SRG(36,15,6,6) 100 0
SRG(26,10,3,4) 100 0 SRG(37,18,8,9) 100 0
SRG(28,12,6,4) 100 0 SRG(40,12,2,4) 100 0
SRG(29,14,6,7) 100 0 SRG(65,32,15,16) 100 0
SRG(35,16,6,8) 100 0
SRG(35,18,9,9) 100 0
SRG(36,14,4,6) 100 0

Model Basic Reg. Ext. CFI
(60) (140) (100) (100)

3-WL 60 50 100 60
SSWL-P 60 50 100 38
I2-GNN 60 100 100 21
GSN 60 99 95 0
PPGN 60 50 100 23

SNN 60 140 100 100

5.2 TOPOLOGY ENCODING (PROBE).

Our aim here is to evaluate only the topology encoded by SNN as a preprocessing operator, indepen-
dently of any learnable parameters or downstream training. To do so, we design a parameter-free
probe based on one-step Label Propagation (LP) (Zhu & Ghahramani, 2002; Huang et al., 2020)
with α = 1. This choice isolates the structural signal present in the propagation operator and avoids
confounds from optimization, regularization, or model capacity. We compare (i) the neighborhood
cover (the adjacency matrix) against (ii) cover of sieves induced by SNN. Concretely, we run LP
on A ∈ { Adj, SNN(β, (1)), SNN(β, (1, 1)), SNN(β, (1, 1, 1)) }. By construction, SNN(β, (1))
coincides with the adjacency matrix and serves as the neighborhood baseline; the deeper sequences
(1, 1) and (1, 1, 1) produce sieve-based operators that go beyond neighborhoods.

LP update (one step, no learning). Given initial one-hot labels Y (0) on the training nodes (zeros
elsewhere), we propagate once: Y (1) = M̂ Y (0). Here M̂ is a normalized version of the chosen
operator A. We report results for three standard normalizations M̂ ∈ {DAD, DA, AD }, where
D is the degree matrix induced by A. This ensures comparability across covers and conforms
to standard LP practice. We evaluate on Cora, CiteSeer, PubMed, and ogbn-arxiv; the dataset
specifications and the runtimes of models SNN(β, (1, 1)) and SNN(β, (1, 1, 1)) are reported in Table
3. Because LP has no learnable parameters, any performance difference directly reflects the topology
encoded by the operator A.

Table 2: Test accuracy of Label Propagation (1 step, α = 1)

Adjacency SNN(β, (1, 1)) SNN(β, (1, 1, 1))
Dataset DAD DA AD DAD DA AD DAD DA AD

Cora 0.2600 0.2600 0.2580 0.5120 0.5050 0.5070 0.6090 0.6020 0.6080
CiteSeer 0.1370 0.1370 0.1370 0.2610 0.2580 0.2590 0.3700 0.3680 0.3720
PubMed 0.1890 0.1890 0.1890 0.2480 0.2480 0.2460 0.4230 0.4290 0.4240
ogbn-arxiv 0.6173 0.5969 0.6125 0.6627 0.6449 0.6252 0.6469 0.6416 0.5811

Across all datasets, one-step LP achieves its lowest accuracy with the neighborhood cover (adja-
cency), and substantially higher accuracy with sieve covers. On Cora, accuracy rises from ≈ 26%
(adjacency) to > 50% with SNN(β, (1, 1)) and to > 60% with SNN(β, (1, 1, 1)); on CiteSeer and
PubMed, sieve covers more than double the adjacency baseline; and on ogbn-arxiv, sieve covers
also yield notable gains. Since the probe has no learnable parameters, these improvements can only
come from richer topology captured by sieve-based operators. This provides direct evidence that
SNN, used purely as preprocessing, encodes topological relationships beyond those available from
neighborhood covers.

6 CONCLUSION

We formalized covers as an algebraic generalization of neighborhoods and introduced the GGNN
framework to systematically design covers and translate them into matrices, recovering the adja-
cency matrix as a special case. This platform simplifies model construction. As a concrete instance,
we proposed Sieve Neural Networks (SNN), which operationalize the framework and show strong
performance on graph isomorphism and topology-encoding probes. Looking ahead, we will deepen
the analysis of GGNN’s expressive power and applications, including a more comprehensive theo-
retical comparison between SNN and the Weisfeiler–Lehman test.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Xing Ai, Chengyu Sun, Zhihong Zhang, and Edwin R. Hancock. Two-level graph neural network.
IEEE Transactions on Neural Networks and Learning Systems, pp. 1–14, 2022. doi: 10.1109/
TNNLS.2022.3144343.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Liò, Guido F Montufar,
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passing on molecular graphs via synthetic coordinates. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 15421–15433. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/82489c9737cc245530c7a6ebef3753ec-Paper.pdf.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neu-
ral message passing for quantum chemistry. In Doina Precup and Yee Whye Teh (eds.), Pro-
ceedings of the 34th International Conference on Machine Learning, volume 70 of Proceed-
ings of Machine Learning Research, pp. 1263–1272. PMLR, 06–11 Aug 2017. URL https:
//proceedings.mlr.press/v70/gilmer17a.html.

Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Nina Miolane, Aldo Guzmán-Sáenz,
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed large language models (LLMs) to refine the writing and improve the grammar of this
paper, with the goal of enhancing clarity and readability. All ideas, scientific content, definitions,
theorems, proofs, and experimental results were conceived and developed entirely by the authors.

B RELATED WORK

Many classical GNN architectures can be unified under the neighborhood-based Message Passing
Neural Network (MPNN) paradigm Gilmer et al. (2017). A large body of work seeks to move beyond
strict 1-hop neighborhoods by altering the graph on which messages are passed or by enriching the
operators/features used for aggregation.
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Passing messages on derived graphs. One line of work replaces the original graph with a de-
rived graph and then applies MPNN. For example, Gasteiger et al. (2021) constructs the directed
line graph, whose nodes correspond to directed edges of the original graph and where two nodes
are adjacent if the underlying edges share an endpoint; message passing is then performed on this
derived graph. In Ai et al. (2022), each graph is mapped to a topology-level summary graph built
from subgraphs; message passing runs jointly on the original graph and its summary, making the
propagation explicitly topology-aware.

Substructure- and kernel-based encodings. Another direction injects information about motifs
or subgraphs. Graph Substructure Networks (GSNs) Bouritsas et al. (2023) enrich node/edge fea-
tures with positions within selected patterns, integrating substructure signals into message passing.
KerGNNs Feng et al. (2022a) use small graphs as filters—via graph kernels such as random-walk
kernels—applied to node-centered subgraphs; replacing the raw neighborhood with a filtered sub-
graph can increase expressivity over vanilla MPNNs.

Contextual and multi-hop neighborhoods. Contextualization beyond the immediate neighbor-
hood is also common. ID-GNN You et al. (2021) attends to occurrences of a node within its ego net-
work, effectively differentiating its roles across contexts. Extensions to k-hop neighborhoods Feng
et al. (2022b) aggregate information from larger receptive fields; KP-GNN further selects k-hop
neighbors via shortest-path or random-walk kernels, yielding a framework that can surpass standard
MPNNs.

Local topology operators and stochastic perturbations. In Vignac et al. (2020), each node is
associated with a local context matrix intended to capture surrounding topology; these contexts
replace raw features during message passing and have been shown effective on topology-sensitive
tasks (e.g., cycle detection), outperforming MPNNs in those settings. The approach in Papp et al.
(2021) applies message passing to randomly thinned graphs obtained by deleting each node with
small probability and aggregates the outcomes, preserving much of the original topology while
introducing beneficial stochasticity.

Topological deep learning. Tools from algebraic topology provide higher-order generalizations
of graphs that encode multi-level interactions. Works based on simplicial and CW complexes Bod-
nar et al. (2021b;a) replace node–edge neighborhoods with higher-dimensional cells and associated
incidence structures, yielding message-passing schemes that explicitly reason over topology beyond
pairwise relations.

C DEFINITIONS AND EXAMPLES

The definition of a monoid and monoidal homomorphism are as follows (Hungerford, 1980):
Definition C.0.1. A monoid is a non-empty set M together with a binary operation · on M which

1) is associative: a · (b · c) = (a · b) · c for all a, b, c ∈ M and

2) contains identity element e ∈ M such that a · e = e · a = a

If, for all a, b ∈ M, the operation satisfies a · b = b · a, then we say that M is a commutative monoid.
Definition C.0.2. A monoid homomorphism between monoids (M, •) and (N, ◦) with identity ele-
ments eM and eN , respectively, is a function f : M → N such that

f(x • y) = f(x) ◦ f(y) for all x, y ∈ M, f(eM ) = eN .

Example C.0.3. Considering a Change-of-Order mapping f : Mat3(R) → Mat3(R), obtained by
reordering the standard basis {e1, e2, e3} to the basis {e3, e2, e1}. For a given matrix A, we get the
matrix f(A) as follows:

A 7−→ f(A)

( e1 e2 e3
e1 a11 a12 a13
e2 a21 a22 a23
e3 a31 a32 a33

)
�f :e1↔e3//

( e3 e2 e1
e3 a33 a32 a31
e2 a23 a22 a21
e1 a13 a12 a11

)
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D EXPLANATION FOR CONSTRUCTING A MODEL IN GGNN FRAMEWORK

The process of designing a GNN model within this framework is outlined as follows:

1) For a given graph G, the process involves selecting a collection CG of elements from
Mod(G) to serve as a cover for G. These elements can be generated using DirSub(G)
and the binary operation •. Notably, Theorem 2.2.5 ensures the ability to create any suit-
able and desired elements by leveraging directed edges and the operator •.

2) Next, the chosen cover is transformed into a collection of matrices within Mom(G), uti-
lizing Tr. During this transformation, the operation ◦ and other elements of Mom(G) can
be employed to convert the original collection into a new one. The resulting output at this
stage is denoted by AG.

3) By utilizing ι, the collection obtained in the second stage transitions into a larger and more
equipped space, a suitable environment for enrichment. This stage leverages all the opera-
tions outlined in Proposition 3.1.1 to complete the model’s design. Following the process-
ing of AG in this stage, we obtain a new collection of matrices denoted by MG, represent-
ing the model’s output.

Hence, a model is a mapping that associates a collection of matrices MG with a given graph G.
MG plays a role akin to the adjacency matrix and provides an interpretation of the chosen cover
for use in various forms of message passing. While the second and third stages can be merged, we
prefer to emphasize the significance of Tr in this process.

This construction of a model is appropriate for tasks such as node classification. For graph classifica-
tion, we need an invariant construction. Based on Theorem 3.1.2, a graph isomorphism f : G → H
transform the triple (CG,AG,MG) to a triple (C′

H ,A′
H ,M′

H) for graph H and this may be dif-
ferent from (CH ,AH ,MH). So a model constructed in the GGNN framework is invariant if for
every graph isomorphism f : G → H , the maps Mod(f), Mom(f) and CO(f) induce one-to-one
correspondences between CG and CH , AG and AH , and MG and MH , respectively. The model
SNN is an example of an invariant model.

E GGNN FRAMEWORK VS. HIGHER-ORDER GNNS: A COMPARISON

We contrast GGNN with higher-order GNNs such as MPSN Bodnar et al. (2021b), CWN Bodnar
et al. (2021a), GSN Bouritsas et al. (2023), and TLGNN Ai et al. (2022).

Framework, not a single model. GGNN is a design framework: it gives precise, graph-agnostic
definitions of covers (generalizing neighborhoods) and a principled way to turn them into matrices.
Whereas higher-order GNNs typically hard-code one specific alternative to neighborhood aggrega-
tion, GGNN provides an infinite design space of covers, of which the standard neighborhood cover
is a special case, enabling diverse message-passing strategies tailored to a task.

Topology-aware by construction. By Theorems 3.1.2 and 3.1.3, GGNN yields an algebraic de-
scription of a graph that is unique up to isomorphism. Each monoidal element of Mod(G) encodes
concrete topological relationships; choosing a cover selects which aspects of topology to expose to
downstream GNNs. Moreover, the algebra (composition, translation to matrices) lets one combine
ideas from other paradigms within a single coherent toolkit.

Example: recovering k-hop message passing. GGNN can reproduce common higher-order be-
haviors. Starting from the neighborhood cover {Sv : v ∈ G}, define for a node vk the set

2-hop(vk) =
{
Svki

• ei : vki ∈ N(vk), ei : vki → vk
}
.

Let 2-hop(G) =
⋃

vk
2-hop(vk). Applying Tr maps this cover to a collection of matrices, which

can be aggregated (e.g., by summation) to obtain a 2-hop propagation operator, mirroring the effect
of k-hop message passing in Feng et al. (2022b).
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F FURTHER DETAILS ON SNN

F.1 MODEL EXPLANATIONS

The SNN construction provides two ways to collapse the matrix collection induced by the sieve
cover into a single operator: the α- and β-variants.

α-variant. Using CoImage(v, l) = Image(v, l)⊤, we obtain

CoImage(vi, l) ◦ Image(vj , k) =
(
CoImage(vj , k) ◦ Image(vi, l)

)⊤
.

Hence the output of SNN(α, (l, k)) is the transpose of the output of SNN(α, (k, l)), and
SNN(α, (l, l)) is symmetric. For l ̸= k, symmetry need not hold (cf. Example F.2.1), so
SNN(α, (l, k)) and SNN(α, (k, l)) may differ. Moreover, increasing the radii only adds admissi-
ble paths: if l ≤ l′ and k ≤ k′, then SNN(α, (l′, k′)) captures (entrywise) at least as many paths as
SNN(α, (l, k)).

β-variant. The families {Sieve(v, li)}v (or {CoSieve(v, li)}v) form subcovers of the cover of
sieves. Their matrix summaries

Sui =
∑
v∈V

Image(v, li) or Sui =
∑
v∈V

CoImage(v, li)

aggregate all allowed paths contributed by the chosen subcover. Composing these summaries with
the monoid operation ◦ produces

Su1 ◦ · · · ◦ Sut,

which realizes a specific combination of subcovers: paths admitted by earlier subcovers are com-
posed with those of later ones. Because ◦ is, in general, noncommutative, the order of Sui reflects
the intended sequencing of interactions encoded by the cover.

F.2 COMPARING WITH MPNN

For a node v, its neighborhood can be described by the element Sieve(v, 1). Consequently,
SNNo(α, (0, 1)) and SNNo(α, (1, 0)) correspond to the adjacency matrix, signifying their utiliza-
tion of neighborhoods for message passing. This is equivalent to MPNNs. Hence, SNN can be
considered as a generalization of MPNNs. In the following example, two graphs are considered
that MPNN can not distinguish, yet SNN can. This example illustrates how a shift in perspective,
resulting from a change in cover, reveals the topological properties of graphs.
Example F.2.1. The graphs in Figure 3 are not distinguishable by MPNN (Sato, 2020) because they
are locally the same. Applying SNNo(α, (1, 1)), a level of version α of SNN that is slightly more

Figure 3: The graph G, the left one, and H , the right one, are not distinguishable by MPNN

potent than MPNN, we get the following symmetric matrices X and Y for G and H respectively as
the outputs of the model for these graphs.

X =


2 2 1 2 2 0
2 3 2 2 2 2
1 2 2 0 2 2
2 2 0 2 2 1
2 2 2 2 3 2
0 2 2 1 2 2

Y =


2 3 1 0 3 0
3 3 2 1 3 1
1 2 3 3 1 3
0 1 3 2 0 3
3 3 1 0 2 0
0 1 3 3 0 2


14
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Table 3: Dataset statistics and runtime (in seconds) for constructing SNN-transformed graphs. Re-
ported times correspond to building the cover operator before applying Label Propagation.

Dataset #Nodes #Edges #Classes Runtime
(SNN(β, (1, 1)))

Runtime
(SNN(β, (1, 1, 1)))

Cora 2,708 10,556 7 0.0525 0.0758
CiteSeer 3,327 9,104 6 0.0189 0.0319
PubMed 19,717 88,648 3 0.8055 1.3902
ogbn-arxiv 169,343 1,166,243 40 6.75 9.38

The entry ij in these matrices corresponds to the count of paths between nodes vi and vj in
CoSieve(vi, 1) • Sieve(vj , 1) and wi and wj in CoSieve(wi, 1) • Sieve(wj , 1). The disparity be-
tween these matrices highlights the differences between the graphs. This dissimilarity becomes
more apparent when applying the set function Var, while Sum and Mean yield identical values.
When SNNo(α, (1, 2)), a more complex level of SNN, is applied, we obtain the following nonsym-
metric matrices, denoted as Z and W , for graphs G and H . Applying all three set functions results
in distinct outputs, further emphasizing the dissimilarity between the graphs.

Z =


2 4 2 4 4 3
5 3 5 4 6 4
2 4 2 3 4 4
4 4 3 2 4 2
4 6 4 5 3 5
3 4 4 2 4 2

W =


2 3 3 1 3 1
4 3 4 2 4 2
2 4 3 4 2 4
1 3 3 2 1 3
3 3 3 1 2 1
1 3 3 3 1 2


F.3 COMPLEXITY

SNN is applied once as a preprocessing step to convert each input graph (or a dataset of graphs) into
its transformed counterpart; it is not used during training.

Let G = (V,E) with |V | = n and |E| = m. From Eq. equation 3, Image(v, k) is obtained by k
iterations of adjacency-based additions/multiplications. The cost depends on the configuration:

• SNN(β, (1, . . . , 1)). In this case Image(v, k) can be read off directly from the adjacency
matrix (no matrix–matrix products), so each Sui equals the adjacency matrix. Hence com-
puting S(β) is O(mn).

• SNN(α, (l, k)) or SNN(β, (l1, . . . , lt)) with k > 1 or some li0 > 1. These require
matrix-based compositions; computing Image(v, k) for a single node costs O(mn), yield-
ing O(mn2) over all nodes.

Since SNN runs only once to produce the transformed graphs, its runtime is incurred offline and
does not affect the training-time complexity of downstream GNNs.
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F.4 ALGORITHM

Algorithm 1 Computing Image(v, k)

1: Input: node v, integer k
2: Output: Image(v, k)
3: Initialization: N0(v) = {v}, Image(v, 0) = Zero matrix
4: for i = 1, · · · , k do
5: Ni(v) =

⋃
u∈Ni−1(v)

N(u)−
⋃i−1

j=0 Nj(v)

6: Mi(v) = {w → u : wu ∈ E,w ∈ Ni(v), u ∈ Ni−1(v)}
7: Tr(Di(v)) =

∑
e∈Mi(v)

Tr(e) = The adjacency matrix of directed subgraph Mi(v)

8: Image(v, i) = Tr(Di(v)) ◦ Image(v, i− 1)
9: end for

10: Return: Final result

Algorithm 2 Computing CoImage(v, k)

1: Input: Image(v, k)
2: Output: CoImage(v, k)
3: CoImage(v, k) = Transpose of Image(v, k)
4: Return: Final result

Algorithm 3 Computing SNN(α, (l, k))

1: Input: Image(v, k) and CoImage(v, l) for all v ∈ V
2: Output: SNN(α, (l, k))
3: Initialization: SNN(α, (l, k)) = Zero matrix
4: for vi ∈ V do
5: for vj ∈ V do
6: A = CoImage(vi, l) ◦ Image(vj , k)
7: r = CoImage(vi, l)[i, :].sum(), summation of i−th row
8: c = Image(vj , k)[:, j].sum(), summation of j−th column
9: SNN(α, (l, k))i,j =

Ai,j

r·c
10: end for
11: end for
12: Return: Final result

Algorithm 4 Computing SNN(β, (l, k))

1: Input: Image(v, k) and CoImage(v, l) for all v ∈ V
2: Output: SNN(β, (l, k))
3: Su1 =

∑
v∈V CoImage(v, l)

4: Su2 =
∑

v∈V Image(v, k)
5: SNN(β, (l, k)) = Su1 ◦ Su2

6: Return: Final result

G SPECIAL SUBMONOIDS

G.1 THE SUBMONOID GENERATED BY NEIGHBORHOODS

The cover of neighborhoods, as a subset of Mod(G), generates a submonoid. To formalize this, let
Neigh(G) ⊆ Mod(G) and Adj(G) ⊆ Mom(G) denote the submonoids generated by the cover of
neighborhoods and its matrix transformation, respectively. The following theorems illustrate how
these submonoids provide an algebraic characterization of a graph. It is straightforward to verify
that for a graph isomorphism f : G → H , the mappings Mod(f) and Mom(f) send elements of
Neigh(G) and Adj(G) to elements of Neigh(H) and Adj(H), respectively. Thus, as a consequence
of Theorem 3.1.2, we have:
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Theorem G.1.1. Every graph isomorphism f : G → H induces monoidal isomorphisms Neigh(f) :
Neigh(G) −→ Neigh(H) and Adj(f) : Adj(G) → Adj(H) such that the following diagram is
commutative, where ι represents the inclusions.

Neigh(G)
TrG //

Neigh(f)

��

Adj(G)

Adj(f)

��

ι // Mat|VG|(R)

CO(f)

��
Neigh(H)

TrH

// Adj(H)
ι
// Mat|VH |(R)

(4)

The converse of this theorem can be stated as follows:
Theorem G.1.2. Suppose G and H are two graphs with |VG| = |VH | = n, and f : Matn(R) →
Matn(R) is a Change-of-Order mapping. If the restriction of f to Adj(G) yields an isomorphism to
Adj(H), then G and H are isomorphic.

Consequently, the horizontal homomorphisms in Diagram 4 can serve as an algebraic description of
the graph. It demonstrates that the monoidal elements resulting from interactions between neighbor-
hoods encapsulate richer information about the graph’s topology. This suggests that the coverage of
neighborhoods can be further enhanced by incorporating additional elements from Neigh(G).

G.2 THE SUBMONOID GENERATED BY SIEVES

The submonoid generated by the cover of Sieves fully determines the graph, as stated in the follow-
ing two theorems. Let Si(G) ⊆ Mod(G) and Im(G) ⊆ Mom(G) denote the submonoids generated
by the cover of sieves and its matrix transformation, respectively. As a direct consequence of Theo-
rems 4.1.1 and 3.1.2, we have:
Theorem G.2.1. Every graph isomorphism f : G → H induces monoidal isomorphisms Si(f) :
Si(G) −→ Si(H) and Im(f) : Im(G) → Im(H) such that the Diagram 5 is commutative, where ι
represents the inclusions.

Si(G)
TrG //

Si(f)

��

Im(G)

Im(f)

��

ι // Mat|VG|(R)

CO(f)

��
Si(H)

TrH

// Im(H)
ι
// Mat|VH |(R)

(5)

The converse of the above theorem can be stated as follows:
Theorem G.2.2. Suppose G and H are two graphs with |VG| = |VH | = n, and f : Matn(R) →
Matn(R) is a Change-of-Order mapping. If the restriction of f to Im(G) yields an isomorphism to
Im(H), then G and H are isomorphic.

The horizontal morphisms in Diagram 5 provide a unique, up-to-isomorphism algebraic characteri-
zation of a graph. This can be served as the basis for the significant performance of the model SNN
in the graph isomorphism task, as demonstrated in the experimental section.

H PROOF OF THEOREMS

H.1 PROOF OF THEOREM 2.1.3

Proof. Since Rep is surjective, it suffices to demonstrate that Rep is also injective, meaning that if
Rep(D) = Rep(D′), then D = D′. According to the matrix representation definition, ≤D=≤D′ .
For an edge vi

e // vj in D, it implies vi ≤D vj , and consequently, vi ≤D′ vj . Suppose

vi
e // vj is not a directed edge in D′. In that case, there must be a path in D′ traversing a node

vk different from vi and vj . This implies vi ≤D′ vk and vk ≤D′ vj , and consequently, vi ≤D vk and
vk ≤D vj . Thus, there is a path in D from vi to vj traversing vk. However, this path is distinct from
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vi
e // vj , contradicting the definition of directed subgraphs. Therefore, e is a directed edge in

D′. Similarly, we can demonstrate that every edge in D′ also belongs to D with the same direction.
Thus, D = D′.

H.2 PROOF OF THEOREM 2.2.1

Proof. The empty graph is its identity element, and the associativity of • comes from the associa-
tivity of the composition of paths. The non-commutativity is explained in Example 2.2.2.

H.3 PROOF OF THEOREM 2.2.5

Proof. Since directed subgraphs, together with the operation • generate the monoid Mod(G), we
just need to show that every directed subgraph can be formed by its directed edges using the opera-
tion •. We will prove this by induction based on the number of edges. Let D be a directed subgraph
of G. There is nothing to prove if D has just one directed edge. Suppose the number of edges in
D is m, and the statement is true for every directed subgraph with edges less than m; Our task is to
show that the statement holds for D as well.

Let VD be the set of nodes of D. Since ≤D is transitive, (VD,≤D) can be seen as a partially ordered
set, implying the existence of maximal elements. A node is considered maximal if it is not the
starting point of any path. Now, let v be a maximal node; we choose a directed edge w

e // v in
D and remove it. The following three situations may occur:

1) producing one directed subgraph D′: D and D′⊕ e have the same directed edges. Since v
is maximal, the paths of D that pass e have this directed edge as their terminal edge. Then

Paths(D) = Paths(D′) ⋆ e

This follows D = D′ • e. Based on the assumption, D′ can be created by its edges. Then,
the statement is true for D.

2) producing two components where one of them is an isolated node, and the other one is a
directed subgraph D′: in this case, we first remove the isolated node and then, similar to
the first case, we conclude that the statement is true for D.

3) producing two directed subgraphs D′ and D′′ where w ∈ D′ and v ∈ D′′: obviously D
and D′⊕ e

⊕
D′′ have the same directed edges. With an argument similar to the first part,

the maximality of v implies
Paths(D) = Paths(D′) ⋆ {e} ⋆ Paths(D′′)

and then D = D′ • e •D′′. Now, by the assumption that D′ and D′′ can be created by their
edges, the statement is true for D.

H.4 PROOF OF THEOREM 2.3.1

Proof. Since the summation and multiplication of matrices are associative, the operation ◦ is asso-
ciative. The zero matrix is the identity element of Matn(R) with respect to ◦.

H.5 PROOF OF THEOREM 2.3.3

To define a monoidal homomorphism between the monoids (Mod(G), •) and (Mom(G), ◦) in such
a way that it is an extension of the morphism Rep, we first prove the following theorem which gives
a good explanation of the monoidal operation ◦.
Theorem H.5.1. For A1, A2, · · · , Ak ∈ Matn(R) with k ∈ N we have:

A1 ◦A2 ◦ · · · ◦Ak =

k∑
i=1

Ai +
∑

σ∈O(k,2)

Aσ1
Aσ2

+ · · ·+
∑

σ∈O(k,j)

Aσ1
· · ·Aσj

+ · · ·+A1A2 · · ·Ak

where O(k, i) is the set of all strictly monotonically increasing sequences of i numbers of {1, · · · , k}
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Proof. We prove the statement by induction on k. For k = 2, there is nothing to prove, which is
clear from the definition. Let the statement be true for k; We will show it is true for k + 1. The
associativity of ◦ and the induction hypothesis imply:

A1 ◦A2 ◦ · · · ◦Ak ◦Ak+1 = (A1 ◦A2 ◦ · · · ◦Ak) ◦Ak+1 =

(A1 ◦A2 ◦ · · · ◦Ak) +Ak+1 + (A1 ◦A2 ◦ · · · ◦Ak)Ak+1 =

k∑
i=1

Ai + · · ·+
∑

σ∈O(k,j)

Aσ1 · · ·Aσj + · · ·+A1A2 · · ·Ak+

Ak+1+

(

k∑
i=1

Ai + · · ·+
∑

σ∈O(k,j)

Aσ1
· · ·Aσj

+ · · ·+A1 · · ·Ak)Ak+1

=

k+1∑
i=1

Ai + (
k∑

i=1

AiAk+1 +
∑

σ∈O(k,2)

Aσ1
Aσ2

) + · · ·+

(
∑

σ∈O(k,j−1)

Aσ1 · · ·Aσj−1Ak+1 +
∑

σ∈O(k,j)

Aσ1 · · ·Aσj )+

· · ·+A1 · · ·AkAk+1 =

k+1∑
i=1

Ai +
∑

σ∈O(k+1,2)

Aσ1Aσ2 + · · ·+
∑

σ∈O(k+1,j)

Aσ1 · · ·Aσj+

· · ·+A1A2 · · ·AkAk+1

Therefore the statement is true for k + 1.

Now, we prove Theorem 2.3.3.

Proof. Considering that S = Paths(D1) ⋆ · · · ⋆Paths(Dk), let p = p0p1 · · · pm ∈ S be a path from
vi to vj that is obtained by composition of subpaths p0 ∈ Paths(Di0), · · · , pm ∈ Paths(Dim) and
1 ≤ i0 ≨ · · · ≨ im ≤ k. The number of all such paths from vi to vj equals the ij entry of the matrix
(Ai0 · · ·Aim) that is a summand of A as explained in Theorem H.5.1. So the number of all paths
from vi to vj in S equals the ij entry of A. Therefore, the definition of Tr just depends on S and is
independent of the choice of Dis. Then Tr is well-defined. Based on the definition, Tr is a monoidal
homomorphism.

Suppose B ∈ Mom(G), then there are some matrix representations B1, · · · , Bl in MatRep(G) such
that B = B1◦· · ·◦Bl. Since Rep is an isomorphism, there exist some directed subgraphs C1, · · · , Cl

such that Rep(Ci) = Bi. Now, by choosing C = C1 • · · · • Cl, we obtain Tr(C) = B, establishing
that Tr is surjective.

H.6 PROOF OF PROPOSITION 3.1.1

Proof. As we explained, f changes the order of rows and columns. Thus, it preserves element-wise
and matrix multiplications. Since f is also linear, we have

f(A ◦B) = f(A+B +AB)

= f(A) + f(B) + f(AB)

= f(A) + f(B) + f(A)f(B)

= f(A) ◦ f(B)

and then f preserves the operation ◦ and this property establishes f as a monoidal isomorphism.
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H.7 PROOF OF THEOREM 3.1.2

Proof. Since f is a change in the order, it induces bijections DirSub(f) and MatRep(f) such that
Diagram 6 commutes.

DirSub(G)
Rep //

DirSub(f)

��

MatRep(G)

MatRep(f)

��
DirSub(H)

Rep
// MatRep(H)

(6)

Also, f induces monoidal isomorphism SMult(f) : SMult(G) → SMult(H) that sends (M,S) 7→
(f(M), f(S)). According to the commutativity of the squares in Diagram 7, isomorphisms
Mod(f) : Mod(G) → Mod(H) and Mom(f) : Mom(G) → Mom(H) can be obtained by re-
stricting SMult(f) to Mod(G) and CO(f) to Mom(G).

DirSub(G)
DirSub(f)//

��

DirSub(H)

��
SMult(G)

SMult(f)
// SMult(H)

MatRep(G)
MatRep(f)//

��

MatRep(H)

��
Mat|VG|(R)

CO(f)
// Mat|VH |(R)

(7)

The commutativity of the right square in Diagram 1 directly follows from the definition of Mom(f).
As illustrated in Diagram 6, the left square in Diagram 1 is shown to be commutative for the gener-
ators of monoids, establishing the commutativity of this square.

H.8 PROOF OF THEOREM 3.1.3

Proof. We begin by demonstrating that f establishes a one-to-one correspondence between the
edges of G and H . It is evident that a matrix with a single non-zero entry in either Mom(G) or
Mom(H) corresponds to a matrix transformation of an element in Mod(G) or Mod(H), respec-
tively, each representing a single directed edge.

For an edge vi vj in G, let e be the directed edge vi → vj ∈ Mod(G); then A = TrG(e) has
one non-zero entry, and since f is a linear isomorphism, f(A) has one non-zero entry, and, based
on the assumption, it belongs to Mom(H). So f(A) is a matrix transformation of a directed edge
c : uk → ul in Mod(H). Similarly, let B ∈ Mom(G) be the matrix transformation of e′ : vj → vi
and then f(B) ∈ Mom(H) is a matrix transformation of some directed edge c′ : ul′ → uk′ in
Mod(H). Since e can be followed by e′, e • e′ has three paths. This implies TrG(e • e′) has three
non-zero entries. On the other hand, TrG(e • e′) = TrG(e) ◦ TrG(e

′) = A ◦ B = A + B + AB;
then AB ̸= 0 and consequently f(A)f(B) = f(AB) ̸= 0. The equation

TrH(c • c′) = TrH(c) ◦ TrH(c′)

= f(A) ◦ f(B)

= f(A) + f(B) + f(A)f(B)

says that the matrix transformation corresponding to c • c′ has three non-zero entries and so c • c′

contains three paths. Then c must be followed by c′ and this yields ul = ul′ . Similarly, uk = uk′

can be shown. Therefore, f gives a one-to-one mapping between the edges of G and H .

To prove the correspondence between the nodes of two graphs, let vx be a node in G, connected
to vi in which j ̸= x and C and f(C) be the matrix transformations of a : vi → vx ∈ Mod(G)
and b : uy → uz ∈ Mod(H), respectively. Since e′ is followed by a in Mod(G), with the same
reasoning as above, c′ must be followed by b in Mod(H) and this means uk = uy . So f also
gives a one-to-one mapping between nodes of graphs compatible with edges. Then, G and H are
isomorphic.
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H.9 PROOF OF THEOREM 3.2.2

The role of neighborhoods in MPNN is like a sink such that messages move to the center of the sink.
For a node vk with neighborhood Nk containing vk1

, vk2
, · · · , vkm

, we depict this sink in Figure 4
by denoting directed edge from vki

to vk by ei : vki
→ vk. This sink can be considered as a directed

Figure 4: Visualizing a neighborhood by representing it as a directed subgraph

subgraph. As an element of Mod(G), it can be represented as follows:
Sk = e1 • e2 • · · · • em

Since the directed edges ei and ej appearing in Sk are not composable, we observe ei • ej =
ej • ei, rendering the order in Sk unimportant. The cover obtained by Sks is exactly the cover of
the neighborhoods. Let Tk = Tr(Sk) and Ai = Tr(ei). Thus Ai has 1 in the entry kik and 0 for all
other entries. The matrix transformation of ei • ej has just two non-zero entries and Tr(ei • ej) =
Ai +Aj +AiAj . Then AiAj = 0 for 1 ≤ i ≤ m and 1 ≤ j ≤ m. Theorem H.5.1 implies

Tk = Tr(Sk) = A1 ◦A2 ◦ · · · ◦Am

= A1 +A2 + · · ·+Am

As a result, the column k of Tk aligns with the column k of the adjacency matrix of graph G, while
the remaining columns are filled with zeros. Transforming the cover {Sk} yields a collection of
|V | matrices, each containing a single column from the adjacency matrix. In the GGNN framework,
summation is an allowed operation, enabling the construction of the adjacency matrix by performing
the summation on this matrix collection. Hence, neighborhoods can function as a cover within the
framework of GGNN, with the adjacency matrix serving as an interpretation of this cover.

H.10 PROOF OF THEOREM 4.1.1

Proof. Since the definition of sets Mi(v)s is based on the neighborhoods, for a graph isomorphism
f : G → H , f(Mi(v)) = Mi(f(v)). This follows Mod(f)(Di(v)) = Di(f(v)). Since Mod(f) is
a monoidal homomorphism, we get:

Mod(f)(Sieve(v, k)) = Mod(f)(Dk(v) • · · · •D0(v))

= Mod(f)(Dk(v)) • · · · •Mod(f)(D0(v))

= Dk(f(v)) • · · · •D0(f(v))

= Sieve(f(v), k)

Based on Theorem 3.1.2, Mom(f)(Image(v, k)) = Image(f(v), k).

H.11 PROOF OF THEOREM 4.2.1

Proof. Since the cover of sieves is invariant and CO(f) preserves the rest of the computations in the
algorithm, SNN is invariant.
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H.12 PROOF OF THEOREM G.1.2

Proof. Let Adj(v) denote the matrix representation of the neighborhood of a node v ∈ G. As
demonstrated, this matrix contains exactly one non-zero column. The mapping f is a Change-of-
Order mapping, which transforms Adj(v) into a matrix with a single non-zero column, where all
non-zero entries are equal to 1.

An element of Adj(H) that is not a matrix transformation of any element in the cover of the neigh-
borhood will have two or more non-zero columns. Consequently, for f(Adj(v)) ∈ Adj(H), there
exists a node u ∈ H such that f(Adj(v)) = Adj(u).

This establishes a one-to-one correspondence between VG and VH , as f is an isomorphism. Now,
let vi vj represent an edge in G, with f(Adj(vi)) = Adj(uk) and f(Adj(vj)) = Adj(ul).
The entry ii in the matrix Adj(vj) ◦ Adj(vi) equals 1.

Since f is a Change-of-Order mapping, the matrix f(Adj(vj) ◦ Adj(vi)) = Adj(ul) ◦ Adj(uk) has
a diagonal entry equal to 1. In this matrix, the only diagonal entry that can be non-zero is the entry
kk. Similarly, the entry ll in Adj(uk) ◦ Adj(ul) equals 1. This implies that there is an edge between
uk and ul.

Thus, we establish a one-to-one correspondence between the edges of G and H that is consistent
with the mapping of their nodes. This proves that f defines a graph isomorphism between G and
H .
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