
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GROTHENDIECK GRAPH NEURAL NETWORKS FRAME-
WORK: AN ALGEBRAIC PLATFORM FOR CRAFTING
TOPOLOGY-AWARE GNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) typically rely on neighborhoods as the founda-
tion of message passing. While simple and effective, neighborhoods limit ex-
pressivity, often no stronger than the Weisfeiler–Lehman (WL) test. We propose
the Grothendieck Graph Neural Networks (GGNN) framework, an algebraic plat-
form that generalizes neighborhoods into covers, offering flexible alternatives for
defining message-passing strategies. GGNN translates covers into matrices, sim-
ilar to how adjacency matrices encode neighborhoods, enabling both theoretical
analysis and practical implementation. Within this framework, we introduce the
cover of sieves, inspired by category theory, which captures rich topological fea-
tures. Based on this cover, we design Sieve Neural Networks (SNN), which pro-
duce the matrix form of the cover of sieves, generalizing the adjacency matrix.
Experiments show that SNN achieves zero failures on graph isomorphism tasks
(SRG, CSL, BREC) and improves topology-aware evaluation via a label propa-
gation probe. These results demonstrate GGNN’s ability to serve as a principled
foundation for designing topology-aware GNNs.

1 INTRODUCTION

The concept of neighborhood plays a central role in most Graph Neural Network (GNN) archi-
tectures, serving as the foundation for message passing (Gilmer et al., 2017). This reliance is not
arbitrary: neighborhoods provide comprehensive coverage of the graph structure, leveraging the
adjacency matrix to facilitate efficient and systematic aggregation of local information. However,
this local perspective comes with limitations. In particular, many GNNs have an expressive power
bounded by the WL test (Sato, 2020), (Xu et al., 2019), limiting the ability of GNNs to capture
broader topological structures.

To address the limitations of neighborhoods, researchers have proposed alternatives that incorporate
richer structural information. One direction uses concepts from algebraic topology, such as simpli-
cial complexes and higher-order faces, to capture interactions beyond pairs of nodes (Bodnar et al.,
2021b), (Bodnar et al., 2021a), (Hajij et al., 2023), (Papillon et al., 2025). Another line of work re-
lies on specific patterns or subgraphs (e.g., motifs) to encode characteristic structures as the basis for
topologically-aware message passing (Bouritsas et al., 2023), (Ai et al., 2022). While these methods
enrich the local perspective, they often depend on handcrafted definitions or combinatorial choices.
In contrast, neighborhoods themselves arise from a precise algebraic definition, suggesting that a
more systematic algebraic generalization may provide a broader and more principled foundation.

We argue that an algebraic viewpoint provides such a foundation. Unlike topological constructs or
handcrafted patterns, algebraic generalizations of neighborhoods can preserve their simplicity while
extending their flexibility. Building on this insight, our work introduces an algebraic extension of
neighborhoods that retains ease of use while enabling more expressive message-passing strategies.
Our main contributions are as follows.

• Algebraic generalization of neighborhoods. We extend the conventional notion of neigh-
borhoods by introducing the concept of covers for graphs. This generalization provides a
principled and flexible foundation for understanding graph structure.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• The GGNN framework. We develop the Grothendieck Graph Neural Networks (GGNN)
framework, an algebraic platform that creates, refines, and transforms covers into their
matrix forms, recovering the adjacency matrix as a special case. GGNN offers a systematic
way to design new message-passing strategies.

• Sieve Neural Networks (SNN). As a concrete instantiation of GGNN, we introduce Sieve
Neural Networks (SNN), based on a cover inspired by sieves in category theory. SNN
exemplifies how an algebraic concept (sieves) can be translated into an architecture for
message passing while preserving invariance.

• Topology-aware evaluation (our probe). In addition to evaluating SNN on graph isomor-
phism task, we design a topology-encoding benchmark based on a special case of Label
Propagation (LP) (Zhu & Ghahramani, 2002; Huang et al., 2020) with one propagation
step (α = 1). Here LP is used not as a learning algorithm but as a controlled probe to
directly compare covers with neighborhoods. On citation networks and ogbn-arxiv, sieve
covers consistently and substantially outperform the neighborhood cover, highlighting the
advantage of covers in capturing topological structure in large graphs.

2 COVERS AND THEIR MATRIX INTERPRETATIONS

In this section we develop the notion of covers for graphs and show how to interpret them as matrices,
laying the groundwork for the GGNN framework. We begin by assigning to each directed subgraph
its matrix representation, establishing a bijection between directed subgraphs and their associated
matrices. We then introduce two monoids: Mod(G), generated by directed subgraphs, and Mom(G),
generated by their matrix representations. This allows us to extend the representation map to a
monoidal homomorphism

Tr : Mod(G) −→ Mom(G).

We prove that Tr is invariant under graph isomorphisms (via Change-of-Order mappings) and pro-
vides an algebraic description of a graph that is unique up to isomorphism. These results form the
theoretical foundation of the GGNN framework.

2.1 MATRIX REPRESENTATIONS OF DIRECTED SUBGRAPHS

We consider undirected graphs G = (V,E) whose node set V is equipped with a fixed ordering.
Our first step is to formalize directed subgraphs of G and to define their matrix representations.

Definition 2.1.1. (1) A path p from node vp1
to node vpm

is an ordered sequence

vp1
, ep1

, vp2
, ep2

, . . . , vpm−1
, epm−1

, vpm
,

where each epi connects vpi and vpi+1 .

(2) A directed subgraph D of G is a connected, acyclic subgraph in which each edge is assigned a
direction.

Neighborhoods as a special case. A neighborhood can be seen as a directed subgraph obtained by
orienting all incident edges into a fixed node (see Figure 4). In the adjacency matrix, each column
corresponds to such a neighborhood; isolating the neighborhood of a node amounts to zeroing out
the other columns.

Matrix representation of a directed subgraph. We extend the neighborhood-as-column view to
arbitrary directed subgraphs by encoding direction-respecting reachability.

Definition 2.1.2. Let D be a directed subgraph of G = (V,E).

1. Define a relation ≤D on V by vi ≤D vj iff there exists a path in D that respects edge
directions and starts at vi and ends at vj .

2. The matrix representation of D is the |V | × |V | matrix MD with (MD)ij = 1 if vi ≤D vj
and (MD)ij = 0 otherwise.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The requirement that paths respect directions is essential: all walks counted by MD must follow
the edge orientations in D. Intuitively, a directed subgraph specifies an allowable message-flow
pattern; its matrix MD realizes this pattern. In this sense, matrices from directed subgraphs serve
as structured alternatives to the standard adjacency matrix used in neighborhood-based message
passing.

Figure 1: Directed subgraphs and their matrices. Two directed subgraphs of a graph G (left) are
shown: D̂ (middle) and D̄ (right). Their matrix representations are X and Y , respectively. Each
directed subgraph encodes a distinct strategy for propagating information; the matrices X and Y
make these strategies directly usable in message passing.

Representation map. Definition 2.1.2 induces a map from directed subgraphs to matrices:

Rep : DirSub(G) −→ MatRep(G),

where DirSub(G) is the set of directed subgraphs of G and MatRep(G) is the image (subset) of
Mat|V |(R) consisting of matrices that arise from directed subgraphs via Definition 2.1.2.

Theorem 2.1.3. The map Rep is an isomorphism between DirSub(G) and MatRep(G). In partic-
ular, each directed subgraph is uniquely determined by its matrix representation, and conversely
every matrix in MatRep(G) corresponds to a unique directed subgraph.

2.2 DEFINING COVERS FOR GRAPHS: AN ALGEBRAIC PLATFORM

While we can cover a graph G by picking elements from DirSub(G) and map each to a matrix
via Rep, this space is limited: DirSub(G) is relatively small and its elements do not combine well.
For instance, the union of the directed subgraphs D̂ and D̄ in Figure 1 is not a directed subgraph
(multiple directed paths appear between some node pairs). Hence no matrix image exists for such
a combination, which prevents its direct use in a message-passing scheme. This makes it hard to
design diverse, meaningful strategies using only DirSub(G).

Step 1: enlarge the space via a multigraph monoid. To combine directed subgraphs systemat-
ically, we first endow them with an algebraic operation. A natural choice is to define C

⊕
D for

C,D ∈ DirSub(G) as the directed multigraph obtained by taking the union of their node sets and
the disjoint union of their directed edge sets. Let

Mult(G) =
{ k⊕

i=1

Di : k ≥ 1, Di ∈ DirSub(G)
}
.

Then (Mult(G),
⊕

) is a commutative monoid. This construction enlarges the object set, but it
treats edges as independent and is largely insensitive to path structure: paths in C

⊕
D are simply

concatenations of available directed edges, with little inheritance from the path sets of C and D. As
a result,

⊕
alone provides limited control for crafting new message-passing strategies.

Step 2: add path sensitivity via a non-commutative monoid. To encode which paths are al-
lowed, not only which edges exist, we augment multigraphs with explicit path sets. Define

SMult(G) =
{
(M,S) : M ∈ Mult(G), S ⊆ Paths(M)

}
,

and define a binary operation • by (M,S)• (N,T) =
(
M
⊕

N, S ⋆T
)
, where S ⋆T is the union

of the sets S, T , and the collection of paths constructed by the composition of paths in S followed
by paths in T . Since edges of M

⊕
N come from a disjoint union, paths in S and T remain disjoint

subsets of Paths(M
⊕

N).
Theorem 2.2.1. (SMult(G), •) is a non-commutative monoid.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Non-commutativity comes from the order of path composition inside ⋆: if (M,S) and (N,T) have
composable paths, then generally (M,S) • (N,T) ̸= (N,T) • (M,S); if they have no composable
paths, ⋆ reduces to set union.

Example 2.2.2. Let d : u→v and e : v→w be directed edges. Then d • e and e • d share the same
edge multiset (d

⊕
e), but differ in allowed paths: d • e contains a path from u to w (via d then e),

whereas e • d does not. Thus the order of composition matters.

Step 3: a representable submonoid for covers. Elements (M,S) ∈ SMult(G) can be read as
message-passing strategies: M fixes the directed multigraph over which messages may travel, and S
specifies which directed paths are allowed. However, not every such pair admits a matrix representa-
tion compatible with an extension of Rep. To retain implementability, we restrict to the submonoid
generated by genuine directed subgraphs, embedded via D 7→

(
D,Paths(D)

)
.

Definition 2.2.3. For a graph G, the monoid of directed subgraphs is the submonoid Mod(G) ⊆
SMult(G) generated by DirSub(G).

Hence each (M,S) ∈ Mod(G) can be written as

(M,S) = D1 • · · · •Dk, M =

k⊕
i=1

Di, S = Paths(D1) ⋆ · · · ⋆ Paths(Dk).

In the next subsection we show that all elements of Mod(G) admit matrix representations via an
extension of Rep, which makes them suitable for implementation.

Definition 2.2.4. A cover of G is a finite collection of elements of Mod(G).

A cover thus specifies a family of message-passing strategies: each element constrains allowed paths
locally, and the collection provides a flexible, task-dependent view of the graph (we do not require
covering all nodes/edges). Because Mod(G) is infinite and • is non-commutative, this space is ex-
pressive enough to encode a wide range of perspectives on how information should flow. Moreover,
the following result shows that directed edges suffice as generators, so complex strategies can be
built compositionally.

Theorem 2.2.5. Directed edges generate Mod(G).

2.3 FROM COVERS TO MATRICES: AN ALGEBRAIC PERSPECTIVE

Our goal in this section is to extend the representation map Rep from directed subgraphs to arbitrary
elements of Mod(G), so that a cover can be transformed into a collection of matrices. This requires
a matrix-side operation that mirrors the path-composition on Mod(G).

A monoid on matrices. Let Matn(R) be the set of n× n real matrices. Define a binary operation

A ◦B := A + B + AB.

Theorem 2.3.1. (Matn(R), ◦) is a monoid.

We now take the submonoid generated by MatRep(G) inside (Mat|V |(R), ◦).
Definition 2.3.2. The monoid of matrix representations of G is the submonoid (Mom(G), ◦) of
(Mat|V |(R), ◦) generated by MatRep(G).

Extending Rep to covers. Elements of Mod(G) are built by composing directed subgraphs with
•. The map below sends such compositions to matrices by replacing each directed subgraph Di with
its matrix Rep(Di) and each • with ◦.
Theorem 2.3.3. The mapping Tr : Mod(G) −→ Mom(G),

(M,S) = D1 •D2 • · · · •Dk 7−→ A = A1 ◦A2 ◦ · · · ◦Ak,

where Di ∈ DirSub(G) and Ai = Rep(Di), is a surjective monoidal homomorphism.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Interpretation (path counting). In the proof of Theorem 2.3.3 one sees that Tr acts as a path
counter: for (M,S) ∈ Mod(G), the (i, j) entry of Tr(M,S) equals the number of paths in S from
vi to vj . Thus, covers become collections of matrices in the same way that neighborhoods give rise
to the adjacency matrix, but now with explicit control over composed paths. Although we were not
able to show that Tr is an isomorphism, it extends an isomorphism on DirSub(G) and will be shown
in the next subsection to characterize graphs up to isomorphism, supporting its use as a faithful
matrix transformation of covers.
Example 2.3.4. In Figure 1, let D̂ and D̄ be two directed subgraphs of G with matrix representations
X and Y . Using •, we may form new strategies D̂ • D̄ and D̄ • D̂. Their matrix transforms are
obtained as follows:

Tr(D̂ • D̄) = Tr(D̂) ◦ Tr(D̄) = X ◦ Y, Tr(D̄ • D̂) = Tr(D̄) ◦ Tr(D̂) = Y ◦X.

Since ◦ is generally non-commutative in this context, the two results differ, reflecting the order-
sensitivity of path composition in the underlying cover construction.

3 GROTHENDIECK GRAPH NEURAL NETWORKS FRAMEWORK

3.1 ALGEBRAIC FOUNDATIONS OF GRAPHS

We have introduced two monoids associated with a graph and a monoidal homomorphism between
them. We now ask: to what extent do these algebraic objects describe the underlying graph? To
address this, we first formalize how reordering node indices acts on the matrix space and verify that
this action is compatible with our monoidal structures.

Change-of-Order mappings. A matrix A ∈ Matn(R) represents a linear map Rn → Rn with
respect to the standard basis. If we reorder the standard basis of Rn (equivalently, relabel the co-
ordinates), the matrix representation of the same linear map is obtained by reindexing the rows and
columns of A. Any linear isomorphism f : Matn(R) → Matn(R) arising in this way is called
a Change-of-Order mapping (see Example C.0.3). Intuitively, this captures the effect of node
relabeling at the matrix level.
Proposition 3.1.1. Suppose f : Matn(R) → Matn(R) is a Change-of-Order mapping. Then f
preserves the standard algebraic operations on matrices: it is compatible with monoidal operation
◦, with matrix multiplication, and with element-wise (Hadamard) multiplication.

Relating graph isomorphisms and algebra. A graph isomorphism f : G → H is a bijection on
nodes that preserves edges, and therefore corresponds to a reordering of node indices. Hence it in-
duces a Change-of-Order mapping CO(f) : Mat|VG|(R) → Mat|VH |(R). The next result shows that
this relabeling is compatible with our monoidal constructions and with the translation to matrices.
Theorem 3.1.2. Every graph isomorphism f : G → H induces monoidal isomorphisms Mod(f) :
Mod(G) → Mod(H) and Mom(f) : Mom(G) → Mom(H) such that the following diagram
commutes, where ι denotes the inclusions:

Mod(G)
TrG //

Mod(f)

��

Mom(G)

Mom(f)

��

� � ι // Mat|VG|(R)

CO(f)

��
Mod(H)

TrH

// Mom(H)
� �

ι
// Mat|VH |(R)

(1)

A converse direction. We also have a partial converse: if a Change-of-Order mapping identifies
the matrix-level monoids of two graphs, then the graphs are isomorphic.
Theorem 3.1.3. Let G and H be graphs with |VG| = |VH | = n, and let f : Matn(R) → Matn(R)
be a Change-of-Order mapping. If the restriction of f to Mom(G) is an isomorphism onto Mom(H),
then G and H are isomorphic.

3.2 DEFINITION OF THE GGNN FRAMEWORK

Theorems 3.1.2 and 3.1.3 establish the key invariance principle underlying our construction. In Di-
agram 1, an isomorphism between graphs G and H corresponds to the vertical homomorphisms

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

being isomorphisms; equivalently, a relabeling of nodes in a graph induces isomorphic transfor-
mations both on a cover and on its matrix transformation. Consequently, the horizontal arrows in
the diagram provide an algebraic description that is unique up to graph isomorphism. Leveraging
this observation, we formalize the Grothendieck Graph Neural Networks (GGNN) framework as the
following algebraic pipeline:
Definition 3.2.1. For a graph G = (V,E), the GGNN framework is the composition

Mod(G)
Tr // Mom(G)

� � ι // Mat|V |(R) (2)

How GGNN is used. The framework exposes three actions: (i) choose a cover in Mod(G); (ii)
translate it to matrices via Tr; (iii) optionally enrich the resulting collection inside Mat|V |(R) using
the allowed operations from Proposition 3.1.1. See Appendix D for more details.

Neighborhoods as a special case. The framework recovers standard message passing from neigh-
borhoods:
Theorem 3.2.2. The collection of neighborhoods forms a cover in Mod(G) and, under Tr, maps to
the adjacency matrix in Mat|V |(R).

Remarks. (i) A graph can be characterized by the submonoid generated by its neighborhoods; see
Appendix G.1. (ii) We compare GGNN with higher-order GNN families in Appendix E.

4 SIEVE NEURAL NETWORKS: A MODEL WITHIN THE GGNN FRAMEWORK

Inspired by sieves in category theory (MacLane & Moerdijk, 1994), we instantiate the GGNN frame-
work with a concrete cover that yields the Sieve Neural Network (SNN). For each node v, we
construct a family of outward-expanding substructures, formalized as elements of Mod(G), which
together form a sieve-inspired cover of the graph. This cover generalizes the standard neighbor-
hood view by admitting multiple direction-respecting pathways for information exchange. Via the
matrix map Tr, the cover is translated into operators used for message passing, exposing richer topo-
logical relationships than adjacency-based aggregation while remaining permutation-consistent. In
what follows, we define the sieve and cosieve elements, assemble the cover, and derive the SNN
architecture from their matrix transformations.

4.1 COVER OF SIEVES FOR GRAPHS

Constructing sieve elements in Mod(G). Fix a node v and build breadth-first “layers” around v:

N0(v) = {v}, N1(v) = N(v), Nk(v) =
(⋃
u∈Nk−1(v)

N(u)
)
\

k−1⋃
i=0

Ni(v) (k ≥ 2).

For each k ≥ 1, orient all edges toward v across consecutive layers and collect them as

Mk(v) = {w→u : wu ∈ E, w ∈ Nk(v), u ∈ Nk−1(v) }, M0(v) = ∅.

Edges in the same Mk(v) are pairwise non-composable (each goes from layer k to k−1), so the
order in which they are combined is irrelevant. Define

Dk(v) := •
e∈Mk(v)

e

and assemble the depth-k sieve element

Sieve(v, k) := Dk(v) •Dk−1(v) • · · · •D1(v) •D0(v),

where D0(v) is the identity of Mod(G); see Figure 2. Since the layers eventually empty, there exists
k0 with Nk0+1(v) = ∅, hence Sieve(v, k) stabilizes for k ≥ k0. We denote this saturated element
by Sieve(v,−1) := Sieve(v, k0). To construct the opposite sieve, reverse the directions in each
Mk(v): let Mop

k (v) be Mk(v) with all edges reversed and set

Dop
k (v) := •

e∈Mop
k (v)

e, CoSieve(v, ℓ) := Dop
0 (v) •Dop

1 (v) • · · · •Dop
ℓ (v).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Sieve construction. Left: a graph G. Middle: Sieve(v, 3) = D3(v) • D2(v) • D1(v)
around v; yellow, red, and black edges indicate D1(v), D2(v), and D3(v), respectively. Right: a
graph H; the element CoSieve(u, 1)•Sieve(v, 2) ∈ Mod(H) specifies allowed interactions between
u and v in SNN(α, (1, 2)).

The cover of sieves. For every node v in G, collect all depth-truncated and saturated sieve and
co-sieve elements:

Sieve(v, 0), Sieve(v, 1), . . . , Sieve(v,−1) and CoSieve(v, 0), CoSieve(v, 1), . . . , CoSieve(v,−1).

The cover of sieves is the finite collection containing these elements for all nodes v in G.

Matrix interpretation of the cover of sieves. Apply the monoidal homomorphism Tr to obtain
matrices:

Image(v, k) := Tr
(
Sieve(v, k)

)
, CoImage(v, ℓ) := Tr

(
CoSieve(v, ℓ)

)
.

Since Tr is monoidal,

Image(v, k) = Tr
(
Dk(v) •Dk−1(v) • · · · •D0(v)

)
= Tr

(
Dk(v)

)
◦ Tr

(
Dk−1(v)

)
◦ · · · ◦ Tr

(
D0(v)

)
.

(3)

Within a fixed layer i, edges in Mi(v) are not composable, so for distinct e, c ∈ Mi(v) we have
Tr(e)Tr(c) = Tr(c)Tr(e) = 0. Hence, by Theorem H.5.1,

Tr
(
Di(v)

)
= Tr

(
•

e∈Mi(v)
e
)
= ◦

e∈Mi(v)
Tr(e) =

∑
e∈Mi(v)

Tr(e),

i.e., Tr
(
Di(v)

)
is obtained from the adjacency matrix by keeping only entries corresponding to

directed edges in Mi(v). Moreover, CoImage(v, ℓ) = Image(v, ℓ)⊤ (transpose), so it suffices to
compute one of them. Algorithms for these computations are given in Appendix F.4. In addition,
Appendix G.2 shows that the submonoid generated by this cover determines the graph.

Invariance. The cover of sieves is stable under graph isomorphisms, and the induced matrices
transform accordingly.

Theorem 4.1.1. If f : G → H is a graph isomorphism, then Mod(f)
(
Sieve(v, k)

)
=

Sieve
(
f(v), k

)
and Mom(f)

(
Image(v, k)

)
= Image

(
f(v), k

)
.

4.2 DESIGN AND CONSTRUCTION OF THE MODEL

Building on the cover of sieves and its matrix interpretation, we define the Sieve Neural Network
(SNN) in two variants of increasing flexibility. A detailed comparison with MPNNs is provided in
Appendix F.

Variant SNN(α, (l, k)). In the α variant, for each ordered pair of nodes (vi, vj) we interpret
CoSieve(vi, l) as a sender and Sieve(vj , k) as a receiver. The admissible transmissions from vi
to vj are precisely the paths allowed by the composed element CoSieve(vi, l) • Sieve(vj , k), (see
Figure 2). Under the map Tr, the number of such paths equals the (i, j) entry of CoImage(vi, l) ◦
Image(vj , k). To obtain a scale-aware score, we normalize by the sending capacity of vi and the
receiving capacity of vj : let

ri =
∑
q

(
CoImage(vi, l)

)
iq
, cj =

∑
p

(
Image(vj , k)

)
pj
.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Then the output matrix of SNN(α, (l, k)) on G is S(α) with S
(α)
ij =

(
CoImage(vi,l) ◦ Image(vj ,k)

)
ij

ri cj
.

Intuitively, S(α)
ij is the fraction of realized paths relative to a node-pair–specific capacity. If the

normalization is omitted, we denote the model by SNNo(α, (l, k)).

Variant SNN(β, (l1, . . . , lt)). The β variant aggregates information globally by summing over
node-centered images and co-images, alternating sender/receiver roles across depths. The model
output is S(β) = Su1 ◦ Su2 ◦ · · · ◦ Sut, where Sui =

∑
v∈V CoImage(v, li) for odd i and Sui =∑

v∈V Image(v, li) for even i, with 1 ≤ i ≤ t.

How SNN is used. SNN is applied once as a preprocessing step to transform each graph: we
replace its adjacency matrix with the corresponding SNN output (either S(α) or S(β)). The trans-
formed dataset can then be fed to any message-passing GNN, substituting the traditional neighbor-
hood cover with the sieve cover. The time complexity of this transformation is analyzed in Ap-
pendix F.3.

Invariance. The model respects graph isomorphisms (node relabelings), making it suitable for
graph isomorphism and classification tasks.
Theorem 4.2.1. SNN is invariant under graph isomorphism.

5 EXPERIMENTS

To show how a shift in perspective improves graph understanding, we conduct a comprehensive
evaluation of SNN on two tasks: (i) graph isomorphism and (ii) a topology-encoding probe.

5.1 GRAPH ISOMORPHISM.

We evaluate SNN on standard isomorphism benchmarks to test its ability to distinguish non-
isomorphic graphs and to compare against WL-style limits. Throughout, we use the β variants in
strong (saturated) settings, and we do not train any parameters: each graph G is mapped once to an
SNN output matrix S(G), from which we compute simple permutation-invariant summaries as em-
beddings. By invariance, isomorphic graphs yield identical embeddings; non-identical embeddings
imply non-isomorphism.1

SR (Strongly Regular graphs). We use all publicly available collections of strongly regu-
lar graphs from Brendan McKay’s Graph Data (archived). SR graphs are challenging since
3-WL cannot fully distinguish them (Bodnar et al., 2021b). For each collection, we apply
SNN(β, (−1,−1,−1)) to every graph G and compute a 6-dimensional embedding from S(G):(
det(S), Min(S),Mean(S), Var(S), Mean(diag(S)), Var(diag(S))

)
. By invariance and The-

orem 3.1.2, det(S) is preserved under relabeling, so isomorphic graphs match. Within each collec-
tion, SNN assigns distinct embeddings to all graphs, yielding a 0% failure rate; see Table 1.

CSL (Circular Skip Links). CSL contains 150 4-regular graphs partitioned into 10 isomorphism
classes and is widely used to probe GNN expressivity (Murphy et al., 2019; Dwivedi et al., 2023).
We run SNN(β, (−1)) on each graph and use Sum(S) (sum of all entries of S) as a permutation-
invariant scalar embedding. The resulting values perfectly separate the 10 classes: graphs within a
class share the same value; graphs from different classes do not.

BREC. BREC (Wang & Zhang, 2024) contains 400 pairs of non-isomorphic graphs divided into
four categories (60 Basic, 140 Regular, 100 Extension, and 100 CFI), with cases that remain indis-
tinguishable even under the 4-WL test. For each graph G, we apply SNN(β, (−1,−1,−1,−1)) and
construct the same type of embedding as used in the SR experiment. Across all BREC pairs, SNN
consistently assigns distinct embeddings to the two graphs in each pair, yielding a 0% failure rate
(Table 1).

1In practice we compare embeddings with a small numerical tolerance. The depth “−1” denotes the satu-
rated sieve (Section 4).

8

https://web.archive.org/web/20211018181525/http://users.cecs.anu.edu.au/~bdm/data/graphs.html

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Left: Failure rates of 3-WL and SNN across Strongly Regular graphs. Right: Number of
distinguished pairs on BREC. Baseline values from Wang & Zhang (2024).

Graph Category 3-WL (%) SNN (%) Graph Category 3-WL (%) SNN (%)
SRG(25,12,5,6) 100 0 SRG(36,15,6,6) 100 0
SRG(26,10,3,4) 100 0 SRG(37,18,8,9) 100 0
SRG(28,12,6,4) 100 0 SRG(40,12,2,4) 100 0
SRG(29,14,6,7) 100 0 SRG(65,32,15,16) 100 0
SRG(35,16,6,8) 100 0
SRG(35,18,9,9) 100 0
SRG(36,14,4,6) 100 0

Model Basic Reg. Ext. CFI
(60) (140) (100) (100)

3-WL 60 50 100 60
SSWL-P 60 50 100 38
I2-GNN 60 100 100 21
GSN 60 99 95 0
PPGN 60 50 100 23

SNN 60 140 100 100

5.2 TOPOLOGY ENCODING (PROBE).

Our aim here is to evaluate only the topology encoded by SNN as a preprocessing operator, indepen-
dently of any learnable parameters or downstream training. To do so, we design a parameter-free
probe based on one-step Label Propagation (LP) (Zhu & Ghahramani, 2002; Huang et al., 2020)
with α = 1. This choice isolates the structural signal present in the propagation operator and avoids
confounds from optimization, regularization, or model capacity. We compare (i) the neighborhood
cover (the adjacency matrix) against (ii) cover of sieves induced by SNN. Concretely, we run LP
on A ∈ { Adj, SNN(β, (1)), SNN(β, (1, 1)), SNN(β, (1, 1, 1)) }. By construction, SNN(β, (1))
coincides with the adjacency matrix and serves as the neighborhood baseline; the deeper sequences
(1, 1) and (1, 1, 1) produce sieve-based operators that go beyond neighborhoods.

LP update (one step, no learning). Given initial one-hot labels Y (0) on the training nodes (zeros
elsewhere), we propagate once: Y (1) = M̂ Y (0). Here M̂ is a normalized version of the chosen
operator A. We report results for three standard normalizations M̂ ∈ {DAD, DA, AD }, where
D is the degree matrix induced by A. This ensures comparability across covers and conforms
to standard LP practice. We evaluate on Cora, CiteSeer, PubMed, and ogbn-arxiv; the dataset
specifications and the runtimes of models SNN(β, (1, 1)) and SNN(β, (1, 1, 1)) are reported in Table
3. Because LP has no learnable parameters, any performance difference directly reflects the topology
encoded by the operator A.

Table 2: Test accuracy of Label Propagation (1 step, α = 1)

Adjacency SNN(β, (1, 1)) SNN(β, (1, 1, 1))
Dataset DAD DA AD DAD DA AD DAD DA AD

Cora 0.2600 0.2600 0.2580 0.5120 0.5050 0.5070 0.6090 0.6020 0.6080
CiteSeer 0.1370 0.1370 0.1370 0.2610 0.2580 0.2590 0.3700 0.3680 0.3720
PubMed 0.1890 0.1890 0.1890 0.2480 0.2480 0.2460 0.4230 0.4290 0.4240
ogbn-arxiv 0.6173 0.5969 0.6125 0.6627 0.6449 0.6252 0.6469 0.6416 0.5811

Across all datasets, one-step LP achieves its lowest accuracy with the neighborhood cover (adja-
cency), and substantially higher accuracy with sieve covers. On Cora, accuracy rises from ≈ 26%
(adjacency) to > 50% with SNN(β, (1, 1)) and to > 60% with SNN(β, (1, 1, 1)); on CiteSeer and
PubMed, sieve covers more than double the adjacency baseline; and on ogbn-arxiv, sieve covers
also yield notable gains. Since the probe has no learnable parameters, these improvements can only
come from richer topology captured by sieve-based operators. This provides direct evidence that
SNN, used purely as preprocessing, encodes topological relationships beyond those available from
neighborhood covers.

6 CONCLUSION

We formalized covers as an algebraic generalization of neighborhoods and introduced the GGNN
framework to systematically design covers and translate them into matrices, recovering the adja-
cency matrix as a special case. This platform simplifies model construction. As a concrete instance,
we proposed Sieve Neural Networks (SNN), which operationalize the framework and show strong
performance on graph isomorphism and topology-encoding probes. Looking ahead, we will deepen
the analysis of GGNN’s expressive power and applications, including a more comprehensive theo-
retical comparison between SNN and the Weisfeiler–Lehman test.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Xing Ai, Chengyu Sun, Zhihong Zhang, and Edwin R. Hancock. Two-level graph neural network.
IEEE Transactions on Neural Networks and Learning Systems, pp. 1–14, 2022. doi: 10.1109/
TNNLS.2022.3144343.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Liò, Guido F Montufar,
and Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, volume 34, pp. 2625–2640. Curran Associates, Inc.,
2021a. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/157792e4abb490f99dbd738483e0d2d4-Paper.pdf.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lió, and
Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial net-
works. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
1026–1037. PMLR, 18–24 Jul 2021b. URL https://proceedings.mlr.press/v139/
bodnar21a.html.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657–668, 2023. doi: 10.1109/TPAMI.2022.3154319.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research,
24(43):1–48, 2023. URL http://jmlr.org/papers/v24/22-0567.html.

Aosong Feng, Chenyu You, Shiqiang Wang, and Leandros Tassiulas. Kergnns: Interpretable
graph neural networks with graph kernels. Proceedings of the AAAI Conference on Artificial
Intelligence, 36(6):6614–6622, Jun. 2022a. doi: 10.1609/aaai.v36i6.20615. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/20615.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How pow-
erful are k-hop message passing graph neural networks. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 4776–4790. Curran Associates, Inc.,
2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/1ece70d2259b8e9510e2d4ca8754cecf-Paper-Conference.pdf.

Johannes Gasteiger, Chandan Yeshwanth, and Stephan Günnemann. Directional message
passing on molecular graphs via synthetic coordinates. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 15421–15433. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/82489c9737cc245530c7a6ebef3753ec-Paper.pdf.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neu-
ral message passing for quantum chemistry. In Doina Precup and Yee Whye Teh (eds.), Pro-
ceedings of the 34th International Conference on Machine Learning, volume 70 of Proceed-
ings of Machine Learning Research, pp. 1263–1272. PMLR, 06–11 Aug 2017. URL https:
//proceedings.mlr.press/v70/gilmer17a.html.

Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Nina Miolane, Aldo Guzmán-Sáenz,
Karthikeyan Natesan Ramamurthy, Tolga Birdal, Tamal K. Dey, Soham Mukherjee, Shreyas N.
Samaga, Neal Livesay, Robin Walters, Paul Rosen, and Michael T. Schaub. Topological deep
learning: Going beyond graph data, 2023. URL https://arxiv.org/abs/2206.00606.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R. Benson. Combining label
propagation and simple models out-performs graph neural networks, 2020. URL https://
arxiv.org/abs/2010.13993.

Thomas W. Hungerford. Algebra. Springer New York, NY, 1980.

10

https://proceedings.neurips.cc/paper_files/paper/2021/file/157792e4abb490f99dbd738483e0d2d4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/157792e4abb490f99dbd738483e0d2d4-Paper.pdf
https://proceedings.mlr.press/v139/bodnar21a.html
https://proceedings.mlr.press/v139/bodnar21a.html
http://jmlr.org/papers/v24/22-0567.html
https://ojs.aaai.org/index.php/AAAI/article/view/20615
https://ojs.aaai.org/index.php/AAAI/article/view/20615
https://proceedings.neurips.cc/paper_files/paper/2022/file/1ece70d2259b8e9510e2d4ca8754cecf-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/1ece70d2259b8e9510e2d4ca8754cecf-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/82489c9737cc245530c7a6ebef3753ec-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/82489c9737cc245530c7a6ebef3753ec-Paper.pdf
https://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.mlr.press/v70/gilmer17a.html
https://arxiv.org/abs/2206.00606
https://arxiv.org/abs/2010.13993
https://arxiv.org/abs/2010.13993

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Saunders MacLane and Ieke Moerdijk. Sheaves in Geometry and Logic: A First Introduction to
Topos Theory. Universitext. Springer, 1994. doi: 10.1007/978-1-4612-0927-0.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling
for graph representations. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 4663–4673. PMLR, 09–15 Jun 2019. URL https://proceedings.
mlr.press/v97/murphy19a.html.

Mathilde Papillon, Guillermo Bernárdez, Claudio Battiloro, and Nina Miolane. Topotune : A frame-
work for generalized combinatorial complex neural networks, 2025. URL https://arxiv.
org/abs/2410.06530.

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Ran-
dom dropouts increase the expressiveness of graph neural networks. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, volume 34, pp. 21997–22009. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/b8b2926bd27d4307569ad119b6025f94-Paper.pdf.

Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078, 2020.

Clément Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equiv-
ariant graph neural networks with structural message-passing. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 14143–14155. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/a32d7eeaae19821fd9ce317f3ce952a7-Paper.pdf.

Yanbo Wang and Muhan Zhang. An empirical study of realized GNN expressiveness. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pp. 52134–52155. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/v235/wang24cl.html.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/
forum?id=ryGs6iA5Km.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph neural
networks. Proceedings of the AAAI Conference on Artificial Intelligence, 35(12):10737–10745,
May 2021. doi: 10.1609/aaai.v35i12.17283. URL https://ojs.aaai.org/index.php/
AAAI/article/view/17283.

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propa-
gation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed large language models (LLMs) to refine the writing and improve the grammar of this
paper, with the goal of enhancing clarity and readability. All ideas, scientific content, definitions,
theorems, proofs, and experimental results were conceived and developed entirely by the authors.

B RELATED WORK

Many classical GNN architectures can be unified under the neighborhood-based Message Passing
Neural Network (MPNN) paradigm Gilmer et al. (2017). A large body of work seeks to move beyond
strict 1-hop neighborhoods by altering the graph on which messages are passed or by enriching the
operators/features used for aggregation.

11

https://proceedings.mlr.press/v97/murphy19a.html
https://proceedings.mlr.press/v97/murphy19a.html
https://arxiv.org/abs/2410.06530
https://arxiv.org/abs/2410.06530
https://proceedings.neurips.cc/paper_files/paper/2021/file/b8b2926bd27d4307569ad119b6025f94-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/b8b2926bd27d4307569ad119b6025f94-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/a32d7eeaae19821fd9ce317f3ce952a7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/a32d7eeaae19821fd9ce317f3ce952a7-Paper.pdf
https://proceedings.mlr.press/v235/wang24cl.html
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://ojs.aaai.org/index.php/AAAI/article/view/17283
https://ojs.aaai.org/index.php/AAAI/article/view/17283

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Passing messages on derived graphs. One line of work replaces the original graph with a de-
rived graph and then applies MPNN. For example, Gasteiger et al. (2021) constructs the directed
line graph, whose nodes correspond to directed edges of the original graph and where two nodes
are adjacent if the underlying edges share an endpoint; message passing is then performed on this
derived graph. In Ai et al. (2022), each graph is mapped to a topology-level summary graph built
from subgraphs; message passing runs jointly on the original graph and its summary, making the
propagation explicitly topology-aware.

Substructure- and kernel-based encodings. Another direction injects information about motifs
or subgraphs. Graph Substructure Networks (GSNs) Bouritsas et al. (2023) enrich node/edge fea-
tures with positions within selected patterns, integrating substructure signals into message passing.
KerGNNs Feng et al. (2022a) use small graphs as filters—via graph kernels such as random-walk
kernels—applied to node-centered subgraphs; replacing the raw neighborhood with a filtered sub-
graph can increase expressivity over vanilla MPNNs.

Contextual and multi-hop neighborhoods. Contextualization beyond the immediate neighbor-
hood is also common. ID-GNN You et al. (2021) attends to occurrences of a node within its ego net-
work, effectively differentiating its roles across contexts. Extensions to k-hop neighborhoods Feng
et al. (2022b) aggregate information from larger receptive fields; KP-GNN further selects k-hop
neighbors via shortest-path or random-walk kernels, yielding a framework that can surpass standard
MPNNs.

Local topology operators and stochastic perturbations. In Vignac et al. (2020), each node is
associated with a local context matrix intended to capture surrounding topology; these contexts
replace raw features during message passing and have been shown effective on topology-sensitive
tasks (e.g., cycle detection), outperforming MPNNs in those settings. The approach in Papp et al.
(2021) applies message passing to randomly thinned graphs obtained by deleting each node with
small probability and aggregates the outcomes, preserving much of the original topology while
introducing beneficial stochasticity.

Topological deep learning. Tools from algebraic topology provide higher-order generalizations
of graphs that encode multi-level interactions. Works based on simplicial and CW complexes Bod-
nar et al. (2021b;a) replace node–edge neighborhoods with higher-dimensional cells and associated
incidence structures, yielding message-passing schemes that explicitly reason over topology beyond
pairwise relations.

C DEFINITIONS AND EXAMPLES

The definition of a monoid and monoidal homomorphism are as follows (Hungerford, 1980):
Definition C.0.1. A monoid is a non-empty set M together with a binary operation · on M which

1) is associative: a · (b · c) = (a · b) · c for all a, b, c ∈ M and

2) contains identity element e ∈ M such that a · e = e · a = a

If, for all a, b ∈ M, the operation satisfies a · b = b · a, then we say that M is a commutative monoid.
Definition C.0.2. A monoid homomorphism between monoids (M, •) and (N, ◦) with identity ele-
ments eM and eN , respectively, is a function f : M → N such that

f(x • y) = f(x) ◦ f(y) for all x, y ∈ M, f(eM) = eN .

Example C.0.3. Considering a Change-of-Order mapping f : Mat3(R) → Mat3(R), obtained by
reordering the standard basis {e1, e2, e3} to the basis {e3, e2, e1}. For a given matrix A, we get the
matrix f(A) as follows:

A 7−→ f(A)

(e1 e2 e3
e1 a11 a12 a13
e2 a21 a22 a23
e3 a31 a32 a33

)
�f :e1↔e3//

(e3 e2 e1
e3 a33 a32 a31
e2 a23 a22 a21
e1 a13 a12 a11

)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

D EXPLANATION FOR CONSTRUCTING A MODEL IN GGNN FRAMEWORK

The process of designing a GNN model within this framework is outlined as follows:

1) For a given graph G, the process involves selecting a collection CG of elements from
Mod(G) to serve as a cover for G. These elements can be generated using DirSub(G)
and the binary operation •. Notably, Theorem 2.2.5 ensures the ability to create any suit-
able and desired elements by leveraging directed edges and the operator •.

2) Next, the chosen cover is transformed into a collection of matrices within Mom(G), uti-
lizing Tr. During this transformation, the operation ◦ and other elements of Mom(G) can
be employed to convert the original collection into a new one. The resulting output at this
stage is denoted by AG.

3) By utilizing ι, the collection obtained in the second stage transitions into a larger and more
equipped space, a suitable environment for enrichment. This stage leverages all the opera-
tions outlined in Proposition 3.1.1 to complete the model’s design. Following the process-
ing of AG in this stage, we obtain a new collection of matrices denoted by MG, represent-
ing the model’s output.

Hence, a model is a mapping that associates a collection of matrices MG with a given graph G.
MG plays a role akin to the adjacency matrix and provides an interpretation of the chosen cover
for use in various forms of message passing. While the second and third stages can be merged, we
prefer to emphasize the significance of Tr in this process.

This construction of a model is appropriate for tasks such as node classification. For graph classifica-
tion, we need an invariant construction. Based on Theorem 3.1.2, a graph isomorphism f : G → H
transform the triple (CG,AG,MG) to a triple (C′

H ,A′
H ,M′

H) for graph H and this may be dif-
ferent from (CH ,AH ,MH). So a model constructed in the GGNN framework is invariant if for
every graph isomorphism f : G → H , the maps Mod(f), Mom(f) and CO(f) induce one-to-one
correspondences between CG and CH , AG and AH , and MG and MH , respectively. The model
SNN is an example of an invariant model.

E GGNN FRAMEWORK VS. HIGHER-ORDER GNNS: A COMPARISON

We contrast GGNN with higher-order GNNs such as MPSN Bodnar et al. (2021b), CWN Bodnar
et al. (2021a), GSN Bouritsas et al. (2023), and TLGNN Ai et al. (2022).

Framework, not a single model. GGNN is a design framework: it gives precise, graph-agnostic
definitions of covers (generalizing neighborhoods) and a principled way to turn them into matrices.
Whereas higher-order GNNs typically hard-code one specific alternative to neighborhood aggrega-
tion, GGNN provides an infinite design space of covers, of which the standard neighborhood cover
is a special case, enabling diverse message-passing strategies tailored to a task.

Topology-aware by construction. By Theorems 3.1.2 and 3.1.3, GGNN yields an algebraic de-
scription of a graph that is unique up to isomorphism. Each monoidal element of Mod(G) encodes
concrete topological relationships; choosing a cover selects which aspects of topology to expose to
downstream GNNs. Moreover, the algebra (composition, translation to matrices) lets one combine
ideas from other paradigms within a single coherent toolkit.

Example: recovering k-hop message passing. GGNN can reproduce common higher-order be-
haviors. Starting from the neighborhood cover {Sv : v ∈ G}, define for a node vk the set

2-hop(vk) =
{
Svki

• ei : vki ∈ N(vk), ei : vki → vk
}
.

Let 2-hop(G) =
⋃

vk
2-hop(vk). Applying Tr maps this cover to a collection of matrices, which

can be aggregated (e.g., by summation) to obtain a 2-hop propagation operator, mirroring the effect
of k-hop message passing in Feng et al. (2022b).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

F FURTHER DETAILS ON SNN

F.1 MODEL EXPLANATIONS

The SNN construction provides two ways to collapse the matrix collection induced by the sieve
cover into a single operator: the α- and β-variants.

α-variant. Using CoImage(v, l) = Image(v, l)⊤, we obtain

CoImage(vi, l) ◦ Image(vj , k) =
(
CoImage(vj , k) ◦ Image(vi, l)

)⊤
.

Hence the output of SNN(α, (l, k)) is the transpose of the output of SNN(α, (k, l)), and
SNN(α, (l, l)) is symmetric. For l ̸= k, symmetry need not hold (cf. Example F.2.1), so
SNN(α, (l, k)) and SNN(α, (k, l)) may differ. Moreover, increasing the radii only adds admissi-
ble paths: if l ≤ l′ and k ≤ k′, then SNN(α, (l′, k′)) captures (entrywise) at least as many paths as
SNN(α, (l, k)).

β-variant. The families {Sieve(v, li)}v (or {CoSieve(v, li)}v) form subcovers of the cover of
sieves. Their matrix summaries

Sui =
∑
v∈V

Image(v, li) or Sui =
∑
v∈V

CoImage(v, li)

aggregate all allowed paths contributed by the chosen subcover. Composing these summaries with
the monoid operation ◦ produces

Su1 ◦ · · · ◦ Sut,

which realizes a specific combination of subcovers: paths admitted by earlier subcovers are com-
posed with those of later ones. Because ◦ is, in general, noncommutative, the order of Sui reflects
the intended sequencing of interactions encoded by the cover.

F.2 COMPARING WITH MPNN

For a node v, its neighborhood can be described by the element Sieve(v, 1). Consequently,
SNNo(α, (0, 1)) and SNNo(α, (1, 0)) correspond to the adjacency matrix, signifying their utiliza-
tion of neighborhoods for message passing. This is equivalent to MPNNs. Hence, SNN can be
considered as a generalization of MPNNs. In the following example, two graphs are considered
that MPNN can not distinguish, yet SNN can. This example illustrates how a shift in perspective,
resulting from a change in cover, reveals the topological properties of graphs.
Example F.2.1. The graphs in Figure 3 are not distinguishable by MPNN (Sato, 2020) because they
are locally the same. Applying SNNo(α, (1, 1)), a level of version α of SNN that is slightly more

Figure 3: The graph G, the left one, and H , the right one, are not distinguishable by MPNN

potent than MPNN, we get the following symmetric matrices X and Y for G and H respectively as
the outputs of the model for these graphs.

X =


2 2 1 2 2 0
2 3 2 2 2 2
1 2 2 0 2 2
2 2 0 2 2 1
2 2 2 2 3 2
0 2 2 1 2 2

Y =


2 3 1 0 3 0
3 3 2 1 3 1
1 2 3 3 1 3
0 1 3 2 0 3
3 3 1 0 2 0
0 1 3 3 0 2


14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: Dataset statistics and runtime (in seconds) for constructing SNN-transformed graphs. Re-
ported times correspond to building the cover operator before applying Label Propagation.

Dataset #Nodes #Edges #Classes Runtime
(SNN(β, (1, 1)))

Runtime
(SNN(β, (1, 1, 1)))

Cora 2,708 10,556 7 0.0525 0.0758
CiteSeer 3,327 9,104 6 0.0189 0.0319
PubMed 19,717 88,648 3 0.8055 1.3902
ogbn-arxiv 169,343 1,166,243 40 6.75 9.38

The entry ij in these matrices corresponds to the count of paths between nodes vi and vj in
CoSieve(vi, 1) • Sieve(vj , 1) and wi and wj in CoSieve(wi, 1) • Sieve(wj , 1). The disparity be-
tween these matrices highlights the differences between the graphs. This dissimilarity becomes
more apparent when applying the set function Var, while Sum and Mean yield identical values.
When SNNo(α, (1, 2)), a more complex level of SNN, is applied, we obtain the following nonsym-
metric matrices, denoted as Z and W , for graphs G and H . Applying all three set functions results
in distinct outputs, further emphasizing the dissimilarity between the graphs.

Z =


2 4 2 4 4 3
5 3 5 4 6 4
2 4 2 3 4 4
4 4 3 2 4 2
4 6 4 5 3 5
3 4 4 2 4 2

W =


2 3 3 1 3 1
4 3 4 2 4 2
2 4 3 4 2 4
1 3 3 2 1 3
3 3 3 1 2 1
1 3 3 3 1 2


F.3 COMPLEXITY

SNN is applied once as a preprocessing step to convert each input graph (or a dataset of graphs) into
its transformed counterpart; it is not used during training.

Let G = (V,E) with |V | = n and |E| = m. From Eq. equation 3, Image(v, k) is obtained by k
iterations of adjacency-based additions/multiplications. The cost depends on the configuration:

• SNN(β, (1, . . . , 1)). In this case Image(v, k) can be read off directly from the adjacency
matrix (no matrix–matrix products), so each Sui equals the adjacency matrix. Hence com-
puting S(β) is O(mn).

• SNN(α, (l, k)) or SNN(β, (l1, . . . , lt)) with k > 1 or some li0 > 1. These require
matrix-based compositions; computing Image(v, k) for a single node costs O(mn), yield-
ing O(mn2) over all nodes.

Since SNN runs only once to produce the transformed graphs, its runtime is incurred offline and
does not affect the training-time complexity of downstream GNNs.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F.4 ALGORITHM

Algorithm 1 Computing Image(v, k)

1: Input: node v, integer k
2: Output: Image(v, k)
3: Initialization: N0(v) = {v}, Image(v, 0) = Zero matrix
4: for i = 1, · · · , k do
5: Ni(v) =

⋃
u∈Ni−1(v)

N(u)−
⋃i−1

j=0 Nj(v)

6: Mi(v) = {w → u : wu ∈ E,w ∈ Ni(v), u ∈ Ni−1(v)}
7: Tr(Di(v)) =

∑
e∈Mi(v)

Tr(e) = The adjacency matrix of directed subgraph Mi(v)

8: Image(v, i) = Tr(Di(v)) ◦ Image(v, i− 1)
9: end for

10: Return: Final result

Algorithm 2 Computing CoImage(v, k)

1: Input: Image(v, k)
2: Output: CoImage(v, k)
3: CoImage(v, k) = Transpose of Image(v, k)
4: Return: Final result

Algorithm 3 Computing SNN(α, (l, k))

1: Input: Image(v, k) and CoImage(v, l) for all v ∈ V
2: Output: SNN(α, (l, k))
3: Initialization: SNN(α, (l, k)) = Zero matrix
4: for vi ∈ V do
5: for vj ∈ V do
6: A = CoImage(vi, l) ◦ Image(vj , k)
7: r = CoImage(vi, l)[i, :].sum(), summation of i−th row
8: c = Image(vj , k)[:, j].sum(), summation of j−th column
9: SNN(α, (l, k))i,j =

Ai,j

r·c
10: end for
11: end for
12: Return: Final result

Algorithm 4 Computing SNN(β, (l, k))

1: Input: Image(v, k) and CoImage(v, l) for all v ∈ V
2: Output: SNN(β, (l, k))
3: Su1 =

∑
v∈V CoImage(v, l)

4: Su2 =
∑

v∈V Image(v, k)
5: SNN(β, (l, k)) = Su1 ◦ Su2

6: Return: Final result

G SPECIAL SUBMONOIDS

G.1 THE SUBMONOID GENERATED BY NEIGHBORHOODS

The cover of neighborhoods, as a subset of Mod(G), generates a submonoid. To formalize this, let
Neigh(G) ⊆ Mod(G) and Adj(G) ⊆ Mom(G) denote the submonoids generated by the cover of
neighborhoods and its matrix transformation, respectively. The following theorems illustrate how
these submonoids provide an algebraic characterization of a graph. It is straightforward to verify
that for a graph isomorphism f : G → H , the mappings Mod(f) and Mom(f) send elements of
Neigh(G) and Adj(G) to elements of Neigh(H) and Adj(H), respectively. Thus, as a consequence
of Theorem 3.1.2, we have:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Theorem G.1.1. Every graph isomorphism f : G → H induces monoidal isomorphisms Neigh(f) :
Neigh(G) −→ Neigh(H) and Adj(f) : Adj(G) → Adj(H) such that the following diagram is
commutative, where ι represents the inclusions.

Neigh(G)
TrG //

Neigh(f)

��

Adj(G)

Adj(f)

��

ι // Mat|VG|(R)

CO(f)

��
Neigh(H)

TrH

// Adj(H)
ι
// Mat|VH |(R)

(4)

The converse of this theorem can be stated as follows:
Theorem G.1.2. Suppose G and H are two graphs with |VG| = |VH | = n, and f : Matn(R) →
Matn(R) is a Change-of-Order mapping. If the restriction of f to Adj(G) yields an isomorphism to
Adj(H), then G and H are isomorphic.

Consequently, the horizontal homomorphisms in Diagram 4 can serve as an algebraic description of
the graph. It demonstrates that the monoidal elements resulting from interactions between neighbor-
hoods encapsulate richer information about the graph’s topology. This suggests that the coverage of
neighborhoods can be further enhanced by incorporating additional elements from Neigh(G).

G.2 THE SUBMONOID GENERATED BY SIEVES

The submonoid generated by the cover of Sieves fully determines the graph, as stated in the follow-
ing two theorems. Let Si(G) ⊆ Mod(G) and Im(G) ⊆ Mom(G) denote the submonoids generated
by the cover of sieves and its matrix transformation, respectively. As a direct consequence of Theo-
rems 4.1.1 and 3.1.2, we have:
Theorem G.2.1. Every graph isomorphism f : G → H induces monoidal isomorphisms Si(f) :
Si(G) −→ Si(H) and Im(f) : Im(G) → Im(H) such that the Diagram 5 is commutative, where ι
represents the inclusions.

Si(G)
TrG //

Si(f)

��

Im(G)

Im(f)

��

ι // Mat|VG|(R)

CO(f)

��
Si(H)

TrH

// Im(H)
ι
// Mat|VH |(R)

(5)

The converse of the above theorem can be stated as follows:
Theorem G.2.2. Suppose G and H are two graphs with |VG| = |VH | = n, and f : Matn(R) →
Matn(R) is a Change-of-Order mapping. If the restriction of f to Im(G) yields an isomorphism to
Im(H), then G and H are isomorphic.

The horizontal morphisms in Diagram 5 provide a unique, up-to-isomorphism algebraic characteri-
zation of a graph. This can be served as the basis for the significant performance of the model SNN
in the graph isomorphism task, as demonstrated in the experimental section.

H PROOF OF THEOREMS

H.1 PROOF OF THEOREM 2.1.3

Proof. Since Rep is surjective, it suffices to demonstrate that Rep is also injective, meaning that if
Rep(D) = Rep(D′), then D = D′. According to the matrix representation definition, ≤D=≤D′ .
For an edge vi

e // vj in D, it implies vi ≤D vj , and consequently, vi ≤D′ vj . Suppose

vi
e // vj is not a directed edge in D′. In that case, there must be a path in D′ traversing a node

vk different from vi and vj . This implies vi ≤D′ vk and vk ≤D′ vj , and consequently, vi ≤D vk and
vk ≤D vj . Thus, there is a path in D from vi to vj traversing vk. However, this path is distinct from

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

vi
e // vj , contradicting the definition of directed subgraphs. Therefore, e is a directed edge in

D′. Similarly, we can demonstrate that every edge in D′ also belongs to D with the same direction.
Thus, D = D′.

H.2 PROOF OF THEOREM 2.2.1

Proof. The empty graph is its identity element, and the associativity of • comes from the associa-
tivity of the composition of paths. The non-commutativity is explained in Example 2.2.2.

H.3 PROOF OF THEOREM 2.2.5

Proof. Since directed subgraphs, together with the operation • generate the monoid Mod(G), we
just need to show that every directed subgraph can be formed by its directed edges using the opera-
tion •. We will prove this by induction based on the number of edges. Let D be a directed subgraph
of G. There is nothing to prove if D has just one directed edge. Suppose the number of edges in
D is m, and the statement is true for every directed subgraph with edges less than m; Our task is to
show that the statement holds for D as well.

Let VD be the set of nodes of D. Since ≤D is transitive, (VD,≤D) can be seen as a partially ordered
set, implying the existence of maximal elements. A node is considered maximal if it is not the
starting point of any path. Now, let v be a maximal node; we choose a directed edge w

e // v in
D and remove it. The following three situations may occur:

1) producing one directed subgraph D′: D and D′⊕ e have the same directed edges. Since v
is maximal, the paths of D that pass e have this directed edge as their terminal edge. Then

Paths(D) = Paths(D′) ⋆ e

This follows D = D′ • e. Based on the assumption, D′ can be created by its edges. Then,
the statement is true for D.

2) producing two components where one of them is an isolated node, and the other one is a
directed subgraph D′: in this case, we first remove the isolated node and then, similar to
the first case, we conclude that the statement is true for D.

3) producing two directed subgraphs D′ and D′′ where w ∈ D′ and v ∈ D′′: obviously D
and D′⊕ e

⊕
D′′ have the same directed edges. With an argument similar to the first part,

the maximality of v implies
Paths(D) = Paths(D′) ⋆ {e} ⋆ Paths(D′′)

and then D = D′ • e •D′′. Now, by the assumption that D′ and D′′ can be created by their
edges, the statement is true for D.

H.4 PROOF OF THEOREM 2.3.1

Proof. Since the summation and multiplication of matrices are associative, the operation ◦ is asso-
ciative. The zero matrix is the identity element of Matn(R) with respect to ◦.

H.5 PROOF OF THEOREM 2.3.3

To define a monoidal homomorphism between the monoids (Mod(G), •) and (Mom(G), ◦) in such
a way that it is an extension of the morphism Rep, we first prove the following theorem which gives
a good explanation of the monoidal operation ◦.
Theorem H.5.1. For A1, A2, · · · , Ak ∈ Matn(R) with k ∈ N we have:

A1 ◦A2 ◦ · · · ◦Ak =

k∑
i=1

Ai +
∑

σ∈O(k,2)

Aσ1
Aσ2

+ · · ·+
∑

σ∈O(k,j)

Aσ1
· · ·Aσj

+ · · ·+A1A2 · · ·Ak

where O(k, i) is the set of all strictly monotonically increasing sequences of i numbers of {1, · · · , k}

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. We prove the statement by induction on k. For k = 2, there is nothing to prove, which is
clear from the definition. Let the statement be true for k; We will show it is true for k + 1. The
associativity of ◦ and the induction hypothesis imply:

A1 ◦A2 ◦ · · · ◦Ak ◦Ak+1 = (A1 ◦A2 ◦ · · · ◦Ak) ◦Ak+1 =

(A1 ◦A2 ◦ · · · ◦Ak) +Ak+1 + (A1 ◦A2 ◦ · · · ◦Ak)Ak+1 =

k∑
i=1

Ai + · · ·+
∑

σ∈O(k,j)

Aσ1 · · ·Aσj + · · ·+A1A2 · · ·Ak+

Ak+1+

(

k∑
i=1

Ai + · · ·+
∑

σ∈O(k,j)

Aσ1
· · ·Aσj

+ · · ·+A1 · · ·Ak)Ak+1

=

k+1∑
i=1

Ai + (
k∑

i=1

AiAk+1 +
∑

σ∈O(k,2)

Aσ1
Aσ2

) + · · ·+

(
∑

σ∈O(k,j−1)

Aσ1 · · ·Aσj−1Ak+1 +
∑

σ∈O(k,j)

Aσ1 · · ·Aσj)+

· · ·+A1 · · ·AkAk+1 =

k+1∑
i=1

Ai +
∑

σ∈O(k+1,2)

Aσ1Aσ2 + · · ·+
∑

σ∈O(k+1,j)

Aσ1 · · ·Aσj+

· · ·+A1A2 · · ·AkAk+1

Therefore the statement is true for k + 1.

Now, we prove Theorem 2.3.3.

Proof. Considering that S = Paths(D1) ⋆ · · · ⋆Paths(Dk), let p = p0p1 · · · pm ∈ S be a path from
vi to vj that is obtained by composition of subpaths p0 ∈ Paths(Di0), · · · , pm ∈ Paths(Dim) and
1 ≤ i0 ≨ · · · ≨ im ≤ k. The number of all such paths from vi to vj equals the ij entry of the matrix
(Ai0 · · ·Aim) that is a summand of A as explained in Theorem H.5.1. So the number of all paths
from vi to vj in S equals the ij entry of A. Therefore, the definition of Tr just depends on S and is
independent of the choice of Dis. Then Tr is well-defined. Based on the definition, Tr is a monoidal
homomorphism.

Suppose B ∈ Mom(G), then there are some matrix representations B1, · · · , Bl in MatRep(G) such
that B = B1◦· · ·◦Bl. Since Rep is an isomorphism, there exist some directed subgraphs C1, · · · , Cl

such that Rep(Ci) = Bi. Now, by choosing C = C1 • · · · • Cl, we obtain Tr(C) = B, establishing
that Tr is surjective.

H.6 PROOF OF PROPOSITION 3.1.1

Proof. As we explained, f changes the order of rows and columns. Thus, it preserves element-wise
and matrix multiplications. Since f is also linear, we have

f(A ◦B) = f(A+B +AB)

= f(A) + f(B) + f(AB)

= f(A) + f(B) + f(A)f(B)

= f(A) ◦ f(B)

and then f preserves the operation ◦ and this property establishes f as a monoidal isomorphism.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

H.7 PROOF OF THEOREM 3.1.2

Proof. Since f is a change in the order, it induces bijections DirSub(f) and MatRep(f) such that
Diagram 6 commutes.

DirSub(G)
Rep //

DirSub(f)

��

MatRep(G)

MatRep(f)

��
DirSub(H)

Rep
// MatRep(H)

(6)

Also, f induces monoidal isomorphism SMult(f) : SMult(G) → SMult(H) that sends (M,S) 7→
(f(M), f(S)). According to the commutativity of the squares in Diagram 7, isomorphisms
Mod(f) : Mod(G) → Mod(H) and Mom(f) : Mom(G) → Mom(H) can be obtained by re-
stricting SMult(f) to Mod(G) and CO(f) to Mom(G).

DirSub(G)
DirSub(f)//

��

DirSub(H)

��
SMult(G)

SMult(f)
// SMult(H)

MatRep(G)
MatRep(f)//

��

MatRep(H)

��
Mat|VG|(R)

CO(f)
// Mat|VH |(R)

(7)

The commutativity of the right square in Diagram 1 directly follows from the definition of Mom(f).
As illustrated in Diagram 6, the left square in Diagram 1 is shown to be commutative for the gener-
ators of monoids, establishing the commutativity of this square.

H.8 PROOF OF THEOREM 3.1.3

Proof. We begin by demonstrating that f establishes a one-to-one correspondence between the
edges of G and H . It is evident that a matrix with a single non-zero entry in either Mom(G) or
Mom(H) corresponds to a matrix transformation of an element in Mod(G) or Mod(H), respec-
tively, each representing a single directed edge.

For an edge vi vj in G, let e be the directed edge vi → vj ∈ Mod(G); then A = TrG(e) has
one non-zero entry, and since f is a linear isomorphism, f(A) has one non-zero entry, and, based
on the assumption, it belongs to Mom(H). So f(A) is a matrix transformation of a directed edge
c : uk → ul in Mod(H). Similarly, let B ∈ Mom(G) be the matrix transformation of e′ : vj → vi
and then f(B) ∈ Mom(H) is a matrix transformation of some directed edge c′ : ul′ → uk′ in
Mod(H). Since e can be followed by e′, e • e′ has three paths. This implies TrG(e • e′) has three
non-zero entries. On the other hand, TrG(e • e′) = TrG(e) ◦ TrG(e

′) = A ◦ B = A + B + AB;
then AB ̸= 0 and consequently f(A)f(B) = f(AB) ̸= 0. The equation

TrH(c • c′) = TrH(c) ◦ TrH(c′)

= f(A) ◦ f(B)

= f(A) + f(B) + f(A)f(B)

says that the matrix transformation corresponding to c • c′ has three non-zero entries and so c • c′

contains three paths. Then c must be followed by c′ and this yields ul = ul′ . Similarly, uk = uk′

can be shown. Therefore, f gives a one-to-one mapping between the edges of G and H .

To prove the correspondence between the nodes of two graphs, let vx be a node in G, connected
to vi in which j ̸= x and C and f(C) be the matrix transformations of a : vi → vx ∈ Mod(G)
and b : uy → uz ∈ Mod(H), respectively. Since e′ is followed by a in Mod(G), with the same
reasoning as above, c′ must be followed by b in Mod(H) and this means uk = uy . So f also
gives a one-to-one mapping between nodes of graphs compatible with edges. Then, G and H are
isomorphic.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

H.9 PROOF OF THEOREM 3.2.2

The role of neighborhoods in MPNN is like a sink such that messages move to the center of the sink.
For a node vk with neighborhood Nk containing vk1

, vk2
, · · · , vkm

, we depict this sink in Figure 4
by denoting directed edge from vki

to vk by ei : vki
→ vk. This sink can be considered as a directed

Figure 4: Visualizing a neighborhood by representing it as a directed subgraph

subgraph. As an element of Mod(G), it can be represented as follows:
Sk = e1 • e2 • · · · • em

Since the directed edges ei and ej appearing in Sk are not composable, we observe ei • ej =
ej • ei, rendering the order in Sk unimportant. The cover obtained by Sks is exactly the cover of
the neighborhoods. Let Tk = Tr(Sk) and Ai = Tr(ei). Thus Ai has 1 in the entry kik and 0 for all
other entries. The matrix transformation of ei • ej has just two non-zero entries and Tr(ei • ej) =
Ai +Aj +AiAj . Then AiAj = 0 for 1 ≤ i ≤ m and 1 ≤ j ≤ m. Theorem H.5.1 implies

Tk = Tr(Sk) = A1 ◦A2 ◦ · · · ◦Am

= A1 +A2 + · · ·+Am

As a result, the column k of Tk aligns with the column k of the adjacency matrix of graph G, while
the remaining columns are filled with zeros. Transforming the cover {Sk} yields a collection of
|V | matrices, each containing a single column from the adjacency matrix. In the GGNN framework,
summation is an allowed operation, enabling the construction of the adjacency matrix by performing
the summation on this matrix collection. Hence, neighborhoods can function as a cover within the
framework of GGNN, with the adjacency matrix serving as an interpretation of this cover.

H.10 PROOF OF THEOREM 4.1.1

Proof. Since the definition of sets Mi(v)s is based on the neighborhoods, for a graph isomorphism
f : G → H , f(Mi(v)) = Mi(f(v)). This follows Mod(f)(Di(v)) = Di(f(v)). Since Mod(f) is
a monoidal homomorphism, we get:

Mod(f)(Sieve(v, k)) = Mod(f)(Dk(v) • · · · •D0(v))

= Mod(f)(Dk(v)) • · · · •Mod(f)(D0(v))

= Dk(f(v)) • · · · •D0(f(v))

= Sieve(f(v), k)

Based on Theorem 3.1.2, Mom(f)(Image(v, k)) = Image(f(v), k).

H.11 PROOF OF THEOREM 4.2.1

Proof. Since the cover of sieves is invariant and CO(f) preserves the rest of the computations in the
algorithm, SNN is invariant.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

H.12 PROOF OF THEOREM G.1.2

Proof. Let Adj(v) denote the matrix representation of the neighborhood of a node v ∈ G. As
demonstrated, this matrix contains exactly one non-zero column. The mapping f is a Change-of-
Order mapping, which transforms Adj(v) into a matrix with a single non-zero column, where all
non-zero entries are equal to 1.

An element of Adj(H) that is not a matrix transformation of any element in the cover of the neigh-
borhood will have two or more non-zero columns. Consequently, for f(Adj(v)) ∈ Adj(H), there
exists a node u ∈ H such that f(Adj(v)) = Adj(u).

This establishes a one-to-one correspondence between VG and VH , as f is an isomorphism. Now,
let vi vj represent an edge in G, with f(Adj(vi)) = Adj(uk) and f(Adj(vj)) = Adj(ul).
The entry ii in the matrix Adj(vj) ◦ Adj(vi) equals 1.

Since f is a Change-of-Order mapping, the matrix f(Adj(vj) ◦ Adj(vi)) = Adj(ul) ◦ Adj(uk) has
a diagonal entry equal to 1. In this matrix, the only diagonal entry that can be non-zero is the entry
kk. Similarly, the entry ll in Adj(uk) ◦ Adj(ul) equals 1. This implies that there is an edge between
uk and ul.

Thus, we establish a one-to-one correspondence between the edges of G and H that is consistent
with the mapping of their nodes. This proves that f defines a graph isomorphism between G and
H .

22

	Introduction
	Covers and their matrix interpretations
	Matrix representations of directed subgraphs
	Defining covers for graphs: an algebraic platform
	From covers to matrices: an algebraic perspective

	Grothendieck Graph Neural Networks Framework
	Algebraic foundations of graphs
	Definition of the GGNN framework

	Sieve Neural Networks: a model within the GGNN framework
	Cover of sieves for graphs
	Design and construction of the model

	Experiments
	Graph isomorphism.
	Topology Encoding (probe).

	Conclusion
	The Use of Large Language Models (LLMs)
	Related work
	Definitions and examples
	Explanation for constructing a model in GGNN framework
	GGNN framework vs. higher-order GNNs: a comparison
	Further details on SNN
	Model explanations
	Comparing with MPNN
	Complexity
	Algorithm

	Special submonoids
	The submonoid generated by neighborhoods
	The submonoid generated by sieves

	Proof of theorems
	Proof of Theorem 2.1.3
	Proof of Theorem 2.2.1
	Proof of Theorem 2.2.5
	Proof of Theorem 2.3.1
	Proof of Theorem 2.3.3
	Proof of Proposition 3.1.1
	Proof of Theorem 3.1.2
	Proof of Theorem 3.1.3
	Proof of Theorem 3.2.2
	Proof of Theorem 4.1.1
	Proof of Theorem 4.2.1
	Proof of Theorem G.1.2

