
Make the U in UDA Matter: Invariant Consistency
Learning for Unsupervised Domain Adaptation

Zhongqi Yue1, Hanwang Zhang1, Qianru Sun2
1Nanyang Technological University, 2Singapore Management University

yuez0003@ntu.edu.sg, hanwangzhang@ntu.edu.sg, qianrusun@smu.edu.sg

Abstract

Domain Adaptation (DA) is always challenged by the spurious correlation be-
tween domain-invariant features (e.g., class identity) and domain-specific features
(e.g., environment) that does not generalize to the target domain. Unfortunately,
even enriched with additional unsupervised target domains, existing Unsupervised
DA (UDA) methods still suffer from it. This is because the source domain su-
pervision only considers the target domain samples as auxiliary data (e.g., by
pseudo-labeling), yet the inherent distribution in the target domain—where the
valuable de-correlation clues hide—is disregarded. We propose to make the U in
UDA matter by giving equal status to the two domains. Specifically, we learn an
invariant classifier whose prediction is simultaneously consistent with the labels in
the source domain and clusters in the target domain, hence the spurious correlation
inconsistent in the target domain is removed. We dub our approach “Invariant CON-
sistency learning” (ICON). Extensive experiments show that ICON achieves the
state-of-the-art performance on the classic UDA benchmarks: OFFICE-HOME and
VISDA-2017, and outperforms all the conventional methods on the challenging
WILDS 2.0 benchmark. Codes are in Appendix.

1 Introduction
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Figure 1: A digit classification model trained on red
digits in S generalizes to colorful digits in T by disen-
tangling digit shape (i.e., the causal feature c), as color
in S (i.e., eS) is not discriminative.  : “0”,  : “1”. The
classification boundary is rendered blue and red.

Domain Adaptation (DA) is all about train-
ing a model in a labelled source domain S
(e.g., an autopilot trained in daytime), and
the model is expected to generalize in a tar-
get domain T (e.g., the autopilot deployed
in nighttime), where T and S has a signif-
icant domain shift (e.g., day vs. night) [41].
To illustrate the shift and generalization, we
introduce the classic notion of causal repre-
sentation learning [20, 49]: any sample is
generated by x = Φ(c, e), where Φ is the
generator, c is the causal feature determin-
ing the domain-invariant class identity (e.g.,
road lane), and e is the environmental fea-
ture (e.g., lighting conditions). As the en-
vironment is domain-specific, the domain
shift eS ̸= eT results in xS ̸= xT , chal-
lenging the pursuit of a domain-invariant
class model. However, if a model disentangles the causal feature by transforming each x = c, it
can generalize under arbitrary shift in e. In Figure 1, even though eT = “colorful” is significantly
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ICON

⋂ =

B B BFigure 2: Red: S, Blue: T .  : “0”, ▲: “1”. (a) A failure case of existing lineups. The red line denotes
the classifier trained in S. (b) Classifier can be corrected (black line) by respecting the BCE loss
between S (red line) and T (blue line). (c) A failure case of minimizing the combined BCE losses in
S and T . Due to the low variance of eS in each class, the optimal classifier w.r.t. the BCE loss in S
(red line) looks “flat”, i.e., it has large weight on e [39]. (d) Our ICON prevents such a failure case.

different from eS = “red”, thanks to the non-discriminative “red” color in S, the model still easily
disentangles c from Φ(c, eS) and thus generalizes to digits of any color.

Unfortunately, in general, disentangling c by using only S is impossible as eS can be also discrimina-
tive, i.e., spuriously correlated with c. In Figure 2a, the color eS is correlated with the shape c, i.e.,
c1 =“0” and c2 =“1” in S tend to have e1 = dark and e2 = light digit colors, respectively. As both
c and eS are discriminative, a classifier trained in S will inevitably capture both (see the red line in
Figure 2a). This leads to poor generalization when the correlation between eT and c is different, i.e.,
the colors of c1 =“0” and c2 =“1” in T tend to be e2 = light and e1 = dark instead.

To avoid spurious correlations between eS and c, a practical setting called Unsupervised DA (UDA)
introduces additional information about T through a set of unlabeled samples [15, 35, 12]. There are
two main lineups: 1) Domain-alignment methods [58, 34, 10] learn the common feature space of S
and T that minimizes the classification error in S. In Figure 2a, their goal is to unify “0”s and “1”s in
S and T . However, they suffer from the well-known misalignment issue [31, 71], e.g., collapsing “0”s
and ”1”s in T to “1”s and “0”s in S respectively also satisfies the training objective, but it generalizes
poorly to T . 2) Self-training methods [72, 38, 52] use a classifier trained in S to pseudo-label samples
in T , and jointly train the model with the labels in S and confident pseudo-labels in T . Yet, the
pseudo-labels can be unreliable even with expensive threshold tweaking [32, 29], e.g., the ✗ areas in
Figure 2a have confident but wrong pseudo-labels. In fact, the recent WILDS 2.0 benchmark [47] on
real-world UDA tasks shows that both lineups even under-perform an embarrassingly naive baseline:
directly train in S and test in T .

Notably, although both methods respect the idiosyncrasies in S (by minimizing the classification
error), they fail to account for the inherent distribution in T , e.g., in Figure 2a, even though T is
unlabelled, we can still identify the two sample clusters in T (enclosed by the blue circles), which
provide additional supervision for the classifier trained in S. In particular, the classifier (red line) in
Figure 2a breaks up the two clusters in T , showing that the correlation between color eS and c in S
is inconsistent with the clusters affected by eT in T , which implies that color e is the environmental
feature. Hence, to make the U in UDA matter, we aim to learn a classifier that is consistent with
classification in S and clustering in T :

Consistency. We use the Binary Cross-Entropy (BCE) loss to encourage the prediction similarity of
each sample pair from the same class of S or cluster of in T , and penalize the pairs from different
ones. In Figure 2b, the red and blue lines denote the classifiers that minimize the BCE loss in S and
T , respectively. By minimizing the combined loss, we learn the classifier consistent with the sample
distribution in both domains (the upright black line), which predicts solely based on the causal feature
c (i.e., disentangling c from Φ(c, e)).

Invariance. However, enforcing consistency is a tug-of-war between S and T , and the BCE loss in
one domain can dominate the other to cause failures. Without loss of generality, we consider the case
where S dominates in Figure 2c. Due to the strong correlation between eS and c, the classifier that
minimizes the combined losses of BCE (black line) deviates from the desired upright position as in
Figure 2b. To tackle this, we aim to learn an invariant classifier [1] that is simultaneously optimal w.r.t.
the BCE loss in S and T . In Figure 2d, for each of the two losses, we color the candidate regions
where the classifier is optimal (i.e., gradients ≈ 0) with red and blue, respectively. In particular, by
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Figure 3: A training example where the pair of samples in S is from different classes and that in T
is from the same cluster. The black arrows on the similarity bars denotes that minimizing the BCE
losses in S and T will decrease the similarity in S (as y1 ̸= y2) and increase that in T (as y1 = y2).

learning an invariant classifier lying in the intersection (purple region), we successfully recover the
desired one as in Figure 2b, even when one domain dominates.

Overall, we term our approach as Invariant CONsistency learning (ICON). Our contributions:

• ICON is a novel UDA method that can be plugged into different self-training baselines. It is simple
to implement (Section 2), and disentangles the causal feature c from Φ(c, e) that generalizes to T
with a theoretical guarantee (Section 3).

• ICON significantly improves the current state-of-the-art on classic UDA benchmarks [29, 6] with
ResNet-50 [19] as the feature backbone: 75.8% (+2.6%) accuracy averaging over the 12 tasks in
OFFICE-HOME [60], and 87.4% (+3.7%) mean-class accuracy in VISDA-2017 [43] (Section 5).

• Notably, as of NeurIPS 2023, ICON dominates the leaderboard of the challenging WILDS 2.0 UDA
benchmark [47] (https://wilds.stanford.edu/leaderboard/), which includes 8 large-scale
classification, regression and detection tasks on image, text and graph data (Section 5).

2 Algorithm

UDA aims to learn a model with the labelled training data {xi, yi}Ni=1 in the source domain S
and unlabelled {xi}Mi=1 in the target domain T , where xi denotes the feature of the i-th sample
extracted by a backbone parameterized by θ (e.g., ResNet-50 [19]), and yi is its ground-truth label.
We drop the subscript i for simplicity when the context is clear. As shown in Figure 3, our model
includes the backbone θ, a classification head f , and a cluster head g, where f and g output the
softmax-normalized probability for each class and cluster, respectively. Note that f and g have the
same output dimension as the class numbers are the same in S and T . As discussed in Section 1, the
generalization objective of ICON is to learn an invariant f that is simultaneously consistent with
the classification in S, and the clustering in T , identified by g. ICON is illustrated in Figure 3 and
explained in details below.

2.1 Consistency with S

We use Binary Cross-Entropy (BCE) loss to enforce the consistency of f with S, denoted as
BCE(S, f). Specifically, BCE(S, f) is a pair-wise loss given by:

BCE(S, f) = E(xi,xj)∼S [blog(ŷ) + (1− b)log(1− ŷ)] , (1)

where b = 1(yi = yj) is a binary label indicating if the pair (xi,xj) is from the same class, and
ŷ = f(xi)

⊺f(xj) is the predictive similarity. Intuitively, BCE is a form of contrastive loss that
clusters sample pairs with the same label (by increasing the dot-product similarity of their predictions)
and pushes away pairs with different labels (by decreasing the similarity). Note that in practice, BCE
loss is computed within each mini-batch, hence there is no N2 prohibitive calculation.

2.2 Consistency with T

Unfortunately, BCE(T, f) cannot be evaluated directly, as the binary label b in Eq. (1) is intractable
given unlabeled T . To tackle this, we cluster T to capture its inherent distribution and use cluster
labels to compute BCE(T, f).

3
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Clustering T . We adopt the rank-statistics algorithm [18], as it can be easily implemented in a
mini-batch sampling manner for online clustering. The algorithm trains the cluster head g to group
features whose top values have the same indices (details in Appendix). Ablation on clustering
algorithm is in Section 5.4. Note that our g is trained from scratch, rather than initialized from f
trained in S [56, 29, 32]. Hence g captures the distribution of T without being affected by that of S.

Computing BCE(T, f). After training g, we replace b = 1(yi = yj) for BCE(S, f) in Eq. (1) with
b = 1 (argmax g(xi) = argmax g(xj)) for BCE(T, f), which compares the cluster labels of each
sample pair. We emphasize that it is necessary to use pairwise BCE loss to enforce the consistency of
f with T . This is because cross-entropy loss is not applicable when the cluster labels in T are not
aligned with the class indices in S.

2.3 Invariant Consistency (ICON)

ICON simultaneously enforces the consistency of f with S (i.e., the decision boundary of f separates
the classes) and T (i.e., it also separates the clusters). The objective is given by:

min
θ,f

Consistency︷ ︸︸ ︷
BCE(S, f) + BCE(T, f)+

S-Supervision︷ ︸︸ ︷
CE(S, f) + αLst

s.t. f ∈ argminf̄BCE(S, f̄) ∩ argminf̄BCE(T, f̄)︸ ︷︷ ︸
Invariance

. (2)

Line 1. The BCE losses train f to be consistent with the pair-wise label similarity in S and T . CE
loss in S trains f to assign each sample its label (e.g., predicting a clock feature as “clock”). Lst

is the self-training loss with weight α, which leverages the learned invariant classifier to generate
accurate pseudo-labels in T for additional supervision (details in Section 5.2).

Line 2. The constraint below requires the backbone θ to elicit an invariant classifier f that simultane-
ously minimizes the BCE loss in S and T . This constraint prevents the case where one BCE loss is
minimized at the cost of increasing the other to pursue a lower sum of the two (Figure 2c).

To avoid the challenging bi-level optimization, we use the following practical implementation:

min
θ,f

BCE(S, f) + BCE(T, f) + CE(S, f) + αLst + βVar ({BCE(S, f),BCE(T, f)}) , (3)

where the variance term Var(·) is known as the REx loss [25] implementing the invariance constraint.
The self-training weight α and invariance weight β are later studied in ablation (Section 5.4).

Training and Testing. Overall, at the start of training, the backbone θ is initialized from a pre-trained
weight (e.g., on ImageNet [46]) and f, g are randomly initialized. Then ICON is trained by Eq. (3)
until convergence. Only the backbone θ and the classifier f are used in testing.

3 Theory

Preliminaries. We adopt the group-theoretic definition of disentanglement [20, 62] to justify ICON.
We start by introducing some basic concepts in group theory. G is a group of semantics that generate
data by group action, e.g., a “turn darker” element g ∈ G transforms x from white “0” to g ◦ x as
grey “0” (bottom-left to top-left in Figure 4b). A sketch of theoretical analysis is given below and
interested readers are encouraged to read the full proof in Appendix.

Definition (Generalization). Feature space X generalizes under the direct product decomposition
G = G/H×H, if X has a non-trivial G/H-representation, i.e., the action of each h ∈ H corresponds
to a trivial linear map in X (i.e., identity map), and the action of each g ∈ G/H corresponds to a
non-trivial one.

This definition formalizes the notion of transforming each sample Φ(c, e) to the causal feature c.
Subgroup H ⊂ G and quotient group G/H transform the environmental feature e and the causal
c, respectively. If X has a non-trivial G/H-representation, samples in a class are transformed to
the same feature c ∈ X regardless of e (i.e., representation of G/H), and different classes have
different c (i.e., non-trivial). This definition is indeed in accordance with the common view of good
features [62], i.e., they enable zero-shot generalization as c is class-unique, and they are robust to the
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domain shift by discarding the environmental features e from Φ(c, e). To achieve generalization, we
need the following assumptions in ICON.

Assumption (Identificability of G/H).
1) ∀xi,xj ∈ T , yi = yj iff xi ∈ {h ◦ xj | h ∈ H};
2) There exists no linear map l : X → R such that l(x) > l(h ◦ x), ∀x ∈ S, h ◦ x ∈ T and
l(g ◦ x) < l(gh ◦ x), ∀g ◦ x ∈ S, gh ◦ x ∈ T , where h ̸= e ∈ H, g ̸= e ∈ G/H.
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Figure 4: Red: S, Blue: T .  : “0”, ▲: “1”.
Black lines denote the invariant classifier satis-
fying the ICON objective. (a) Assumption 1 is
violated. (b) Assumption 2 is violated.

Assumption 1 states that classes in T are separated
by clusters. This corresponds to the classic cluster-
ing assumption, a necessary assumption for learn-
ing with unlabeled data [59]. Figure 4a shows a
failure case of Assumption 1, where the intra-class
distance (i.e., dotted double-arrow) is much larger
than the inter-class one (i.e., solid double-arrow)
in T , i.e., shape c is less discriminative than color
eT . Hence the clusters in T are based on e, causing
ICON to capture the wrong invariance. To help
fulfill the assumption, UDA methods (and SSL in
general) commonly leverage feature pre-training
and data augmentations. We also specify the num-
ber of clusters as the class numbers in T , which is
a necessary condition of this assumption.

Assumption 2 states that c is the only invariance between S and T . Figure 4b illustrates a failure case,
where there exist two invariant classifiers: both the vertical one based on shape c and the horizontal
one based on color e separate the classes in S and clusters in T . Yet as T is unlabelled, there is no
way for the model to determine which one is based on c. In practice, this assumption can be met by
collecting more diverse unlabelled samples in T (e.g., darker “0”s and lighter “1”s in Figure 4b), or
introducing additional priors on what features should correspond to the causal one.

Theorem. When the above assumptions hold, ICON (optimizing Eq. (3)) learns a backbone θ
mapping to a feature space X that generalizes under G/H×H. In particular, the learned f is the
optimal classifier in S and T .

By transforming each sample Φ(c, e) in S and T to c ∈ X , the classifier easily associate each c to
its corresponding class label using the labelled S to reach optimal.

4 Related Work

Domain-Alignment methods [13, 4, 57] map samples in S and T to a common feature space where
they become indistinguishable. Existing works either minimize the discrepancy between the sample
distributions of S and T [36, 2, 27], or learn features that deceive a domain discriminator [69, 63, 33].
However, they suffers from the misalignment issue under large domain shift from S to T [71, 31],
such as shift in the support of the sample distribution [23] (e.g., Figure 2a).

Self-Training methods [17, 3, 53] are the mainstream in semi-supervised learning (SSL), and recently
became a promising alternative in UDA, which focuses on generating accurate T pseudo-labels. This
lineup explores different classifier design, such as k-NN [51], a teacher-student network [11] or an
exponential moving average model [30]. Yet the pseudo-labels are error-prune due to the spurious
correlations in S, hence the model performance is still inconsistent [32].

Alleviating Spurious Correlation has been studied in several existing works of UDA [56, 32, 29].
They train a T -specific classifier to generate pseudo-labels [56, 29]. However, their T -classifiers are
still initialized based on a classifier trained in S, hence the spurious correlation in S are introduced to
the T -classifiers right in the beginning. On the contrary, our ICON learns a cluster head in T without
supervision in S, which is solely for discovering the sample clusters in T . Hence, the spurious
correlation in S inconsistent with the clusters in T can be removed by ICON (Section 5).

Graph-based SSL methods [16, 42, 22] share a similar spirit with ICON, where they learn a classifier
using the labeled samples that is consistent with the unlabelled sample similarities. However, they
lack the invariant constraint in ICON, which can cause the failure cases (e.g., Figure 2c).
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Dataset OFFICE-HOME VISDA-2017 IWILDCAM CAMELYON17 FMOW POVERTYMAP GLOBALWHEAT OGB-MOLPCBA CIVILCOMMENTS AMAZON

Sample 𝐱𝐱 object image object image camera trap photo tissue slide satellite image satellite image wheat image molecular graph online comment product review

Label 𝒚𝒚 65 categories 12 categories 182 species tumor/not 62 land uses asset wealth wheat bbox bioassays toxic/not 5 review scores

Task classification classification classification classification classification regression detection classification classification classification

Source 𝑺𝑺 various* synthetic 
images

photos from 
243 traps

slides from 
hospital 1-3

images from 
2002-2013

images in 14 
countries

images in 
Europe

44,930 scaffold 
groups online articles* 1,252 

reviewers

Example 𝑺𝑺

#Samples 𝑺𝑺 average 3,875 152,397 129,809 302,436 76,863 ~10,000 2,943 350,343 269,038 245,502

Target 𝑻𝑻 various* real photos photos from 
3215 traps

slides from 
hospital 5

images from 
2016-2018

images in 5 
countries

images across 
the world

43,793 scaffold 
groups online articles* 1,334 

reviewers

Example 𝑻𝑻

#Samples 𝑻𝑻 average 3,875 55,388 819,120 600,030 173,208 261,396 42,445 517,048 1,551,515 268,761

Evaluation average acc. mean-class 
accuracy macro-F1 acc. worst-region 

acc.*
Pearson 

correlation* % acc. average 
precision

worst-group 
acc.*

10th percentile 
acc.

Existing 
Methods

GVB [7] Empirical Risk Minimization (ERM)
70.4 75.3 47.0 / 32.2 90.6 / 82.0 60.6 / 34.8 65 / 48 77.8 / 51.0 - / 28.3 89.8 / 66.6 72.0 / 54.2

TCM [61] CORAL [51]
70.7 75.8 40.5 / 27.9 90.4 / 77.9 58.9 / 34.1 54 / 36 - / - - / 26.6 - / - 71.7 / 53.3

SENTRY [41] DANN [13]
72.0 76.7 48.5 / 31.9 86.9 / 68.4 57.9 / 34.6 50 / 33 - / - - / 20.4 - / - 71.7 / 53.3

CST [29] Pseudo-Label [24]
72.2 80.6 47.3 / 30.3 91.3 / 67.7 60.9 / 33.7 - / - 73.3 / 42.9 - / 19.7 90.3 / 66.9 71.6 / 52.3

ToAlign [59] MDD [63]     Noisy Student [60]
72.7 77.8 47.5 / 32.1 93.2 / 86.7 61.3 / 37.8 61 / 42 78.1 / 46.8 - / 27.5 - / - - / -

FixBi [37] MT+16augs [11] FixMatch [50] Masked LM [9]
73.0 82.8 46.3 / 31.0 91.3 / 71.0 58.6 / 32.1 54 / 30 - / - - / - 89.4 / 65.7 71.9 / 53.9

ATDOC [26] MCC+NWD [6] SwAV [5] ERM (labelled 𝑻𝑻)
73.2 83.7 47.3 / 29.0 92.3 / 91.4 61.8 / 36.3 60 / 45 - / - - / - 89.9 / 69.4 73.6 / 56.4

75.8 87.4 50.6 / 34.5 95.6 / 93.8 62.2 / 39.9 65 / 49 78.6 / 52.3 - / 28.3 89.7 / 68.8 71.9 / 54.7
+2.6 +3.7 +2.3 +2.4 +2.1 +1 +1.3 +0.0 +1.9 +0.5

I applaud your 
father. He was a 
good man! We need 
more like him.

As a Christian, I will 
not be patronizing 
any of those 
businesses.

Super easy to 
put together. 
Very well built.

I am disappointed 
in the quality of 
these.

Existing 
Methods

ICON

Table 1: Dataset details and the results of our ICON compared with existing methods. Details on * in
Section 5.1. WILDS 2.0 [47] datasets are highlighted in yellow, where models were evaluated on both
the test data in S (first number) and in T (second number). The performance gain in T highlighted in
red. “ERM (labeled T )” has full supervision in T . -/- means that the method is not applicable to the
dataset. Other dataset details and the standard deviation of the results are in Appendix.

5 Experiment

5.1 Datasets

As shown in Table 1, we extensively evaluated ICON on 10 datasets with standard protocols [34, 47],
including 2 classic ones: OFFICE-HOME [60], VISDA-2017 [43], and 8 others from the recent
WILDS 2.0 benchmark [47]. WILDS 2.0 offers large-scale UDA tasks in 3 modalities (image, text,
graph) under real-world settings, e.g., wildlife conservation, medical imaging and remote sensing.
Notably, unlike the classic datasets where the same sample set in T is used in training (unlabelled) and
testing, WILDS 2.0 provides unlabelled train set in T disjoint with the test set, which prevents explicit
pattern mining of the test data. They also provide validation sets for model selection. For datasets in
WILDS 2.0 benchmark, we drop their suffix -WILDS for simplicity (e.g., denoting AMAZON-WILDS
as AMAZON).

Details of * in Table 1: OFFICE-HOME has 4 domains: artistic images (Ar), clip art (Cl), product
images (Pr), and real-world images (Rw), which forms 12 UDA tasks by permutation, and we only
show Cl→Rw as an example in the table. FMOW considers the worst-case performance on different
geographic regions, where the land use in Africa is significantly different. POVERTYMAP considers
the lower of the Pearson correlations (%) on the urban or rural areas. CIVILCOMENTS correspond
to a semi-supervised setting with no domain gap between S and T , and is evaluated on the worst-case
performance among demographic identities.

On some WILDS 2.0 datasets, the test data may come from a separate domain different from the
training target domain T , e.g., IWILDCAM test data is captured by 48 camera traps disjoint from the
3215 camera traps in the training T . We highlight that ICON is still applicable on these datasets. This
is because ICON works by learning the causal feature c and discarding the environmental feature e,
and the theory holds as long as the definition of c and e is consistent across the training and test data,
e.g., IWILDCAM is about animal classification across the labeled, unlabeled, and test data.
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Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
DANN [13] (2016) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN [34] (2018) 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
SymNet [69] (2019) 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
MDD [70] (2019) 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
SHOT[28] (2020) 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
ALDA [7] (2020) 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6
GVB [8] (2020) 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4

TCM [67] (2021) 58.6 74.4 79.6 64.5 74.0 75.1 64.6 56.2 80.9 74.6 60.7 84.7 70.7
SENTRY [44] (2021) 61.8 77.4 80.1 66.3 71.6 74.7 66.8 63.0 80.9 74.0 66.3 84.1 72.2

CST [32] (2021) 59.0 79.6 83.4 68.4 77.1 76.7 68.9 56.4 83.0 75.3 62.2 85.1 73.0
ToAlign [64] (2021) 57.9 76.9 80.8 66.7 75.6 77.0 67.8 57.0 82.5 75.1 60.0 84.9 72.0

FixBi [40] (2021) 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
ATDOC [29] (2021) 60.2 77.8 82.2 68.5 78.6 77.9 68.4 58.4 83.1 74.8 61.5 87.2 73.2
SDAT [45] (2022) 58.2 77.1 82.2 66.3 77.6 76.8 63.3 57.0 82.2 74.9 64.7 86.0 72.2

MCC+NWD [6] (2022) 58.1 79.6 83.7 67.7 77.9 78.7 66.8 56.0 81.9 73.9 60.9 86.1 72.6
kSHOT∗ [55] (2022) 58.2 80.0 82.9 61.1 80.3 80.7 71.3 56.8 83.2 75.5 60.3 86.6 73.9

ICON (Ours) 63.3 81.3 84.5 70.3 82.1 81.0 70.3 61.8 83.7 75.6 68.6 87.3 75.8

Table 2: Break-down of the accuracies in each domain on OFFICE-HOME dataset [60]. ∗: kSHOT [55]
additionally uses the prior knowledge on the percentage of samples in each class in the testing data.
Published years are in the brackets after the method names.

5.2 Implementation Details

Feature Backbone. We used the followings pre-trained on ImageNet [46]: ResNet-50 [19]
on OFFICE-HOME, VISDA-2017 and IWILDCAM, DenseNet-121 [21] on FMOW and Faster-
RCNN [14] on GLOBALWHEAT. We used DistilBERT [48] with pre-trained weights from the Trans-
formers library on CIVILCOMMENTS and AMAZON. On CAMELYON17, we used DenseNet-121 [21]
pre-trained by the self-supervised SwAV [5] with the training data in S and T . On POVERTYMAP and
OGB-MOLPCBA with no pre-training available, we used multi-spectral ResNet-18 [19] and graph
isomorphism network [66] trained with the labelled samples in the source domain S, respectively.

Self-training. A general form of the self-training loss Lst in Eq. (3) is given below:

Lst = Ex∼T [1(maxf(x) > τ)CE (f(x), argmaxf(x))] , (4)

where τ is a confident threshold that discards low-confidence pseudo-labels, and CE(·, ·) is the
cross-entropy loss. We detail the different implementations of Eq (4) in Appendix. ICON is agnostic
to the choice of Lst, and hence we choose the best performing self-training baseline for each dataset:
FixMatch [53] on OFFICE-HOME and VISDA-2017, NoisyStudent [65] on IWILDCAM and FMOW,
Pseudo-label [26] on CIVILCOMMENTS and AMAZON. ICON also does not rely on Lst. We did not
apply Lst (i.e., β = 0) on CAMELYON17, POVERTYMAP, GLOBALWHEAT and OGB-MOLPCBA
where self-training does not work well.

Regression and Detection. For the regression task in POVERTYMAP, f is a regressor that outputs a
real number. As the number of clusters in T is not well-defined, we directly used rank statistics to
determine if two samples in T have the same label. For the BCE loss, we computed the similarity
by replacing f(xi)

⊺f(xj) in Eq. (1) as − (f(xi)− f(xj))
2. For detection in GLOBALWHEAT, we

used the ICON objective in Eq. (3) to train the classification head without other modifications.

Other Details. We aim to provide a simple yet effective UDA method that works across data
modalities, hence we did not use tricks tailored for a specific modality (e.g., image), such as
mixup [68] or extensive augmentations (16 are used in [11]). On classic UDA datasets, we used
entropy minimization and SAM optimizer following CST [32]. On VISDA-2017, IWILDCAM,
CAMELYON17 and FMOW, we pre-processed the features with UMAP [37] (output dimension as 50)
and EqInv [61], which helps fulfill Assumption 1 (i.e., highlight causal feature to improve clustering).
ICON is also resource efficient—all our experiments can run on a single NVIDIA 2080Ti GPU.

5.3 Main Results

Classic UDA Benchmarks. In Table 1 (first 2 columns), ICON significantly outperforms the existing
state-of-the-arts on OFFICE-HOME [60] and VISDA-2017 [43] by 2.6% and 3.7%, respectively. We
include the breaks down of the performances of OFFICE-HOME in Table 2, where ICON wins in 10 out
of 12 tasks, and significantly improves the hard tasks (e.g., Ar→Cl, Rw→Cl). For VISDA-2017, we
include more comparisons in Table 3. ICON beats the original competition winner (MT+16augs) [11]
that averages predictions on 16 curated augmented views. ICON even outperforms all methods that
use the much deeper ResNet-101 [19]. Notably, CST [32] and ATDOC [29] also aim to remove
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Method Backbone Acc.
MT+16augs [11] (2018) ResNet-50 82.8

MDD [70] (2019) ResNet-50 77.8
GVB [8] (2020) ResNet-50 75.3

TCM [67] (2021) ResNet-50 75.8
SENTRY [44] (2021) ResNet-50 76.7

CST [32] (2021) ResNet-50 80.6
CAN [24] (2019) ResNet-101 87.2
SHOT [28] (2020) ResNet-101 82.9
FixBi [24] (2021) ResNet-101 87.2

MCC+NWD [6] (2022) ResNet-101 83.7
SDAC [45] (2022) ResNet-101 84.3

kSHOT∗ [55] (2022) ResNet-101 86.1
ICON (Ours) ResNet-50 87.4

Table 3: Mean-class accuracy (Acc.) on
VISDA-2017 Synthetic→Real task with the
choice of feature backbone. ∗: details in Ta-
ble 2 caption. Published years are in the brack-
ets after the method names.
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Figure 5: (a) Solid lines: test accuracy against train-
ing epochs for FixMatch, CST and ICON. Dotted
black lines: average loss in each epoch with match-
ing markers to denote the three methods. (b) Among
the feature pairs where f fails, the percentage of
pairs where g succeeds for the three methods.

the spurious correlation, and both attain competitive performance, validating the importance of this
research objective. Yet their training scheme allows the correlation to persist (Section 4), hence ICON
is more effective.

WILDS 2.0. In Table 1 (last 8 columns), ICON dominates the WILDS 2.0 leaderboard despite the
challenging real-world data and stringent evaluation. For example, the animal images in IWILDCAM
exhibit long-tail distribution that is domain-specific, because the rarity of species varies across
locations. Hence under macro-F1 evaluation (sensitive to tail performance), the 2.3% improvement
is noteworthy. On CIVILCOMMENTS with text data, ICON improves the worst performance across
demographic groups by 2.2%, which promotes AI fairness and demonstrates the strength of ICON
even under the SSL setting. On AMAZON, although ICON only improves 0.5% to reach 54.7%, the
upper bound performance by training with labelled T (56.4%) is also low due to the strict evaluation
metric. We also highlight that ICON increases the performance in T without sacrificing that in S (the
first number). This empirically validates that the invariance objective of ICON resolves the tug-of-war
scenario in Figure 2c. In particular, we tried implementing recent methods on this benchmark. Yet
they are outperformed by ERM, or even not applicable (e.g., on text/graph data). This is in line with
WILDS 2.0 organizers’ observation that ERM as a naive baseline usually has the best performance,
which is exactly the point of WILDS 2.0 as a diagnosis of the ever-overlooked issues in UDA. Hence
we believe that dominating this challenging leaderboard is a strong justification for ICON, and
encourage more researchers to try this benchmark.

Failure Cases. ICON performance is relatively weak on POVERTYMAP and OGB-MOLPCBA with
two possible reasons: 1) no pre-training available, the backbone is trained only on S and hence biased
in the beginning, and 2) the ground-truth number of classes in T is not well-defined in both datasets,
hence Assumption 1 in Section 3 may fail.

Learning Curve. In Figure 5a, we compare our ICON with two self-training baselines: FixMatch [53]
and CST [32]. The test accuracy and training loss w.r.t. training epochs on VISDA-2017 is drawn
in colored solid lines and black dotted lines, respectively. We observe that the training losses for
all methods converge quickly. However, while the two baselines achieve higher accuracy in the
beginning, their performances soon start to drop. In contrast, ICON’s accuracy grows almost steadily.

Effect of Supervision in T . To find the cause of the performance drop, we used the optimized
g in Section 2.2 to probe the learned f in each epoch. Specifically, we sampled feature pairs
x1,x2 in T and tested if the predictions of f, g are consistent with their labels, e.g., f succeeds if
argmaxf(x1) = argmaxf(x2) when y1 = y2 (vice versa for ̸=). Then among the pairs where f
failed, we computed the percentage of them where g succeeded, which is shown in Figure 5b. A
large percentage implies that f disrespects the inherent distribution in T correctly identified by g. We
observe that the percentage has a rising trend for the two baselines, i.e., they become more biased to
the spurious correlations in S that do not hold in T . This also explains their dropping performance in
Figure 5a. In particular, CST has a lower percentage compared to FixMatch, which suggests that it
has some effects in removing the bias. In contrast, the percentage steadily drops for ICON, as we
train f to respect the inherent distribution identified by g.
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Method OFFICE-HOME VISDA-2017
FixMatch 69.1 76.6

FixMatch+CON 74.1 82.0
FixMatch+CON+INV 75.8 87.4

Cluster with 2×#classes 69.7 78.6
Cluster with 0.5×#classes 67.5 76.2

Cluster with k-NN 72.1 85.6

Table 4: Ablations on each ICON component.
CON denotes the consistency loss in S and T .
INV denotes the invariance constraint.

73.8 75.0 75.5 73.9

73.9 75.4 75.8 74.4

70.2 72.8 75.2 74.5
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𝜷𝜷

OFFICE-HOME

85.2 86.2 86.3 81.5

85.6 86.4 86.7 82.6

76.8 81.2 87.4 86.3

74.6 77.6 70.0 72.2
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VISDA-2017

Figure 6: Ablations of α, β on the classic UDA
datasets.

5.4 Ablations

Components. Recall that the main components of ICON include: 1) Consistency loss (CON) that
leverages the supervision from the labels in S and clusters in T ; 2) the use of invariance constraint
(INV) in Eq. (3); 2) clustering in T with #clusters=#classes. Their ablations are included in Table 4.
From the first three lines, we observe that adding each component leads to consistent performance
increase on top of the self-training baseline (FixMatch), which validates their effectiveness. From
the next two lines, when #clusters̸=#classes, the model performs poorly, e.g., using one cluster in
Figure 2b (i.e., 0.5×#classes), the invariant classifier needs to predict the two red circles in S as
dissimilar (two classes) and the two blue ones in T as similar (one cluster), which in fact corresponds
to the erroneous red line (i.e., predictions in T are similarly ambiguous). In the last line, we tried
k-means for clustering instead of rank-statistics, leading to decreased performance. We postulate
that rank-statistics is better because its online clustering provides up-to-date cluster assignments. In
the future, we will try other more recent online clustering methods, e.g., an optimal transport-based
method [5]. Overall, the empirical findings validate the importance of the three components, which
are consistent with the theoretical analysis in Section 3.

Hyperparameters. We used two hyperparameters in our experiments: 1) the weight of the self-
training loss denoted as α; 2) the invariance penalty strength β in the REx [25] implementation of
Eq. (3). Their ablations are in Figure 6 on the widely used classic UDA datasets. We observe that
α ∈ [0.5, 1.0] and β ∈ [0.1, 0.25] works well on both datasets. In particular, it is standard in the
IRM community to choose a small β (e.g., 0.1). Then, tuning α follows the same process as other
self-training UDA methods. Hence the hyperparameter search is easy.
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Figure 7: CST and ICON confusion matrix on VISDA-2017.

Confusion Matrix. We use the
matrix to concretely show how
existing methods are biased to
the correlations in the source do-
main S. We compare the state-of-
the-art self-training method CST
with ICON in Figure 7. The
matrix on the left reveals that
CST predicted most “knife”s as
“skateboard”s (“board” for short),
and some “truck”s as “car”s. On
the right, we see that ICON
predicts “knife” accurately and
also improves the accuracy on
“truck”.

Grad-CAM Visualization. Why does CST predict “knife” in T as “board”? To answer this, in
Figure 8, we visualized the GradCAM [50] of CST and ICON trained on VisDA-2017. In the first row,
we notice that the self-training based CST predicts the two categories perfectly by leveraging their
apparent differences: the curved blade versus the flat board ending with semi-circles. However, this
leads to poor generalization on “knife” in T , where the background (image 1, 4), the knife component
(2) or even the blade (3) can have board-like appearances. Moreover, biased to the standard “board”
look in S, CST can leverage environmental feature for predicting “board” in T , e.g., under side-view
(5) or slight obstruction (6), which is prune to errors (e.g., 8). As the board-like shape alone is
non-discriminative for the two categories in T , in the second row, the cluster head g additionally
leverages knife handles and wheels to distinguish them. In the third row, our ICON combines the
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knife board𝒇𝒇 preds:

cluster 10
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ICON
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Figure 8: GradCAM on VisDA-2017 [43] using CST [32], the cluster head g and the proposed ICON.
Ground-truth knives and boards are in solid and dotted boxes, respectively. Predictions from f, g are
on top of each row. Red denotes wrong predictions. Pale blue and red background denotes training
and testing, respectively. Note that g is trained without supervision in T .

supervision in S (first row) and T (second row) to learn an invariant classifier f . In S, ICON focuses
on the overall knife shape instead of just blade, and incorporates wheels to predict “board”. In T , by
comparing images with the same number in the first and third row, we see that ICON focuses more
on the discriminative parts of the objects (e.g., handles and wheels), hence generalizes better in T .

6 Conclusion

We presented a novel UDA method called Invariant CONsistency learning (ICON) that removes the
spurious correlation specific to the source domain S to generalize in the target domain T . ICON
pursues an invariant classifier that is simultaneously consistent with the labels in S and the clusters
in T , hence removing the spurious correlation inconsistent in T . We show that ICON achieves
generalization in T with a theoretical guarantee. Our theory is verified by extensive evaluations
on both the classic UDA benchmarks and the challenging WILDS 2.0 benchmark, where ICON
outperforms all the conventional methods. We will seek more principled pre-training paradigms
that disentangle the causal features and relax the assumption of knowing the class numbers in T to
improve regression tasks.

Limitation. Our approach is based on the assumptions in Section 4, i.e., the classes in T are separated
by clusters, and there is enough diversity in T such that causal feature c is the only invariance.
Assumption 1 is essentially the clustering assumption, which is a necessary assumption for learning
with unlabeled data [59]. In fact, UDA methods (and semi-supervised learning in general) commonly
leverage feature pre-training and data augmentations to help fulfill the assumptions. One can also use
additional pre-trained knowledge from foundation models, or deploy improved clustering algorithm
(e.g., an optimal transport-based method [5]). Assumption 2 is necessary to rule out corner cases, e.g.,
in Figure 4b, without additional prior, there is no way for any UDA method to tell if each one of the
blue cluster (unlabeled) should be pseudo-labeled as "0" or "1". In practice, these corner cases can be
avoided by collecting diverse unlabeled data, which is generally abundant, e.g., collecting unlabeled
street images from a camera-equipped vehicle cruise.

Broader Impact. Our work aims to capture the causal feature in the unsupervised domain adaptation
setting. In particular, we significantly improve the state-of-the-art on WILDS 2.0 benchmark, which
includes practical tasks that benefit wildlife preservation, tumour classification in healthcare, remote
sensing, vision in agriculture, etc. The pursue of causal feature can produce more robust, transparent
and explainable models, broadening the applicability of ML models and promoting fairness in AI.
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