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Abstract

India’s linguistic diversity challenges inclusive
Automatic Speech Recognition (ASR) system
development. Traditional multilingual models,
requiring simultaneous access to all language
data, are impractical due to sequential data
arrival and privacy constraints. Continual
Learning (CL) enables models to learn new
languages sequentially without catastrophically
forgetting prior knowledge. This paper investi-
gates CL for ASR on Indian languages using
the subset of the IndicSUPERB benchmark. We
employ a Conformer-based hybrid RNNT-CTC
model, initially pretrained on Hindi, which is
subsequently trained incrementally on eight
additional Indian languages, for a sequence
of nine languages in total. We evaluate three
prominent regularization and distillation-based
CL strategies: Elastic Weight Consolidation
(Ewc), Memory Aware Synapses (MAS),
and Learning without Forgetting (LWF),
chosen for their suitability in no-replay,
privacy-conscious scenarios. Performance is
analyzed using Word Error Rate (WER) for
both RNNT and CTC paths on clean/noisy
data, and knowledge retention via Backward
Transfer. We explore varying training epochs
(1, 2, 5 and 10) per task. Results, compared
against naive fine-tuning, demonstrate CL’s
efficacy in mitigating forgetting for scalable
ASR in diverse Indian languages under
realistic constraints. The code is available at
https://anonymous.4open.science/r/Indic-CL-
ASR-9FF7

1 Introduction

India’s extensive linguistic diversity poses signifi-
cant hurdles for developing comprehensive Auto-
matic Speech Recognition (ASR) systems (Zhong
et al., 2024). Traditional multilingual models, typ-
ically trained on aggregated datasets (Bai et al.,
2021), are ill-suited for real-world scenarios char-
acterized by incremental data availability for low-
resource languages, high computational costs of

retraining, and data privacy concerns (Della Libera
et al., 2024). Continual Learning (CL), or life-
long learning (Ring, 1997; De Lange et al., 2021),
offers a paradigm to address these issues by en-
abling models to learn new tasks (languages) se-
quentially while preserving previously acquired
knowledge. The primary challenge in CL is catas-
trophic forgetting: the tendency of models to lose
performance on past tasks when trained on new
ones (McCloskey and Cohen, 1989). Mitigating
this is crucial for successful CL application (Kirk-
patrick et al., 2017; Goodfellow et al., 2015). This
work applies CL to multilingual ASR for Indian
languages using the subset of the IndicSUPERB
benchmark (Jain et al., 2024). We start with
the indicconformer model (a Conformer-based
(Gulati et al., 2020) hybrid RNNT-CTC (Burchi
et al., 2024; Graves, 2012; Graves et al., 2006)
system pretrained on Hindi using NeMo (Harper
et al.)) and incrementally train it on nine addi-
tional Indian languages: Bengali, Marathi, Telugu,
Tamil, Urdu, Gujarati, Kannada, and Odia. We
investigate three established CL strategies: Elastic
Weight Consolidation (EWC) (Aich, 2021), Mem-
ory Aware Synapses (MAS) (Aljundi et al., 2018),
and Learning without Forgetting (LWF) (Li and
Hoiem, 2017). These regularization and distilla-
tion methods are chosen because architecture-based
approaches can inflate model size, and memory-
based methods often violate realistic no-replay and
privacy constraints (Rebuffi et al., 2017; Lopez-
Paz and Ranzato, 2022). Our experiments evaluate
WER on clean and noisy data for both RNNT and
CTC paths, and Backward Transfer to quantify for-
getting, also varying training epochs per language.
In summary, our contributions include: (1) the first
comprehensive study of CL for ASR across diverse
Indian languages (2) systematic evaluation of EWC,
MAS, and LWF under realistic constraints, and (3)
detailed analysis of WER and knowledge retention
across training regimes to guide practical deploy-
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ment.

2 Related Work

Continual Learning (CL) aims to enable Al systems
to learn incrementally from a sequence of tasks
without catastrophically forgetting prior knowl-
edge. Key approaches include (Wang et al., 2024)
regularization-based methods (e.g., EwcC, which
penalizes changes to parameters important for past
tasks based on the Fisher Information Matrix; MAS,
which uses the gradient of the squared L2 norm
(Hoerl and Kennard, 1970) of the model’s output;
SI (Zenke et al., 2017)), rehearsal-based methods
(replaying past data) (Chaudhry et al., 2019), and
architecture-based methods (dynamically modify-
ing model structure). Applying CL to Automatic
Speech Recognition (ASR) is challenging due to
sequence variability, acoustic diversity, and lin-
guistic complexity, especially when sequentially
learning new languages in low-resource settings,
common for many Indian languages. Hybrid CTC-
RNNT models (Hori et al., 2017), prevalent in
modern ASR, offer multiple avenues for CL in-
tegration. Our work explores EwC, MAS, and
(LwF), which employs knowledge distillation to
preserve the previous model’s outputs on new data
without storing old data. We utilize the subset of
the IndicSUPERB benchmark (Jain et al., 2024),
which provides standardized speech datasets for
multiple Indian languages (including clean/noisy
splits), and the indicconformer, a state-of-the-
art Conformer-based hybrid RNNT-CTCmodel pre-
trained on Hindi, as our base model and evaluation
framework.

3 Benchmark Design

Our benchmark simulates realistic constraints for
continual learning in multilingual ASR using the
subset IndicSUPERB dataset. Each Indian lan-
guage is treated as a separate task, forming a se-
quence of nine tasks beginning with Hindi (77),
followed by Bengali, Marathi, Telugu, Tamil, Urdu,
Gujarati, Kannada, and Odia (75 to Tg). All tasks
are presented in a low-resource setting, with only
3000 training utterances per language (2000 clean
and 1000 noisy). The model is trained sequentially
using only the current task’s data Dy, enforcing
a strict no-data-replay constraint. Training, vali-
dation, and test sets contain both clean and noisy
samples, with test sets comprising 200 clean and
200 noisy utterances per language. Word Error
Rate (WER) is evaluated separately on clean and

noisy test splits using both RNNT and CTC decod-
ing paths. To explore the trade-off between adap-
tation speed, accuracy on new tasks, and knowl-
edge retention, we experiment with 1, 2, 5, and 10
training epochs per task. We benchmark perfor-
mance against a naive sequential fine-tuning base-
line. Further details on task formulation, model
architecture, dataset construction and experimen-
tation setup are provided in Appendix A.1, Ap-
pendix A.3, Appendix A.2 and Appendix A.5.

4 Evaluation Metrics

* Word Error Rate (WER): A commonly used
metric in automatic speech recognition (Gold-
water et al., 2010) and is expressed as a dec-
imal fraction ranging from O to 1. WER is
evaluated on all previously learned tasks af-
ter each new task is completed. Lower WER
indicates better performance.

» Average Performance: After training on task
T}, the average WER across all tasks 77 to Ty,
is given by:

AvgWER,, =

=

k
D Wi
i=1

where W, ; denotes the WER on task T; after
learning task 7. Lower AvgWER indicates
better overall retention and adaptation.

e Backward Transfer (BWT): Quantifies the
influence of learning new tasks on the perfor-
mance of previously learned ones. After task
T, BWT is defined as:

k—1
1
BWT, = 1 Z (Accy; — Acci;)
i=1

where Accg; = 1 — W) ; is the accuracy on
task 7; after learning task 7}, and Acc;; =
1—W; ; is the accuracy on task 7; immediately
after it was learned. Higher BWT indicates
better retention and less forgetting.

S Experiments and Results

5.1 Observations

CTC Benchmarking As shown in Figure 1, the
average WER across tasks reveals a clear ranking
among methods. LWF achieves the best overall
performance, followed by EWC, then MAS, with
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Figure 1: CTC Benchmark — Box and BWT Plots.

naive fine-tuning performing the worst. This rank-
ing is particularly evident in short and medium task
horizons. For longer sequences, however, the per-
formance gap between methods narrows consider-
ably. Naive fine-tuning, in particular, produces the
highest WER maxima across tasks. When analyz-
ing backward transfer (BWT), MAS performs best
in short sequences, while LWF excels in medium-
length tasks. For longer sequences, both MAS
and LWF converge to similar average BWT values,
whereas EWC and naive fine-tuning fall behind.

RNN-T Benchmarking Figure 9 shows that
RNN-T (Xu et al., 2024) consistently outperforms
CTC in WER across all continual learning strate-
gies. Among these, EWC achieves the lowest
WER across task lengths, demonstrating strong
performance retention on the current task. How-
ever, this benefit comes at a cost: EWC exhibits
the worst BWT of all methods, even lower than that
of naive fine-tuning, indicating substantial forget-
ting. MAS shows some improvement in BWT for
medium-length sequences, but for longer horizons,
BWT scores deteriorate across all methods except
EWC, eventually becoming nearly indistinguish-
able.

General Comparison of CL Methods under
Noisy Settings In noisy conditions (Figure 2),
both LWF and MAS outperform EWC and the
naive baseline in BWT, suggesting better retention
of prior knowledge. Interestingly, noise appears to
improve backward transfer, likely due to regular-

ization effects. However, this improvement comes
with a trade-off: WER increases, and models per-
form better on clean audio in absolute terms. This
contrast indicates that noise can enhance stabil-
ity, by reducing forgetting, while simultaneously
impairing plasticity, by diminishing learning preci-
sion, which is reflected in the higher WER.

WER Performance Analysis Figures 3 and 4
present WER trends over increasing task lengths.
Evaluations are averaged over the last two and
current tasks, categorized as short (1-3), medium
(1-6), and long (1-9). In general, models perform
better with clean data. Among the methods, LWF
consistently maintains WER below 1.0, with high
stability indicated by narrow shaded variance re-
gions.

Interestingly, the upper bounds of noisy WER
for LWF are comparable to the maxima seen un-
der clean conditions. This can be attributed to its
distillation-based loss, which prevents overfitting
to noisy inputs by anchoring the model to previous
predictions. MAS follows a similar pattern, though
with slightly lower stability. EWC occasionally
achieves better minimum WERs, particularly for
short tasks, but continues to show poor BWT. The
naive method performs surprisingly well in short
sequences but fails to retain knowledge over longer
horizons. Overall, LWF demonstrates the effec-
tiveness of knowledge distillation in maintaining
a balance between acquiring new knowledge and
retaining previous learning. For longer sequences,




average WER tends to decline, possibly due to sim-
pler language characteristics in later tasks.

EWC Ablation Studies In Figure 5, we exam-
ine the impact of different regularization strengths
in EWC by testing Agwc € 5,10. While both
values yield similar outcomes, A\gwc = 10 leads
to slightly better WER in medium and long tasks,
though the benefit is minimal in short tasks. BWT
trends (Figure 8) for both values remain close to
those of the naive baseline, suggesting limited abil-
ity to retain performance on earlier tasks. Addition-
ally, results from epoch-wise ablation (Figure 11)
show that increasing training epochs reduces WER,
with the best results achieved at epoch 10. How-
ever, BWT steadily declines with more epochs (Fig-
ure 14), confirming the stability-plasticity trade-off:
improved learning on new tasks often leads to in-
creased forgetting of previous ones.

LwF Ablation Studies As shown in Figure 6,
adjusting the distillation weight (akp) significantly
impacts LWF’s performance. A higher value of
0.5 severely limits the model’s ability to learn new
tasks, resulting in WERs close to 1.0 across all
horizons thus worse than naive fine-tuning for short
sequences. In contrast, akp = 0.1 strikes a bet-
ter balance, achieving WER comparable to or bet-
ter than naive fine-tuning while maintaining much
stronger BWT. As shown in Figure 8, the 0.5 config-
uration yields the highest BWT, primarily because
the model barely updates and effectively freezes
previous knowledge. The 0.1 setting enables more
meaningful learning while controlling forgetting.

Epoch-wise trends (Figures 10 and 14) are con-
sistent with those observed in EWC. Increasing the
epochs improves WER but worsens BWT.

MAS Ablation Studies In Figure 7, we com-
pare MAS with regularization weights aix of 0.3
and 1.0. The stronger setting of 1.0 consistently
achieves better WER and shows more stable vari-
ance across tasks. Its shaded performance region
closely overlaps with that of naive fine-tuning,
though with lower dispersion. When examining
BWT (Figure 8), the 0.3 configuration performs
better, matching LWF in retaining knowledge.

As with the other methods, MAS exhibits the
stability-plasticity trade-off: increasing epochs
(Figure 12) lowers WER but leads to worsening
BWT (Figure 14). This consistent trend across
methods emphasizes the fundamental challenge in
continual learning of effectively balancing the ac-
quisition of new information with the retention of

existing knowledge.

6 Discussion

Our findings show that LwF and MAS generally
offer better BWT in noisy ASR, indicating superior
retention of prior languages. The inverse link be-
tween noise-driven BWT improvement and WER
degradation suggests noise acts as an implicit reg-
ularizer, improving retention at the cost of tran-
scription accuracy. LwF’s consistently low and
stable WER, especially in longer task sequences,
highlights its distillation-based regularization ef-
fectiveness in noisy settings by preventing over-
adaptation. In contrast, EWC, while competitive
in shorter tasks or with RNN-T, often showed poor
BWT, particularly with RNN-T, indicating weight
consolidation is less effective for complex recurrent
models or sequential multilingual learning.

Ablation studies confirmed the stability-
plasticity dilemma. Longer training improves
current task WER but worsens BWT. Stronger
regularization improves BWT but hinders new
learning, while weaker regularization enhances
plasticity but increases forgetting. Comparing
CTC and RNN-T, RNN-T achieved better WER
but worsened catastrophic forgetting, especially
for EWC. The decline of BWT in long RNN-T
sequences, except for EWC, highlights challenges
for current CL methods with advanced ASR
models over extended tasks. Notably, despite CL,
absolute WER during new task learning remains
suboptimal for practical use, underscoring the
difficulty in balancing plasticity and retention and
the early stage of CL in ASR.

7 Conclusion

This study shows that while LwWF and MAS can
improve BWT in noisy, multi-language ASR com-
pared to baselines and EWC, a fundamental trade-
off persists. Noise appears to aid BWT, possibly as
a regularizer, but consistently degrades WER. LwF
offered the most balanced performance with stable,
low WER and good BWT for longer sequences.
The stability-plasticity dilemma was pervasive: ef-
forts to improve new task learning typically in-
creased forgetting. RNN-T models, while deliv-
ering superior WER, amplified catastrophic for-
getting. Importantly, even with CL, overall WER
during new language learning often remains too
high for practical deployment. This signals that
current CL methods are not yet complete solutions
and that CL in ASR requires further investigation
for real-world viability.



8 Limitations

While our work offers valuable insights into con-
tinual learning (CL) for multilingual ASR under
noise, several limitations must be acknowledged.
First, the study does not systematically investigate
the impact of language ordering on performance.
Since language sequence can significantly influ-
ence both task difficulty and forgetting dynamics,
this is a key variable requiring further exploration.
Second, our findings are constrained to the spe-
cific datasets, noise profiles, and ASR architectures
(CTC and RNN-T) evaluated. As such, the extent
to which these results generalize to other languages,
domains, or ASR models (e.g., Transformer-based
architectures) remains uncertain.

9 Future Work

To advance CL for ASR towards practical applica-
tions, future work should explore:

* Federated learning frameworks (Bharati
et al., 2022) to address privacy and simulate
realistic distributed ASR deployment.

¢ Transitioning to online learning paradigms
where data arrives as a continuous stream, re-
flecting many real-world ASR use-cases and
posing new challenges for CL algorithm effi-
ciency (Harun et al., 2023) and adaptability.

* The resilience and adaptation of CL strategies
in adversarial settings (Ebrahimi et al., 2020)
to develop more secure and reliable systems.

* Developing novel CL techniques specifically
tailored to speech’s sequential nature and
modern ASR model intricacies (e.g., RNN-
T) to better overcome the stability-plasticity
dilemma and achieve deployment-ready per-
formance.
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A Appendix

A.1 Problem Formulation

We formulate the continual learning (CL) problem
in multilingual ASR as a sequential learning setup.
Let D = {D;, D,, ..., Dy} denote a sequence of
datasets, each corresponding to a task 7}, (i.e., lan-
guage k). Each dataset Dy, = {(z;,yx;)} con-
tains speech utterances xy; and transcriptions yy;.
The goal is to train an ASR model M (#) over tasks
T4, ..., T such that it learns the current task well
while preserving performance on previous tasks.

During training on task 7}, only data Dy is ac-
cessible. A naive fine-tuning approach minimizes
the loss for task T}, starting from the parameters
051 obtained from the previous task:

O = argmin Ly (6),

where Ly (0) is the task-specific loss composed
of a weighted sum of RNNT and CTC objec-
tives. However, such fine-tuning often causes catas-
trophic forgetting, where performance degrades sig-
nificantly on previously learned tasks.

To address this, we integrate three regularization-
based CL methods into our training pipeline:

* Elastic Weight Consolidation (EWC): Pre-
vents drift on important parameters by adding
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a quadratic penalty based on a Fisher Infor-
mation matrix estimated after each task. The
updated loss becomes:

Liota1 = Li(0) + Aswc Z Fj(ej - 9;)2’
J

where F) is the accumulated Fisher impor-
tance and 6* are parameters from the previous
task.

* Memory Aware Synapses (MAS): Estimates
importance via gradients of the squared norm
of model outputs (logits) and adds a similar
penalty:

il = Li(8) + Mvias Y 25(0; — 65)?,
J

where (); is the importance computed from
absolute gradients w.r.t. combined RNNT and
CTC output activations.

* Learning without Forgetting (LwF): Adds
a distillation loss to encourage the current
model to produce similar outputs as the frozen
model from the previous task:

Liotar = (1 — o) - Li(#) + a - Laistinn,

where Lgigin 1s a weighted combination of KL
divergence or MSE between the current and
previous model’s RNNT and CTC outputs on
current task data.

In our setup:

* Tasks 77 ... Ty correspond to the 9 Indian lan-
guages in IndicSUPERB.

e Only Dy, is available while training on task
Ty.

* The model M () is initialized from a Hindi-
pretrained indicconformer.

e The base loss L, is:
Ly(0) = (1 —wcrce) - Lrant +were - Lere-

This formulation allows us to balance plasticity
(learning new tasks) and stability (retaining perfor-
mance on past tasks) through principled integration
of CL techniques.

A.2 Dataset

We conduct our experiments using the
IndicSUPERB benchmark, which originally
encompasses 11 Indian languages. For this study,
we focus on nine languages: Hindi (hi), Bengali
(bn), Marathi (mr), Telugu (te), Tamil (ta), Urdu
(ur), Gujarati (gu), Kannada (kn), and Odia (or).
These languages cover both the Indo-Aryan and
Dravidian families, ensuring linguistic diversity.
To simulate a low-resource scenario, we utilize
a subset of 3,000 training utterances per language,
composed of 2,000 clean and 1,000 noisy samples.
The validation and test sets each consist of 400
utterances, evenly split between clean and noisy
conditions. This consistent setup allows us to rig-
orously evaluate model performance under con-
strained data conditions across multiple languages.

A.3 Model Architecture

Our automatic speech recognition system
(indicconformer) is built around a hybrid archi-
tecture that combines a Conformer-based encoder
with both Recurrent Neural Network Transducer
(RNNT) and Connectionist Temporal Classification
(CTtc) objectives using NeMo (Harper et al.). The
Conformer encoder effectively captures speech
features by integrating convolutional layers to
model local dependencies alongside self-attention
mechanisms for global context.

The RNNT component models output sequences
in an end-to-end fashion, composed of an encoder,
a prediction network that autoregressively gener-
ates hypotheses based on previous tokens, and a
joint network that fuses these signals. This struc-
ture inherently manages acoustic modeling and
alignment without requiring explicit segmentation.

In parallel, the CTC loss facilitates training with-
out frame-level alignment by introducing a blank
token and summing probabilities over all valid
alignments. Often used as an auxiliary objective,
CTC guides the encoder towards robust and stable
feature representations.

We train the model by jointly optimizing the
RNNT and CTC losses, combining them in a
weighted sum:

Lpase = (1 — were) - Lrant + were - Lete

where wcrc is the weight for the CTC loss.



A.4 Continual Learning Methods
Implementation

To mitigate forgetting in continual learning, we
augment the base loss with regularization losses
depending on the method used.

A.4.1 Learning without Forgetting (LwF)

LwF employs a knowledge distillation loss using
KL-divergence (Kullback and Leibler, 1951) that
encourages the current model to mimic the outputs
of the frozen previous model on the new data. Dis-
tillation is applied separately on the RNNT logits
and CTC output probabilities.

LRNNT

dist — DiStil]atiOHLOSS(ORNNT(G), ORNNT(H*));

delztc = DistillationLoss (OCTC ((9) , Octe (9* )) s

where Ornnt and Octe denote the outputs (log-
its or probabilities) of the current and frozen mod-
els respectively.

The total distillation loss is a weighted sum:

RNNT CTC
Ldist = (1 - actx) . Ldjst + Qerx - Ldist )

with acx € [0, 1] balancing between RNNT and
CTc distillation.
Finally, the full training loss is:

Liotal = (1 — akp) - Liase + kD - Ldist

where agxp € [0, 1] controls the strength of the
knowledge distillation regularization.

A.4.2 Memory Aware Synapses (MAS)

MAS estimates parameter importance by measur-
ing the sensitivity of the squared norm of the
model’s outputs to each parameter. This is done
separately for the CTC decoder and the RNNT joint
network logits.

First, compute the squared logit norms and aver-
age over the batch:

LCTC _logits — E H CTCH

where z(CbT)C are the flattened CTC decoder logits

for batch element b.
Similarly, compute the average squared norm
over the stored RNNT joint network logits:

1 N 1 B
LRrNNT 10gits = N Z B Z HZRNNT n

n=1 b=1

where zg’&NT », 1s the flattened joint logits tensor

stored at step n, and [V is the total number of stored
logits.

Combine these with a weighting factor ax €
[0, 1]:

Llogits = (1 - actx) : LRNNT_logits + O - LCTC_logits .

Perform backpropagation on Ljegjts to obtain gra-
dients ng Liogits- Then, update parameter impor-
tance values as the accumulated absolute gradients:

aLlogits
09,

Qj%ﬂj+‘

Finally, the MAS regularization penalty is com-
puted as:

Lyvas = Amas Z Q;(0; — 9;)2,
J
where ) is the MAS regularization strength, and
9}‘ are the parameters saved after the previous task.
The full training loss is:

Ltotal = Lbase + LMAS-

A.4.3 Elastic Weight Consolidation (EWC)

EWC mitigates catastrophic forgetting by penaliz-
ing changes to parameters deemed important for
previously learned tasks. Importance is quantified
using the diagonal of the Fisher Information Ma-
trix.

After task 7;, the diagonal Fisher is estimated

as:
AL (6)\>
00; ’
where F; ; denotes the importance of parameter
6; and is computed by averaging squared gradients
over the dataset D;.
To accumulate importance across tasks, we up-

date the consolidated Fisher with a decay factor
7y

F;j =E;<p,

Fconsol,i =7 Fconsol,i—l + F;.

This allows older tasks’ importance to gradually
decay while emphasizing more recent tasks.

During training on a new task, the EWC penalty
is added to the base loss:



Lewc = Aewc Z Feonsol,j (6 — 9;)27
J
where 07 are the parameter values saved after
the previous task, and A controls the regularization
strength.
The full training loss becomes:

Liotat = Lpase + Lewc.
In practice, the penalty gradient with respect to

each parameter 6; is computed as:

JdLgwc
00;
which directly enters the optimization step dur-
ing gradient update.

=2\ Fconsol,j(ej - 0;“)’

A.4.4 Summary of Hyperparameters
* werc: Weight of CTC loss in the base loss.

* akgp: Weight of the knowledge distillation
loss in LwF.

* a.: Balancing weight between RNNT and
CTC components in distillation and MAS.

* A\: Regularization strength for MAS and
EWC.

A.5 Experimental Setup

All experiments are conducted on an NVIDIA
V100 GPU using the XXX supercomputer
SLURM cluster. ~ Each run took about 13
hours to 3 days depending on the ablation
hyper parameters. We initialize our models
with the indicconformer pretrained on Hindi

duration impacts model performance and forgetting.
Optimization is done using Adam (Kingma, 2014)
with a learning rate of 1 x 1074,

We apply the following continual learning pa-
rameters:

* Elastic Weight Consolidation (EWC) with
AMAS € {10, 5} andy =1.0

* Memory Aware Synapses (MAS) with
AMas = 1 and agx € {0.3, 1.0}

* Learning without Forgetting (LwF) with
akp € {0.1,0.5} and agx = 0.3

The base model is trained using a weighted com-
bination of RNNT and CTC losses with weights:

wrNNT = 0.7, were = 0.3

As a baseline, naive fine-tuning (training on each
new task without any continual learning strategy)
is also evaluated.

After training on each task 7}, we evaluate the
model on the test sets of all tasks from 7} through
Ty.. This allows us to compute Word Error Rate
(WER) and continual learning metrics such as av-
erage accuracy, forgetting, and retention. Hyperpa-
rameters and optimization settings are kept consis-
tent across all methods and tasks to ensure fair and
reproducible comparisons.

(aidbharat/indicconformer_stt_hi_hybrid_rnnt_large

) using NeMo (Harper et al.), providing a strong
starting point for multilingual speech recognition.
The model used in our experiments consists of
approximately 130 million parameters. The dataset
consists of the IndicSUPERB benchmark split
across nine Indian languages.

Our continual learning experiments follow a
fixed sequence of tasks: Hindi — Bengali —
Marathi — Telugu — Tamil — Urdu — Gujarati
— Kannada — Odia. For each new task, the model
is initialized from the previously trained model and
trained exclusively on the current language’s data
(3,000 samples: 2,000 clean and 1,000 noisy).

Training is performed for varying numbers of
epochs (1, 2, 5, and 10) to evaluate how training
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Figure 2: All comparison noisy BWT plot
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WER Box Plot (Normal vs Noisy)
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Figure 3: All comparison noisy WER box plot
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Figure 6: LWF Ablation — Box and Shaded Plots
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Figure 11: EWC Epoch — Box and Shaded Plots
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