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Abstract001

India’s linguistic diversity challenges inclusive002
Automatic Speech Recognition (ASR) system003
development. Traditional multilingual models,004
requiring simultaneous access to all language005
data, are impractical due to sequential data006
arrival and privacy constraints. Continual007
Learning (CL) enables models to learn new008
languages sequentially without catastrophically009
forgetting prior knowledge. This paper investi-010
gates CL for ASR on Indian languages using011
the subset of the IndicSUPERB benchmark. We012
employ a Conformer-based hybrid RNNT-CTC013
model, initially pretrained on Hindi, which is014
subsequently trained incrementally on eight015
additional Indian languages, for a sequence016
of nine languages in total. We evaluate three017
prominent regularization and distillation-based018
CL strategies: Elastic Weight Consolidation019
(EWC), Memory Aware Synapses (MAS),020
and Learning without Forgetting (LWF),021
chosen for their suitability in no-replay,022
privacy-conscious scenarios. Performance is023
analyzed using Word Error Rate (WER) for024
both RNNT and CTC paths on clean/noisy025
data, and knowledge retention via Backward026
Transfer. We explore varying training epochs027
(1, 2, 5 and 10) per task. Results, compared028
against naive fine-tuning, demonstrate CL’s029
efficacy in mitigating forgetting for scalable030
ASR in diverse Indian languages under031
realistic constraints. The code is available at032
https://anonymous.4open.science/r/Indic-CL-033
ASR-9FF7034

1 Introduction035

India’s extensive linguistic diversity poses signifi-036

cant hurdles for developing comprehensive Auto-037

matic Speech Recognition (ASR) systems (Zhong038

et al., 2024). Traditional multilingual models, typ-039

ically trained on aggregated datasets (Bai et al.,040

2021), are ill-suited for real-world scenarios char-041

acterized by incremental data availability for low-042

resource languages, high computational costs of043

retraining, and data privacy concerns (Della Libera 044

et al., 2024). Continual Learning (CL), or life- 045

long learning (Ring, 1997; De Lange et al., 2021), 046

offers a paradigm to address these issues by en- 047

abling models to learn new tasks (languages) se- 048

quentially while preserving previously acquired 049

knowledge. The primary challenge in CL is catas- 050

trophic forgetting: the tendency of models to lose 051

performance on past tasks when trained on new 052

ones (McCloskey and Cohen, 1989). Mitigating 053

this is crucial for successful CL application (Kirk- 054

patrick et al., 2017; Goodfellow et al., 2015). This 055

work applies CL to multilingual ASR for Indian 056

languages using the subset of the IndicSUPERB 057

benchmark (Jain et al., 2024). We start with 058

the indicconformer model (a Conformer-based 059

(Gulati et al., 2020) hybrid RNNT-CTC (Burchi 060

et al., 2024; Graves, 2012; Graves et al., 2006) 061

system pretrained on Hindi using NeMo (Harper 062

et al.)) and incrementally train it on nine addi- 063

tional Indian languages: Bengali, Marathi, Telugu, 064

Tamil, Urdu, Gujarati, Kannada, and Odia. We 065

investigate three established CL strategies: Elastic 066

Weight Consolidation (EWC) (Aich, 2021), Mem- 067

ory Aware Synapses (MAS) (Aljundi et al., 2018), 068

and Learning without Forgetting (LWF) (Li and 069

Hoiem, 2017). These regularization and distilla- 070

tion methods are chosen because architecture-based 071

approaches can inflate model size, and memory- 072

based methods often violate realistic no-replay and 073

privacy constraints (Rebuffi et al., 2017; Lopez- 074

Paz and Ranzato, 2022). Our experiments evaluate 075

WER on clean and noisy data for both RNNT and 076

CTC paths, and Backward Transfer to quantify for- 077

getting, also varying training epochs per language. 078

In summary, our contributions include: (1) the first 079

comprehensive study of CL for ASR across diverse 080

Indian languages (2) systematic evaluation of EWC, 081

MAS, and LWF under realistic constraints, and (3) 082

detailed analysis of WER and knowledge retention 083

across training regimes to guide practical deploy- 084
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ment.085

2 Related Work086

Continual Learning (CL) aims to enable AI systems087

to learn incrementally from a sequence of tasks088

without catastrophically forgetting prior knowl-089

edge. Key approaches include (Wang et al., 2024)090

regularization-based methods (e.g., EWC, which091

penalizes changes to parameters important for past092

tasks based on the Fisher Information Matrix; MAS,093

which uses the gradient of the squared L2 norm094

(Hoerl and Kennard, 1970) of the model’s output;095

SI (Zenke et al., 2017)), rehearsal-based methods096

(replaying past data) (Chaudhry et al., 2019), and097

architecture-based methods (dynamically modify-098

ing model structure). Applying CL to Automatic099

Speech Recognition (ASR) is challenging due to100

sequence variability, acoustic diversity, and lin-101

guistic complexity, especially when sequentially102

learning new languages in low-resource settings,103

common for many Indian languages. Hybrid CTC-104

RNNT models (Hori et al., 2017), prevalent in105

modern ASR, offer multiple avenues for CL in-106

tegration. Our work explores EWC, MAS, and107

(LWF), which employs knowledge distillation to108

preserve the previous model’s outputs on new data109

without storing old data. We utilize the subset of110

the IndicSUPERB benchmark (Jain et al., 2024),111

which provides standardized speech datasets for112

multiple Indian languages (including clean/noisy113

splits), and the indicconformer, a state-of-the-114

art Conformer-based hybrid RNNT-CTCmodel pre-115

trained on Hindi, as our base model and evaluation116

framework.117

3 Benchmark Design118

Our benchmark simulates realistic constraints for119

continual learning in multilingual ASR using the120

subset IndicSUPERB dataset. Each Indian lan-121

guage is treated as a separate task, forming a se-122

quence of nine tasks beginning with Hindi (T1),123

followed by Bengali, Marathi, Telugu, Tamil, Urdu,124

Gujarati, Kannada, and Odia (T2 to T9). All tasks125

are presented in a low-resource setting, with only126

3000 training utterances per language (2000 clean127

and 1000 noisy). The model is trained sequentially128

using only the current task’s data Dk, enforcing129

a strict no-data-replay constraint. Training, vali-130

dation, and test sets contain both clean and noisy131

samples, with test sets comprising 200 clean and132

200 noisy utterances per language. Word Error133

Rate (WER) is evaluated separately on clean and134

noisy test splits using both RNNT and CTC decod- 135

ing paths. To explore the trade-off between adap- 136

tation speed, accuracy on new tasks, and knowl- 137

edge retention, we experiment with 1, 2, 5, and 10 138

training epochs per task. We benchmark perfor- 139

mance against a naive sequential fine-tuning base- 140

line. Further details on task formulation, model 141

architecture, dataset construction and experimen- 142

tation setup are provided in Appendix A.1, Ap- 143

pendix A.3, Appendix A.2 and Appendix A.5. 144

4 Evaluation Metrics 145

• Word Error Rate (WER): A commonly used 146

metric in automatic speech recognition (Gold- 147

water et al., 2010) and is expressed as a dec- 148

imal fraction ranging from 0 to 1. WER is 149

evaluated on all previously learned tasks af- 150

ter each new task is completed. Lower WER 151

indicates better performance. 152

• Average Performance: After training on task 153

Tk, the average WER across all tasks T1 to Tk 154

is given by: 155

AvgWERk =
1

k

k∑
i=1

Wk,i 156

where Wk,i denotes the WER on task Ti after 157

learning task Tk. Lower AvgWER indicates 158

better overall retention and adaptation. 159

• Backward Transfer (BWT): Quantifies the 160

influence of learning new tasks on the perfor- 161

mance of previously learned ones. After task 162

Tk, BWT is defined as: 163

BWTk =
1

k − 1

k−1∑
i=1

(Acck,i − Acci,i) 164

where Acck,i = 1 −Wk,i is the accuracy on 165

task Ti after learning task Tk, and Acci,i = 166

1−Wi,i is the accuracy on task Ti immediately 167

after it was learned. Higher BWT indicates 168

better retention and less forgetting. 169

5 Experiments and Results 170

5.1 Observations 171

CTC Benchmarking As shown in Figure 1, the 172

average WER across tasks reveals a clear ranking 173

among methods. LWF achieves the best overall 174

performance, followed by EWC, then MAS, with 175
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Figure 1: CTC Benchmark – Box and BWT Plots.

naive fine-tuning performing the worst. This rank-176

ing is particularly evident in short and medium task177

horizons. For longer sequences, however, the per-178

formance gap between methods narrows consider-179

ably. Naive fine-tuning, in particular, produces the180

highest WER maxima across tasks. When analyz-181

ing backward transfer (BWT), MAS performs best182

in short sequences, while LWF excels in medium-183

length tasks. For longer sequences, both MAS184

and LWF converge to similar average BWT values,185

whereas EWC and naive fine-tuning fall behind.186

RNN-T Benchmarking Figure 9 shows that187

RNN-T (Xu et al., 2024) consistently outperforms188

CTC in WER across all continual learning strate-189

gies. Among these, EWC achieves the lowest190

WER across task lengths, demonstrating strong191

performance retention on the current task. How-192

ever, this benefit comes at a cost: EWC exhibits193

the worst BWT of all methods, even lower than that194

of naive fine-tuning, indicating substantial forget-195

ting. MAS shows some improvement in BWT for196

medium-length sequences, but for longer horizons,197

BWT scores deteriorate across all methods except198

EWC, eventually becoming nearly indistinguish-199

able.200

General Comparison of CL Methods under201

Noisy Settings In noisy conditions (Figure 2),202

both LWF and MAS outperform EWC and the203

naive baseline in BWT, suggesting better retention204

of prior knowledge. Interestingly, noise appears to205

improve backward transfer, likely due to regular-206

ization effects. However, this improvement comes 207

with a trade-off: WER increases, and models per- 208

form better on clean audio in absolute terms. This 209

contrast indicates that noise can enhance stabil- 210

ity, by reducing forgetting, while simultaneously 211

impairing plasticity, by diminishing learning preci- 212

sion, which is reflected in the higher WER. 213

WER Performance Analysis Figures 3 and 4 214

present WER trends over increasing task lengths. 215

Evaluations are averaged over the last two and 216

current tasks, categorized as short (1–3), medium 217

(1–6), and long (1–9). In general, models perform 218

better with clean data. Among the methods, LWF 219

consistently maintains WER below 1.0, with high 220

stability indicated by narrow shaded variance re- 221

gions. 222

Interestingly, the upper bounds of noisy WER 223

for LWF are comparable to the maxima seen un- 224

der clean conditions. This can be attributed to its 225

distillation-based loss, which prevents overfitting 226

to noisy inputs by anchoring the model to previous 227

predictions. MAS follows a similar pattern, though 228

with slightly lower stability. EWC occasionally 229

achieves better minimum WERs, particularly for 230

short tasks, but continues to show poor BWT. The 231

naive method performs surprisingly well in short 232

sequences but fails to retain knowledge over longer 233

horizons. Overall, LWF demonstrates the effec- 234

tiveness of knowledge distillation in maintaining 235

a balance between acquiring new knowledge and 236

retaining previous learning. For longer sequences, 237
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average WER tends to decline, possibly due to sim-238

pler language characteristics in later tasks.239

EWC Ablation Studies In Figure 5, we exam-240

ine the impact of different regularization strengths241

in EWC by testing λEWC ∈ 5, 10. While both242

values yield similar outcomes, λEWC = 10 leads243

to slightly better WER in medium and long tasks,244

though the benefit is minimal in short tasks. BWT245

trends (Figure 8) for both values remain close to246

those of the naive baseline, suggesting limited abil-247

ity to retain performance on earlier tasks. Addition-248

ally, results from epoch-wise ablation (Figure 11)249

show that increasing training epochs reduces WER,250

with the best results achieved at epoch 10. How-251

ever, BWT steadily declines with more epochs (Fig-252

ure 14), confirming the stability-plasticity trade-off:253

improved learning on new tasks often leads to in-254

creased forgetting of previous ones.255

LwF Ablation Studies As shown in Figure 6,256

adjusting the distillation weight (αKD) significantly257

impacts LWF’s performance. A higher value of258

0.5 severely limits the model’s ability to learn new259

tasks, resulting in WERs close to 1.0 across all260

horizons thus worse than naive fine-tuning for short261

sequences. In contrast, αKD = 0.1 strikes a bet-262

ter balance, achieving WER comparable to or bet-263

ter than naive fine-tuning while maintaining much264

stronger BWT. As shown in Figure 8, the 0.5 config-265

uration yields the highest BWT, primarily because266

the model barely updates and effectively freezes267

previous knowledge. The 0.1 setting enables more268

meaningful learning while controlling forgetting.269

Epoch-wise trends (Figures 10 and 14) are con-270

sistent with those observed in EWC. Increasing the271

epochs improves WER but worsens BWT.272

MAS Ablation Studies In Figure 7, we com-273

pare MAS with regularization weights αctx of 0.3274

and 1.0. The stronger setting of 1.0 consistently275

achieves better WER and shows more stable vari-276

ance across tasks. Its shaded performance region277

closely overlaps with that of naive fine-tuning,278

though with lower dispersion. When examining279

BWT (Figure 8), the 0.3 configuration performs280

better, matching LWF in retaining knowledge.281

As with the other methods, MAS exhibits the282

stability-plasticity trade-off: increasing epochs283

(Figure 12) lowers WER but leads to worsening284

BWT (Figure 14). This consistent trend across285

methods emphasizes the fundamental challenge in286

continual learning of effectively balancing the ac-287

quisition of new information with the retention of288

existing knowledge. 289

6 Discussion 290

Our findings show that LwF and MAS generally 291

offer better BWT in noisy ASR, indicating superior 292

retention of prior languages. The inverse link be- 293

tween noise-driven BWT improvement and WER 294

degradation suggests noise acts as an implicit reg- 295

ularizer, improving retention at the cost of tran- 296

scription accuracy. LwF’s consistently low and 297

stable WER, especially in longer task sequences, 298

highlights its distillation-based regularization ef- 299

fectiveness in noisy settings by preventing over- 300

adaptation. In contrast, EWC, while competitive 301

in shorter tasks or with RNN-T, often showed poor 302

BWT, particularly with RNN-T, indicating weight 303

consolidation is less effective for complex recurrent 304

models or sequential multilingual learning. 305

Ablation studies confirmed the stability- 306

plasticity dilemma. Longer training improves 307

current task WER but worsens BWT. Stronger 308

regularization improves BWT but hinders new 309

learning, while weaker regularization enhances 310

plasticity but increases forgetting. Comparing 311

CTC and RNN-T, RNN-T achieved better WER 312

but worsened catastrophic forgetting, especially 313

for EWC. The decline of BWT in long RNN-T 314

sequences, except for EWC, highlights challenges 315

for current CL methods with advanced ASR 316

models over extended tasks. Notably, despite CL, 317

absolute WER during new task learning remains 318

suboptimal for practical use, underscoring the 319

difficulty in balancing plasticity and retention and 320

the early stage of CL in ASR. 321

7 Conclusion 322

This study shows that while LwF and MAS can 323

improve BWT in noisy, multi-language ASR com- 324

pared to baselines and EWC, a fundamental trade- 325

off persists. Noise appears to aid BWT, possibly as 326

a regularizer, but consistently degrades WER. LwF 327

offered the most balanced performance with stable, 328

low WER and good BWT for longer sequences. 329

The stability-plasticity dilemma was pervasive: ef- 330

forts to improve new task learning typically in- 331

creased forgetting. RNN-T models, while deliv- 332

ering superior WER, amplified catastrophic for- 333

getting. Importantly, even with CL, overall WER 334

during new language learning often remains too 335

high for practical deployment. This signals that 336

current CL methods are not yet complete solutions 337

and that CL in ASR requires further investigation 338

for real-world viability. 339
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8 Limitations340

While our work offers valuable insights into con-341

tinual learning (CL) for multilingual ASR under342

noise, several limitations must be acknowledged.343

First, the study does not systematically investigate344

the impact of language ordering on performance.345

Since language sequence can significantly influ-346

ence both task difficulty and forgetting dynamics,347

this is a key variable requiring further exploration.348

Second, our findings are constrained to the spe-349

cific datasets, noise profiles, and ASR architectures350

(CTC and RNN-T) evaluated. As such, the extent351

to which these results generalize to other languages,352

domains, or ASR models (e.g., Transformer-based353

architectures) remains uncertain.354

9 Future Work355

To advance CL for ASR towards practical applica-356

tions, future work should explore:357

• Federated learning frameworks (Bharati358

et al., 2022) to address privacy and simulate359

realistic distributed ASR deployment.360

• Transitioning to online learning paradigms361

where data arrives as a continuous stream, re-362

flecting many real-world ASR use-cases and363

posing new challenges for CL algorithm effi-364

ciency (Harun et al., 2023) and adaptability.365

• The resilience and adaptation of CL strategies366

in adversarial settings (Ebrahimi et al., 2020)367

to develop more secure and reliable systems.368

• Developing novel CL techniques specifically369

tailored to speech’s sequential nature and370

modern ASR model intricacies (e.g., RNN-371

T) to better overcome the stability-plasticity372

dilemma and achieve deployment-ready per-373

formance.374
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A Appendix 514

A.1 Problem Formulation 515

We formulate the continual learning (CL) problem 516

in multilingual ASR as a sequential learning setup. 517

Let D = {D1, D2, ..., DN} denote a sequence of 518

datasets, each corresponding to a task Tk (i.e., lan- 519

guage k). Each dataset Dk = {(xkj , ykj)} con- 520

tains speech utterances xkj and transcriptions ykj . 521

The goal is to train an ASR model M(θ) over tasks 522

T1, ..., TN such that it learns the current task well 523

while preserving performance on previous tasks. 524

During training on task Tk, only data Dk is ac- 525

cessible. A naive fine-tuning approach minimizes 526

the loss for task Tk starting from the parameters 527

θk−1 obtained from the previous task: 528

θk = argmin
θ

Lk(θ), 529

where Lk(θ) is the task-specific loss composed 530

of a weighted sum of RNNT and CTC objec- 531

tives. However, such fine-tuning often causes catas- 532

trophic forgetting, where performance degrades sig- 533

nificantly on previously learned tasks. 534

To address this, we integrate three regularization- 535

based CL methods into our training pipeline: 536

• Elastic Weight Consolidation (EWC): Pre- 537

vents drift on important parameters by adding 538
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a quadratic penalty based on a Fisher Infor-539

mation matrix estimated after each task. The540

updated loss becomes:541

Ltotal = Lk(θ) + λEWC

∑
j

Fj(θj − θ∗j )
2,542

where Fj is the accumulated Fisher impor-543

tance and θ∗ are parameters from the previous544

task.545

• Memory Aware Synapses (MAS): Estimates546

importance via gradients of the squared norm547

of model outputs (logits) and adds a similar548

penalty:549

Ltotal = Lk(θ) + λMAS

∑
j

Ωj(θj − θ∗j )
2,550

where Ωj is the importance computed from551

absolute gradients w.r.t. combined RNNT and552

CTC output activations.553

• Learning without Forgetting (LwF): Adds554

a distillation loss to encourage the current555

model to produce similar outputs as the frozen556

model from the previous task:557

Ltotal = (1− α) · Lk(θ) + α · Ldistill,558

where Ldistill is a weighted combination of KL559

divergence or MSE between the current and560

previous model’s RNNT and CTC outputs on561

current task data.562

In our setup:563

• Tasks T1 . . . T9 correspond to the 9 Indian lan-564

guages in IndicSUPERB.565

• Only Dk is available while training on task566

Tk.567

• The model M(θ0) is initialized from a Hindi-568

pretrained indicconformer.569

• The base loss Lk is:570

Lk(θ) = (1−wCTC) ·LRNNT +wCTC ·LCTC.571

This formulation allows us to balance plasticity572

(learning new tasks) and stability (retaining perfor-573

mance on past tasks) through principled integration574

of CL techniques.575

A.2 Dataset 576

We conduct our experiments using the 577

IndicSUPERB benchmark, which originally 578

encompasses 11 Indian languages. For this study, 579

we focus on nine languages: Hindi (hi), Bengali 580

(bn), Marathi (mr), Telugu (te), Tamil (ta), Urdu 581

(ur), Gujarati (gu), Kannada (kn), and Odia (or). 582

These languages cover both the Indo-Aryan and 583

Dravidian families, ensuring linguistic diversity. 584

To simulate a low-resource scenario, we utilize 585

a subset of 3,000 training utterances per language, 586

composed of 2,000 clean and 1,000 noisy samples. 587

The validation and test sets each consist of 400 588

utterances, evenly split between clean and noisy 589

conditions. This consistent setup allows us to rig- 590

orously evaluate model performance under con- 591

strained data conditions across multiple languages. 592

A.3 Model Architecture 593

Our automatic speech recognition system 594

(indicconformer) is built around a hybrid archi- 595

tecture that combines a Conformer-based encoder 596

with both Recurrent Neural Network Transducer 597

(RNNT) and Connectionist Temporal Classification 598

(CTC) objectives using NeMo (Harper et al.). The 599

Conformer encoder effectively captures speech 600

features by integrating convolutional layers to 601

model local dependencies alongside self-attention 602

mechanisms for global context. 603

The RNNT component models output sequences 604

in an end-to-end fashion, composed of an encoder, 605

a prediction network that autoregressively gener- 606

ates hypotheses based on previous tokens, and a 607

joint network that fuses these signals. This struc- 608

ture inherently manages acoustic modeling and 609

alignment without requiring explicit segmentation. 610

In parallel, the CTC loss facilitates training with- 611

out frame-level alignment by introducing a blank 612

token and summing probabilities over all valid 613

alignments. Often used as an auxiliary objective, 614

CTC guides the encoder towards robust and stable 615

feature representations. 616

We train the model by jointly optimizing the 617

RNNT and CTC losses, combining them in a 618

weighted sum: 619

Lbase = (1− wCTC) · LRNNT + wCTC · LCTC 620

where wCTC is the weight for the CTC loss. 621
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A.4 Continual Learning Methods622

Implementation623

To mitigate forgetting in continual learning, we624

augment the base loss with regularization losses625

depending on the method used.626

A.4.1 Learning without Forgetting (LwF)627

LwF employs a knowledge distillation loss using628

KL-divergence (Kullback and Leibler, 1951) that629

encourages the current model to mimic the outputs630

of the frozen previous model on the new data. Dis-631

tillation is applied separately on the RNNT logits632

and CTC output probabilities.633

LRNNT
dist = DistillationLoss

(
ORNNT(θ), ORNNT(θ

∗)
)
,634

LCTC
dist = DistillationLoss

(
OCTC(θ), OCTC(θ

∗)
)
,635

where ORNNT and OCTC denote the outputs (log-636

its or probabilities) of the current and frozen mod-637

els respectively.638

The total distillation loss is a weighted sum:639

Ldist = (1− αctx) · LRNNT
dist + αctx · LCTC

dist ,640

with αctx ∈ [0, 1] balancing between RNNT and641

CTC distillation.642

Finally, the full training loss is:643

Ltotal = (1− αKD) · Lbase + αKD · Ldist,644

where αKD ∈ [0, 1] controls the strength of the645

knowledge distillation regularization.646

A.4.2 Memory Aware Synapses (MAS)647

MAS estimates parameter importance by measur-648

ing the sensitivity of the squared norm of the649

model’s outputs to each parameter. This is done650

separately for the CTC decoder and the RNNT joint651

network logits.652

First, compute the squared logit norms and aver-653

age over the batch:654

LCTC_logits =
1

B

B∑
b=1

∥∥∥z(b)CTC

∥∥∥2
2

655

where z
(b)
CTC are the flattened CTC decoder logits656

for batch element b.657

Similarly, compute the average squared norm658

over the stored RNNT joint network logits:659

LRNNT_logits =
1

N

N∑
n=1

1

B

B∑
b=1

∥∥∥z(b)RNNT,n

∥∥∥2
2
,660

where z
(b)
RNNT,n is the flattened joint logits tensor 661

stored at step n, and N is the total number of stored 662

logits. 663

Combine these with a weighting factor αctx ∈ 664

[0, 1]: 665

Llogits = (1−αctx)·LRNNT_logits+αctx ·LCTC_logits. 666

Perform backpropagation on Llogits to obtain gra- 667

dients ∇θjLlogits. Then, update parameter impor- 668

tance values as the accumulated absolute gradients: 669

Ωj ← Ωj +

∣∣∣∣∂Llogits

∂θj

∣∣∣∣ . 670

Finally, the MAS regularization penalty is com- 671

puted as: 672

LMAS = λMAS

∑
j

Ωj(θj − θ∗j )
2, 673

where λ is the MAS regularization strength, and 674

θ∗j are the parameters saved after the previous task. 675

The full training loss is: 676

Ltotal = Lbase + LMAS. 677

A.4.3 Elastic Weight Consolidation (EWC) 678

EWC mitigates catastrophic forgetting by penaliz- 679

ing changes to parameters deemed important for 680

previously learned tasks. Importance is quantified 681

using the diagonal of the Fisher Information Ma- 682

trix. 683

After task Ti, the diagonal Fisher is estimated 684

as: 685

Fi,j = Ex∼Di

[(
∂Li(θ)

∂θj

)2
]
, 686

where Fi,j denotes the importance of parameter 687

θj and is computed by averaging squared gradients 688

over the dataset Di. 689

To accumulate importance across tasks, we up- 690

date the consolidated Fisher with a decay factor 691

γ: 692

Fconsol,i = γ · Fconsol,i−1 + Fi. 693

This allows older tasks’ importance to gradually 694

decay while emphasizing more recent tasks. 695

During training on a new task, the EWC penalty 696

is added to the base loss: 697
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LEWC = λEWC

∑
j

Fconsol,j(θj − θ∗j )
2,698

where θ∗j are the parameter values saved after699

the previous task, and λ controls the regularization700

strength.701

The full training loss becomes:702

Ltotal = Lbase + LEWC.703

In practice, the penalty gradient with respect to704

each parameter θj is computed as:705

∂LEWC

∂θj
= 2λ · Fconsol,j(θj − θ∗j ),706

which directly enters the optimization step dur-707

ing gradient update.708

A.4.4 Summary of Hyperparameters709

• wCTC: Weight of CTC loss in the base loss.710

• αKD: Weight of the knowledge distillation711

loss in LwF.712

• αctx: Balancing weight between RNNT and713

CTC components in distillation and MAS.714

• λ: Regularization strength for MAS and715

EWC.716

A.5 Experimental Setup717

All experiments are conducted on an NVIDIA718

V100 GPU using the XXX supercomputer719

SLURM cluster. Each run took about 13720

hours to 3 days depending on the ablation721

hyper parameters. We initialize our models722

with the indicconformer pretrained on Hindi723

(ai4bharat/indicconformer_stt_hi_hybrid_rnnt_large724

) using NeMo (Harper et al.), providing a strong725

starting point for multilingual speech recognition.726

The model used in our experiments consists of727

approximately 130 million parameters. The dataset728

consists of the IndicSUPERB benchmark split729

across nine Indian languages.730

Our continual learning experiments follow a731

fixed sequence of tasks: Hindi → Bengali →732

Marathi→ Telugu→ Tamil→ Urdu→ Gujarati733

→ Kannada→ Odia. For each new task, the model734

is initialized from the previously trained model and735

trained exclusively on the current language’s data736

(3,000 samples: 2,000 clean and 1,000 noisy).737

Training is performed for varying numbers of738

epochs (1, 2, 5, and 10) to evaluate how training739

duration impacts model performance and forgetting. 740

Optimization is done using Adam (Kingma, 2014) 741

with a learning rate of 1× 10−4. 742

We apply the following continual learning pa- 743

rameters: 744

• Elastic Weight Consolidation (EWC) with 745

λMAS ∈ {10, 5} and γ = 1.0 746

• Memory Aware Synapses (MAS) with 747

λMAS = 1 and αctx ∈ {0.3, 1.0} 748

• Learning without Forgetting (LwF) with 749

αKD ∈ {0.1, 0.5} and αctx = 0.3 750

The base model is trained using a weighted com- 751

bination of RNNT and CTC losses with weights: 752

wRNNT = 0.7, wCTC = 0.3 753

As a baseline, naive fine-tuning (training on each 754

new task without any continual learning strategy) 755

is also evaluated. 756

After training on each task Tk, we evaluate the 757

model on the test sets of all tasks from T1 through 758

Tk. This allows us to compute Word Error Rate 759

(WER) and continual learning metrics such as av- 760

erage accuracy, forgetting, and retention. Hyperpa- 761

rameters and optimization settings are kept consis- 762

tent across all methods and tasks to ensure fair and 763

reproducible comparisons. 764
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Figure 2: All comparison noisy BWT plot
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Figure 5: EWC Ablation – Box and Shaded Plots
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Figure 6: LWF Ablation – Box and Shaded Plots
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Figure 7: MAS Ablation – Box and Shaded Plots
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Figure 8: BWT Plots from EWC, LWF, and MAS Ablations
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Figure 9: RNN-T Benchmark – Box and BWT Plots
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Figure 10: LWF Epoch – Box and Shaded Plots
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Figure 11: EWC Epoch – Box and Shaded Plots
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Figure 12: MAS Epoch – Box and Shaded Plots
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Figure 13: Naive Epoch – Box and Shaded Plots
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Figure 14: BWT Plots for Epoch-Wise Learning – LWF, EWC, MAS, and Naive
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