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ABSTRACT

Underlying data structures, such as symmetries or invariances to transformations,
are often exploited to improve the solution of learning tasks. However, embedding
these properties in models or learning algorithms can be challenging and computa-
tionally intensive. Data augmentation, on the other hand, induces these symmetries
during training by applying multiple transformations to the input data. Despite
its ubiquity, its effectiveness depends on the choices of which transformations to
apply, when to do so, and how often. In fact, there is both empirical and theoretical
evidence that the indiscriminate use of data augmentation can introduce biases that
outweigh its benefits. This work tackles these issues by automatically adapting
the data augmentation while solving the learning task. To do so, it formulates
data augmentation as an invariance-constrained learning problem and leverages
Monte Carlo Markov Chain (MCMC) sampling to solve it. The result is a practical
algorithm that not only does away with a priori searches for augmentation distri-
butions, but also dynamically controls if and when data augmentation is applied.
Our experiments illustrate the performance of this method, which achieves state-
of-the-art results in automatic data augmentation benchmarks for CIFAR datasets.
Furthermore, this approach can be used to gather insights on the actual symmetries
underlying a learning task.

1 INTRODUCTION

Exploiting the underlying structure of data has always been a key principle in data analysis. Its use has
been fundamental to the success of machine learning solutions, from the translational equivariance of
convolutional neural networks (Fukushima and Miyake, 1982) to the invariant attention mechanism
in Alphafold (Jumper et al., 2021). However, embedding invariances and symmetries in model
architectures is hard in general and when possible, often incurs a high computational cost. This is the
case, of rotation invariant neural network architectures that rely on group convolutions, which are
feasible only for small, discrete transformation spaces or require coarse undersampling due to their
high computational complexity (Cohen and Welling, 2016; Finzi et al., 2020).

A widely used alternative consists of modifying the data rather than the model. That is, to augment
the dataset by applying transformations to samples in order to induce the desired symmetries or
invariances during training. Data augmentation, as it is commonly known, is used to train virtually
all state-of-the-art models in a variety of domains (Shorten and Khoshgoftaar, 2019). This empirical
success is supported by theoretical results showing that, when the underlying data distribution
is invariant to the applied transformations, data augmentation provides a better estimation of the
statistical risk (Chen et al., 2019; Sannai et al., 2019; Lyle et al., 2020; Shao et al., 2022). On
the other hand, applying the wrong transformations can introduce biases that may outweigh these
benefits (Chen et al., 2019; Shao et al., 2022).

Choosing which transformations to apply, when to do so, and how often, is thus paramount to
achieving good results. However, it requires knowledge about the underlying distribution of the data
that is typically unavailable. Several approaches to learning an augmentation policy or distribution
over a fixed set of transformations exist, such as reinforcement learning (Cubuk et al., 2018), genetic
algorithms (Ho et al., 2019), density matching (Lim et al., 2019; Cubuk et al., 2020; Hataya et al.,
2020), gradient matching (Zheng et al., 2022), bi-level optimization (Li et al., 2020b; Liu et al.,
2021), jointly optimizing over transformations using regularised objectives (Benton et al., 2020),
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variational bayesian inference (Chatzipantazis et al., 2021) , bayesian model selection (Immer et al.,
2022) and alignment regularization (Wang et al., 2022). Optimization based methods often require
computing gradients with respect to transformations (Chatzipantazis et al., 2021; Li et al., 2020b).
Moreover, several methods resort to computationally intensive search phases, the optimization of
auxiliary models, or additional data, while failing to outperform fixed user-defined augmentation
distributions (Müller and Hutter, 2021).

In this work, we formulate data augmentation as an invariance-constrained learning problem. That
is, we specify a set of transformations and a desired level of invariance, and recover an augmen-
tation distribution that enables imposing this requirement on the learned model, without explicitly
parametrising the distribution over transformations. In addition, the constrained learning formulation
mitigates the potential biases introduced by data augmentation without doing away with its potential
benefits. More specifically, we rely on an approximate notion of invariance that is weighted by the
probability of each data point. Hence, we require the output of our model to be stable only on the
support of the underlying data distribution, and more so on common samples. By imposing this re-
quirement as a constraint on the learning task and leveraging recent duality results, the amount of data
augmentation can be automatically adjusted during training. We propose an algorithm that combines
stochastic primal-dual methods and MCMC sampling to do away with the need for transformations
to be differentiable. Our experiments show that it leads to state-of-the-art results in automatic data
augmentation benchmarks in CIFAR datasets.

2 DATA AUGMENTATION IN SUPERVISED LEARNING

As in the standard supervised learning setting, let x ∈ X ⊆ Rd denote a feature vector and
y ∈ Y ⊆ R its associated label or measurement. For classification tasks, we take Y ⊆ N. Let D
denote a probability distribution over the data pairs (x, y) and ℓ : Y × Y → R+ be a non-negative,
convex loss function, e.g., the cross entropy loss. Our goal is to learn a predictor fθ : X → Y in
some hypothesis class Hθ = {fθ | θ ∈ Θ ⊆ Rp} that minimizes the expected loss, namely

minimize
θ∈Θ

R(fθ) := E(x,y)∼D[ℓ(fθ(x), y)]. (SRM)

We consider the distribution D to be unknown, except for the dataset {(xi, yi), i = 1, . . . , n} of n
i.i.d. samples from D. Therefore, we rely on the empirical approximation of the objective of (SRM),
explicitly

R̂(fθ) :=
1

N

n∑
i=1

ℓ(fθ(xi), yi). (1)

One of the aims of data augmentation is to improve the approximation R̂ of the statistical risk
R when dealing with a dataset that is not sufficiently representative of the data distribution. To
do so, we consider transformations of the feature vector g : X → X , taken from the (possibly
infinite) transformation set G. Common examples include rotations and translations in images.
Data augmentation leverages these transformations to generate new data pairs (gx, y) by sampling
transformations according to a probability distribution G over G, leading to the learning problem

minimize
θ∈Θ

R̂aug(fθ) :=
1

N

N∑
i=1

Eg∼G [ ℓ(fθ(gxi), yi)] . (2)

Note that the empirical risk approximation R̂ in (1) can be interpreted as an approximation of the
data distribution D by a discrete distribution that places atoms on each data point. In that sense, R̂aug
in (2) can be thought of as the Vicinal Risk Minimization (Chapelle et al., 2000) counterpart of (1), in
which the atoms on xi are replaced by a local distribution over the transformed samples gxi, i.e.,

R̂aug(fθ) =
1

N

N∑
i=1

∫
ℓ (fθ(gxi), yi) dP (gxi), (3)

where the distribution P over X is induced by the distribution G over G. As it can be seen from (3)
if G is not chosen adequately, R̂aug can be a poor estimate of R, introducing biases that outweigh
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the benefits of data augmentation (Chen et al., 2019; Shao et al., 2022). On the other hand, if the
data distribution D is statistically invariant under the action of G, invariant solutions have provable
advantages in terms of sample complexity (Chen et al., 2019; Bietti and Mairal, 2019; Sannai et al.,
2019; Lyle et al., 2020).

In this work, given a set of transformations G, we tackle the choice of G, i.e., how to sample
transformations so that the solution of the learning problem is sufficiently invariant with respect to
the learning task, as defined on the next section. Note that invariance to transformations in G may
hold for the true distribution or may also be a desirable property of the solution, for example, to
achieve robustness (Kanbak et al., 2017; Volpi et al., 2018; Joshi et al., 2019). Unlike invariance
learning (Jebara, 2003; Zhou et al., 2021a; Benton et al., 2020; Immer et al., 2022), we do not seek to
learn the transformations G from the data.

3 DATA AUGMENTATION VIA INVARIANCE CONSTRAINTS

Finding a transformation distribution G that leads to the desired properties in the solution can be
challenging . What is more, using a fixed G as in (2) prevents us from controlling when and how
much augmentation is used during training, running the risk of biasing the final solution. On the
other hand, it is straightforward to specify a set of transformations G to which the solution should
be approximately invariant (e.g., image rotations and translations).

In the next sections, we explain how a data augmentation distribution can be obtained from such
an invariance requirement. We first show how invariance can be interpreted as an augmentation
distribution (Section 3.1). We then incorporate this invariance in a constrained learning problem (Sec-
tion 3.2).

3.1 FROM INVARIANCE TO AN AUGMENTATION DISTRIBUTION

The goal of this section is to replace the task of choosing an augmentation distribution by the task of
choosing a set of transformations we wish to be (approximately) invariant to. To do so, we we will
show how invariance can be used to implicitly determine the augmentation distribution.

However, rather than requiring the output of the model to be invariant, i.e., fθ(x) = fθ(gx) for
all g ∈ G, we will consider invariance in terms of quality of its predictions as evaluated by the loss
function. Namely,

ℓ(fθ (x) , y) = ℓ(fθ (gx) , y), ∀g ∈ G.

This notion of invariance explicitly incorporates the structure of the learning task by using the loss to
identify which changes in the output of the model would lead to a significant change in prediction
performance. More precisely, we want to limit the difference in our model’s performance on a sample
and its transformed versions, i.e., we wish to have |ℓ(fθ (x) , y))− ℓ(fθ (gx) , y))| small for all g in
G. Equivalently, we wish to control the magnitude of

max
g∈G

|ℓ(fθ (x) , y)− ℓ(fθ (gx) , y)| . (4)

However, rather controlling (4) for all x ∈ X , which may be overly conservative, we want to restrict
our attention to the support of the data distribution. Furthermore, we wish to weight different inputs
depending on their probability, in order to reduce the importance of unlikely or pathological cases.
We therefore average (4) over the data distribution to obtain

Rinv(fθ) := E(x,y)∼D

[
max
g∈G

|ℓ(fθ (x) , y)− ℓ(fθ (gx) , y)|
]
. (5)

To connect the invariant risk Rinv in (5) to the data augmentation formulation in (2), notice that it can
be bounded, using triangle inequality and the monotonicity of the expectation, by

Rinv (fθ) ≤ E(x,y)∼D [ℓ(fθ (x) , y)] + E(x,y)∼D

[
max
g∈G

ℓ(fθ (gx) , y)

]
. (6)
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The first term is simply the statistical risk R that is usually minimized in order to tackle the learning
task. The second term resembles the objective typically found in adversarial learning problems,
e.g., (Madry et al., 2017). This term, it turns out, can be interpreted as an augmentation distribution.

As shown by Robey et al. (2021a), the maximisation of the loss over transformations can be written
as the semi-infinite constrained optimization problem

max
g∈G

ℓ (fθ (gx) , y) = sup
λ∈L2

+

∫
G
λ(g)ℓ(fθ(gx), y)dg. (7)

s. to
∫
G
λ(g)dg = 1

Notice that the solution of this optimization problem λ⋆(g) is a non-negative, normalized function
and can therefore be interpreted as a distribution over transformations that depends on the sample
point (x, y) as well as the model fθ. This allows us to re-interpret the maximization over G as an
expectation, i.e.,

E(x,y)∼D

[
max
g∈G

ℓ(fθ (gx) , y)

]
= E(x,y)∼D [Eg∼λ⋆ [ℓ(fθ(gx), y)]] . (8)

Observe that the right-hand side of (8) resembles the statistical form of the data augmentation
objective in (2).

3.2 A CONSTRAINED LEARNING APPROACH

Returning to the invariant risk bound in (6), notice that it is composed of two parts, namely, the
statistical risk R from (SRM) and what we have shown in (8) to be a intance/model-dependent data
augmentation. However, in order to address the potential biases introduced by transformations, rather
than modifying the objective as in standard data augmentation, we propose to combine these two
terms in a constrained learning problem. Explicitly,

P ⋆ = min
θ∈Θ

E(x,y)∼D [ℓ(fθ(x), y)] (CSRM)

s. to E(x,y)∼D [Eg∼λ⋆ [ℓ(fθ(gx), y)]] ≤ ϵ .

Notice that this formulation tackles the two terms forming the invariant risk bound in (6), but instead
of combining them directly, it incorporates the data augmentation term as a constraint in the typical
statistical risk minimization problem (SRM). This formulation has the advantage that if a solution to
the unconstrained problem is feasible, i.e., satisfies the invariance constraint in (CSRM), the presence
of that constraint has no effect on the statistical problem. Yet, it can be beneficial when approximating
the solution of (CSRM) empirically. We will explore this fact in the next section, where we tackle the
practical challenges involved in solving (CSRM).

For conciseness in (CSRM) we have included only one invariance constraint associated with a single
set of transformations G. However, our approach can be extended to an arbitrary number of constraints
defined by transformation sets Gi, i = 1, . . . ,m (each inducing an augmentation distribution λ⋆

i ),
and constraint levels ϵi. All of the following derivations still hold, regardless of the number of
constraints.

4 ALGORITHM DEVELOPMENT

Solving (CSRM) presents two challenges. First, it is a constrained statistical learning problem, which
involves the unknown data distribution D. We address this by resorting to an empirical dual problem
as explained on Section 4.1. Second, it can be hard to sample from λ⋆. We address this by introducing
a smooth approximation that leverages MCMC methods on Section 4.2.

4.1 EMPIRICAL DUAL CONSTRAINED LEARNING

To tackle the invariance-constrained statistical risk minimization problem we leverage recent duality
results in constrained learning theory (Chamon et al., 2021), that approximate the problem by its
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empirical dual

D⋆
emp =max

γ≥0
min
θ∈Θ

1

n

n∑
i=1

ℓ(fθ(xi), yi) + γ

(
1

n

n∑
i=1

Eg∼λ⋆ [ℓ(fθ(gx), y)])− ϵ

)
. (D-CERM)

The advantage of (D-CERM) is that it is an unconstrained problem that, provided we have enough
samples and the parametrization is rich enough, can approximate the constrained statistical problem
( CSRM). Namely, the difference between the optimal value of the empirical dual D⋆

emp and the
statistical primal P ⋆, i.e., the empirical duality gap is bounded (Chamon et al., 2021).

As in regular data augmentation, we will also approximate the expectation over λ⋆ by sampling
transformations as discussed in Section 4.2. Then, the problem D-CERM becomes an unconstrained
deterministic problem, which can be solved using the algorithm described in Section 4.3.

Note that finding a Lagrangian minimizer for a fixed value of the dual variable (γ) is equivalent to
minimising the risk under a fixed mixture augmentation distribution1, where the value of γ controls
the probability of sampling the identity. We can also interpret this as optimising a penalised or
regularised learning objective. However, solving the constrained problem, namely maximising over
γ, has fundamental differences.

First, constraints explicit the requirement they represent. While the degree of invariance imposed
should depend only on the statistical problem at hand, the value of γ needed to achieve it will depend
on the sample size, the parametrization and the learning algorithm. In contrast, constrained learning
dynamically adjusts the amount of augmentation — dictated by γ — to a particular learning setup.

Second, the optimal dual variable can give information about the trade-off minimising the loss over
training samples and satisfying the invariance constraint. In penalised approaches, on the contrary,
this trade-off is fixed.

Lastly, the aforementioned informativeness and interpretability can facilitate hyper-parameter tuning.
The insights gathered from optimal dual variables can be leveraged a posteriori, for instance, to
manually choose appropriate transformations, relax the invariance constraint levels, or change the
learning setup (e.g. increase the capacity of the model class).

4.2 SAMPLING TOWARDS INVARIANCE

Sampling the augmentation distribution λ⋆ can be difficult when G is not finite and fθ is a deep
neural network. Even when the transformation space is low dimensional, as in the case of translations
and rotations, the highly non-convex loss landscape of these models makes the maximization over G
challenging (Engstrom et al., 2017). If the optimal distribution λ⋆ is not smooth, it is challenging
to sample from it with sufficient accuracy (Homem-de Mello and Bayraksan, 2014). Consequently,
obtaining an unbiased estimator of Eg∼λ⋆ [ℓ(fθ(gx), y)] may not be possible. Therefore, we add an
L2 norm penalisation, which promotes smoothness, to leverage MCMC methods.

We then define the c-smoothed distribution λ⋆
c as a solution to the regularised problem

λ⋆
c ⊆ argmaxλ∈L2

+

∫
G
λ(g)ℓ(fθ(gx), y)dg + c

∫
G
λ(g)2dg,

s. to
∫
G
λ(g)dg = 1

The regularization term introduces an optimality gap with respect to worst case perturbations,
i.e., Eg∼λ⋆

c
[ℓ(fθ(gx), y)] ≤ maxg∈G ℓ (fθ (gx) , y). However, for particular values of c the regular-

ized problem has a closed form solution (Robey et al., 2021a) that allows us to sample from it easily.
Namely, there exists a constant c ≥ 0 such that λ⋆

c(x, y, g) =
ℓ(fθ(gx),y)

c .

Since λ⋆
c is a smooth probability distribution, we do not need to estimate the multiplicative factor c to

sample from it by leveraging Monte Carlo Markov Chain methods (MCMC).

MCMC methods (Hastings, 1970) are based on constructing a Markov chain that has the target
distribution as an equilibrium distribution. Independent Metropolis Hastings uses a state independent

1Explicitly, with probability 1
1+γ

, the identity is sampled, and with probability γ
1+γ

, g ∼ λ∗.
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- usually fixed - proposal for each step. In our case, it only requires applying a transformation
and computing a forward pass of the neural network to evaluate the loss. This enables the use of
non-differentiable transformations, and has the advantage that the density at consecutive proposals
can be evaluated in parallel allowing speedups in the sampling step. Although MH methods thus
allow to sample the proposal distribution with low computational cost, they exhibit random walk
behaviour, which leads to slow convergence in high dimensional settings (Dellaportas and Roberts,
2003; Holden et al., 2009).

We can then approximate Eg∼λ⋆
c
[ℓ(fθ(gxi), yi)] by sampling transformations according to the loss.

Namely, we can obtain a set of m samples drawn from λ⋆
c and approximate the expectation over the

group by the sample mean

Eg∼λ⋆
c
[ℓ(fθ(gxi), yi)] ≈

1

m

m∑
j=1

ℓ(fθ(gjxi), yi),

where g1, . . . , gm
i.i.d.∼ ℓ(fθ(gxi), yi)/c are m transformations sampled from the smoothed distribu-

tion λ⋆
c(fθ,xi, yi).

In the next section, the implementation of independent-MH with a uniform proposal is described in
Algorithm 2, together with the primal-dual augmentation algorithm.

4.3 PRIMAL-DUAL ALGORITHM

Since the cost of the inner minimization, i.e. training the model, can be high, we adopt an alternating
update scheme (K. J. Arrow and Uzawa., 1958) for the primal and dual variables, as in (Chamon
et al., 2021; Fioretto et al., 2020).

A bounded empirical duality gap does not guarantee that the primal variables obtained after running
the alternating primal-dual algorithm 1 and solving the saddle point problem approximately are near
optimal or approximately feasible. Although stronger primal recovery guarantees can be obtained by
randomizing the learning algorithm (Chamon et al., 2021), it requires storing model parameters θ at
each iteration, and there is empirical evidence (Chamon et al., 2021; Robey et al., 2021a; Elenter
et al., 2022; Shen et al., 2022; Cervino et al., 2022; Zhang et al., 2022) that good solutions can still be
obtained without randomization.

Algorithm 2 describes transformation sampling. By keeping only one sample (m = 1) we recover
the usual augmentation setting, that yields one augmentation per sample in the training batch. In
our experiments we address this setting, since it has lower computational costs. However, simply
keeping more samples from the chain (m > 1) allows to extend the method to the batch augmentation
setting (Hoffer et al., 2020), which creates several augmented samples from the same instance in each
batch.

Although several steps of the chain may be required to deviate enough from the proposal distribution,
we show in the experimental section that sampling the constraint approximately by using few sampling
steps suffices.

Algorithm 1 Primal-Dual Augmentation

1: λ = 0, θ = θ0.
2: for Batch in {(xi, yi)}ni=1 do
3: for (xi, yi) ∈ Batch do
4: gi1, . . . , gim ∼iid ℓ(fθ(gxi), yi)/c ▷ Sample transformations
5: s = 1

|Batch|
∑

(xi,yi) ∈ Batch

[
1
m

∑m
j=1 ℓ(fθ(gijxi), yi)

]
− ϵ ▷ Evaluate constraint slack

6: ℓ = 1
|Batch|

∑
(xi,yi) ∈ Batch ℓ(fθ(xi), yi) ▷ Evaluate Loss

7: L̂ = ℓ+ γs ▷ Compute Lagrangian
8: θ = θ − ηp∇θL̂ ▷ Primal update
9: γ = [γ + ηds]+ ▷ Dual Update
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Algorithm 2 Independent MH sampler

1: g(0) ∼ U(G) ▷ Sample initial State
2: ℓ(0) = ℓ

(
fθ
(
g(0)x

)
, y
)

▷ Evaluate loss
3: for t = 1, . . . , nsteps do
4: gprop ∼ U(G) ▷ Sample next proposal
5: ℓprop = ℓ (fθ (gpropx) , y) ▷ Evaluate Loss

6: p = min
(
1,

ℓprop

ℓ(t−1)

)
▷ Acceptance Prob

7: w.p. p: ▷ Accept/Reject
8: g(t) = gprop, ℓ(t) = ℓprop
9: else:

10: g(t) = g(t−1) , ℓ(t) = ℓ(t−1)

5 AUTOMATIC DATA AUGMENTATION EXPERIMENTS

This section showcases Algorithm 1 in common image classification benchmarks. We compare it
to state-of-the-art data augmentation methods in terms of classification accuracy. Furthermore, we
discuss other advantageous properties of our method through ablations. Namely, we focus on the
ability to control the effect of data augmentation by modifying the constraint level, the informa-
tiveness of dual variables, and the benefits of adapting the augmentation distribution throughout
training. We follow the setup (including the transformation sets) used in recent automatic data
augmentation literature (Müller and Hutter, 2021). A complete list of transformations together with
other hyperparameters and training settings can be found on Appendix B. Note that four out of the
sixteen transformations used are non-differentiable. Whereas other works have introduced gradient
approximations for transformation operations with discrete parameters (Li et al., 2020b; Hataya et al.,
2020), our approach does not require such approximations.

Throughout these experiments, we fixed the number of steps of the MH sampler (Algorithm 2) to
two, which has the added advantage of reducing the computational cost of evaluating proposals.
The constraint level was determined by a grid search targeting cross-validation accuracy. As shown
in Table 1, in both transformation sets considered, we find that our approach improves or closely
matches existing approaches. The failure to achieve large improvements in accuracy over baselines,
which has been attributed to a stagnation in data augmentation research (Müller and Hutter, 2021),
can also reflect the limits of the benchmarking setup.

Standard Wide
TA DeepAA OURS TA DeepAA OURS

CIFAR10
Wide-ResNet-40-2 96.55± 0.11 96.43± 0.09 96.76± 0.14 96.24± 0.19 96.27± 0.19 97.05± 0.18

Wide-ResNet-28-10 97.46± 0.10 97.57± 0.15 97.74± 0.10 97.51± 0.20 97.27± 0.10 97.85± 0.17

CIFAR100
Wide-ResNet-40-2 79.92± 0.13 79.45± 0.42 80.83± 0.31 79.96± 0.45 79.36± 0.27 81.19± 0.34

Wide-ResNet-28-10 83.40± 0.16 83.77± 0.29 83.53± 0.16 84.11± 0.24 83.09± 0.30 84.89± 0.12

SVHNcore
Wide-ResNet-28-10 98.05± 0.03 98.04± 0.08 98.15± 0.09 98.07± 0.03 97.93± 0.03 98.01± 0.04

Table 1: Image Classification accuracy for WideResnet architectures (Zagoruyko and Komodakis,
2016) trained using different augmentation policies, defined on standard (Cubuk et al., 2018) and
wider (Müller and Hutter, 2021) augmentation search spaces. We include state-of-the-art methods
TA (Müller and Hutter, 2021) and DeepAA (Zheng et al., 2022), and 95% confidence intervals
computed over five independent runs. In CIFAR datasets our approach leads to an improvement in
accuracy, whereas in SVHN (Netzer et al., 2011) it leads to a degradation in performance in the wide
setup.

Regardless, our approach yields improvements in test accuracy over a baseline model without
augmentation for a wide range of constraint levels (Figure 1). This illustrates the robustness of the
solution to this hyperparameter. Observe also that as the constraint is relaxed (by increasing ϵ), the
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training error decreases while the generalization gap, i.e., the difference between train and test errors,
increases. In other words, by loosening the invariance requirement the model can fit better to training
samples at the cost of worse generalization. Eventually, only the generalization gap increases while
the training error stagnates (ϵ > 2.1 for CIFAR100 and ϵ > 0.8 for CIFAR10). This transition
occurs at the same point at which the final value of the dual variable γ from (D-CERM) essentially
vanishes (darker color). This showcases the infromativeness of the dual variable. In the case of
CIFAR10, even the training error begins to increase at that point, suggesting that the invariance
requirement need not be at odds with accuracy.
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Figure 1: Constraint level ablation for WideResnet-40-2 in CIFAR datasets. We plot error rates
computed over the train and test set and averaged over five runs, for different constraint levels. We
include the test error of the unconstrained baseline (without augmentation) for comparison. The color
of markers denotes the final value of the dual variable.

Not only does Algorithm 1 tune the effect of data augmentation on the solution (by adapting γ in
step 9), but also modifies the distribution over transformations during training (step 4). To showcase
the benefits of this over the use of a fixed distribution, Figure 2 compares the results obtained using
our approach (sampling according to λ⋆

c ) and one where step 4 is replaced by a uniform sampling
over transformations. For the same constraint levels, lower test errors are obtained by sampling
transformations according to λ⋆

c , i.e., promoting invariance. Note also that for ϵ = 2.1 in CIFAR100
and ϵ = 0.8 for CIFAR10, the performance gap is quite large. Once again, this occurs at the point in
which γ vanishes (darker color) for the uniform distribution, i.e., no data augmentation occurs by
the end of training. At this point, however, there is still value in promoting invariance by sampling
from λ⋆

c as evidenced by the positive value of the dual variable (lighter color) in this approach.
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Figure 2: We compare our approach to a constraint on the uniform distribution, for WideResnet-40-2
in CIFAR datasets, at different constraint levels. We plot error rates computed over test set and
averaged over five runs. Markers denote the augmentation distribution. The color of markers denotes
the final value of the dual variable.
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Furthermore, to assess the impact of the sampling approximation on the performance of the solution
we conduct an ablation on the number of steps of the MH sampler (Algorithm 2), keeping the
constraint level (ϵ) fixed. Using more steps of the chain allows samples to deviate further from
the uniform distribution, which as shown in Figure 3 is reflected on the lower entropy of sampled
transformations (first row). As shown in the second row, this results in higher classification error
rates on the training set (represented by blue circular markers). However, we find that increasing the
number of steps does not affect significantly test error (denoted by orange crosses). In Appendix C.1.3
we show how the number of sampling steps affects the evolution of dual variables.
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Figure 3: Number of Metropolis Hastings steps ablation for WideResnet-40-2 in CIFAR datasets. The
constraint level is fixed for each dataset (0.8 in CIFAR10 and 2.1 for CIFAR100). The first row shows
the entropy of the augmentations sampled at the last epoch of training. The second rows classification
error rates. Each point represents an independent run, experiments are repreated four times.

6 CONCLUSION

In this paper, we have proposed a constrained learning approach for automatic data augmentation,
which instead of using augmented samples as a modified learning objective, imposes an invariance-
constraint. We have shown that this yields an augmentation distribution that adapts during training, and
found that coarse sampling approximations based on MCMC methods can improve generalization in
automatic data augmentation benchmarks. Furthermore, our experiments showed that the dual variable
can give insights about the resulting augmentation distribution. We also found that strictly feasible
solutions were obtained for a wide range of constraint levels, with notably different generalization
gaps, and that in some cases tightening the constraint even led to a lower training error. Thus,
analysing the interplay between the learning problem and the optimization algorithm is a promising
future work direction.
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A ADDITIONAL RELATED WORK

A.1 CONSTRAINED LEARNING AND DATA AUGMENTATION

Xu et al. (2021) also formulate data augmentation as a constrained learning problem. They impose
a constraint on the excess risk, i.e. the difference between the statistical risk and its optimal value,
on augmented data. Thus the constraint level on the augmented risk is also determined by the data
distribution, augmentations considered, and model class, and the existence of a strictly feasible point
is guaranteed.

min
θ∈Θ

R(fθ) s.t. Raug (fθ)−min
θ̂∈Θ

Raug(fθ̂) ≤ ϵ, ϵ > 0,

where R and Raug are the statistical risk under the original and augmented distribution, exlipicity
R(fθ) = E(x,y)∼D[ℓ(fθ(x), y)], Raug(fθ) = E(x,y)∼D,

g∼G

[ℓ(fθ(gx), y)].

Unlike our formulation, this formulation assumes a fixed distribution of augmentations G is given.

By formulating it as a constrained problem, they aim to avoid introducing a bias when the data
distribution is not invariant to augmentations. Two types of biases induced by augmentation are
explicitly addressed, covariate shift (i.e. label-preserving augmentations) and concept shift (i.e. label
mixing augmentations).

Interestingly, they show that under some conditions on the risk, augmented risk and constraint level,
by utilizing the augmented data to constrain the solution to a small region SGD can achieve lower
error (Xu et al., 2021, Proposition 1).

Instead of resorting to constrained optimization algorithms, they propose a two stage algorithm that
consists of first finding an approximate minimizer of the augmented risk and then using that solution
as an initialisation to the (unconstrained) statistical risk minimization problem. The first stage obtains
a feasible point, and then under some conditions the SGD iterates obtained when solving the second
problem remain feasible (Xu et al., 2021, Theorem 1).

A.2 ADVERSARIAL DATA AUGMENTATION

Zhang et al. (2020) have shown that using adversarial transformations - which as already mentioned
is related to promoting invariance - can give competitive results with respect to other automatic
augmentation methods in image classification. However, Blaas et al. (2021) have since evidenced the
importance of two factors: the implicit learning curricula and the suboptimality of the adversarial
used by Zhang et al. (2020), which mitigates the biases introduced by worst-case transformations.
Furthermore, Blaas et al. (2021) report that an explicit cyclic curricula in which augmentations are
mild at first, then get harder as training progresses, and finally revert to milder augmentations at
the end of training, performs better empirically. We note some interesting commonalities with our
approach and experimental results. First, the dynamics of our primal-dual algorithm resemble the
aforementioned heuristically defined curricula. Second, the suboptimality with respect to worst case
perturbations can be related to the smoothed approximation used in our approach.

A.3 CONSTRAINED LEARNING AND DOMAIN GENERALIZATION

Domain Generalization (DG) involves training the model in different but related data distributions,
and evaluating in an unseen domain. For example, a common benchmark consists of domains created
by rotating images in the MNIST dataset by different angles. Constrained formulations have been
proposed in this context (Robey et al., 2021b; Zhang et al., 2022), that enforce invariance under learnt
domain translation transformations. In contrast, our approach addresses pre-defined transformations
that are commonly used in data augmentation pipelines in order to improve generalization in the
same domain used to train the model.

A.4 GROUP INVARIANCE

The relationship between convolutional structure and equivariance has been long known in algebraic
signal processing theory (Püschel and Moura, 2006). Recently, necessity results have re-gained
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attention in the context of neural network architecture design (Kondor and Trivedi, 2018). Several
Group Convolutional neural network architectures that generalize CNNs to different groups by
leveraging group convolutions have been proposed (Cohen and Welling, 2016; Esteves et al., 2017;
Finzi et al., 2020). In the case of images, it has been shown that that SE2 equivariant layers can be
implemented efficiently using regular 2D convolutions (Weiler and Cesa, 2019). This approach allows
to derive a parametrization for CNN filters under finite subgroups of SE2. Among other works (Bietti
and Mairal, 2019; Sannai et al., 2019) give theoretical analyses of the benefits of group invariance in
learning settings.

As already mentioned, achieving invariance through architecture design is both challenging and
limited in the sense that it relies on transformations having a specific structure (e.g: a group). The
goal of exact invariance over the whole input space is more strict than the approximate invariance
notion that our work addresses. As argued by Mallat (2016), CNNs can learn locally invariant
features with respect to arbitrary transformation groups, which could explain their generalization
properties. Furthermore, empirical studies evidence modern CNN architectures learn approximately
equivariant features to transformations such as scaling and rotations (Olah et al., 2020), or diffeomor-
phisms (Petrini et al., 2021), even when trained without direct augmentation.

However, commonly used augmentations do not form a group. Our approach does not require this
structure.
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B EXPERIMENTAL SETUP DETAILS

B.1 TRANSFORMATIONS

As in recent automatic augmentation literature (Ho et al., 2019; Lim et al., 2019; Hataya et al.,
2020; Zhang et al., 2020; Cubuk et al., 2020; LingChen et al., 2020; Zhang et al., 2020; Müller
and Hutter, 2021; Zhou et al., 2021b; Zheng et al., 2022; Cheung and Yeung, 2022), we focus on
image classification datasets and employ a transformation search space comprising 14 operations,
introduced by Cubuk et al. (2018). For those that have parameters, their magnitudes are discretized in
thirty levels, which does not compromise performance and greatly reduces the search space (Cubuk
et al., 2020). Most approaches compose transformations, i.e. applying more than one transformation
to the same image. However, recently Müller and Hutter (2021) have shown that applying only
one transformation at a time, defined over a wider magnitude space (noted Wide in Table 2) can
outperform other approaches. We thus use the same transformation space as (Müller and Hutter,
2021).

Table 2 from Müller and Hutter (2021) lists the operations and their magnitude ranges. In our
experiments we used the wide search space, the standard ranges from Cubuk et al. (2020) are included
for comparison. We extend the codebase provided by Müller and Hutter (2021), which uses the
Pillow2 implementation of all transformations except for cutout, and refer to its documentation for
further details about image operations.

Operation Magnitude
Standard Wide

Identity − −
ShearX [−0.3, 0.3] [−0.99, 0.99]

ShearY [−0.3, 0.3] [−0.99, 0.99]

TranslateX [−10, 10] [−32, 32]

TranslateY [−0.45, 0.45] [−32, 32]

Rotate [−30, 30] [−135, 135]

AutoContrast − −
Invert − −
Equalize − −
Solarize [0, 256]

Posterize [4, 8] [2, 8]

Contrast [0.1, 1.9] [0.01, 2]

Color [0.1, 1.9] [0.01, 2]

Brightness [0.1, 1.9] [0.01, 2]

Sharpness [0.1, 1.9] [0.01, 2]

Flips − −
Cutout 16(60) 16(60)

Crop − −

Table 2: Pillow image operations in the data augmentation search space and the range of magnitudes
corresponding to the standard (Cubuk et al., 2020) and wide (Müller and Hutter, 2021) search spaces.
Some operations do not use magnitude parameters.

B.2 TRAINING SETUP

In order to enable comparisons and reproducibility we use the same training pipeline as in previous
works Müller and Hutter (2021) . We apply the vertical flip and the pad-and-crop augmentations

2 https://github.com/python-pillow/Pillow
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and a 16 pixel cutout (DeVries and Taylor, 2017) after any augmentation method. We trained
Wide-ResNet (Zagoruyko and Komodakis, 2016) models in the 40-2 and 28-10 configurations.

Except for epoch ablation experiments, we use SGD with Nesterov Momentum and a learning rate of
0.1, a batch size of 128, a 5e-4 weight decay, and cosine learning rate decay. In ablation experiments
we also trained for 600 epochs and used a custom learning rate schedule. For the first 185 epochs
we followed the same cosine learning rate decay schedule, and then switching to a custom step
learning rate scheduler detailed on Table 3. This schedule was implemented after observing that just
scaling the cosine learning rate schedule to 600 epochs resulted in slow convergence, thus yielding
solutions similar to training for 600 epochs, and failing reflect the effects of early stopping which this
experiment addressed.

We used 2 MH steps for the smoothed adversarial unless stated otherwise, and a learning rate of 10−3

for the dual ascent step.

No other hyperparameters were tuned or modified with respect to standard settings. The constraint
levels were set for Wide-ResNet-40-2 in the wide augmentation space by maximising three fold
cross validation over the grid specified on Table 4. Then the constraint levels were adjusted for other
architectures and search spaces so that the dual variables at the end of training were small but not
zero (of the order of 10−1), which empirically showed good results. The resulting constraint levels
corresponding to the results in 1 are detailed in table 5.

We used the provided code and reported hyperparameters for running TrivialAugment (Müller and
Hutter, 2021) and DeepAA (Zheng et al., 2022). For the latter, unlike the results reported in (Zheng
et al., 2022), we kept all evaluation hyperparameters (including weight decay) consistent with that
of other methods. Results for the wide augmentation space were not included in (Zheng et al.,
2022). We thus performed the augmentation policy search for the wide search space using the same
hyperparameters (except for the augmentation space) reported in (Zheng et al., 2022) for CIFAR
datasets. We also run the search for both augmentation spaces in SVHN datasets, and evaluated the
policy with the same setup as other methods.

Epochs LR Scheduler Step
180-230 10
230-430 20
430-600 40

Table 3: Learning Rate Custom schedule used when training for 600 epochs. We use the standard
scheduler for the first 180 epochs, and then update the LR only every n epochs, where n is the
number indicated in the second column. This hand designed schedule outperforms using a cosine
learning rate schedule for 600 epochs, but could improvements convergence speed and performance
by exploring other LR-schedulers or tuning it.

Dataset Constraint Level Grid Range
CIFAR10 [0.2, 2.3]
CIFAR100 [0.3, 2.7]
SVHNcore [0.1, 1.5]

Table 4: Constraint level grid search space. For each dataset, we evaluated three fold cross validation
accuracy for 8 evenly spaced constraint levels in the ranges given in the second column. The one with
the highest cross validation score was then selected and used to train the model with the full dataset.
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Constraint Level
Standard Wide

CIFAR10
Wide-ResNet-40-2 0.6 0.8

Wide-ResNet-28-10 0.4 0.8

CIFAR100
Wide-ResNet-40-2 0.9 0.8

Wide-ResNet-28-10 0.9 1.2

SVHNcore
Wide-ResNet-28-10 0.1 0.2

Table 5: Constraint levels for different datasets and architectures, for the results presented in Table 1
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C ADDITIONAL EXPERIMENTS

C.1 AUTOMATIC DATA AUGMENTATION

The following section contains additional ablations and discussions about our algorithm. As in
previous sections, we use the wide Müller and Hutter (2021) augmentation space and CIFAR image
classification benchmarks. Our main motivation is to analyse how the different hyperparameter
choices and the learning algorithm affect the generalization and invariance of the obtained solutions.
First, we show how the dual variables adapts to different constraint levels during training, and link its
dynamics to heuristically defined learning curricula. We then evaluate the effect of training for more
epochs and link our observations to the known properties of early stopping in unconstrained learning,
in section C.1.2. In section C.1.3, we analyse how the sampling approximation affects regularisation,
by performing an ablation on the number of MH steps. Lastly, we include the observed frequencies
of sampled transformations for different setups, so as to obtain further insights in how the distribution
adapts throughout training (Section C.1.4).

C.1.1 DUAL VARIABLE DYNAMICS

As already mentioned, the dual variables control the weight of augmented samples during training,
thus balancing the trade-off between fitting the primal objective (i.e. loss over training samples)
and satisfying the constraints (i.e. loss over transformed samples). In penalised approaches, on
the contrary, this trade-off is fixed. In Figure 4 we show how the dual variable adapts to different
constraint levels, for Wide-ResNet-40-2 in CIFAR datasets using the standard setup. Note that for
stricter constraint levels, the algorithm has not converged when it reaches 200 epochs. We also
observe that the dynamics of our primal-dual algorithm resembles the augmentation learning curricula
proposed by Blaas et al. (2021).
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Figure 4: Evolution of dual variables during training for Wide-ResNet-40-2 in CIFAR datasets. For
most levels, augmentation increases until the constraint becomes feasible and then decreases towards
the end of training. For stricter levels, the algorithm does not converge in 200 epochs using the
standard learning settings. However, the solutions obtained still show good properties.

C.1.2 EARLY STOPPING

Our approach has slower convergence than unconstrained approaches and stopping training arbitrarily
- after a fixed number of epochs - can result in solutions that are unfeasible or sub-optimal. However,
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early stopping is a popular regulariser, particularly for neural networks trained through gradient
descent. Several empirical (Caruana et al., 2000; Rice et al., 2020) and theoretical (Ji et al., 2021;
Li et al., 2020a; Duvenaud et al., 2016) results show its advantages in terms of generalisation
and robustness to noisy training data. In general, the advantages of early stopping do not lie in
the sub-optimality of the solution in terms of training error, but on nature of the regularization or
prior imposed, which leads to non-uniform model selection among models with a given training
error (Cataltepe et al., 1999).

To the best of our knowledge, there is no literature that explicitly addresses early stopping in empirical
primal-dual learning. Whether the generalisation gap in constraint satisfaction can be reduced by early
stopping regularisation, in the same manner early stopping regularisation can reduce the generalisation
gap in unconstrained learning, thus remains unclear.

Figure 5 shows an ablation on the number of epochs. Non-zero dual variables and strict feasiblility
show the algorithm has not yet converged at 200 epochs. At 600 epochs whereas constraint satisfaction
shows little change, training loss decreases and the generalization gap increases. Thus, we observe
early stopping has a larger impact on the primal objective than on the constraint. that although for
stricter levels of the constraint the algorithm has not converged when training is stopped at 200
epochs, it can yield solutions that are still feasible and have a smaller generalization gap.
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Figure 5: Training WideResnet-40-2 for 200 (standard) and 600 epochs in the CIFAR100 dataset,
with different constraint levels.

C.1.3 SAMPLING STEPS ABLATION

As already mentioned in Section 4.3, we used the Metropolis-Hastings algorithm with independent
uniform proposals. As shown in Figure 6, using more steps of the chain allows samples to deviate
further from the uniform distribution, as measured by the decrease in entropy. As already mentioned,
dual variables give information of the trade-off between fitting clean and augmented data. We observe
the final value of the dual variable is highly correlated with the entropy of sampled transformations.
That is, transformations that deviate further from uniformity result in larger dual variables at the
end of training. Furthermore, in 7 we show the evolution of dual variables for different sampling
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steps. Sampling distributions that are closer to worst case perturbations results in more stringent
requirements, and thus dual variables grow more rapidly.
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Figure 6: Number of Metropolis Hastings steps ablation for WideResnet-40-2 in CIFAR datasets.
The constraint level is fixed for each dataset (0.8 in CIFAR10 and 2.1 for CIFAR100). We compute
the entropy of the augmentations sampled at the last epoch of training. The value of the dual variable
at epoch 200 increases with the number of steps, whereas the augmentation distribution entropy
decreases. Each point represents an independent run. Experiments were repeated four times.
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Figure 7: Evolution of dual variables during training for Wide-ResNet-40-2 in CIFAR datasets. The
constraint level is fixed for each dataset (0.8 in CIFAR10 and 2.1 for CIFAR100). As the number
of MH sampler steps increases so does the growth of dual variables, which reflects harder to satisfy
constraints.

C.1.4 SAMPLED TRANSFORMATIONS

We now include plots of the empirical transformation distributions. As shown in Figure 8, the fre-
quency with which transformations are sampled varies depending on the dataset, which is a desirable
property. Similar to Zhang et al. (2020), we observe a prevalence of geometric transformations,
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unlike Cubuk et al. (2018). In SVHN color transformations are less frequent than in CIFAR datasets,
and the frequency of geometric transformations increases, which is interesting due to the perceptual
importance of shape in the digit recognition task.

As already noted, using more steps allows the chain to deviate further from the uniform proposal
distribution. We thus plot the frequency of sampled transformations across training epochs on
Figure 9. We observe that as training progresses, the observed frequencies also deviate further from
uniformity. This suggests that, due to the dataset and architecture, some transformations may be
harder to fit than others.

Similarly, we include histograms for the sampled transformation levels in Figure 10. Extreme levels
are sampled more frequently, but the empirical distributions vary depending on the transformation.
The deviation from uniformity and the differences between transformations are accentuated as
sampling steps increase (Figure 11).

Figure 8: Frequency of sampled transformations for CIFAR and SVHN datasets using two MH
sampler steps, for Wide-Resnet-28-10.
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Figure 9: Frequency of sampled transformations for CIFAR datasets in the first and last epochs
of training, for Wide-Resnet-40-2. As the number of steps increases, the the entropy of sampled
transformations decreases, i.e., observed frequencies get further from uniformity.
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Figure 10: Frequency of sampled transformation levels across epochs, for different transformations,
using two MH steps. Extreme levels are sampled more frequently, but some transformations deviate
further from uniformity.
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Figure 11: Frequency of sampled transformation levels for the first and last epochs, for different
transformations, using sixteen MH steps. The frequencies concentrate in extreme values for some
transformations.
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C.1.5 RUNTIME ANALYSIS

As mentioned in section 4.3, the added computational cost of our algorithm is that of computing
a forward pass for each MCMC step. As a result, trade-off between sampling λ⋆

c accurately and
computation arises. In Table 6 we provide an empirical runtime analysis for our method for different
numbers of MH steps, and compare it with the training time of baseline methods. These times corre-
spond solely to training, and it is difficult to account for the time taken to tune the hyperparameters
of each method, which hinders direct comparisons. In the case of DeepAA (Zheng et al., 2022), it
requires running a data augmentation policy search that takes 11 hours (more than 5× training time)
using the same hardware.

Method Ours
TA DeepAA 2 steps 4 steps 8 steps 16 steps

Epoch time (s) 12.6 13.3 32.5 51.2 89.4 165.2

Table 6: Time per epoch for WideResnet 40-2 in CIFAR 10 dataset, on a workstation with one
NVIDIA RTX 3090 GPU and AMD Threadripper 3960X (24 cores, 3.80 GHz) CPU.

C.2 DATA AUGMENTATION CAN HINDER PERFORMANCE

As already mentioned in section A.2 there is empirical evidence that certain distributions over
commonly used transformations can introduce biases that are detrimental to model performance
and generalization (Blaas et al., 2021). We provide a simple experiment to show that there exist
transformation distributions that make data augmentation deteriorate model performance, and that
in such cases balancing the amount of data augmentation (e.g. by including the original data) is
important to mitigate and overcome this issue.

We restrict the transformations in the wide augmentation space (Müller and Hutter, 2021) to their
maximum magnitude. We sample transformations according to λ⋆

c using two MH steps as previously
described. We compare against training without augmentation, and training using both augmentation
and the original data (i.e. adding the identity) equally weighted. While sampling transformations
according to λ⋆

c deteriorates performance with respect to the model without augmentation, including
both the identity and the augmented samples achieves a superior performance, as shown in Table 7.

No augmentation λ⋆
c λ⋆

c + Identity
78.42± 0.31 75.19± 0.54 80.01± 0.26

Table 7: Image Classification test accuracy for WideResnet 40-2 in CIFAR100, trained using different
augmentation policies defined over the wide (Müller and Hutter, 2021) augmentation space. The
first column corresponds to using the training data without applying any transformations, and the
second column to sampling transformations according to λ⋆

c , which results in lower accuracy. The
third column corresponds to using both the original and augmented data equally weighted, which
leads to an improvement in accuracy. We report the mean and confidence intervals computed over
five independent runs.

C.3 SYNTHETIC INVARIANCES

Although our approach does not aim to learn the set of symmetries or invariant transformations from
the data, but rather to impose it on the predictor, dual variables can be used to gather insights on the
actual invariances underlying a learning task.

We showcase this on datasets with artificial invariances, following the setup of Immer et al. (2022).
Namely, we apply transformations independently drawn from the distributions specified in Table 8, to
each sample in the datasets MNIST (LeCun et al., 2010) and FashionMNIST (Xiao et al., 2017). We
use the same MLP and CNN architectures and hyperparameters as (Immer et al., 2022).

We run our algorithm constraining the loss on the transformation spaces detailed in Table 9, which
(except for the fully rotated dataset) are larger than the true transformation range used to construct
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the synthetic dataset. Note that we use the same transformation sets and constraint levels (ϵ) for all
synthetic datasets. As shown in table 10, except for scalings in FashionMNIST, the dual variables
(γ) associated with transformations corresponding to the true synthetic invariances in the dataset are
considerably smaller. This indicates that when the transformations in the constraint correspond to a
true invariance of the dataset, the constraint is easier to satisfy. Since the transformation ranges in the
constraint and those used to construct the dataset do not match exactly (except for the fully rotated
dataset), the degree of invariance to the transformation sets in the constraints is only approximate.

Synthetic invariance Parameter Distribution
Full Rotation Angle in radians. U

[
−π

2 ,
π
2

]
Partial Rotation Angle in radians. U [−π, π]

Translation Translation in pixels. U [−8, 8]2

Scale Exponential Scaling factor. U [−log(2), log(2)]

Table 8: Sampling parameters for transformations used to obtain synthetically invariant datasets,
from (Immer et al., 2022).

Constraint Set Parameter Range
Rotations Angle in radians. [−π, π]

Translation Translation in pixels. [−16, 16]2

Scale Exponential Scaling factor. [−1.5, 1.5]

Table 9: Transformation sets used as invariance constraints. All sets are used simultanously, with the
same constraint level (ϵ) for all datasets.

Synthetic Invariance
Dataset Architecture γ Full Rot. Partial Rot. Translation Scale
MNIST MLP Rotation 0.000 0.004 3.224 0.035

Translation 1.344 0.038 0.289 0.032
Scale 1.800 0.045 4.206 0.004

CNN Rotation 0.000 0.002 2.724 0.012
Translation 1.218 0.009 0.439 0.006
Scale 2.026 0.049 4.029 0.003

F-MNIST MLP Rotation 0.000 0.037 4.470 1.599
Translation 3.572 1.934 0.939 0.717
Scale 4.144 2.653 3.472 0.754

CNN Rotation 0.000 0.107 3.301 1.352
Translation 3.572 1.426 0.515 0.441
Scale 4.144 2.332 2.725 0.904

Table 10: Value of dual variables (after 400 epochs) for different transformation constraints and
synthetic invariant datasets. Columns correspond to different transformations of the dataset, and rows
to dual variables associated with different transformations. Except for scaling in FashionMNIST,
for all architectures and dataset the dual variable associated with the constraint corresponding to
the transformations applied to the dataset is considerably lower. The smallest dual variable for each
dataset and architecture is bolded.
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D RELATED NOTIONS OF INVARIANCE

There are several definitions of invariance that capture different properties of the solution or data
distribution under the action of transformations in G.

In the context of supervised learning, the data distribution is said to be exactly invariant iff it does not
change when transformations are applied to the covariates, i.e.,

(x, y) =d (gx, y), for all g ∈ G,

where =d denotes equality in distribution. Note that this can be relaxed to approximate equality in
distribution, i.e. that the distribution shift induced is small in an appropriate metric, e.g. Wassertain
distance (Chen et al., 2019). This definition implies that the probability of a given label is - exactly or
approximately - the same for a feature vector x and its transformed versions gx:

P (y|x) = P (y|gx)

On the other hand, a predictor can satisfy hard invariance, explicitly,

fθ(x) = fθ(gx) for all g ∈ G, x ∈ X ,

which needs to hold point-wise over the transformation set and input space. This can be relaxed by
taking the mean over the data distribution to obtain a definition of statistical invariance, i.e.,

E(x,y)∼D [fθ(x)] = E(x,y)∼D [fθ(gx)] for all g ∈ G,

which still needs to hold for every transformation in G.

This notions of invariance do not explicitly contemplate the task at hand, that is, not all changes in y
equally affect performance. Thus, we use the loss to encode meaningful differences in labels with
respect to the task, as described in section 3.1. Throughout this work, we thus refer to the invariant
risk Rinv defined on equation 5 as the degree of invariance, unless otherwise noted.
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