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Abstract

This work introduces the Hat Diffusion Energy-Based Model (HDEBM), a hy-
brid of EBMs and diffusion models that can perform high-quality unconditional
generation for multimodal image distributions. Our method is motivated by the
observation that a partial forward and reverse diffusion defines an MCMC process
whose steady-state is the data distribution when the diffusion is perfectly trained.
The components of HDEBM are a generator network that proposes initial model
samples, a truncated diffusion model that adds and removes noise to generator
samples as an approximate MCMC step that pushes towards realistic images, and
an energy network that further refines diffusion outputs with Langevin MCMC. All
networks are incorporated into a single unnormalized density. MCMC with the
energy network is crucial for driving multimodal generation, while the truncated dif-
fusion can generate fine details needed for high-quality images. Experiments show
HDEBM is effective for unconditional generation with sampling costs significantly
lower than diffusion models. We achieve an FID score of 21.82 on unconditional
ImageNet at 128x128 resolution, which to our knowledge is state-of-the-art among
unconditional models which do not use separate retrieval data.

1 Introduction

Image generation with deep learning has made tremendous progress in the past decade as models
become more sophisticated and available compute increases. Conditional modeling, where auxiliary
information such as a label or text is used to guide model synthesis, has led to impressive results
for applications such as class-conditioned [3, 7] and text-conditioned [44, 45] generation. While
unconditional modeling has also seen great progress, unconditional models often significantly under-
perform conditional counterparts. This is especially true for highly multimodal' and high-resolution
datasets such as ImageNet [6]. Improvements in unconditional modeling techniques have the potential
to increase our understanding of non-convex probability densities, enable better generation when
supervised information is unavailable, and increase the diversity of conditional generations.

Generative adversarial networks (GANs) [13] and diffusion models [21] are the most popular current
methods for high-resolution image synthesis. Both have drawbacks when it comes to highly multi-
modal unconditional modeling. The adversarial objective of GAN learning often leads to the mode
collapse phenomenon [34] where the generator model only learns to generate a small subset of the
entire data distribution. Diffusion models face the challenge of assigning samples to separate modes
early in the reverse diffusion process when image features first start to emerge from noise. The initial
phase of the reverse diffusion process can be very sensitive to network changes. Using an exponential
moving average (EMA) of the weights can help alleviate this sensitivity by stabilizing outputs across
model updates and it is typically a vital part of diffusion learning.

'In this work multimodal refers to diversity of images in a dataset rather than separate data domains.
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Figure 1: Left: Unconditional ImageNet 128x128 samples generated by HDEBM. Right: Visual-
ization of energy function structure in HDEBM. G creates an intial image from noise Z; which is
passed through a forward/reverse truncated diffusion in G2. G5 then performs approximate MCMC
on the data distribution. The output is adjusted with residual image Y to create a visible image X for
forward pass energy calculation with 7. Sampling uses Langevin MCMC via backpropagation.

We explore the potential of the energy-based model (EBM) as a method for highly multimodal
unconditional learning. While existing EBMs often do not match the performance of GANs and
diffusion models for low-resolution data, the recently introduced Hat EBM [19] showed surprisingly
strong performance on high-resolution unconditional ImageNet generation. Nonetheless, Hat EBM
does not achieve state-of-the-art results. In this work, we build upon Hat EBM to develop a new
model that achieves state-of-the-art unconditional synthesis for ImageNet 128x128.

A fundamental obstacle of EBM learning is the computational burden of the MCMC inner loop used
for each model update. Computational restrictions allow only shortrun MCMC trajectories during
training, limiting the fine image details the EBM generates. Diffusion models decouple learning
from MCMC sampling and thereby can use many steps during test-time generation to create fine
image details. Incorporating diffusion sampling into the EBM sampling process has the potential
to greatly improve generation quality while preserving the relatively fast sampling speed and wide
mode coverage of EBMs.

Our key insight is that adding noise to an image and removing noise with a perfectly trained diffusion
model defines an MCMC trajectory whose steady-state is the data distribution (see Section 3.2).
Building on this, we propose to add and remove noise from generator samples using a truncated
diffusion model as an initial approximate MCMC step, followed by further Langevin MCMC
refinement from the EBM. To enable the truncated diffusion to be incorporated into EBM learning,
we train it separately and distill it to a single step using progressive distillation [48]. Similar to the
approach in [60], we only train the truncated part of the diffusion model near the data distribution
and ignore the higher noise levels. This bypasses the most challenging parts of diffusion learning
and greatly reduces the size of the diffusion model without sacrificing denoising performance. The
difficulty of the training and distillation process is greatly reduced for truncated diffusion compared
to full diffusion. Once trained, the truncated and distilled diffusion is incorporated into Hat EBM
between the generator and energy network. It can be viewed both as an extension of the generator
that refines the base generator output and as an extension of the MCMC sampling phase using an
approximate sampling step. We call this model the Hat Diffusion EBM (HDEBM). Experiments show
HDEBM significantly improves sample quality compared to Hat EBM without significant increase in
computation cost beyond training the truncated diffusion. Curated samples from HDEBM along with
model energy structure are shown in Figure 1. In summary, our main contributions are listed below.

* We introduce the novel perspective that a partial forward and reverse process for a perfectly trained
diffusion model defines an MCMC trajectory whose steady-state is the data distribution.

* We develop the Hat Diffusion EBM (HDEBM) modeling framework that incorporates a truncated
and distilled diffusion into Hat EBM to help train the generator and energy network. All networks
are incorporated into a single unnormalized density.

* Experiments on CIFAR-10 [24] and Celeb-A 64x64 [30] show that HDEBM has state-of-the-art
synthesis performance among explicit EBMs. Experiments on unconditional ImageNet 128x128
show that, to our knowledge, Hat EBM has state-of-the-art synthesis performance among models
that do not use retrieval data during test time.
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2 Related Work

EBMs. Energy Based Models (EBMs) are a class of generative models that aim to represent a
data distribution with an unnormalized density. Early work includes Boltzmann machines [1, 46],
and the Filters Random field And Maximum Entropy (FRAME) model [61]. Recent advancements
in deep learning have led to investigations in using Convolutional Network based EBM models
[58] increasing the image synthesis [38, 10] abilities. The community has also trained EBMs with
auxiliary models. One approach trains the EBM using direct outputs from the generator without
MCMC sampling [23], which is further explored by methods such as EGAN [5] and the VERA
model [14]. Cooperative learning [55] uses a generator to initialize MCMC samples used to train the
EBM and uses a reconstruction loss between the EBM samples and the generator output to update the
generator. EBMs defined in latent space [39, 40] have also been explored as the energy landscape in
latent space can provide better movement along the complex image manifold. The closest work to our
approach is Hat EBM [19] which builds upon [55] to incorporate the generator latent space into the
unnormalized density. We provide a comparison between Hat EBM and HDEBM in Appendix C.1.

Diffusion Models. Diffusion models [49, 21, 50] are based on the notion of adding and removing
noise in order to learn underlying patterns of a dataset. The slow sampling speed of early models
has been significantly expedited with acceleration techniques [50, 48, 59, 31, 60, 32], several of
which are related to our approach. DDIM [50] employs a class of non-Markovian diffusion processes
to define a faster deterministic sampling method. Truncated diffusion trajectories, wherein only
fragments of the forward and reverse processes are performed, have been appended to other kinds of
generative models to improve sample quality [60, 32]. Truncated diffusion models have also found
applications in image editing [33] and adversarial defense [37]. We build upon these works by noting
that an ideal truncated diffusion defines an approximate MCMC process with the data distribution
as its steady-state, which can serve as a tool for instructing other networks. A comparison between
HDEBM and other methods [60, 32] that employ truncated diffusion for generation is provided in
Appendix C.2. Progressive distillation [48] trains a series of student networks to match the DDIM
paths of teacher networks. The distilled model obtains high quality samples with only a few steps.

3 Method

This section first presents background theory for learning EBMs and for learning and distilling
diffusion models. Next, we discuss how truncated and distilled diffusion can be viewed as an efficient
approximate MCMC update. Finally, HDEBM model formulation and training methods are presented.

3.1 Background
EBM Learning. Our EBM learning follows the methods from [20, 57, 61]. An EBM is defined as

1
p(x;0) = mexp{—U(ﬂf;a)} (D
where U (x;0) is a deep neural network with parameters ¢, x is an image state, and Z(f) is an
intractable normalizing function. A maximum likelihood objective is used to minimize the Kull-
back—Leibler divergence argmin, Dk 1,(qo(x) || p(z;8)), where go(x) is the true and unknown data
distribution, by using stochastic gradient descent

1 mn 1 n

VL(O) ~ — LY i .

(0) % = > VoU(X[50) = =3 VoU(X; :0) ®)
=1 =1

where X" are samples from the data distribution and X are samples from the model p(x;6). To

obtain samples from the model, MCMC sampling with K steps of the Langevin equation is used:

2
(k1) _ xk _ %Vx(k)U(X<k)§9) + eVy, 3)

where X (%) is the sample at step k, e is the step size, and V, ~ N (0, I). Generating negative samples
also requires an initialization strategy to obtain the initial states { X, ,}7 .

Diffusion Learning and Distillation. This section provides a concise review of diffusion models,
truncated diffusion, and distilled diffusion. We denote data distribution as X ~ gy and consider ¢;
for t € [0,T] as the forward process which produces noisy samples by adding Gaussian noise to
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the data. Specifically, the noisy samples z; can be parameterized given o, and oy, such that the log
signal-to-noise-ratio, \; = log(a?/c?), decreases monotonically over time ¢. The forward process
can be defined by a Gaussian process constituting a Markov chain:

@ (ve|z) = N (245 g, 01:2])7 Qi (we|zs) = N(zy; (at/as)xsvaf\sl)v “)
where 0 < s <t < T and O'tz‘s = (1 — e**¢)o2. To sample from data distribution g, we first

sample from g then sample reverse steps until we reach x. As suggested by [21] and following
works, we can construct a neural denoiser & (x;) to predict an estimate of x, and learn a model using
a weighted mean-squared-error loss:

L(0) = Ex gy tmv[0.7) 00, (o) [0 |36 (X1) — X|3]. )

In this work, we train truncated diffusions which only use part of the forward/reverse process as
in [60]. This simply involves changing the sampling distribution of ¢ from U[0, T'] to U[0, T"] for
T’ < T. We limit our training to either the final 7/ = 256 or 7" = 512 steps of a discrete cosine
schedule with 7" = 1000 steps.

A DDIM sampler [50] can achieve fast, high-quality, and deterministic generation. Our works utilizes
progressive distillation of DDIM to further accelerate sampling [48]. Student models are trained so
that one DDIM step of the student model matches two DDIM steps of the teacher model. The initial
teacher is the full diffusion. After convergence the student becomes the new teacher, halving the
number of steps until the entire denoiser consists of a single step.

3.2 Truncated Diffusion as MCMC Sampling

In this section we develop a theoretical understanding of the truncated diffusion process used as part
of the HDEBM. We begin with a straightforward proposition that demonstrates the central claim.

Proposition 3.2.1. Suppose D(x,t) is the DDIM reverse process starting at timestep t for a perfectly
trained diffusion model, meaning that if X' ~ q; then D(X',t) ~ qo. Further suppose that the
support of qq is contained within a compact set. Then the stochastic update

X+ D(uX +o0.Z,t) where Z~ N(0,I) (6)

defines an ergodic MCMC process with a unique steady-state distribution qq for any timestep t.

Proof. 1Tt is clear that (6) is a Markov transition since the updated state only depends on the starting
state X and noise. The forward process by definition has the property that X' = ¢, X + 04 Z ~ ¢4
if X ~ qoand Z ~ N(0,I). Therefore if X ~ go then Y = D(c;X + 01Z,t) ~ qo under the
assumption that D is perfectly trained. This shows that the Markov update (6) preserves the data
distribution go. We note the process is aperiodic and irreducible because adding Gaussian noise to X
can map to any image state with non-zero probability, and the assumption that D is perfect means
there is always some image in ¢, that will map to a given image in the support of q. Since the support
of qg is contained in a compact set, the chain must be recurrent so that the process is ergodic and ¢
is the unique steady-state. O

We view the proposition as a useful insight that allows a more principled framework for using truncated
diffusion than the empirical perspective presented in prior works. SDEdit [33] empirically observes
that a truncated diffusion process can add realism to naive edits or rough user-defined templates.
Understanding the truncated diffusion as an approximate MCMC step on the data distribution gives
a clearer picture of why this occurs since we expect MCMC to move out-of-distribution states
towards the data distribution while still retaining some features of the original state due to MCMC
autocorrelation. The same observation applies to the DiffPure defense [37] which uses truncated
diffusion to remove adversarial signals while preserving most of the original image appearance.

The proposition applies to any timestep ¢ > 0. The value of the ¢ determines how far the MCMC step
travels across the data distribution. In the limiting case ¢ = 7" the MCMC step samples independent
images from the full diffusion each time. Large values of ¢ greatly changes image appearance in
each step (lower MCMC autocorrelation) while small values of ¢ retains more of the original image
appearance (higher MCMC autocorrelation). This is analogous to the discussion of the role of noise
in SDEdit [33]. Additionally, we expect that truncated diffusions are much easier to learn when ¢ is
small and much harder to learn when ¢ is large because smaller ¢ define an easier denoising problem
while larger ¢ require more coordination between timesteps to drive noisy samples to different modes.
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Figure 2: Visualization of Stage 1 (left) and Stage 2 (right) training methods for HDEBM. Red arrows
indicate that the initial random variable is updated using Langevin MCMC according to the given
density. Langevin with p(Y'|G(Z1, Z2; ¢); 0) and p(Y, Z1, Z2; 6) uses the same equations as [19].

We further develop truncated diffusion as a modeling tool by observing a synergy between learning
a truncated diffusion and learning a distilled diffusion. As noted in [48], a challenging aspect of
learning a distilled diffusion is that the diffusion network output for a noise image at ¢ = 7' provides
essentially no information about the final state before distillation, while once the model is distilled to
a single step the final image must be fully predicted from noise. When distilling a truncated diffusion,
noisy images at £ = T have many features of the original image and diffusion network outputs can
retain many of these features throughout distillation while refining overall appearance. In contrast to
full diffusion distillation [48] we find only a minor performance gap between the undistilled truncated
diffusion and the truncated diffusion distilled to a single step.

In summary, we view truncated and distilled diffusion as an efficient tool that can perform approxi-
mate MCMC sampling with updates that can travel much further along with image manifold than
conventional methods like Langevin MCMC. After distillation, it becomes computationally feasible
to perform forward/backward passes through the MCMC step to train other networks. There is a
significant need for MCMC tools with better movement along complex manifolds and truncated
diffusion MCMC has the potential to fill this gap. We note there are several challenges before
truncated diffusion MCMC can be a general purpose tool. The process is approximate in practice,
non-reversible, and lacks an explicit transition density function so that Metropolis-Hastings correction
is not immediately applicable. In this work, we show that the unadjusted process is a useful tool for
teaching generator and energy networks. We hope that this tool can be adapted into a rigorous and
general purpose MCMC transition in future works.

3.3 Hat Diffusion EBM

This section describes the HDEBM model formulation and training process. We assume that a
truncated and distilled diffusion network D(z) that approximately maps the noisy distribution g
to the data distribution g in a single forward pass has been trained and frozen. The choice of T’
depends on the dataset. We first adapt the synthesis-oriented training of Hat EBM to jointly train the
energy network and generator network. In this stage of training, samples are generated by drawing
latent Gaussian random variables and performing MCMC on a residual image conditioned on frozen
latents. We then perform a second stage of training that adapts the energy function from a form where
latents must be frozen after initialization to a form where both latents and image residuals can be
updated with MCMC sampling. The ability to perform MCMC refinement in both the image and
latent space can greatly improve sample quality over the first stage model. The second stage model
has more appealing properties as an explicit energy model since the intractable normalizer does not
depend on the latent state.

Following the Hat EBM formulation, we make the assumption that data samples X ~ ¢y can be
decomposed as X = G(Z) + Y where G is a generator network, Z is a latent random variable, and
Y is a random variable which functions as a residual image to bridge the gap between the generator
output manifold and the data manifold. In the first stage of learning we assume Z ~ N (0, I) and we
learn the distribution Y'|Z. In the second stage we learn the joint distribution of Z and Y.
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Our central modification is to define GG as
G(z) = G2(G1(21),22), with Gao(z,2) = D(apx + o7 2) @)

where z = (21, 22). 1 creates initial image proposals from noise which are refined by the forward
and reverse process of GGo. Depending on the context we use the notation GG1(z1) to show a fixed
generator and G1(z1; ¢) to show a learnable generator with weights ¢. When G is learnable we
denote the entire generator as G(z1, 22; ¢). The noising and denoising process applied to G5 can be
interpreted as an MCMC step that pushes the initial generator output closer to the data distribution.
In the second stage, we refine both z; and zo using MCMC initialized from N (0, I). A diagram of
each training stage is show in Figure 2.

3.3.1 First Stage: Residual Distribution Conditioned on Fixed Latent

This section describes how to train a model that can create samples by drawing a Gaussian random
variable Z ~ N (0, 1), passing Z through a generator network to create initial images, and then
refining these image samples using MCMC with an energy network while leaving latent variables
fixed. The methodology takes inspiration from cooperative learning [55] and Hat EBM [19]. It is
difficult to formulate a single maximum likelihood learning framework to train both the generators
and energy. Therefore we follow prior work and use two maximum likelihood objectives: one to train
the energy network assuming the generator is fixed and another to train the generator assuming the
energy is fixed. Intuitively the energy objective will teach the EBM the best way to refine a fixed
generator and the generator objective will teach the generator how to best close the gap between its
current samples and refined EBM samples. The generator is trained using purely synthetic data from
its own outputs and EBM refinement. Following prior work, in practice we alternate between updates
of the EBM and generator.

To train the energy function, we assume that G; and G+ are both fixed and use G(Z) to denote the
entire generator process (7). The model density is given by

p(y, z;0) = Z; po(2) exp{—H(G(2) +y;0)} ®)
-(0)

where H (x; 6) gives the energy output from the sum of the generator and residual image and py is the
N (0, I) density. Learning the weights 6 is identical to Hat EBM learning with a different generator
structure. To obtain negative samples, we initialize Z~ ~ N(0, ) and Y~ = 0 and then use shortrun
Langevin sampling (about 50 steps) to obtain Y ~|Z~. We assume the data distribution has the form
X =G(Z)+Y where Z ~ N(0,I) and Y|Z ~ go(y|#) for some unknown distribution. Learning
uses the standard EBM update (2) with an energy form U (y|z;0) = H(G(z) + y;0) where data
samples X T ~ g are sufficient statistics for updating 6 and (Y™, ZT) do not need to be inferred.

To update the generator G (z1; ¢), we assume that we have a fixed energy network H(x) and
a fixed generator G(z) from the current model. We treat the shortrun MCMC process with the
density (8) used to generate negative samples as the ground truth distribution. Specifically, while
updating the generator we assume that the data distribution is the joint distribution (X, Z) where
Z ~ N(0,I)and X = G(Z) + Y where Y is generated from short-run MCMC using the energy
U(y|lz) = H(G(z) + y) initialized from Y = 0. We denote the shortrun MCMC distribution as
s(z|z). We aim to train the generator G(z1, z2; ¢) = G2(G1(21; ¢), 22) to match this distribution.
No real data is used to train the generator. Even with perfect learning, the samples from the updated
generator can be no better than samples from the current HDEBM model. The goal is instead to
match the current HDEBM samples with only the updated generator to provide a better MCMC
initialization for future HDEBM learning iterations.

The form of the learnable generator distribution is a key design choice of HDEBM. The latent
distribution is set to be Z ~ N (0, I) and we learn the conditional density p(z|z; ¢). We propose to
use two energy terms: one which encourages the output of G(z1, z2; @) to be close to refined EBM
samples, and one which encourages the output of G1(z1; @) to be close to refined EBM samples. The
density is given by

p(z|z; ¢) = %eXp {-Billz — G(z1, 22;9)||*} exp { ||z — G1(21;9)|*} )

which is the product of the Gaussians N (G(z1, zo; @), 61_1/2) and N (G1(z1;¢), 62_1/2) for constants
(1, B2. The constants 31, 52 allow a trade-off between the importance of the energy terms. Since the
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product of two Gaussians is a Gaussian whose standard deviation does not depend on the Gaussian
means of the product terms, the normalizer Z does not depend on ¢ and the maximum likelihood
objective can be written in closed form:

¢ = argming By, 2)s(al2) [B11X — G(Z1, Zo; 9)|* + Bl X — G1(Z159)|17] - (10)

The first term will adjust the output of G'1(z1; ¢) so that the entire generator G(z1, z2; ¢) produces a
sample that resembles an EBM sample after the output of G; goes through the noising and denoising
step from G2. This greatly eases the burden of training the generator compared to the approach
in Hat EBM. Assuming that EBM samples are close to the data distribution, the forward/reverse
diffusion from G will naturally push samples from G towards the target distribution. G; can learn
to produce any distribution whose samples are mapped to samples close to the data distribution when
G is applied. The data distribution itself is one such possibility, but there are others which are easier
to learn including images which resembled smoothed data or even images with artifacts that exploit
imperfections in the diffusion GG5. The function of this loss term can be interpreted as training G to
invert G4 given forward noise Z5 and target image X.

The second term will encourage the output of G; to match EBM without considering G5. We view
this term as a regularizer. Since GG; can learn many possible distributions that match noisy data after
forward noise is applied, this term can encourage (1 to find a solution that resembles the data. In
practice, we find that the first term is essential for good synthesis results while including the second
term with a small 82 can in some cases yield slight improvements. In other cases we set S, = 0 and
only use the first term.

In practice we alternate between one update of H(x; ) and one update of G1(z1; ¢). Additionally,
we maintain a bank of pairs {(X (¥, Z(V)} and draw batches from this bank to update the generator,
after which the batch states are overwritten with pairs from the most recent EBM update. As in Hat
EBM, we find this is more effective than using only the most recent EBM samples to update G
because the most recent EBM samples can sometimes lack diversity while historical samples tend to
have good diversity. Training the generator on samples with limited diversity can cause instability
as the EBM tries to compensate by strongly adjusting the MCMC paths. We experimented with
performing 10 steps to update the EBM followed by 10 steps to update the generator without the
historical bank and saw good initial results. However this training strategy requires twice the amount
of MCMC since fresh samples are needed to update both the generator and EBM. It also requires a
second copy of the weights of G in GPU memory since sampling from s(z|z) requires a frozen copy
if more than one generator update is used. To save memory and compute we use the historical bank
approach. See Appendix D.3.1 for training pseudocode.

3.3.2 Second Stage: Joint Residual and Latent Distribution

The second stage of training will finetune a model H (z;#) which is pretrained as a density of the
form (8) to become a density of the form

1

p(y,z0) = %exp{—H(G(Z) +y:0)}. (11)
The primary difference between (11) and (8) is that the normalizer of the former depends only on €
while the normalizer of the latter depends on both 6 and z. This means that we can perform MCMC
on z for the density (11) but not for (8). We use the second stage as a way to refine the initial generator
appearance which might have blurs or artifacts that can be corrected by local movement. We leave
both G; and G5 frozen during the second stage and we initialize 6 from the weights of the first phase.
Negative samples are obtained from alternating Langevin steps of Y and Z initialized from Y = 0
and Z ~ N(0, I). The first stage is critical for aligning the output of G(z) to produce realistic images
near N (0, I), which provides high-quality MCMC initialization for the second phase. The EBM
update uses the same equation as the first stage. We experimented with including the Gaussian prior
po(z) in (11) but found negligible effect. See Appendix D.3.2 for training pseudocode.

4 Experiments

We now present our HDEBM experiments for unconditional generation. All networks used in our
experiments are trained from scratch using only unconditional data from a single dataset. Each
experiment involves three rounds of training. First, we train the truncated diffusion and distill it to



302
303

305
306
307
308

309
310
311
312
313
314

315

316
317
318
319

321
322

324
325
326
327
328
329

330
331
332
333
334
335
336
337
338
339

Table 1: Comparison of FID scores among representative generative models. For CIFAR-10 and
Celeb-A, all FID reports are for unconditional models. EBMs are above the dividing line and other
models are below. For ImageNet, models above the dividing line are unconditional and models below
use label information. (*=re-evaluated using evalulation code from [7], c.g.=classifier guidance)

CIFAR-10 (32 x 32) CelebA (64 x 64) TImageNet (128 x 128)
Model FID Model FID Model FID
VERA [15] 27.5 . . InfoMax GAN [27] 58.9
Divergence Triangle [16 31.9
Improved CD 1?}391;4 o s gence Tangle [l6] - 312 Hat EBM (small) [19]* 4389
C: Flow [56] 15‘80 Diff. Recov. EBM 5.98 Hat EBM (Iarge) []9]“ 31.89
VZEBI‘\’A o 1o HDEBM (Stage 1) (ours) 5.55 SS-GAN (small) [4] 43.9
. > : HDEBM (Stage 2) (ours) 4.13 SS-GAN (large) [4] 23.4
Diff. Recov. EBM[12]  9.58 NVAE [53] A7 HDEBM (Stage 1) (ours) ~ 28.08
HDEB ﬁL(ISEI;C[éf:]]) (ours) S.Z(l) NCSNv2 [51] 102 HDEBM (Stage 2) (ours) 21.82
HDEBM (Stage 2) (ours)  8.06 _ QA-GANT4] 6.42 Cond. EBM [11] 437
(Stage 2) (ours) ffus oder [42]  5.30
NCSNV2[51] 109 Diffusion Autoencoder [42] - Diffusion + c.g. [8] 30.46
DDPM [21] 32 COCO-GAN [28] 4.0 UHMC Diffusion + c.g. [8]  26.89
StyleGAN2-ADA [22]  2.92 5}11)1;]\1\//[[ [52(;] 23‘751 Cond. BigGAN [3] 6.02
NCSN++ [52] 2.20 [29] . Cond. ADM + c.g. [7] 297

a single step. As described in [48] the entire distillation takes about the same time as training the
initial truncated diffusion. Since we are only training the truncated diffusion, compute is significantly
less than required for full diffusion training. The diffusion network is frozen after training. We then
train the first stage HDEBM using Algorithm 1. This is the most compute intensive part of training.
Finally, we freeze the generator G; and initialize the energy network weights 6 from the first stage
weights to perform second stage training using Algorithm 2. This training converges rapidly and the
cost is minor. See Appendix D for a thorough discussion of experimental details.

Datasets. We experiment with CIFAR-10 [24], Celeb-A [30] at resolution 64x64, and ImageNet [6]
at resolution 128x128. Following standard procedure, we train and evaluate our models using only
the training sets. For CIFAR-10 we trained the truncated diffusion using the first 7/ = 256 timesteps
of a T = 1000 step diffusion with the cosine schedule from [7] and for Celeb-A and ImageNet we
used the first 7" = 512 timesteps of the same schedule. We use 4 A100 GPUs to train CIFAR-10
models and 8 A100 GPUs to train Celeb-A and ImageNet models.

4.1 Unconditional Generation

Our main experiments are unconditional generation on CIFAR-10, Celeb-A 64x64, and ImageNet
128x128. Table 1 presents FID scores for the first and second stages of our model, along with a
comparison to a representative selection of existing models. Overall, our results show that HDEBM
achieves state-of-the-art (SOTA) synthesis results among explicit EBMs for CIFAR-10 and Celeb-A.
Furthermore, HDEBM achieves an FID score of 21.82 for unconditional ImageNet at 128x128
resolution which, to our knowledge, is SOTA for unconditional image generation without separate
retrieval data.

To our knowledge, the generative modeling literature does not include a clear SOTA diffusion baseline
for unconditional ImageNet at 128x128 resolution. At 256x256 resolution, unconditional ADM [7]
achieves an FID score of 26.21 and RDM [2] achieves an FID of 12.21 with external retrieval data.
RDM uses CLIP [43] encodings and therefore implicitly relies on the large-scale (text, image) dataset
used to train CLIP. This complicates the unconditional modeling scenario. Modeling ImageNet at
resolution 256x256 is beyond the 8 GPU budget used in this work and we hope to scale in future
works for direct comparison to higher-resolution SOTA models.

For semi-unconditional ImageNet diffusion at 128x128 resolution, we include results from the recent
work [8] which trains an unconditional diffusion model at 128x128 resolution and uses classifier
guidance with standard reverse sampling (FID score of 30.46) and UHMC sampling (FID score
of 26.89). It is likely that these models are not as highly optimized as ADM since FID scores
at a lower resolution and with classifier guidance do not match unconditional ADM at a higher
resolution. This highlights the difficulty of training highly optimized unconditional diffusion models.
Overall, there is strong evidence that HDEBM can be competitive with or surpass highly optimized
unconditional diffusion at 128x128 resolution. HDEBM will likely not match highly optimized
retrieval augmented diffusion. We view the retrieval strategy as orthogonal to our approach and
believe retrieval augmented HDEBM could yield further improvement in future work.



340
341
342
343

344

345
346
347
348

350
351
352
353

354

355
356

358
359
360
361
362
363
364
365
366

Table 2: Extended report of generative modeling metrics for ImageNet 128x128. Unconditional
models are above the dividing line and conditional models are below the line. (*=re-evaluated using
evalulation code from [7], c.g.=classifier guidance)

ImageNet (128 x 128)

Model FID sFID IS Precision Recall
Hat EBM (small) [19]* 43.89 9.63 21.21 0.43 0.44
Hat EBM (large) [19]* 31.89 7.39 26.03 0.54 0.45
HDEBM (Stage 1) (ours)  28.08 6.56 24.84 0.54 0.58
HDEBM (Stage 2) (ours)  21.82 5.08 28.56 0.56 0.59
Cond. BigGAN [3] 6.02 7.18 166.6 0.86 0.35
Cond. ADM [7] 591 5.09 - 0.70 0.65
Cond. ADM + c.g. [7] 2.97 5.09 - 0.78 0.59

Table 3: Left: Sampling speed and memory consumption of different models. Sampling speed is
evaluated by the number of Equivalent NFE (ENFE) for full reverse sampling of popular diffusion
networks. Memory utilization is assessed using an Nvidia A100 (80G) GPU. We set batch size to
32 for memory utilization experiments. Middle and Right: FID and sample compute comparison
between HDEBM and accelerated diffusion methods for CIFAR-10 and CelebA.

CelebA (64 x 64)

Dataset Model ~ ENFE Mem util CIFAR-10 (32 x 32) o FE——
ode
CIFAR-10 ~DDPM++ 1000 6.8G o o T DDIM [21 10 1373
30x32 HDEBM-1 184 7.0G DDIM [50] 20 6.84 DDIM {2 1} 100 6 .53
o HDEBM-2 749  6.9G ES-DDPM [32] 100 552 by
TDPM-GAN [60] 1 734 DPM-Solver(Type-2) [31] 10 5.83
ADM 1000 18.6G ! DPM-Solver(Type-1) [31] 20 2.82
CelebA TDPM [60] 5 3.51
64x64 HDEBM-1 9.8 31.8G DPM-Solver(Type-3) [31] 18 290 ES-DDPM [32] 10 6.44
HDEBM-2 1145 294G P i pe- : ES-DDPM [32] 100 3.01
rog. Distill. [48] 4 3.00
S PNDM [29] 10 7.71
InazeN ADM 1000 553G Prog. Distill. [48] 8 2.57 PNDM [29] 100 231
mageNet — proepail 63 48.2G HDEBM-1 (ours) 18.4 8.40 :
128x128 HDEBM.2 412 457G HDEBM.-2 (ours) 749 306 HDEBM-1 (ours) 9.8 5.55
- . . - i HDEBM-2 (ours) 1145 4.13

Table 2 includes an extended report of generative modeling metrics to give a fuller picture of HDEBM
performance on ImageNet 128x128. Notably, HDEBM outperforms conditional ADM and BigGAN
in terms of sFID, and outperforms BigGAN in terms of recall. Overall HDEBM shows balanced and
strong performance across evaluation metrics.

4.2 Sampling Compute Cost

Table 3 presents a comparative analysis of the Stage 1 and Stage 2 HDEBM with the standard
diffusion model and accelerated diffusion methods, with respect to number of function evaluations
(NFE), memory utilization, and FID on CIFAR-10 and Celeb-A. ImageNet is omitted due to lack
of available unconditional models. Since sampling from our model involves both diffusion network
forward pass (sometimes smaller than their typical size) and MCMC sampling, NFE is not directly
applicable and we define a related metric ENFE (Equivalent NFE) that reports the sampling speed of
our model in terms of the NFE of DDPM++ 32x32 and ADM 64x64 and 128x128 that take equivalent
time. See Appendix D.2.1 for details. ENFE comparisons in Table 3 are rough comparisons because
exact network structure varies between accelerated diffusions.

5 Conclusion

This work develops a hybrid of EBMs and diffusion models called HDEBM. A central component
of the method is a truncated and distilled diffusion which can perform approximate MCMC on the
data distribution using only a forward diffusion with negligible cost and a reverse DDIM process
in a single forward pass. The truncated diffusion is incorporated between the generator and energy
network of Hat EBM. The truncated diffusion can add fine details to the generator output for realistic
synthesis while the MCMC trajectories learned by the EBM drive sample diversity to ensure good
coverage of highly multimodal datasets. Experiments show that HDEBM yields high-quality image
synthesis compared to explicit EBMs and SOTA FID results for unconditional ImageNet 128x128.
HDEBM also has fast sampling speed compared to standard diffusion models. In future work we
hope to further scale HDEBM to larger network sizes and higher resolution images, to investigate
conditional and retrieval augmented models based on HDEBM, and to adapt HDEBM training to
learn MCMC trajectories that have long-run stability and good mixing between modes.



367

368
369

370
371

372
373

374
375
376

377
378

380
381

382
383

384
385
386
387

388
389
390

391
392
393

394
395

396
397

399
400

401
402

404
405
406

407
408
409
410

411
412
413

References

[1] David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning algorithm for
boltzmann machines. Cognitive Science, 9(1):147-169, 1985.

[2] Andreas Blattmann, Robin Rombach, Kaan Oktay, Jonas Miiller, and Bjorn Ommer. Retrieval-
augmented diffusion models. In Advances in Neural Information Processing Systems, 2022.

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

[4] Ting Chen, Xiaohua Zhai, Marvin Ritter, Mario Lucic, and Neil Houlsby. Self-supervised gans
via auxiliary rotation loss. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019.

[5] Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard H. Hovy, and Aaron C. Courville.
Calibrating energy-based generative adversarial networks. ICLR, abs/1702.01691, 2017.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248-255. leee, 2009.

—
~
—

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in Neural Information Processing Systems, 34:8780-8794, 2021.

[8] Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fer-
gus, Jascha Sohl-Dickstein, Arnaud Doucet, and Will Grathwohl. Reduce, reuse, recycle:
Compositional generation with energy-based diffusion models and mcme. arXiv preprint
arXiv:2302.11552, 2023.

[9] Yilun Du, Shuang Li, Joshua B. Tenenbaum, and Igor Mordatch. Improved contrastive diver-
gence training of energy based models. In International Conference on Machine Learning,
2020.

[10] Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[11] Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models.
Advances in Neural Information Processing Systems, 32, 2019.

[12] Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P Kingma. Learning energy-
based models by diffusion recovery likelihood. arXiv preprint arXiv:2012.08125, 2020.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, volume 27, 2014.

[14] Will Grathowhl, Jacob Kelly, Milad Hashemi, Mohammad Norouzi, Kevin Swersky, and David
Duvenaud. No mcmc for me: Amortized sampling for fast and stable training of energy-based
models. arXiv preprint arXiv:2010.04230, 2020.

[15] Will Grathowhl, Jacob Kelly, Milad Hashemi, Mohammad Norouzi, Kevin Swersky, and David
Duvenaud. No mcemc for me: Amortized sampling for fast and stable training of energy-based
models. arXiv preprint arXiv:2010.04230, 2020.

[16] Tian Han, Erik Nijkamp, Xiaolin Fang, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu. Diver-
gence triangle for joint training of generator model, energy-based model, and inferential model.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8670-8679, 2019.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

10



414
415
416

417
418
419

420

422
423

424
425

426
427

428
429

430
431
432

433
434

436
437

438
439
440

441
442

443
444

445
446
447

448
449

450
451
452

453
454

455
456
457

458
459

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

[19] Mitch Hill, Erik Nijkamp, Jonathan Mitchell, Bo Pang, and Song-Chun Zhu. Learning prob-
abilistic models from generator latent spaces with hat ebm. Advances in Neural Information
Processing Systems, 35, 2022.

[20] Geoftrey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14:1771-1800, 2002.

[21] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840-6851, 2020.

[22] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila.
Training generative adversarial networks with limited data. In Proc. NeurIPS, 2020.

[23] Taesup Kim and Yoshua Bengio. Deep directed generative models with energy-based probability
estimation. /CLR Workshop, abs/1606.03439, 2016.

[24] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[25] Tuomas Kynkiddnniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in Neural Information
Processing Systems, 32, 2019.

[26] Hankook Lee, Jongheon Jeong, Sejun Park, and Jinwoo Shin. Guiding energy-based models via
contrastive latent variables. arXiv preprint arXiv:2303.03023, 2023.

[27] Kwot Sin Lee, Ngoc-Trung Tran, and Ngai-Man Cheung. Infomax-gan: Improved adversarial
image generation via information maximization and contrastive learning. In Proceedings of the
IEEE/CVF winter conference on applications of computer vision, pages 3942-3952, 2021.

[28] Chieh Hubert Lin, Chia-Che Chang, Yu-Sheng Chen, Da-Cheng Juan, Wei Wei, and Hwann-
Tzong Chen. Coco-gan: Generation by parts via conditional coordinating. In Proceedings of
the IEEE/CVF international conference on computer vision, pages 4512—-4521, 2019.

[29] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models
on manifolds. arXiv preprint arXiv:2202.09778, 2022.

[30] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

[31] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A
fast ode solver for diffusion probabilistic model sampling in around 10 steps. arXiv preprint
arXiv:2206.00927, 2022.

[32] Zhaoyang Lyu, Xudong Xu, Ceyuan Yang, Dahua Lin, and Bo Dai. Accelerating diffusion
models via early stop of the diffusion process. arXiv preprint arXiv:2205.12524, 2022.

[33] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano
Ermon. Sdedit: Guided image synthesis and editing with stochastic differential equations. In
International Conference on Learning Representations, 2022.

[34] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do
actually converge? In International conference on machine learning, pages 3481-3490, 2018.

[35] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning Representations,

2018.

[36] Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. Generating images with
sparse representations. arXiv preprint arXiv:2103.03841, 2021.

11



460
461
462

463
464

471
472
473
474

475
476
477
478

479
480

481
482
483
484

486
487
488
489

490
491
492

493
494

495
496
497

498
499

504

505
506

[37] Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Anima Anandku-
mar. Diffusion models for adversarial purification. In Proceedings of the 38th International
Conference on Machine Learning, 2022.

[38] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu. Learning non-convergent
non-persistent short-run memc toward energy-based model. NeurIPS, 2019.

[39] Bo Pang, Tian Han, Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu. Learning latent space
energy-based prior model. NeurlPS, 2020.

[40] Bo Pang and Ying Nian Wu. Latent space energy-based model of symbol-vector coupling for
text generation and classification. ArXiv, abs/2108.11556, 2021.

[41] Kancharla Parimala and Sumohana Channappayya. Quality aware generative adversarial
networks. Advances in neural information processing systems, 32, 2019.

[42] Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn.
Diffusion autoencoders: Toward a meaningful and decodable representation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10619-10629,
2022.

[43] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748-8763. PMLR, 2021.

[44] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[45] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton,
Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al.
Photorealistic text-to-image diffusion models with deep language understanding. Advances in
Neural Information Processing Systems, 35:36479-36494, 2022.

[46] Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In David van Dyk
and Max Welling, editors, Proceedings of the Twelth International Conference on Artificial
Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pages
448-455, Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 16—-18 Apr 2009.
PMLR.

[47] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

[48] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
In International Conference on Learning Representations, 2022.

[49] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International Conference on Machine
Learning, pages 2256-2265. PMLR, 2015.

[50] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

[51] Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438-12448, 2020.

[52] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021.

[53] Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical variational autoencoder. In Neural
Information Processing Systems (NeurIPS), 2020.

12



507
508
509

510
511
512

513
514
515

517
518

519
520
521

522
523

524
525
526

527
528
529

[54] Zhisheng Xiao, Karsten Kreis, Jan Kautz, and Arash Vahdat. Vaebm: A symbiosis between
variational autoencoders and energy-based models. In International Conference on Learning
Representations, 2021.

[55] Jianwen Xie, Yang Lu, Ruiqi Gao, and Ying Nian Wu. Cooperative learning of energy-based
model and latent variable model via mcmc teaching. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[56] Jianwen Xie, Yang Lu, Ruiqi Gao, and Ying Nian Wu. Cooperative learning of energy-based
model and latent variable model via memc teaching. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2018.

[57] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. A theory of generative convnet.
In Proceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, page 2635-2644. JMLR.org, 2016.

[58] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Zhu Song-Chun, and Ying Nian Wu.
Learning descriptor networks for 3d shape synthesis and analysis. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[59] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential
integrator. arXiv preprint arXiv:2204.13902, 2022.

[60] Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Truncated diffusion
probabilistic models and diffusion-based adversarial auto-encoders. In International Conference
on Learning Representations, 2023.

[61] Song Chun Zhu, Yingnian Wu, and D. Mumford. Frame: filters, random fields, and minimax
entropy towards a unified theory for texture modeling. In Proceedings CVPR IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 686—693, 1996.

13



