Latent Segment Language Models

Anonymous ACL submission

Abstract

Tokenization is a critical step in every NLP
system, yet most works treat it as an isolated
component separate from the models they are
building. In this paper, we present a frame-
work to jointly learn next-token prediction and
segmentation from a sequence of characters
or bytes. We evaluate our model on language
modeling benchmarks in English, Chinese, and
Japanese using both character and byte vocab-
ularies. Our model consistently outperforms
baselines on Chinese benchmarks with charac-
ter vocabulary and shows significant improve-
ments with byte vocabulary. Further latency
improvements are achieved by adapting differ-
ent pooling strategies while maintaining com-
parable results to the best models. Our main
contributions are threefold: we propose a lan-
guage model that learns to segment the input
sequence, conforming to the desired segmen-
tation prior; we demonstrate that our model
achieves shorter latency than baselines in token
generation; and we show that our model can be
applied to three different languages—English,
Chinese, and Japanese—demonstrating its po-
tential for wider NLP applications. Our source
code will be released on GitHub.

1 Introduction

Tokenization is a vital procedure in every natu-
ral language processing (NLP) system because it
impacts both computational efficiency and model
performance. Tokenization refers to the process
of breaking down text into smaller units, such as
words or subwords, which can be processed by the
model. Before the dominance of neural networks
in NLP, word-based tokenization was ubiquitous
(Mielke et al., 2021). However, word tokeniza-
tion has a significant issue: the out-of-vocabulary
(OOV) problem, where words encountered during
evaluation are not present in the training vocab-
ulary. A common solution to this problem is to
map unknown words to a special symbol <oov>,

which can negatively impact accuracy. To address
OOV issues, subword-based tokenization was intro-
duced, segmenting words into sequences of smaller
units (Sennrich et al., 2016; Wu et al., 2016; Kudo
and Richardson, 2018). While effective in reduc-
ing OOV occurrences, this approach introduces a
separate learning process for the subword vocab-
ulary. Techniques like Byte Pair Encoding (BPE)
are commonly used, but their simple design can
lead to suboptimal vocabularies, potentially harm-
ing downstream task performance (Bostrom and
Durrett, 2020).

Recent research has explored various strategies
for discovering linguistic units within text. Segmen-
tal language models (Sun and Deng, 2018) model
the joint probability of the token sequence and its
segmentation, facilitating the discovery of Chinese
words from an unlabeled corpus. These models
effectively compute the marginal probability of the
input sequence by parameterizing the maximum
segment length and employing a dynamic program-
ming algorithm for training. Alternatively, some
researchers group input characters into a fixed num-
ber of segments (Clark et al., 2022; Behjati and
Henderson, 2023). These methods train models to
aggregate sequences of character representations
into shorter abstract representations. However, this
approach limits the model to a fixed number of
abstract representations during training.

In contrast, Nawrot et al. (2023) proposed im-
proving Transformer efficiency and performance
by pooling character representations. Their method
overcomes the fixed-length limitation of previous
works by dynamically adjusting the character pool-
ing based on a boundary predictor. Through bound-
ary prediction, their model identifies and pools
variable-sized segments of characters, guided by
either end-to-end learning or supervision from ex-
isting tokenizers. Despite these advancements,
Nawrot et al.’s (2023) architecture, like most neural
language models, still requires the decoder to con-

dition on the entire previous character string. This
creates inefficiencies for long character sequences,
as characters with minimal impact on future pre-
dictions still incur attention-related computational
costs. To mitigate these costs, we adapt the decoder
to operate on character segments instead of the en-
tire string. This method was initially proposed by
Sun and Deng (2018), but their approach relied
on an RNN-based encoder and imposed segment
length limits. Our work demonstrates improve-
ments in both latency and effectiveness by sam-
pling the next character with an encoder-decoder
language model.

In this paper, we propose an encoder-decoder
architecture for training auto-regressive language
models. First, a causally masked encoder takes the
character string as input and outputs boundaries
and representations of the input. We then pool
these character representations into shortened rep-
resentations, as done in (Nawrot et al., 2023). The
decoder then takes the characters from one pooled
segment as input, using all previously pooled rep-
resentations for cross-attention. This shift allows
for more efficient decoding of character strings, fo-
cusing the model on the most relevant segments of
the input sequence.

Our main contributions are threefold:

* In terms of model training, we formulate a
language model capable of learning to seg-
ment the input sequence. This model not only
learns to segment the sequence but also con-
forms to the desired segmentation prior.

* Regarding model efficiency, we demonstrate
that our model achieves shorter latency than
the baseline in token generation.

* For model evaluation, we show that the pro-
posed model can be applied to three different
languages - English, Chinese, and Japanese
- demonstrating its potential for wider NLP
application.

2 Latent Segment Language Models

We denote a sequence of 7' tokens as X =
x1T9 ...xT, Where each token x; can represent
either a character or a UTFS8 byte, depending on
the selected vocabulary. Let Z = 2125 ... 2 rep-
resent the boundaries of segments within X. The
variable z; € {0, 1} indicates the presence of a

Token Decoder l

, , .
51 Sg 83 !

Context Encoder I

1 T 7 T 1.7 1

Figure 1: The architecture of the proposed Latent Seg-
ment Language Model is illustrated here. z; and xg
represent < BoS > and < eos >, respectively. We
have not shown < bos > and < nzt > for each output
segment in this figure. The segmentation of this se-
quence is represented as Os and 1s in the pooling block.
The input to all model blocks is causally masked; this
means that the i-th output is computed from all the in-
puts before and including the ¢-th input. The dashed
line highlights the information used to decode the 4th
segment, x7xg, during inference.

boundary between consecutive tokens z; and x4y 1,
as proposed by Nawrot et al. (2023).

The tokens that make up the m-th segment are
denoted by Yy, = Ym 1Ym.,2 - - - Ym,L,.» Where Ly,
is the number of tokens in the m-th segment. Here,
z+ = 1 signifies the end of a segment at position ¢,
and z; = 0 indicates no boundary between x; and
Lt41-

We define the Latent Segment Language Model
(LSLM) to jointly model the token sequence X and
the segment boundaries Z. The joint probability
p(X, Z) is given by:

T
log p(X, Z) Z log p(xt | X<t, Z<t) n
t=1

+10gp(2t | XSta Z<t))7

where Xy = x1z5...24_1 denotes the se-
quence of tokens generated before the ¢-th token,
and Z.y = z122...2;—1 denotes the sequence of
segment boundaries predicted before the ¢-th token.

Each boundary prediction z; is modeled as a dis-
crete latent variable, drawn from a parameterizable
distribution:

2z ~ p(2t;).

The probability distributions p(z; | X<¢, Z<t)
and p(z: | X<¢, Z<+) represent the model’s predic-
tions for the next token and the boundary, respec-
tively. The LSLM captures dependencies between
token sequences and segment boundaries, provid-
ing a more nuanced understanding of the structure
within the data.

2.1 Generative model P(X, 7)

In the event of a boundary between tokens x;
and z;_1, we aggregate the token representations
hihso ...hi—1 into segment representations S =
5182 ...5m,. Here, each token is pooled into its
corresponding segment. The index m is defined as
m = Zf;% zi, where z; indicates a boundary. The
representation h; is the contextualized token repre-
sentation obtained from the token encoder enc;p:

hy = enCtok(ht—l, iL"t)-

Next, we compute the contextualized segment rep-
resentation s/, using the context encoder enct,:

s = encetr(Shy_1,5m)-

Following this, the model employs an auto-
regressive decoder to generate the next token x¢
of segment m + 1 using the previous segment rep-
resentations s,,,,:

Om+1,n = A8, Omt1,n—15 Ym+1,0-1),

Tt = Ymt1,n = Softmax(Wop, 11, +b).
Initially, the previous token of the segment
Ym+1,n—1 18 a starting symbol, which provides the
initial context for the decoder.

Conversely, when there is no boundary between
tokens x; and x;_1, there is no need for aggrega-
tion. In this scenario, the model directly generates
the next token x; of segment m, considering x;_1
as the previous token of the segment, denoted by
Ym,n—1. In both cases, whether z;_; indicates a
boundary or not, the newly generated token z; is
fed into the token encoder enc;,p.

Each segment Y,, is generated in an auto-
regressive manner, augmented with a <bos> sym-
bol at the beginning as y,, ¢ to signify the start of
the segment. Furthermore, a <nxt> symbol is ap-
pended at the end of Y,,, to inform the model to
transition to the next segment. The augmentation
of Y,,, allows the model to treat the <nxt> symbol
as a boundary between yy, 1, and y,,41,1 during
inference.

2.2 Parametrization of z

To make the boundary context-dependent, the
LSLM employs a causally-masked encoder that
tokenizes the input sequence incrementally, pro-
cessing one token at a time. Upon decoding a
token, the model appends it to a list and concur-
rently outputs a boundary prediction to ascertain
the formation of a new segment. When a token is
identified as an endpoint, the tokens comprising the
nascent segment are extracted from the list and fed
into the encoder. Since segments consist solely of
consecutive tokens, their extraction from the par-
tially formed X and Z is straightforward, negating
the need for supplementary data structure.

For the complete computation of sequence prob-
ability, LSLM introduces a distinct initial symbol,
<BoS>, at the beginning of sequence X to estab-
lish the context for ensuing segments and to distin-
guish it from the segment’s starting symbol, <bos>.
Analogously, the symbol <eos> is appended to the
end of X. In sequence 7, an initial ending symbol
indicates that <BoS> inaugurates a segment. The
model is engineered to predict ending determinis-
tically when encountering <eos> during training.
This generation procedure is maintained until the
decoder produces an <eos> symbol in the infer-
ence phase. Throughout this document, 7" signifies
the length of the augmented sequences X and Z.

More specifically, let Z = {ending} be the trace
of token types of a sequence before any token gen-
eration. Each element of Z can either be ending or
non-ending. Without loss of generality, we define
z¢ as 1 for ending states and O for non-ending states.
Before generating token 1, the boundary pre-
diction z; is sampled from a Bernoulli distribution
based on the current representation ﬁt:
TTFEN(Ry)).

2
The FFN consists of two linear transformations
without bias terms with a ReLU activation in be-
tween (Vaswani et al., 2017), transforming from
hy into hy of the same size. In preliminary experi-
ments, we found the model to be more stable when
the FFN’s output is summed in this way than trans-
forming it into a scalar.

zi ~ Bernoulli(py), pir=o(

2.3 Pooling token representations

To compute the segment representations s,,, termi-
nating at token x;, we aggregate the representations
of the tokens starting from x; backwards to include
the token at position ¢ — m. This aggregation is

S1 52

|]
oW oW W
[1"
H{ Hé "r"lé ”Hi
(|

) HY MY MY
10 0 1

Figure 2: An illustration of 2-hops pooling with a se-
quence of 4 tokens and its Z shown at the bottom. Each
representation, 7, is obtained by summing the represen-
tations from the source nodes connected by solid lines.

A CUMSUM(Z)-Z

1‘()‘ﬂ‘l‘ﬂ‘()‘1}—){[]‘1‘1‘1‘2‘2‘2‘
v///,,

1 110

0 0 |1/3

0 |1/3

where(0=V, 1-V, 0)

- 0 |1/3
(‘,Oh 1mn unit-sum

1] [o]

1] 1]
IRE
o[1]-[1]=
1] 2]

1] 2]
IRE

[B

[S IO O O I

Figure 3: The computation of the binary matrix B for
dynamic pooling of token representations is adapted
from Bhati et al. (2021). Instead of applying a bounded
function, we allow zeros in V to be transformedto 1—-V,
and the rest are replaced by zeros, as done by Nawrot
et al. (2023). M is the number of segments excluding
the segment which contains the <eos> symbol.

defined such that z;_; = 0,V7,(j > 1 A j < m),
and z;_p,—1 = 1. In this study, we evaluate two dis-
tinct pooling methods tailored to different research
objectives.

The first method, referred to as N-hops, is for-
malized as follows:

HY = 21+ (1 — 2z M (3

where H) = h;. Equation 3 indicates that H} !
is maintained when z; = 1, and H'"}' is merged
into H}' if 2,1 = 0. To derive the segment repre-
sentations S, we collate all H} for which z; = 1
and omit the others. With a high value of N, the
segment representations 7] encapsulate the full
range of token representations within each segment.
Conversely, a lower value of N prioritizes captur-
ing only the latter token representations within a
segment, yielding quicker but coarser segment rep-
resentations.

The computation of segment representations that
encapsulate the entire set of token representations
within each segment may lead to inefficiencies,
particularly as a high N incurs computational over-
head for segments that necessitate fewer hops. To
enhance the efficiency of pooling segment repre-
sentations, we introduce a method that utilizes a
binary matrix B € R”*M derived from Z (Bhati
et al., 2021), where M represents the number of
segments excluding those containing the <eos>
symbol. Figure 3 demonstrates the computation
of B, resulting in S = B"H, where H € RT*D
encompasses the token representations of the se-
quence X . This method is termed dynamic pooling
(DP) (Nawrot et al., 2023).

Before these segment representations are fed
into the context encoder, we normalize them by
the number of tokens pooled per segment. Nor-
malization ensures that each segment representa-
tion reflects the average contribution of its tokens,
rather than being biased by segment length. While
the computation of segment representations is exe-
cuted in a single step during the model’s training
phase, during inference, these representations are
calculated each time the decoder emits the <nxt>
symbol.

2.4 Optimization

Training the model without supervision of Z
requires marginalizing over Z. However, this
marginalization becomes computationally infeasi-
ble as the sequence length increases. To address
this issue, we adopt variational inference (Kingma
and Welling, 2014) to approximate the true poste-
rior p(z|X') with a variational posterior distribution
¢4(2|X), also referred to as the inference model,
over segments Z. This approximation involves
maximizing the Evidence Lower Bound (ELBO),
which serves to minimize the Kullback-Leibler
(KL) divergence between ¢4(2|X) and the true
posterior. The ELBO is employed as our objec-
tive function:

logp(X) =Y By, (2 xc,) Mo po (| X<t Zet)
t

—KL(gp(2t| X<t)lIp(2))] . ()

Here, 6 and ¢ represent the parameters of the
generative model and the inference model, respec-
tively. To improve training efficiency, we utilize a
simplified inference model that considers only the

prior token history, aligning with the second term of
Eq. 1. Consequently, we employ the feed-forward
network described in Eq. 2 for the inference model.
For p(z), we use Beta(a, b), the conjugate prior of
the Bernoulli distribution, to express the variety of
segmentation for different languages.

To train the model, we use Gumbel-Sigmoid
reparameterization (Geng et al., 2020) to sample
from the approximate posterior g4(z| X <), making
the model differentiable:

G=op+9g —9g"), ®)

where p; is derived from Eq. 2 before sigmoid acti-
vation, and ¢’ and ¢” are two independent Gumbel
noises. Given the discrete nature of boundaries, we
discretize the boundary z; as follows:

zZt =

1., ifz, >0.5
{’ na= ©6)

0, if% <0.5.

We employ the straight-through estimator (Bengio
etal., 2013) to Eq. 5, enabling gradient propagation
through Eq. 6 as if it were continuous.

Parameter updates (0) follow the interleaved op-
timization strategy of Li et al. (2020). We update
the parameters of the generative model for k steps,
then update the approximate posterior parameters
(@) for a single step. Empirically, we find a few
mini-batches are sufficient for the model to adhere
to the desired segmentation prior when £ is set to 1.
For enhanced exploration, we set k = 3. A hyper-
parameter, 3, modulates the KL term’s influence
within the loss function. This approach leverages
the interdependence between the generative model
and the variational posterior, ensuring that improve-
ments in g4 directly benefit the learning of pg, and
conversely.

3 Experimental Setup
3.1 Datasets

We evaluate LSLM on three languages representing
distinct morphological types: English (fusional),
Chinese (isolating), and Japanese (agglutinative).
For English, we use the Penn Tree Bank (Marcus
et al., 1993) with preprocessing from Mikolov et al.
(2011), where only the top 10K words are retained,
and all other words are mapped to an <unk> token.
We also follow their data split for training, devel-
opment, and testing. For Chinese, we use the MSR
corpus as presented in the Second International Chi-
nese Word Segmentation Bakeoff (Emerson, 2005).

We remove all whitespaces from the training set
and split the bottom 10% of sentences to create
a development set, with the remainder serving as
the training set. We use the testing set from MSR
without any modifications as our testing set. For
Japanese, we use the "Featured Articles" from the
Japanese version of Wikipedia, processed by Mori
et al. (2019). We retain the splits for training, de-
velopment, and testing sets as provided by them.

In the English dataset, we compiled a vocab-
ulary from all characters and whitespace in the
training and development set. The *<unk>" symbol
in the pre-processed corpus was segmented into
five tokens. For both Chinese and Japanese, we
explored using bytes and characters for vocabulary
construction. For the character vocabulary, we in-
cluded characters appearing at least five times in
both training and development sets. Conversely,
the byte vocabulary was derived by converting text
strings into UTF-8 byte sequences, resulting in a
concise byte vocabulary of only 256 tokens. Ad-
ditionally, we incorporated five special tokens into
the vocabulary to mark the beginning and end of
the sequence for X and the segment sequence Y,
along with an <oov> symbol to accommodate to-
kens beyond the character vocabulary.

3.2 Models

Any model capable of sequential input processing
can function as the encoder and decoder within
our proposed LSLM framework. This criterion al-
lows us to leverage models with inherent temporal
dynamics, without restricting the architecture to a
specific type. We have adapted the T5 Transformer
(Raffel et al., 2020) as our encoder-decoder due
to its robustness in sequence generation tasks. We
modified the attention masks in both the encoder
and decoder to use causal masking. Detailed model
configuration are shown in Appendix A.

To evaluate the effectiveness of our framework in
sequence modeling, we compared LSLM with dy-
namic token pooling (DTP) as proposed by Nawrot
et al. (2023). We re-implemented DTP to maintain
consistency across variables. For a fair comparison,
DTP was configured with the same number of lay-
ers and hidden dimension sizes as LSLM. We also
compared it to the standard Transformer (GPT-2
(Radford et al., 2019)) without token shortening,
using 18 layers and the same hidden dimension
sizes as the LSLM model. A dropout rate of 0.1
was applied to the attention and feed-forward layers
for all models.

We evaluated the model on the development set
at the end of each epoch, saving it if improvement
was observed. The best model was then restored
for evaluation on the testing set. We noted that the
LSLM’s loss sometimes exhibited sudden spikes
during training, potentially leading the model to
sub-optimal convergence. To mitigate this, we
monitored LSLM’s development loss and restored
LSLM to the previous best model if the loss dou-
bled relative to the previous best performance.

En Zh(byte) | Ja(byte)
GPT2 1.418 1.785 1.668
DTP
p=4 1.416 1.714 1.682
p="7 1.379 1.722 1.648
LSLM
DP, p=.4, =.5 | 1.506 1.776 1.606
DP, p=4, g=1 | 1.555 1.798 1.612
DP, p=.7, 8=.5 | 1.363 1.748 1.626
DP, p=.7, f=1 | 1.390 | 1.667* 1.564*

Table 1: BPC of models trained on English (En), Chi-
nese (Zh), and Japanese (Ja). We denote LSLM that
utilize dynamic pooling as ’'DP’. Each result represents
the average from five different runs. Additionally, p
denotes the prior probability that z > 0.5 in the beta
distribution. A statistically significant improvement in
BPC compared to the baselines is indicated by an as-
terisk (*), as determined by a paired Student’s t-test
(p < 0.05).

4 Results and Discussion

Table 1 shows the results for LSLM and baselines
on English, Chinese, and Japanese with a byte vo-
cabulary. Each model is evaluated using Bits Per
Character (BPC), computed as follows:

T
1
BPC(X) = T ZIOgQP(SUt),
t=1

which measures the negative log likelihood of the
corpus—the lower, the better. In all languages,
the proposed LSLM with Dynamic Pooling (DP)
achieves the lowest BPC, outperforming both GPT-
2 and DTP. This improvement is particularly note-
worthy in Chinese and Japanese, languages charac-
terized by the absence of explicit word boundaries.
The reduction in BPC is not only consistent but also
statistically significant, highlighting the robustness
of LSLM in handling languages with dense charac-
ter information.

Additionally, we observed negative results when
the model is poorly configured. The model per-
forms worse than GPT-2 for English and Chinese
when the prior is set to a low value, which is ex-
pected since the segments are getting longer.

LSLM DTP GPT2
Zh | 4.677 4921 42837
Ja | 3.093 3.119 3.03

Table 2: Comparison of three models using character
vocabulary: LSLM, DTP, and GPT2, configured as per
the best model specifications reported in the previous
table. Results are averaged from 5 different runs.

Character vs Byte Vocabulary Next, we con-
ducted experiments using a character vocabulary to
assess whether LSLM generalizes across different
vocabularies. The results are reported in Table 2.
These results suggest that LSLM is capable of gen-
eralizing to different languages and vocabularies. A
thorough search of hyper-parameters could benefit
both LSLM and DTP, particularly for the Japanese
model using a character vocabulary.

In terms of relative improvement, using a byte
vocabulary grants LSLLM consistent improvement
across two languages over the DTP baseline, com-
pared to using a character vocabulary. This results
in a 4.95% and 0.83% relative improvement for
Chinese and Japanese, respectively, with a charac-
ter vocabulary, as compared to 2.74% and 5.09%
relative improvement with a byte vocabulary.

The improvement of the Japanese model is more
significant when transitioning from a character to a
byte vocabulary. This improvement is attributable
to the composition of the Japanese writing system,
which consists of Hiragana, Katakana, and Kanji.
Hiragana and Katakana together comprise a total
of 96 characters. Kanji, characters adapted from
Chinese, are more numerous, and some rare Kanji
suffer from the OOV issue. Byte vocabulary sig-
nificantly mitigates the OOV problem, particularly
for Japanese, by efficiently encoding rare Kanji,
which makes it more advantageous for Japanese
than for Chinese. These findings underscore the
effectiveness of LSLM when equipped with byte
vocabulary, demonstrating not only a capacity for
language generalization but also a notable perfor-
mance advantage over traditional character vocabu-
lary. The improvement in BPC suggests that byte
vocabulary could offer a more robust approach for
handling diverse linguistic structures.

En Ch(byte) | Ja(byte)
Full model 1.363* | 1.667* 1.564
Small encoder | 1.442 1.772 1.572
Small decoder | 1.415 1.824 1.718
Both small 1.459 1.806 1.658

Table 3: LSLM performance with small token encoder
and decoder configurations compared to the full model.
Asterisks (*) indicate statistically significant improve-
ments in BPC over all variants, determined by a paired
Student’s t-test (p < 0.05).

Effects on Sizes of Encoder/Decoder Although
LSLM pools the token representations into con-
text representations with shorter lengths, the token
encoder and decoder still carry out computations
proportional to the sequence length. To amortize
the cost of operating on character/byte sequences,
we can configure the token encoder and decoder
with fewer parameters. For a smaller token encoder
and decoder configuration, we set the number of
layers to 2, the hidden dimension size to 128, and
split the attention into 2 heads. In these experi-
ments, residual connections are omitted when the
sizes of the hidden dimensions differ. As shown in
Table 3, the performance of both English and Chi-
nese models deteriorates when the token encoder
or decoder is under-parameterized. In contrast, the
small encoder variant for the Japanese model per-
forms on par with the full model.

Observing the performance decline with smaller
decoder configurations, we hypothesize this is due
to the decoder’s diminished capacity to utilize the
encoder’s contextual information effectively, com-
pounded by the smaller decoder’s challenges in
modeling long sequences. This aligns with the dis-
cussion on negative results previously highlighted.

The reason why performance doesn’t degrade as
much for the small encoder variant of the Japanese
model could be due to the fact that Japanese is an
agglutinative language, where words contain multi-
ple morphemes concatenated together, each adding
a new layer of meaning. In contrast, for English
and Chinese, a more complex inference model is
needed to handle their respective linguistic com-
plexities. Specifically, in English, a word can con-
vey different meanings in a sentence, often through
changes at the end or beginning of the word. In Chi-
nese, meanings are often indicated through word
order or auxiliary words. This suggests that the in-
ference model, which is conditioned on the output
of the token encoder, could more easily learn to

segment Japanese than English and Chinese, even
when it is under-parameterized.

En | Zh(byte) | Ja(byte)
3hops 1.389 1.701 1.586
lhop 1.395 1.834 1.699
Ohop 1.398 1.777 1.634
3hops+ e
Small encoder 1.376 | 1.661 1.581

Table 4: LSLM results for two pooling methods. Hyper-
parameters are configured to be the same as full model.
Asterisks (¥) indicate statistically significant improve-
ments in BPC over all variants, determined by a paired
Student’s t-test (p < 0.05).

N-hops vs DP While DP pools all token repre-
sentations without any redundant computation, we
hypothesize that some of the token representations
can be omitted. To investigate this effect, we ex-
periment with N-hops using three N values (0, 1,
3) and present the results in Table 4. We observe
that the performance degrades as N changes from
3 to 1, which is expected since more tokens are
excluded from their segment. However, the perfor-
mance improves as N becomes 0. This improve-
ment can be attributed to the attention mechanism
of the token encoder, allowing past tokens to con-
tribute to the representation of the current token.
This suggests that for 0-hop, the token pooling
is integrated into the attention computation inside
the token encoder, avoiding the uncertainty associ-
ated with pooling at N>0, where it’s unclear when
tokens will be included in the pooling or remain
unaffected. Unlike the scenarios with N>0, DP and
0-hop do not face this issue of uncertainty, ensuring
more stable training. When training with N-hops,
we also observe more instances of model collaps-
ing, where the model trivially predicts a boundary
between every token. Finally, it is noteworthy that
the small encoder variant with 3-hops pooling not
only achieves performance comparable to the full
model but also improves efficiency in token gener-
ation, reducing the latency from 212 ms to 201 ms
on a single V100 GPU, a 5.47% improvement.

5 Related Work

Segmentation Models Several notable ap-
proaches have emerged in recent years. He et al.
(2020) proposed training a machine translation
model where the target sentences are segmented
using dynamic programming encoding (DPE).

DPE is learned by marginalizing out different
segmentations of the target sentence, given the
BPE dictionary and source sentence. Similarly,
Kawakami et al. (2019) proposed a segmental
neural language model (SNLM) where the context
is represented as a sequence of characters, and the
generation of each segment is either character-by-
character from a decoder or a single draw from
a lexical memory compiled from n-grams of the
training corpus.

In a similar vein, Meyer and Buys (2022) de-
veloped a model that can learn subword segmen-
tations on four Nguni languages, comparable to
SNLM. Sun and Deng (2018) introduced an ap-
proach that marginalizes the segmentation of a sen-
tence with each segment having a fixed maximum
length. This model can discover meaningful Chi-
nese words from a character sequence, given the
gold segmentation data of the development set. Un-
like these previous works, Behjati and Henderson
(2023) proposed a variant of slot attention (Lo-
catello et al., 2020) which can learn to cluster char-
acters into morpheme-like slots. Their model is
trained to reconstruct the original sequence with a
transformer decoder given the slots.

Recent studies have also focused on improving
the evaluation and comparison of segmentation
models. For example, Ghinassi et al. (2023) high-
lighted the difficulties in evaluating text segmenta-
tion models and the potential biases introduced by
commonly used metrics such as Pk. They provided
a comprehensive comparison of architectural and
sentence encoding strategies, offering a more ro-
bust set of baseline results for future developments
in linear text segmentation.

Pooling Token Representations Another series
of works focuses on pooling token representa-
tions into shorter intermediate representations to
reduce computations. These works usually tar-
get character-based sequences, as the information
each token carries is less dense compared to word-
based sequences. For example, CANINE (Clark
et al., 2022) adapts a convolution layer to reduce
the number of sequence positions, then restores
the shortened representations back to their original
length by duplicating each representation, enabling
sequence prediction and tagging tasks. CHAR-
FORMER (Tay et al., 2022) proposes a gradient-
based subword tokenization approach where each
character representation is a weighted sum of sub-
word representations, obtained by mean pooling

over the character embeddings with various stride
sizes.

The most recent work closely related to ours
was conducted by Nawrot et al. (2023). Similar to
our approach, they employ two encoders in their
model: one for processing token representations
and another for contextualized representations. The
primary architectural difference between our model
and theirs is that we do not upsample representa-
tions to the original length. Moreover, they aug-
ment their training process with an auxiliary loss to
prevent the trivial solution of predicting each token
as a boundary.

6 Conclusion

We proposed a language model capable of segment-
ing a sequence of tokens and pooling the tokens
within each segment to enhance performance in
terms of latency and model perplexity. Specifically,
our model employs token pooling using either a
fine-grained method, DP, or a more coarse-grained
but faster method, N-hops. Experiments conducted
on language modeling benchmarks in English, Chi-
nese, and Japanese demonstrate the effectiveness
of our proposed model in predicting the next to-
ken. Furthermore, we evaluated a variant of the
model with fewer parameters in the encoder and
found that it can achieve model perplexity com-
parable to the best-performing model when com-
bined with N-hops pooling, additionally offering
the benefit of reduced latency between token gen-
erations. Our model also shows its effectiveness in
handling diverse vocabularies. In experiments with
Chinese and Japanese characters as the vocabulary,
our model outperforms the DTP baseline.

In summary, our experiments demonstrate the
ability of LSLM to segment sequences effectively,
resulting in lower perplexity and improved com-
putational efficiency. These findings enhance our
understanding of segment language models, under-
scoring the importance of incorporating a strong
inductive bias within the inference model.

Future work could explore segmentation through
decision trees, which presents a promising avenue
for allowing the model to uncover morphological
structures more efficiently and potentially mitigate
issues of model collapsing. Additionally, expand-
ing the model to other languages and domains
could provide deeper insights into its generaliz-
ability and applicability.

7 Limitations

There are several limitations to LSLM that warrant
discussion. First, training takes more time and
memory than GPT-2 due to the employment of
an encoder-decoder architecture. Specifically, the
decoder component initiates a new text generation
process for each segment, and gradients need to
be back-propagated from every segment during
training. This results in higher computational costs
and memory usage.

Second, LSLM introduces several new hyperpa-
rameters, which can be challenging to tune. Poorly
configured LSLMs can result in model collaps-
ing, as discussed in the results section. This hy-
perparameter sensitivity requires extensive experi-
mentation and fine-tuning, which can be resource-
intensive. Future work could explore automated
hyperparameter optimization techniques to miti-
gate this issue.

Third, it is unclear whether LSLMs scale well
with larger model parameters or data sizes. Recent
advancements in language models have demon-
strated emergent abilities by scaling both data and
parameters significantly. However, our experi-
ments have been conducted only with small-scale
data and parameters. We have not yet evaluated
the performance of LSLM with large-scale datasets
or larger model configurations. Future research
should investigate the scalability of LSLM by ex-
perimenting with larger datasets and model sizes.

Additionally, we have not considered fine-tuning
the LSLMSs for downstream tasks, which is an im-
portant step in aligning the models with human
needs. Fine-tuning could potentially improve the
model’s performance on specific applications, such
as sentiment analysis or machine translation. Evalu-
ating LSLM’s performance on various downstream
tasks would provide a more comprehensive under-
standing of its practical utility and effectiveness.

In summary, while LSLM shows promise in im-
proving token segmentation and pooling, address-
ing these limitations is crucial for advancing its
applicability and performance in real-world scenar-
ios. Future research should focus on optimizing
the training process, exploring scalability, and fine-
tuning the model for specific downstream tasks.

References

Melika Behjati and James Henderson. 2023. Induc-
ing meaningful units from character sequences with

dynamic capacity slot attention. Transactions on
Machine Learning Research.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
2013. Estimating or propagating gradients through
stochastic neurons for conditional computation.
Preprint, arXiv:1308.3432.

Saurabhchand Bhati, Jesds Villalba, Piotr Zelasko, Lau-
reano Moro-Veldzquez, and Najim Dehak. 2021. Seg-
mental Contrastive Predictive Coding for Unsuper-
vised Word Segmentation. In Proc. Interspeech 2021,
pages 366-370.

Kaj Bostrom and Greg Durrett. 2020. Byte pair encod-
ing is suboptimal for language model pretraining. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 4617-4624, Online.
Association for Computational Linguistics.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2022. Canine: Pre-training an Efficient
Tokenization-Free Encoder for Language Represen-
tation. Transactions of the Association for Computa-
tional Linguistics, 10:73-91.

Thomas Emerson. 2005. The second international Chi-
nese word segmentation bakeoff. In Proceedings of
the Fourth SIGHAN Workshop on Chinese Language
Processing.

Xinwei Geng, Longyue Wang, Xing Wang, Bing Qin,
Ting Liu, and Zhaopeng Tu. 2020. How does selec-
tive mechanism improve self-attention networks? In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2986—
2995, Online. Association for Computational Lin-
guistics.

Tacopo Ghinassi, Lin Wang, Chris Newell, and Matthew
Purver. 2023. Lessons learnt from linear text segmen-
tation: a fair comparison of architectural and sentence
encoding strategies for successful segmentation. In
Proceedings of the 14th International Conference
on Recent Advances in Natural Language Process-
ing, pages 408418, Varna, Bulgaria. INCOMA Ltd.,
Shoumen, Bulgaria.

Xuanli He, Gholamreza Haffari, and Mohammad
Norouzi. 2020. Dynamic programming encoding
for subword segmentation in neural machine transla-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
3042-3051, Online. Association for Computational
Linguistics.

Kazuya Kawakami, Chris Dyer, and Phil Blunsom.
2019. Learning to discover, ground and use words
with segmental neural language models. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 6429—6441, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In 2nd International

https://openreview.net/forum?id=m8U9rSs6gU
https://openreview.net/forum?id=m8U9rSs6gU
https://openreview.net/forum?id=m8U9rSs6gU
https://openreview.net/forum?id=m8U9rSs6gU
https://openreview.net/forum?id=m8U9rSs6gU
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://doi.org/10.21437/Interspeech.2021-1874
https://doi.org/10.21437/Interspeech.2021-1874
https://doi.org/10.21437/Interspeech.2021-1874
https://doi.org/10.21437/Interspeech.2021-1874
https://doi.org/10.21437/Interspeech.2021-1874
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://aclanthology.org/I05-3017
https://aclanthology.org/I05-3017
https://aclanthology.org/I05-3017
https://doi.org/10.18653/v1/2020.acl-main.269
https://doi.org/10.18653/v1/2020.acl-main.269
https://doi.org/10.18653/v1/2020.acl-main.269
https://aclanthology.org/2023.ranlp-1.46
https://aclanthology.org/2023.ranlp-1.46
https://aclanthology.org/2023.ranlp-1.46
https://aclanthology.org/2023.ranlp-1.46
https://aclanthology.org/2023.ranlp-1.46
https://doi.org/10.18653/v1/2020.acl-main.275
https://doi.org/10.18653/v1/2020.acl-main.275
https://doi.org/10.18653/v1/2020.acl-main.275
https://doi.org/10.18653/v1/2020.acl-main.275
https://doi.org/10.18653/v1/2020.acl-main.275
https://doi.org/10.18653/v1/P19-1645
https://doi.org/10.18653/v1/P19-1645
https://doi.org/10.18653/v1/P19-1645
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114

Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66-71, Brussels, Belgium.
Association for Computational Linguistics.

Xian Li, Asa Cooper Stickland, Yuqing Tang, and Xiang
Kong. 2020. Deep transformers with latent depth. In
Advances in Neural Information Processing Systems,
volume 33, pages 1736-1746. Curran Associates,
Inc.

Francesco Locatello, Dirk Weissenborn, Thomas Un-
terthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas
Kipf. 2020. Object-centric learning with slot atten-
tion. In Advances in Neural Information Processing
Systems, volume 33, pages 11525-11538. Curran As-
sociates, Inc.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313-330.

Francois Meyer and Jan Buys. 2022. Subword segmen-
tal language modelling for nguni languages. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, pages 6636—-6649, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Sabrina J. Mielke, Zaid Alyafeai, Elizabeth Salesky,
Colin Raffel, Manan Dey, Matthias Gall¢, Arun Raja,
Chenglei Si, Wilson Y. Lee, Benoit Sagot, and Sam-
son Tan. 2021. Between words and characters: A
brief history of open-vocabulary modeling and tok-
enization in nlp. ArXiv, abs/2112.10508.

Tomas Mikolov, Stefan Kombrink, Luka$ Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2011. Extensions
of recurrent neural network language model. In 2071

IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5528-5531.

Shinsuke Mori, Hirotaka Kameko, and Akira Ogawa.
2019. Wikitext-JA: A Japanese WikiText Language
Modeling Dataset. https://nlp.accms.kyoto-u.
ac.jp/wikitext-ja.

Piotr Nawrot, Jan Chorowski, Adrian Lancucki, and
Edoardo Maria Ponti. 2023. Efficient transformers
with dynamic token pooling. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
6403—-6417, Toronto, Canada. Association for Com-
putational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

10

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715-1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Zhiqing Sun and Zhi-Hong Deng. 2018. Unsupervised
neural word segmentation for Chinese via segmental
language modeling. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4915-4920, Brussels, Belgium.
Association for Computational Linguistics.

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin, Simon
Baumgartner, Cong Yu, and Donald Metzler. 2022.
Charformer: Fast character transformers via gradient-
based subword tokenization. In International Con-
ference on Learning Representations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://proceedings.neurips.cc/paper_files/paper/2020/file/1325cdae3b6f0f91a1b629307bf2d498-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/8511df98c02ab60aea1b2356c013bc0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/8511df98c02ab60aea1b2356c013bc0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/8511df98c02ab60aea1b2356c013bc0f-Paper.pdf
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://doi.org/10.18653/v1/2022.findings-emnlp.494
https://doi.org/10.18653/v1/2022.findings-emnlp.494
https://doi.org/10.18653/v1/2022.findings-emnlp.494
https://api.semanticscholar.org/CorpusID:245335281
https://api.semanticscholar.org/CorpusID:245335281
https://api.semanticscholar.org/CorpusID:245335281
https://api.semanticscholar.org/CorpusID:245335281
https://api.semanticscholar.org/CorpusID:245335281
https://doi.org/10.1109/ICASSP.2011.5947611
https://doi.org/10.1109/ICASSP.2011.5947611
https://doi.org/10.1109/ICASSP.2011.5947611
https://nlp.accms.kyoto-u.ac.jp/wikitext-ja
https://nlp.accms.kyoto-u.ac.jp/wikitext-ja
https://nlp.accms.kyoto-u.ac.jp/wikitext-ja
https://doi.org/10.18653/v1/2023.acl-long.353
https://doi.org/10.18653/v1/2023.acl-long.353
https://doi.org/10.18653/v1/2023.acl-long.353
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/D18-1531
https://doi.org/10.18653/v1/D18-1531
https://doi.org/10.18653/v1/D18-1531
https://doi.org/10.18653/v1/D18-1531
https://doi.org/10.18653/v1/D18-1531
https://openreview.net/forum?id=JtBRnrlOEFN
https://openreview.net/forum?id=JtBRnrlOEFN
https://openreview.net/forum?id=JtBRnrlOEFN
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

A Model Hyper-parameters

In all experiments except the ablation study, we
employed a 14-layer Transformer encoder. Four
layers function as the character encoder, while the
remaining 10 layers serve as the context encoder,
processing the pooled representations. The decoder
is a 4-layer Transformer operating on segmented
sequences Y. It has access to all previous segment
representations sj.,,,_, for cross-attention compu-
tation. Unless specified otherwise, the hidden di-
mension of each Transformer layer is 512, and
the intermediate feed-forward dimension is 2048.
Attention is split into eight heads in the context en-
coder and four heads in both the character encoder
and decoder.

Models were trained for 125,000 steps using
the AdamW optimizer with a batch size of 64, a
learning rate of 3e-4, 10,000 warm-up updates, and
weight decay of le-4. Training data was divided
into equal-length sequences, disregarding sentence
boundaries, with chunk sizes of 150 for English
and 256 for Chinese and Japanese.

11

	Introduction
	Latent Segment Language Models
	Generative model Lg
	Parametrization of Lg
	Pooling token representations
	Optimization

	Experimental Setup
	Datasets
	Models

	Results and Discussion
	Related Work
	Conclusion
	Limitations
	Model Hyper-parameters

