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Abstract001

Tokenization is a critical step in every NLP002
system, yet most works treat it as an isolated003
component separate from the models they are004
building. In this paper, we present a frame-005
work to jointly learn next-token prediction and006
segmentation from a sequence of characters007
or bytes. We evaluate our model on language008
modeling benchmarks in English, Chinese, and009
Japanese using both character and byte vocab-010
ularies. Our model consistently outperforms011
baselines on Chinese benchmarks with charac-012
ter vocabulary and shows significant improve-013
ments with byte vocabulary. Further latency014
improvements are achieved by adapting differ-015
ent pooling strategies while maintaining com-016
parable results to the best models. Our main017
contributions are threefold: we propose a lan-018
guage model that learns to segment the input019
sequence, conforming to the desired segmen-020
tation prior; we demonstrate that our model021
achieves shorter latency than baselines in token022
generation; and we show that our model can be023
applied to three different languages—English,024
Chinese, and Japanese—demonstrating its po-025
tential for wider NLP applications. Our source026
code will be released on GitHub.027

1 Introduction028

Tokenization is a vital procedure in every natu-029

ral language processing (NLP) system because it030

impacts both computational efficiency and model031

performance. Tokenization refers to the process032

of breaking down text into smaller units, such as033

words or subwords, which can be processed by the034

model. Before the dominance of neural networks035

in NLP, word-based tokenization was ubiquitous036

(Mielke et al., 2021). However, word tokeniza-037

tion has a significant issue: the out-of-vocabulary038

(OOV) problem, where words encountered during039

evaluation are not present in the training vocab-040

ulary. A common solution to this problem is to041

map unknown words to a special symbol <oov>,042

which can negatively impact accuracy. To address 043

OOV issues, subword-based tokenization was intro- 044

duced, segmenting words into sequences of smaller 045

units (Sennrich et al., 2016; Wu et al., 2016; Kudo 046

and Richardson, 2018). While effective in reduc- 047

ing OOV occurrences, this approach introduces a 048

separate learning process for the subword vocab- 049

ulary. Techniques like Byte Pair Encoding (BPE) 050

are commonly used, but their simple design can 051

lead to suboptimal vocabularies, potentially harm- 052

ing downstream task performance (Bostrom and 053

Durrett, 2020). 054

Recent research has explored various strategies 055

for discovering linguistic units within text. Segmen- 056

tal language models (Sun and Deng, 2018) model 057

the joint probability of the token sequence and its 058

segmentation, facilitating the discovery of Chinese 059

words from an unlabeled corpus. These models 060

effectively compute the marginal probability of the 061

input sequence by parameterizing the maximum 062

segment length and employing a dynamic program- 063

ming algorithm for training. Alternatively, some 064

researchers group input characters into a fixed num- 065

ber of segments (Clark et al., 2022; Behjati and 066

Henderson, 2023). These methods train models to 067

aggregate sequences of character representations 068

into shorter abstract representations. However, this 069

approach limits the model to a fixed number of 070

abstract representations during training. 071

In contrast, Nawrot et al. (2023) proposed im- 072

proving Transformer efficiency and performance 073

by pooling character representations. Their method 074

overcomes the fixed-length limitation of previous 075

works by dynamically adjusting the character pool- 076

ing based on a boundary predictor. Through bound- 077

ary prediction, their model identifies and pools 078

variable-sized segments of characters, guided by 079

either end-to-end learning or supervision from ex- 080

isting tokenizers. Despite these advancements, 081

Nawrot et al.’s (2023) architecture, like most neural 082

language models, still requires the decoder to con- 083
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dition on the entire previous character string. This084

creates inefficiencies for long character sequences,085

as characters with minimal impact on future pre-086

dictions still incur attention-related computational087

costs. To mitigate these costs, we adapt the decoder088

to operate on character segments instead of the en-089

tire string. This method was initially proposed by090

Sun and Deng (2018), but their approach relied091

on an RNN-based encoder and imposed segment092

length limits. Our work demonstrates improve-093

ments in both latency and effectiveness by sam-094

pling the next character with an encoder-decoder095

language model.096

In this paper, we propose an encoder-decoder097

architecture for training auto-regressive language098

models. First, a causally masked encoder takes the099

character string as input and outputs boundaries100

and representations of the input. We then pool101

these character representations into shortened rep-102

resentations, as done in (Nawrot et al., 2023). The103

decoder then takes the characters from one pooled104

segment as input, using all previously pooled rep-105

resentations for cross-attention. This shift allows106

for more efficient decoding of character strings, fo-107

cusing the model on the most relevant segments of108

the input sequence.109

Our main contributions are threefold:110

• In terms of model training, we formulate a111

language model capable of learning to seg-112

ment the input sequence. This model not only113

learns to segment the sequence but also con-114

forms to the desired segmentation prior.115

• Regarding model efficiency, we demonstrate116

that our model achieves shorter latency than117

the baseline in token generation.118

• For model evaluation, we show that the pro-119

posed model can be applied to three different120

languages - English, Chinese, and Japanese121

- demonstrating its potential for wider NLP122

application.123

2 Latent Segment Language Models124

We denote a sequence of T tokens as X =125

x1x2 . . . xT , where each token xt can represent126

either a character or a UTF8 byte, depending on127

the selected vocabulary. Let Z = z1z2 . . . zT rep-128

resent the boundaries of segments within X . The129

variable zt ∈ {0, 1} indicates the presence of a130
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Figure 1: The architecture of the proposed Latent Seg-
ment Language Model is illustrated here. x1 and x8

represent < BoS > and < eos >, respectively. We
have not shown < bos > and < nxt > for each output
segment in this figure. The segmentation of this se-
quence is represented as 0s and 1s in the pooling block.
The input to all model blocks is causally masked; this
means that the i-th output is computed from all the in-
puts before and including the i-th input. The dashed
line highlights the information used to decode the 4th
segment, x7x8, during inference.

boundary between consecutive tokens xt and xt+1, 131

as proposed by Nawrot et al. (2023). 132

The tokens that make up the m-th segment are 133

denoted by Ym = ym,1ym,2 . . . ym,Lm , where Lm 134

is the number of tokens in the m-th segment. Here, 135

zt = 1 signifies the end of a segment at position t, 136

and zt = 0 indicates no boundary between xt and 137

xt+1. 138

We define the Latent Segment Language Model 139

(LSLM) to jointly model the token sequence X and 140

the segment boundaries Z. The joint probability 141

p(X,Z) is given by: 142

log p(X,Z) =

T∑
t=1

(
log p(xt | X<t, Z<t)

+ log p(zt | X≤t, Z<t)
)
,

(1) 143

where X<t = x1x2 . . . xt−1 denotes the se- 144

quence of tokens generated before the t-th token, 145

and Z<t = z1z2 . . . zt−1 denotes the sequence of 146

segment boundaries predicted before the t-th token. 147

Each boundary prediction zt is modeled as a dis- 148

crete latent variable, drawn from a parameterizable 149

distribution: 150
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zt ∼ p(zt; t).151

The probability distributions p(xt | X<t, Z<t)152

and p(zt | X≤t, Z<t) represent the model’s predic-153

tions for the next token and the boundary, respec-154

tively. The LSLM captures dependencies between155

token sequences and segment boundaries, provid-156

ing a more nuanced understanding of the structure157

within the data.158

2.1 Generative model P (X,Z)159

In the event of a boundary between tokens xt160

and xt−1, we aggregate the token representations161

h1h2 . . . ht−1 into segment representations S =162

s1s2 . . . sm. Here, each token is pooled into its163

corresponding segment. The index m is defined as164

m =
∑t−1

i=1 zi, where zi indicates a boundary. The165

representation ht is the contextualized token repre-166

sentation obtained from the token encoder enctok:167

ht = enctok(ht−1, xt).168

Next, we compute the contextualized segment rep-169

resentation s′m using the context encoder encctx:170

s′m = encctx(s
′
m−1, sm).171

Following this, the model employs an auto-172

regressive decoder to generate the next token xt173

of segment m+ 1 using the previous segment rep-174

resentations s′0:m:175

om+1,n = dec(s′0:m, om+1,n−1, ym+1,n−1),176
177

xt = ym+1,n = softmax(Wom+1,n + b).178

Initially, the previous token of the segment179

ym+1,n−1 is a starting symbol, which provides the180

initial context for the decoder.181

Conversely, when there is no boundary between182

tokens xt and xt−1, there is no need for aggrega-183

tion. In this scenario, the model directly generates184

the next token xt of segment m, considering xt−1185

as the previous token of the segment, denoted by186

ym,n−1. In both cases, whether zt−1 indicates a187

boundary or not, the newly generated token xt is188

fed into the token encoder enctok.189

Each segment Ym is generated in an auto-190

regressive manner, augmented with a <bos> sym-191

bol at the beginning as ym,0 to signify the start of192

the segment. Furthermore, a <nxt> symbol is ap-193

pended at the end of Ym to inform the model to194

transition to the next segment. The augmentation195

of Ym allows the model to treat the <nxt> symbol196

as a boundary between ym,Lm and ym+1,1 during197

inference.198

2.2 Parametrization of z 199

To make the boundary context-dependent, the 200

LSLM employs a causally-masked encoder that 201

tokenizes the input sequence incrementally, pro- 202

cessing one token at a time. Upon decoding a 203

token, the model appends it to a list and concur- 204

rently outputs a boundary prediction to ascertain 205

the formation of a new segment. When a token is 206

identified as an endpoint, the tokens comprising the 207

nascent segment are extracted from the list and fed 208

into the encoder. Since segments consist solely of 209

consecutive tokens, their extraction from the par- 210

tially formed X and Z is straightforward, negating 211

the need for supplementary data structure. 212

For the complete computation of sequence prob- 213

ability, LSLM introduces a distinct initial symbol, 214

<BoS>, at the beginning of sequence X to estab- 215

lish the context for ensuing segments and to distin- 216

guish it from the segment’s starting symbol, <bos>. 217

Analogously, the symbol <eos> is appended to the 218

end of X . In sequence Z, an initial ending symbol 219

indicates that <BoS> inaugurates a segment. The 220

model is engineered to predict ending determinis- 221

tically when encountering <eos> during training. 222

This generation procedure is maintained until the 223

decoder produces an <eos> symbol in the infer- 224

ence phase. Throughout this document, T signifies 225

the length of the augmented sequences X and Z. 226

More specifically, let Z = {ending} be the trace 227

of token types of a sequence before any token gen- 228

eration. Each element of Z can either be ending or 229

non-ending. Without loss of generality, we define 230

zt as 1 for ending states and 0 for non-ending states. 231

Before generating token xt+1, the boundary pre- 232

diction zt is sampled from a Bernoulli distribution 233

based on the current representation ĥt: 234

zt ∼ Bernoulli(pt), pt = σ(
−→
1 ⊤FFN(ht)).

(2) 235

The FFN consists of two linear transformations 236

without bias terms with a ReLU activation in be- 237

tween (Vaswani et al., 2017), transforming from 238

ht into ĥt of the same size. In preliminary experi- 239

ments, we found the model to be more stable when 240

the FFN’s output is summed in this way than trans- 241

forming it into a scalar. 242

2.3 Pooling token representations 243

To compute the segment representations sm termi- 244

nating at token xt, we aggregate the representations 245

of the tokens starting from xt backwards to include 246

the token at position t − m. This aggregation is 247
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Figure 3: The computation of the binary matrix B for
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function, we allow zeros in V to be transformed to 1−V ,
and the rest are replaced by zeros, as done by Nawrot
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defined such that zt−j = 0,∀j, (j ≥ 1 ∧ j ≤ m),248

and zt−m−1 = 1. In this study, we evaluate two dis-249

tinct pooling methods tailored to different research250

objectives.251

The first method, referred to as N-hops, is for-252

malized as follows:253

Hn
t = ztHn−1

t + (1− zt−1)Hn−1
t−1 , (3)254

where H0
t = ht. Equation 3 indicates that Hn−1

t255

is maintained when zt = 1, and Hn−1
t−1 is merged256

into Hn
t if zt−1 = 0. To derive the segment repre-257

sentations S, we collate all HN
t for which zt = 1258

and omit the others. With a high value of N, the259

segment representations HN
t encapsulate the full260

range of token representations within each segment.261

Conversely, a lower value of N prioritizes captur-262

ing only the latter token representations within a263

segment, yielding quicker but coarser segment rep-264

resentations.265

The computation of segment representations that 266

encapsulate the entire set of token representations 267

within each segment may lead to inefficiencies, 268

particularly as a high N incurs computational over- 269

head for segments that necessitate fewer hops. To 270

enhance the efficiency of pooling segment repre- 271

sentations, we introduce a method that utilizes a 272

binary matrix B ∈ RT×M derived from Z (Bhati 273

et al., 2021), where M represents the number of 274

segments excluding those containing the <eos> 275

symbol. Figure 3 demonstrates the computation 276

of B, resulting in S = B⊤H, where H ∈ RT×D 277

encompasses the token representations of the se- 278

quence X . This method is termed dynamic pooling 279

(DP) (Nawrot et al., 2023). 280

Before these segment representations are fed 281

into the context encoder, we normalize them by 282

the number of tokens pooled per segment. Nor- 283

malization ensures that each segment representa- 284

tion reflects the average contribution of its tokens, 285

rather than being biased by segment length. While 286

the computation of segment representations is exe- 287

cuted in a single step during the model’s training 288

phase, during inference, these representations are 289

calculated each time the decoder emits the <nxt> 290

symbol. 291

2.4 Optimization 292

Training the model without supervision of Z 293

requires marginalizing over Z. However, this 294

marginalization becomes computationally infeasi- 295

ble as the sequence length increases. To address 296

this issue, we adopt variational inference (Kingma 297

and Welling, 2014) to approximate the true poste- 298

rior p(z|X) with a variational posterior distribution 299

qϕ(z|X), also referred to as the inference model, 300

over segments Z. This approximation involves 301

maximizing the Evidence Lower Bound (ELBO), 302

which serves to minimize the Kullback-Leibler 303

(KL) divergence between qϕ(z|X) and the true 304

posterior. The ELBO is employed as our objec- 305

tive function: 306

log p(X) ≥
∑
t

Eqϕ(zt|X≤t) [log pθ(xt|X<t, Z<t) 307

−KL(qϕ(zt|X≤t)||p(z))] . (4) 308

Here, θ and ϕ represent the parameters of the 309

generative model and the inference model, respec- 310

tively. To improve training efficiency, we utilize a 311

simplified inference model that considers only the 312
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prior token history, aligning with the second term of313

Eq. 1. Consequently, we employ the feed-forward314

network described in Eq. 2 for the inference model.315

For p(z), we use Beta(a, b), the conjugate prior of316

the Bernoulli distribution, to express the variety of317

segmentation for different languages.318

To train the model, we use Gumbel-Sigmoid319

reparameterization (Geng et al., 2020) to sample320

from the approximate posterior qϕ(z|X≤t), making321

the model differentiable:322

ẑt = σ(p̂t + g′ − g′′), (5)323

where p̂t is derived from Eq. 2 before sigmoid acti-324

vation, and g′ and g′′ are two independent Gumbel325

noises. Given the discrete nature of boundaries, we326

discretize the boundary zt as follows:327

zt =

{
1, if ẑt ≥ 0.5

0, if ẑt < 0.5.
(6)328

We employ the straight-through estimator (Bengio329

et al., 2013) to Eq. 5, enabling gradient propagation330

through Eq. 6 as if it were continuous.331

Parameter updates (θ) follow the interleaved op-332

timization strategy of Li et al. (2020). We update333

the parameters of the generative model for k steps,334

then update the approximate posterior parameters335

(ϕ) for a single step. Empirically, we find a few336

mini-batches are sufficient for the model to adhere337

to the desired segmentation prior when k is set to 1.338

For enhanced exploration, we set k = 3. A hyper-339

parameter, β, modulates the KL term’s influence340

within the loss function. This approach leverages341

the interdependence between the generative model342

and the variational posterior, ensuring that improve-343

ments in qϕ directly benefit the learning of pθ, and344

conversely.345

3 Experimental Setup346

3.1 Datasets347

We evaluate LSLM on three languages representing348

distinct morphological types: English (fusional),349

Chinese (isolating), and Japanese (agglutinative).350

For English, we use the Penn Tree Bank (Marcus351

et al., 1993) with preprocessing from Mikolov et al.352

(2011), where only the top 10K words are retained,353

and all other words are mapped to an <unk> token.354

We also follow their data split for training, devel-355

opment, and testing. For Chinese, we use the MSR356

corpus as presented in the Second International Chi-357

nese Word Segmentation Bakeoff (Emerson, 2005).358

We remove all whitespaces from the training set 359

and split the bottom 10% of sentences to create 360

a development set, with the remainder serving as 361

the training set. We use the testing set from MSR 362

without any modifications as our testing set. For 363

Japanese, we use the "Featured Articles" from the 364

Japanese version of Wikipedia, processed by Mori 365

et al. (2019). We retain the splits for training, de- 366

velopment, and testing sets as provided by them. 367

In the English dataset, we compiled a vocab- 368

ulary from all characters and whitespace in the 369

training and development set. The ’<unk>’ symbol 370

in the pre-processed corpus was segmented into 371

five tokens. For both Chinese and Japanese, we 372

explored using bytes and characters for vocabulary 373

construction. For the character vocabulary, we in- 374

cluded characters appearing at least five times in 375

both training and development sets. Conversely, 376

the byte vocabulary was derived by converting text 377

strings into UTF-8 byte sequences, resulting in a 378

concise byte vocabulary of only 256 tokens. Ad- 379

ditionally, we incorporated five special tokens into 380

the vocabulary to mark the beginning and end of 381

the sequence for X and the segment sequence Ym, 382

along with an <oov> symbol to accommodate to- 383

kens beyond the character vocabulary. 384

3.2 Models 385

Any model capable of sequential input processing 386

can function as the encoder and decoder within 387

our proposed LSLM framework. This criterion al- 388

lows us to leverage models with inherent temporal 389

dynamics, without restricting the architecture to a 390

specific type. We have adapted the T5 Transformer 391

(Raffel et al., 2020) as our encoder-decoder due 392

to its robustness in sequence generation tasks. We 393

modified the attention masks in both the encoder 394

and decoder to use causal masking. Detailed model 395

configuration are shown in Appendix A. 396

To evaluate the effectiveness of our framework in 397

sequence modeling, we compared LSLM with dy- 398

namic token pooling (DTP) as proposed by Nawrot 399

et al. (2023). We re-implemented DTP to maintain 400

consistency across variables. For a fair comparison, 401

DTP was configured with the same number of lay- 402

ers and hidden dimension sizes as LSLM. We also 403

compared it to the standard Transformer (GPT-2 404

(Radford et al., 2019)) without token shortening, 405

using 18 layers and the same hidden dimension 406

sizes as the LSLM model. A dropout rate of 0.1 407

was applied to the attention and feed-forward layers 408

for all models. 409

5



We evaluated the model on the development set410

at the end of each epoch, saving it if improvement411

was observed. The best model was then restored412

for evaluation on the testing set. We noted that the413

LSLM’s loss sometimes exhibited sudden spikes414

during training, potentially leading the model to415

sub-optimal convergence. To mitigate this, we416

monitored LSLM’s development loss and restored417

LSLM to the previous best model if the loss dou-418

bled relative to the previous best performance.419

En Zh(byte) Ja(byte)
GPT2 1.418 1.785 1.668
DTP
p=.4 1.416 1.714 1.682
p=.7 1.379 1.722 1.648

LSLM
DP, p=.4, β=.5 1.506 1.776 1.606
DP, p=.4, β=1 1.555 1.798 1.612
DP, p=.7, β=.5 1.363 1.748 1.626
DP, p=.7, β=1 1.390 1.667* 1.564*

Table 1: BPC of models trained on English (En), Chi-
nese (Zh), and Japanese (Ja). We denote LSLM that
utilize dynamic pooling as ’DP’. Each result represents
the average from five different runs. Additionally, p
denotes the prior probability that z ≥ 0.5 in the beta
distribution. A statistically significant improvement in
BPC compared to the baselines is indicated by an as-
terisk (*), as determined by a paired Student’s t-test
(p < 0.05).

4 Results and Discussion420

Table 1 shows the results for LSLM and baselines421

on English, Chinese, and Japanese with a byte vo-422

cabulary. Each model is evaluated using Bits Per423

Character (BPC), computed as follows:424

BPC(X) = − 1

T

T∑
t=1

log2 p(xt),425

which measures the negative log likelihood of the426

corpus—the lower, the better. In all languages,427

the proposed LSLM with Dynamic Pooling (DP)428

achieves the lowest BPC, outperforming both GPT-429

2 and DTP. This improvement is particularly note-430

worthy in Chinese and Japanese, languages charac-431

terized by the absence of explicit word boundaries.432

The reduction in BPC is not only consistent but also433

statistically significant, highlighting the robustness434

of LSLM in handling languages with dense charac-435

ter information.436

Additionally, we observed negative results when 437

the model is poorly configured. The model per- 438

forms worse than GPT-2 for English and Chinese 439

when the prior is set to a low value, which is ex- 440

pected since the segments are getting longer. 441

LSLM DTP GPT2
Zh 4.677 4.921 4.837
Ja 3.093 3.119 3.03

Table 2: Comparison of three models using character
vocabulary: LSLM, DTP, and GPT2, configured as per
the best model specifications reported in the previous
table. Results are averaged from 5 different runs.

Character vs Byte Vocabulary Next, we con- 442

ducted experiments using a character vocabulary to 443

assess whether LSLM generalizes across different 444

vocabularies. The results are reported in Table 2. 445

These results suggest that LSLM is capable of gen- 446

eralizing to different languages and vocabularies. A 447

thorough search of hyper-parameters could benefit 448

both LSLM and DTP, particularly for the Japanese 449

model using a character vocabulary. 450

In terms of relative improvement, using a byte 451

vocabulary grants LSLM consistent improvement 452

across two languages over the DTP baseline, com- 453

pared to using a character vocabulary. This results 454

in a 4.95% and 0.83% relative improvement for 455

Chinese and Japanese, respectively, with a charac- 456

ter vocabulary, as compared to 2.74% and 5.09% 457

relative improvement with a byte vocabulary. 458

The improvement of the Japanese model is more 459

significant when transitioning from a character to a 460

byte vocabulary. This improvement is attributable 461

to the composition of the Japanese writing system, 462

which consists of Hiragana, Katakana, and Kanji. 463

Hiragana and Katakana together comprise a total 464

of 96 characters. Kanji, characters adapted from 465

Chinese, are more numerous, and some rare Kanji 466

suffer from the OOV issue. Byte vocabulary sig- 467

nificantly mitigates the OOV problem, particularly 468

for Japanese, by efficiently encoding rare Kanji, 469

which makes it more advantageous for Japanese 470

than for Chinese. These findings underscore the 471

effectiveness of LSLM when equipped with byte 472

vocabulary, demonstrating not only a capacity for 473

language generalization but also a notable perfor- 474

mance advantage over traditional character vocabu- 475

lary. The improvement in BPC suggests that byte 476

vocabulary could offer a more robust approach for 477

handling diverse linguistic structures. 478
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En Ch(byte) Ja(byte)
Full model 1.363* 1.667* 1.564

Small encoder 1.442 1.772 1.572
Small decoder 1.415 1.824 1.718

Both small 1.459 1.806 1.658

Table 3: LSLM performance with small token encoder
and decoder configurations compared to the full model.
Asterisks (*) indicate statistically significant improve-
ments in BPC over all variants, determined by a paired
Student’s t-test (p < 0.05).

Effects on Sizes of Encoder/Decoder Although479

LSLM pools the token representations into con-480

text representations with shorter lengths, the token481

encoder and decoder still carry out computations482

proportional to the sequence length. To amortize483

the cost of operating on character/byte sequences,484

we can configure the token encoder and decoder485

with fewer parameters. For a smaller token encoder486

and decoder configuration, we set the number of487

layers to 2, the hidden dimension size to 128, and488

split the attention into 2 heads. In these experi-489

ments, residual connections are omitted when the490

sizes of the hidden dimensions differ. As shown in491

Table 3, the performance of both English and Chi-492

nese models deteriorates when the token encoder493

or decoder is under-parameterized. In contrast, the494

small encoder variant for the Japanese model per-495

forms on par with the full model.496

Observing the performance decline with smaller497

decoder configurations, we hypothesize this is due498

to the decoder’s diminished capacity to utilize the499

encoder’s contextual information effectively, com-500

pounded by the smaller decoder’s challenges in501

modeling long sequences. This aligns with the dis-502

cussion on negative results previously highlighted.503

The reason why performance doesn’t degrade as504

much for the small encoder variant of the Japanese505

model could be due to the fact that Japanese is an506

agglutinative language, where words contain multi-507

ple morphemes concatenated together, each adding508

a new layer of meaning. In contrast, for English509

and Chinese, a more complex inference model is510

needed to handle their respective linguistic com-511

plexities. Specifically, in English, a word can con-512

vey different meanings in a sentence, often through513

changes at the end or beginning of the word. In Chi-514

nese, meanings are often indicated through word515

order or auxiliary words. This suggests that the in-516

ference model, which is conditioned on the output517

of the token encoder, could more easily learn to518

segment Japanese than English and Chinese, even 519

when it is under-parameterized. 520

En Zh(byte) Ja(byte)
3hops 1.389 1.701 1.586
1hop 1.395 1.834 1.699
0hop 1.398 1.777 1.634

3hops+
Small encoder

1.376 1.661* 1.581

Table 4: LSLM results for two pooling methods. Hyper-
parameters are configured to be the same as full model.
Asterisks (*) indicate statistically significant improve-
ments in BPC over all variants, determined by a paired
Student’s t-test (p < 0.05).

N-hops vs DP While DP pools all token repre- 521

sentations without any redundant computation, we 522

hypothesize that some of the token representations 523

can be omitted. To investigate this effect, we ex- 524

periment with N-hops using three N values (0, 1, 525

3) and present the results in Table 4. We observe 526

that the performance degrades as N changes from 527

3 to 1, which is expected since more tokens are 528

excluded from their segment. However, the perfor- 529

mance improves as N becomes 0. This improve- 530

ment can be attributed to the attention mechanism 531

of the token encoder, allowing past tokens to con- 532

tribute to the representation of the current token. 533

This suggests that for 0-hop, the token pooling 534

is integrated into the attention computation inside 535

the token encoder, avoiding the uncertainty associ- 536

ated with pooling at N>0, where it’s unclear when 537

tokens will be included in the pooling or remain 538

unaffected. Unlike the scenarios with N>0, DP and 539

0-hop do not face this issue of uncertainty, ensuring 540

more stable training. When training with N-hops, 541

we also observe more instances of model collaps- 542

ing, where the model trivially predicts a boundary 543

between every token. Finally, it is noteworthy that 544

the small encoder variant with 3-hops pooling not 545

only achieves performance comparable to the full 546

model but also improves efficiency in token gener- 547

ation, reducing the latency from 212 ms to 201 ms 548

on a single V100 GPU, a 5.47% improvement. 549

5 Related Work 550

Segmentation Models Several notable ap- 551

proaches have emerged in recent years. He et al. 552

(2020) proposed training a machine translation 553

model where the target sentences are segmented 554

using dynamic programming encoding (DPE). 555
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DPE is learned by marginalizing out different556

segmentations of the target sentence, given the557

BPE dictionary and source sentence. Similarly,558

Kawakami et al. (2019) proposed a segmental559

neural language model (SNLM) where the context560

is represented as a sequence of characters, and the561

generation of each segment is either character-by-562

character from a decoder or a single draw from563

a lexical memory compiled from n-grams of the564

training corpus.565

In a similar vein, Meyer and Buys (2022) de-566

veloped a model that can learn subword segmen-567

tations on four Nguni languages, comparable to568

SNLM. Sun and Deng (2018) introduced an ap-569

proach that marginalizes the segmentation of a sen-570

tence with each segment having a fixed maximum571

length. This model can discover meaningful Chi-572

nese words from a character sequence, given the573

gold segmentation data of the development set. Un-574

like these previous works, Behjati and Henderson575

(2023) proposed a variant of slot attention (Lo-576

catello et al., 2020) which can learn to cluster char-577

acters into morpheme-like slots. Their model is578

trained to reconstruct the original sequence with a579

transformer decoder given the slots.580

Recent studies have also focused on improving581

the evaluation and comparison of segmentation582

models. For example, Ghinassi et al. (2023) high-583

lighted the difficulties in evaluating text segmenta-584

tion models and the potential biases introduced by585

commonly used metrics such as Pk. They provided586

a comprehensive comparison of architectural and587

sentence encoding strategies, offering a more ro-588

bust set of baseline results for future developments589

in linear text segmentation.590

Pooling Token Representations Another series591

of works focuses on pooling token representa-592

tions into shorter intermediate representations to593

reduce computations. These works usually tar-594

get character-based sequences, as the information595

each token carries is less dense compared to word-596

based sequences. For example, CANINE (Clark597

et al., 2022) adapts a convolution layer to reduce598

the number of sequence positions, then restores599

the shortened representations back to their original600

length by duplicating each representation, enabling601

sequence prediction and tagging tasks. CHAR-602

FORMER (Tay et al., 2022) proposes a gradient-603

based subword tokenization approach where each604

character representation is a weighted sum of sub-605

word representations, obtained by mean pooling606

over the character embeddings with various stride 607

sizes. 608

The most recent work closely related to ours 609

was conducted by Nawrot et al. (2023). Similar to 610

our approach, they employ two encoders in their 611

model: one for processing token representations 612

and another for contextualized representations. The 613

primary architectural difference between our model 614

and theirs is that we do not upsample representa- 615

tions to the original length. Moreover, they aug- 616

ment their training process with an auxiliary loss to 617

prevent the trivial solution of predicting each token 618

as a boundary. 619

6 Conclusion 620

We proposed a language model capable of segment- 621

ing a sequence of tokens and pooling the tokens 622

within each segment to enhance performance in 623

terms of latency and model perplexity. Specifically, 624

our model employs token pooling using either a 625

fine-grained method, DP, or a more coarse-grained 626

but faster method, N-hops. Experiments conducted 627

on language modeling benchmarks in English, Chi- 628

nese, and Japanese demonstrate the effectiveness 629

of our proposed model in predicting the next to- 630

ken. Furthermore, we evaluated a variant of the 631

model with fewer parameters in the encoder and 632

found that it can achieve model perplexity com- 633

parable to the best-performing model when com- 634

bined with N-hops pooling, additionally offering 635

the benefit of reduced latency between token gen- 636

erations. Our model also shows its effectiveness in 637

handling diverse vocabularies. In experiments with 638

Chinese and Japanese characters as the vocabulary, 639

our model outperforms the DTP baseline. 640

In summary, our experiments demonstrate the 641

ability of LSLM to segment sequences effectively, 642

resulting in lower perplexity and improved com- 643

putational efficiency. These findings enhance our 644

understanding of segment language models, under- 645

scoring the importance of incorporating a strong 646

inductive bias within the inference model. 647

Future work could explore segmentation through 648

decision trees, which presents a promising avenue 649

for allowing the model to uncover morphological 650

structures more efficiently and potentially mitigate 651

issues of model collapsing. Additionally, expand- 652

ing the model to other languages and domains 653

could provide deeper insights into its generaliz- 654

ability and applicability. 655

8



7 Limitations656

There are several limitations to LSLM that warrant657

discussion. First, training takes more time and658

memory than GPT-2 due to the employment of659

an encoder-decoder architecture. Specifically, the660

decoder component initiates a new text generation661

process for each segment, and gradients need to662

be back-propagated from every segment during663

training. This results in higher computational costs664

and memory usage.665

Second, LSLM introduces several new hyperpa-666

rameters, which can be challenging to tune. Poorly667

configured LSLMs can result in model collaps-668

ing, as discussed in the results section. This hy-669

perparameter sensitivity requires extensive experi-670

mentation and fine-tuning, which can be resource-671

intensive. Future work could explore automated672

hyperparameter optimization techniques to miti-673

gate this issue.674

Third, it is unclear whether LSLMs scale well675

with larger model parameters or data sizes. Recent676

advancements in language models have demon-677

strated emergent abilities by scaling both data and678

parameters significantly. However, our experi-679

ments have been conducted only with small-scale680

data and parameters. We have not yet evaluated681

the performance of LSLM with large-scale datasets682

or larger model configurations. Future research683

should investigate the scalability of LSLM by ex-684

perimenting with larger datasets and model sizes.685

Additionally, we have not considered fine-tuning686

the LSLMs for downstream tasks, which is an im-687

portant step in aligning the models with human688

needs. Fine-tuning could potentially improve the689

model’s performance on specific applications, such690

as sentiment analysis or machine translation. Evalu-691

ating LSLM’s performance on various downstream692

tasks would provide a more comprehensive under-693

standing of its practical utility and effectiveness.694

In summary, while LSLM shows promise in im-695

proving token segmentation and pooling, address-696

ing these limitations is crucial for advancing its697

applicability and performance in real-world scenar-698

ios. Future research should focus on optimizing699

the training process, exploring scalability, and fine-700

tuning the model for specific downstream tasks.701
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A Model Hyper-parameters854

In all experiments except the ablation study, we855

employed a 14-layer Transformer encoder. Four856

layers function as the character encoder, while the857

remaining 10 layers serve as the context encoder,858

processing the pooled representations. The decoder859

is a 4-layer Transformer operating on segmented860

sequences Ym. It has access to all previous segment861

representations s′0:m−1 for cross-attention compu-862

tation. Unless specified otherwise, the hidden di-863

mension of each Transformer layer is 512, and864

the intermediate feed-forward dimension is 2048.865

Attention is split into eight heads in the context en-866

coder and four heads in both the character encoder867

and decoder.868

Models were trained for 125,000 steps using869

the AdamW optimizer with a batch size of 64, a870

learning rate of 3e-4, 10,000 warm-up updates, and871

weight decay of 1e-4. Training data was divided872

into equal-length sequences, disregarding sentence873

boundaries, with chunk sizes of 150 for English874

and 256 for Chinese and Japanese.875
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