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ABSTRACT

Providing explanations about how machine learning algorithms work and/or make
particular predictions is one of the main tools that can be used to improve their
trusworthiness, fairness and robustness. Among the most intuitive type of ex-
planations are counterfactuals, which are examples that differ from a given point
only in the prediction target and some set of features, presenting which features
need to be changed in the original example to flip the prediction for that example.
However, such counterfactuals can have many different features than the origi-
nal example, making their interpretation difficult. In this paper, we propose to
explicitly add a cardinality constraint to counterfactual generation limiting how
many features can be different from the original example, thus providing more
interpretable and easily understantable counterfactuals.

1 INTRODUCTION

Explainable Artificial Intelligence (XAI) can be defined as the study and implementation of methods
than provide visibility into how an AI system makes decisions, predictions and executes its actions
(Rai, 2020). In general, two principal dimensions can be defined to classify XAI methods: whether
the method requires knowledge of the model being explained, and whether the explanations refer to
the model itself or its predictions (Du et al., 2019).
In the first case, knowing the internal workings of a particular algorithm results in model-specific
approaches, whereas those that handle machine learning models basically as black-boxes and can
therefore be applied to a more general class of algorithms are called model-agnostic. Examples of
model-specific approaches are DNN-specific methods like those proposed in (Simonyan et al., 2014;
Fong & Vedaldi, 2017; Du et al., 2018). By contrast, model-agnostic explanations use approaches
like perturbations to determine feature contributions based on how sensitive the prediction target
reacts when changing those features (Robnik-Šikonja & Bohanec, 2018; Ribeiro et al., 2016; Liu
et al., 2019). Conterfactual explanations (Wachter et al., 2017) can be considered to belong to this
type of explanations. The main idea is the following: let’s consider a machine learning model fθ
and an input data point x. We want to find data points x̂ such that they are the closest points to x
such that the prediction target is different fθ(x) ̸= fθ(x̂). These data points should help the user
understand what features one would need to change in x to flip the prediction target. For instance,
let x represent a loan application, and fθ a model trained to predict if the loan will be paid off or
will result in default. Having a prediction of default would likely result in the loan application being
rejected. A counterfactual example x̂ would provide an explanation on which features would need
to have been different in order to reach the opposite decision (e.g. by reducing the loan amount or
having a higher income).
One of the main obstacles for using counterfactual explanations in practice is the amount of features
that are different in the original example and the counterfactual: the higher, the more complicated
and unintuitive counterfactual explanations can be. Even if a counterfactual is close to the original
example in feature space (say, in terms of the Euclidean distance between x and x̂), slight changes
in a high number of features can have a negative effect on its interpretability. Therefore, we propose
in this work to add cardinality constraints to counterfactual generation methods in order to ensure
that the explanations provided do not diverge from the original example by more than k features.
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Table 1: Comparison of counterfactuals obtained without cardinality constraints and with a cardi-
nality constraint of k = 2 and k = 3. Differences are shown in bold.

Age Sex BP Cholesterol NaToK
Original 16 M LOW HIGH 12.006

Unconstrained 17 M NORMAL NORMAL 11.29
k = 2 15 M LOW HIGH 22.82
k = 3 15 M HIGH HIGH 11.04

Specifically, we provide an extension for the CERTIFAI framework (Sharma et al., 2020) with car-
dinality constraints to answer the question of whether such sparse counterfactuals can be generated
effectively and efficiently. In general, there is a trade-off between sparse counterfactuals and those
that minimize other metrics like diversity or proximity (Mothilal et al., 2020). In this study, we focus
on sparsity as our main criterium and leave using sparsity in combination with other measures as
future work.

2 METHODOLOGY

The CERTIFAI framework uses a custom genetic algorithm to find those counterfactuals x̂ that min-
imize the distance d(x, x̂) to a given data point x. In this paper, we restrict ourselves to tabular
data and use as distance function the sum of the the L1 distance (for continuous features) and a
matching distance for categorial values as proposed in Sharma et al. (2020). We forked the publicly
available repository from the authors and implemented an additional cardinality constraint by pe-
nalizing those individuals with a cardinality (number of modified features with respect to the input
example) higher than the target value k. We compare the best counterfactuals generated by CERTI-
FAI without cardinality constraints (which are distance-based) with our counterfactuals and analyze
their interpretability using random examples. To have a better overview, we also calculate the mean
cardinality between the constrained and unconstrained counterfactuals for each training example in
the dataset used (see next section). We provide more details on the implementation as well as links
to our code in Appendix A.

3 RESULTS AND DISCUSSION

We performed experiments using the drug200 dataset (obtained from Kaggle) to generate one coun-
terfactual for each training example with and without cardinality constraints. In this dataset, there
are in total 5 features, both continuous and categorical. Using this dataset, CERTIFAI computed
counterfactuals with an average cardinality of k̂ = 3.1. We set the cardinality constraint to k = 2
and k = 3 features to get counterfactuals that are as easy as possible to interpret and compare
the generated counterfactuals with the unconstrained ones. Table 1 shows a comparison of coun-
terfactuals obtained for a random example. As can be seen in the second row, the unconstrained
counterfactuals generated by CERTIFAI can be different than the original sample in many features.
Interpreting such a counterfactual might be difficult, as the only feature that stays with the same
value in this case is the gender. By contrast, the low-cardinality counterfactuals generated with our
approach are more easily interpretable: in the case k = 2 the counterfactual can be intepreted as ’the
target would change if the age is 15 and the NaToK ratio increases to 22.92’. The last row shows
a counterfactual constrained to have a maximum of k = 3 different features, which is also more
easily interpretable than the unconstrained counterfactual. We provide additional experiments with
another dataset in Appendix B to further support our results.

4 CONCLUSIONS

In this paper, we have presented a modification of the CERTIFAI framework to obtain low-
cardinality counterfactuals as model-agnostic explanations. The presented results show that the
cardinality-constrained counterfactuals are more easily interpretable. As future work, we plan to
design more effective genetic operators and validate our approach with larger datasets.
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A IMPLEMENTATION DETAILS

As outlined in Section 2, our implementation1 is a fork of the publicly available Python code2 pro-
vided by the authors of Sharma et al. (2020). We defined a new distance function card distance
that calculates the amount of different features between a candidate counterfactual and the original
data point. This distance function provided a deviation ∆ between the target maximum cardinality
and the cardinality of the current counterfactual. A linear penalty term was then calculated using a
coefficient ccard that was chosen in such a way that it effectively resulted in the cardinality constraint
being considered as a hard constraint (i.e. ccard∆ >> max fitness). The original distance-based
objective function used in CERTIFAI remained unchanged (i.e. the best counterfactuals found by
CERTIFAI are scored according to this function). As a base model, we used the original model pro-
vided in the code which is a multi-layer perceptron with a hidden layer of h = 25 neurons. We note
that the results obtained are independent of the base model used, as our method is model-agnostic.
The genetic algorithm is run for 10 generations and the probability of mutation and crossover are set
to pm = 0.2 and pc = 0.5.

B ADDITIONAL EXPERIMENTS

In order to further validate our results, we performed additional experiments using the Car Eval-
uation dataset (obtained from the UCI Machine Learning repository3). This dataset contains six
categorial features, where the target shows the acceptance level of the car according to the features
(buying price, maintenance price, number of doors, capacity in terms of persons to carry, the size
of the luggage boot and an estimated level of safety). The dataset comprises 1728 rows. We run
our algorithm to find counterfactuals with a maximum of k = 3 different features. In this case, the
average cardinality was k̂ = 1.6, showing that our algorithm was able to find counterfactuals which
are often of cardinality k = 2 or even k = 1. Table 2 shows an additional comparison between an
unconstrained counterfactual calculated by CERTIFAI and sparse counterfactuals calculated with
our method. As can be seen, using the cardinality constraint can lead to sparser counterfactuals
were changing already only very few features can already lead to flip the prediction target.

Table 2: Comparison of counterfactuals obtained without cardinality constraints and with a cardi-
nality constraint of k = 2 and k = 3. Different values compared to the original example are shown
in bold.

Buying Maint Doors Persons Lug boot Safety
Original vhigh med 2 2 small med

Unconstrained low low 2 more small high
k = 2 vhigh med 2 more big med
k = 3 vhigh med 4 more big med

1https://github.com/IMC-UAS-Krems/CERTIFAI_card
2https://github.com/Ighina/CERTIFAI
3https://archive.ics.uci.edu/dataset/19/car+evaluation
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