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Abstract

Aspect sentiment coherency is an intriguing001
yet underexplored topic in the field of aspect-002
based sentiment classification. This concept003
reflects the common pattern where adjacent as-004
pects often share similar sentiments. Despite005
its prevalence, current studies have not fully006
recognized the potential of modeling aspect007
sentiment coherency, including its implications008
in adversarial defense. To model aspect sen-009
timent coherency, we propose a novel local010
sentiment aggregation (LSA) paradigm based011
on constructing a differential-weighted senti-012
ment aggregation window. We have rigorously013
evaluated our model through experiments, and014
the results affirm the proficiency of LSA in015
terms of aspect coherency prediction and as-016
pect sentiment classification. For instance, it017
outperforms existing models and achieves state-018
of-the-art sentiment classification performance019
across five public datasets. Furthermore, we020
demonstrate the promising ability of LSA in021
ABSC adversarial defense, thanks to its senti-022
ment coherency modeling. To encourage fur-023
ther exploration and application of this concept,024
we have made our code publicly accessible.025
This will provide researchers with a valuable026
tool to delve into sentiment coherency model-027
ing in future research.028

1 Introduction029

Aspect-based sentiment classification (Pontiki030

et al., 2014, 2015, 2016) (ABSC) aims to identify031

sentiments associated with specific aspects within032

a text, as highlighted in several studies (Ma et al.,033

2017; Fan et al., 2018; Zhang et al., 2019; Yang034

et al., 2021). In this work, we make efforts to ad-035

dress an intriguing problem within ABSC that has036

been overlooked in existing research, i.e., "aspect037

sentiment coherency", which focuses on modeling038

aspects that share similar sentiments. For instance,039

in the sentence "This laptop has a lot of storage,040

and so does the battery capacity," where ’storage’041

and ’battery capacity’ aspects both contain posi- 042

tive sentiments. We show more examples of aspect 043

sentiment coherency in Fig. 1 and the case study 044

section. 045

The study of aspect sentiment coherency has not 046

been investigated in existing research. Yet, some 047

strides have been made on a similar topic, namely 048

sentiment dependency. These approaches, featured 049

in several studies (Zhang et al., 2019; Huang and 050

Carley, 2019; Phan and Ogunbona, 2020), hypoth- 051

esize that sentiments of aspects may be dependent 052

and usually leverage syntax trees to reveal poten- 053

tial sentiment dependencies between aspects. How- 054

ever, sentiment dependency remains a somewhat 055

ambiguous concept in the current research land- 056

scape. Furthermore, previous methods (Zhou et al., 057

2020; Zhao et al., 2020; Tang et al., 2020; Li et al., 058

2021a,a) tend to model context topological depen- 059

dency (e.g., context syntax structure) rather than 060

sentiment dependency directly. These techniques 061

are resource and computation-intensive and can 062

suffer from token-node misalignment caused by 063

conflicts in tokenization methods in syntax tree 064

construction. 065

As a further contribution to current ABSC re- 066

search, we propose aspect sentiment coherency 067

learning and posit that modeling sentiment co- 068

herency can provide valuable insights. Modeling 069

sentiment coherency often presents challenges for 070

traditional ABSC methods due to the complexity 071

of aspect sentiment coherency. To efficiently ad- 072

dress the aspect sentiment coherency task, we shed 073

light on a simple yet effective approach, namely 074

local sentiment aggregation (LSA). More specifi- 075

cally, we introduce a local sentiment aggregation 076

paradigm powered by three unique sentiment aggre- 077

gation window strategies based on various aspect- 078

based features to guide the modeling of aspect sen- 079

timent coherency. To comprehensively evaluate 080

’our,’ we conduct experiments for the aspect sen- 081

timent coherency extraction subtask and the tradi- 082
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Cozy atmosphere, good food and service, good place to meet friends for dinner and a drink.

Figure 1: An example of aspect sentiment clusters and aspect sentiment coherency.

tional aspect sentiment classification subtask. Our083

experimental results indicate that these strategies084

significantly enhance sentiment coherency model-085

ing. LSA achieves impressive performance in as-086

pect sentiment coherency extraction and sentiment087

classification, setting new state-of-the-art results088

on five widely-used datasets. Therefore, our work089

offers a new perspective on aspect-based sentiment090

analysis.091

In conclusion, the main contributions of our092

work are as follows:093

• Formulation: We highlight the existence of sen-094

timent coherency in ABSC and formulate the095

aspect sentiment coherency modeling task. Be-096

sides, we introduce a local sentiment aggregation097

mechanism to address this task.098

• Method: To implement the local sentiment ag-099

gregation mechanism, we introduce three strate-100

gies for constructing sentiment aggregation win-101

dows, demonstrating the effectiveness of our102

model in sentiment coherency modeling. We103

enhance this mechanism through differential104

weighted sentiment aggregation, allowing for dy-105

namic adjustment of the aggregation window con-106

struction.107

• Evaluation: According to our extensive exper-108

imental results, LSA achieve impressive aspect109

sentiment coherency prediction results. Besides,110

our ensemble LSA model also obtains state-111

of-the-art aspect sentiment classification perfor-112

mance on five public datasets.113

The code and datasets related to this work are pro-114

vided in the supplementary materials.115

2 Sentiment Coherency116

We first introduce the concept of sentiment co-117

herency and then formulate two sentiment co-118

herency patterns. In the review about a restau-119

rant in Fig. 1, the reviewer expresses positive sen-120

timents about the atmosphere, food, and service121

but remains neutral about dinner and drinks. This122

tendency to express similar sentiments about re-123

lated aspects (e.g., atmosphere, food, and service)124

is what we refer to as sentiment coherency. We125

calculate the number of sentiment clusters across 126

all experimental datasets to prove this is a com- 127

mon phenomenon. The statistics are available in 128

Table 1. 129

Our aim is to study the extraction of aspect sen- 130

timent coherency and the improvement of ABSC 131

performance by incorporating sentiment coherency. 132

We formulate two sentiment coherency patterns in 133

the following sections. 134

2.1 Aspect Sentiment Clusters 135

Consider the example in Fig. 1. We notice that 136

similar sentiments about different aspects tend to 137

stick together, which is called sentiment cluster. 138

The formulation of aspect sentiment clusters is as 139

follows: 140

C = {Ci | Ci = {a1, a2, . . . , aj}}, (1) 141

where Ci is the i-th aspect sentiment cluster and 142

aj is the j-th aspect in Ci, 1 ≤ j ≤ m. m is 143

the number of identified aspects in the sentence. 144

Aspect sentiment clustering aims at concurrently 145

predicting all sentiment clusters based on the pro- 146

vided aspects. Aspect sentiment clusters can be 147

regarded as a coarse-grained manifestation of senti- 148

ment coherency. However, directly extracting these 149

clusters can be quite challenging. We explain the 150

challenges in the Appendix A. In consequence, we 151

focus on asynchronous sentiment cluster prediction 152

based on local sentiment coherency. 153

2.2 Local Sentiment Coherency 154

We propose "local coherency" to simplify the mod- 155

eling of aspect sentiment cluster extraction. Local 156

coherency utilizes the aspect features to predict the 157

sentiment iteratively. Finally, the aspects with the 158

same sentiments are aggregated to predict senti- 159

ment clusters. There are two advantages of local 160

sentiment coherency modeling. First, it helps us in- 161

fer the sentiment about an aspect even when it isn’t 162

explicitly stated (e.g., deriving that the reviewer 163

had a positive dining experience without saying it 164

outright). Second, it smooths out the sentiment pre- 165

dictions, reducing errors caused by random noise 166
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or adversarial attacks. As a result, we can have a167

more accurate understanding of sentiments.168

Table 1: The statistics of aspect sentiment clusters.
"Cluster size" indicates the number of aspects in clusters
with different sizes.

Dataset
Cluster Size Sum

1 2 3 4 ≥ 5

Laptop14 791 799 468 294 614 2966

Rest14 1318 1050 667 479 1214 4728

Rest15 617 406 229 163 326 1741

Rest16 836 539 314 210 462 2361

MAMS 6463 2583 1328 746 1397 12517

3 Methodology169

In this section, we propose a local sentiment ag-170

gregation method for sentiment cluster prediction,171

which is based on the local sentiment coherency172

pattern. We first introduce the implementation of173

local sentiment aggregation, which is based on sen-174

timent window aggregation. Then, we present the175

aspect feature learning method used for sentiment176

aggregation window construction in Section 3.2.177

Finally, we describe the implementation details of178

our model.179

3.1 Local Sentiment Aggregation180

To leverage local sentiment coherency, we extract181

the local sentiment information of each aspect and182

build a sentiment aggregation window (which will183

be clarified in Section 3.2) to aggregate coherent184

sentiments. In essence, the sentiment aggregation185

window is created by concatenating the feature186

representation of the aspect’s local sentiment in-187

formation (i.e., aspect feature in the following sec-188

tions). We propose three variants, LSAP , LSAT ,189

and LSAS , to construct sentiment aggregation win-190

dows. Fig. 5 illustrates the architecture of LSAP ,191

while Fig. 2 presents the architecture of both LSAT192

and LSAS . The difference between LSAT and193

LSAS is in the aspect feature used for local sen-194

timent aggregation.195

3.2 Aspect Feature Learning196

Inspired by the existing studies, we employ the197

following aspect feature representations for local198

sentiment aggregation:199

• Sentence pair-based (BERT-SPC) aspect fea-200

ture (Devlin et al., 2019) (employed in LSAP )201

• Local context focus-based (LCF) aspect fea-202

ture (Yang et al., 2021) (employed in LSAT )203

• Syntactical LCF-based (LCFS) based aspect fea-204

ture (Phan and Ogunbona, 2020) (employed in205

LSAS)206

We also present an ensemble model (LSAE) that 207

combines the three variants of our model. 208

3.2.1 Sentence Pair-based Aspect Feature 209

A straightforward way to obtain aspect features is 210

to utilize the BERT-SPC input format (Devlin et al., 211

2019), which appends the aspect to the context 212

to learn aspect features. For example, let W = 213{
[CLS], {wc

i}ni=1, [SEP ], {wa
j }mj=1, [SEP ]

}
be 214

the BERT-SPC format input, i ∈ [1, n] and j ∈ 215

[1,m], where wc
i and wa

j denote the token in the 216

context and the aspect, respectively. A PLM (e.g., 217

BERT) can learn the aspect feature because the du- 218

plicated aspects will get more attention in the self- 219

attention mechanism (Vaswani et al., 2017). As it 220

is shown in Fig. 5, we simply apply the sentiment 221

aggregation to BERT-SPC-based aspect features. 222

Note that we deploy a self-attention encoder before 223

each linear layer to activate hidden states. We show 224

the architecture of LSAP in Fig. 5. 225

3.2.2 Local Context-based Aspect Feature 226
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Figure 2: The local sentiment aggregation paradigm
based on LCF/LCFS, denoted as LSAT and LSAS .

The second implementation of our model is re- 227

ferred to as LSAT . The local context-based aspect 228

feature is derived by position-wise weighting the 229

global context feature, where the weights are cal- 230

culated using the relative distance of token-aspect 231

pairs. Let W = {wc
1, w

c
2, . . . , w

c
n} be the tokens 232

after tokenization. We calculate the position weight 233

for token wc
i as follows: 234

H∗
wc

i
:=

 Hc
wc

i
dwc

i
≤ α

1−
(
dwc

i
−α

)
n ·Hc

wc
i

dwc
i
> α

,

(2) 235

where H∗
wci and Hc

wci, i ∈ [1, n], are the hidden 236

states at the position of wc
i in the aspect feature 237
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and global context feature, respectively. dwc
i

is the238

relative distance between wc
i and the aspect. We239

concatenate H∗
wc

i
to obtain the aspect feature H∗.240

α = 3 is a fixed distance threshold. If dwc
i
≤241

α, Hc
wci will be preserved; otherwise, it decays242

according to dwc
i
.243

In equation (2), the relative distance dwc
i

between244

wc
i and the aspect is obtained by:245

dwc
i
:=

∑m
j=1 |pci − paj |

m
, (3)246

where pci and paj are the positions of the wci and247

j-th token in the aspect. As shown in Fig. 2, we248

take the global context feature as a supplementary249

feature to learn aspect sentiments.250

3.2.3 Syntactical Local Context-based Aspect251

Feature252

The final variant of our model is LSAS , which253

adopts the syntax-tree-based local context feature254

to construct a sentiment aggregation window. The255

distance between the context word wc
i and the as-256

pect can be calculated according to the shortest257

node distance between wc
i and the aspect in the258

syntax tree. To leverage the syntactical information259

without directly modeling the syntax tree, LSAS260

calculates the average node distance between wc
i261

and the aspect:262

dwc
i
=

∑m
i=j dist(w

c
i , w

a
j )

m
, (4)263

where dist denotes the shortest distance between264

the node of wc
i and the node of wa

j in the syntax265

tree; the calculation of H∗
wc

i
follows LSAT .266

3.3 Sentiment Aggregation Window267

The sentiment aggregation window consists of k-268

nearest aspect feature vectors. Given that most of269

the clusters are small, we only consider k = 1 in270

this study:271

Ho
aw := [{Hl

k};Ht; {Hr
k}], (5)272

273

Ho := W oHo
aw + bo, (6)274

where Ho
aw is the feature representation learned275

by local sentiment aggregation; ";" denotes vector276

concatenation. Hl
k and Hr

k are the k nearest left277

and right adjacent aspect features, respectively. Ht
∗278

is the targeted aspect feature. Ho
∗ is the representa-279

tion learned by the sentiment aggregation window,280

and W o and bo are the trainable weights and biases.281

3.3.1 Aggregation Window Padding 282

To handle instances with no adjacent aspects, we 283

pad the sentiment aggregation window. Fig. 3 il- 284

lustrates three padding strategies. Instead of zero

Aspect-dependent features

Copy

Copy

Copy

Case1 Case3Case2

Figure 3: Window padding strategies for different situa-
tions. 285
vectors, we pad the window using the targeted as- 286

pect’s feature to highlight the local sentiment fea- 287

ture of the targeted aspect and prevent the model’s 288

performance from deteriorating. Case #1 indicates 289

a single aspect in the context, in which we triple the 290

targeted aspect’s feature to build the sentiment ag- 291

gregation window. Case #2 and Case #3 duplicate 292

the targeted aspect’s feature to the left and right 293

slots in the window, respectively. 294

3.3.2 Differential Weighted Aggregation 295

It is reasonable to assume that the importance of 296

sentiment information from different sides may 297

vary. Therefore, we introduce differential weighted 298

aggregation (DWA) to control the contribution of 299

sentiment information from the adjacent aspects 300

on different sides. We initialize learnable η∗l and 301

η∗r to 1 and optimize them using gradient descent. 302

The differential weighted sentiment aggregation 303

window is obtained as follows: 304

Ho
dwa := [η∗l {Hl

k};Ht; η∗r{Hr
k}], (7) 305

where Ho
dwa is the aggregated hidden state learned 306

by the differential weighted aggregation window. 307

3.4 Output Layer 308

For sentence pair-based sentiment aggregation, we 309

simply apply pooling and softmax to predict the 310

sentiment likelihood. For the local context feature- 311

based sentiment aggregation, we adhere to the orig- 312

inal approach of combining the global context fea- 313

ture and the learned feature to predict sentiment 314

polarity as follows: 315

Hout := W d[Ho;Hc] + bd, (8) 316

where Hout is the output hidden state; Ho and 317

Hc are the features extracted by a PLM (e.g., 318
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DeBERTa). We use the feature of the first token319

(also known as the head pooling) to classify senti-320

ments:321

ŷ :=
exp(hhead)∑C̃
1 exp(hhead)

, (9)322

where hhead is the head-pooled feature; C̃ is the323

number of polarity categories. W d ∈ R1×C̃ , bd ∈324

RC̃ are the trainable weights and biases. ŷ is the325

predicted sentiment polarity.326

3.5 Training Details327

The variants of our model based on different PLMs328

are denoted as LSA-BERT, LSA-RoBERTa, LSA-329

DeBERTa, etc. LSA-X represents our model330

based on the large version of PLM.331

We train our model using the AdamW optimizer332

with the cross-entropy loss function:333

L = −
C̃∑
1

ŷi log yi + λ||Θ||2 + λ∗||η∗l , η∗r ||2,

(10)334

where λ is the L2 regularization parameter; Θ is335

the parameter set of the model. As we employ336

gradient-based optimization for η∗l and η∗r , we also337

apply a L2 regularization with λ∗ for η∗l and η∗r .338

4 Experiments339

In this section, we introduce the settings of our ex-340

periments and report the experimental results. We341

report all implementation details in the appendix,342

e.g., hyperparameter settings (Appendix B.2), base-343

line introduction (Appendix B.3) and additional344

experiments, etc.345

4.1 Datasets346

To evaluate the efficacy of the local sentiment ag-347

gregation, we conducted experiments on five popu-348

lar ABSC datasets 1: Laptop14, Rest14, Rest15 and349

Rest16 datasets, and MAMS dataset (Jiang et al.,350

2019), respectively. The statistics of these datasets351

are shown in Table 2.352

4.2 Baselines353

Please refer to Appendix B.3 for the introduction354

of baselines.355

1We evaluate LSA on the Twitter (Dong et al., 2014)
dataset and report the experimental results in Section C.4. The
processed datasets are available with the code in supplemen-
tary materials.

Table 2: The statistics of all datasets used in our experi-
ments. Note that in our experiments, only the MAMS
dataset has a validation set.

Datasets Positive Negative Neutral
Train Test Train Test Train Test

Laptop14 994 341 870 128 464 169

Rest14 2164 728 807 196 637 196

Rest15 909 326 256 180 36 34

Rest16 1240 468 437 117 69 30

MAMS 3379 400 2763 329 5039 607

4.3 Main Results 356

We report sentiment coherency modeling perfor- 357

mance and sentiment classification performance in 358

this section.

Table 3: The exact match score of sentiment cluster
prediction on five public datasets The best results are
highlighted in bold font.

Model
Laptop14 Rest14 Rest15 Rest16 MAMS

EM EM EM EM EM
BERT 75.08 78.75 80.00 87.60 79.26
DeBERTa 79.61 83.88 84.05 89.72 81.16

LSAP-BERT 78.14 82.24 82.76 88.96 82.35
LSAT-BERT 78.06 82.96 82.66 90.02 82.46
LSAS-BERT 78.63 83.09 83.30 88.75 82.73
LSAE-BERT 78.94 83.62 83.40 89.96 84.03

LSAP-DeBERTa 82.55 86.39 86.93 92.14 82.83
LSAT-DeBERTa 81.96 86.26 87.03 91.72 83.38
LSAS-DeBERTa 82.94 85.90 87.13 91.87 83.92
LSAE-DeBERTa 83.73 86.53 87.91 92.57 84.12

359

4.3.1 Cluster Prediction Performance 360

We utilize LSA to classify aspect sentiments and 361

aggregate the sentiment clusters. The cluster pre- 362

diction performance in Table 3 shows that our mod- 363

els consistently outperform the baseline models on 364

all datasets. The performance of LSA is dependent 365

on the base model. It is observed that the sentiment 366

clusters predicted by LSA are very close to the 367

ground truth, which demonstrates the effectiveness 368

of our models in modeling sentiment coherency. 369

The small clusters (e.g., clusters containing 1 or 2 370

aspects) are more easy to predict, while the large 371

clusters (e.g., ≥ 3) are more difficult to predict. 372

4.3.2 Sentiment classification performance 373

When it comes to sentiment classification perfor- 374

mance, the results in Table 4 clearly demonstrate 375

the superiority of our models over significant base- 376

lines, particularly in the case of the LSAE model. 377

The experimental results are as expected and show 378

the proficiency of LSA. 379

One of the primary concerns associated with 380

LSA is its occasional inability to outperform cer- 381

tain baselines based on the BERT model. We 382

attribute this observation to two main reasons. 383
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Table 4: The traditional aspect sentiment classification performance on five public datasets, and the best results are
heightened in bold font. † indicates the results are the best performance in multiple runs, while other methods report
the average performance. ‡ indicates the experimental results of the models implemented by us.

Model
Laptop14 Restaurant14 Restaurant15 Restaurant16 MAMS

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
SK-GCN-BERT (Zhou et al., 2020)

B
as

el
in

es

79.00 75.57 83.48 75.19 83.20 66.78 87.19 72.02 — —
SDGCN-BERT (Zhao et al., 2020) 81.35 78.34 83.57 76.47 — — — — — —
DGEDT-BERT (Tang et al., 2020) 79.80 75.60 86.30 80.00 84.00 71.00 91.90 79.00 — —
DualGCN-BERT (Li et al., 2021a) 81.80 78.10 87.13 81.16 — — — — — —
TF-BERT (Zhang et al., 2023) 81.80 78.46 87.09 81.15 — — — — — —
dotGCN-BERT (Chen et al., 2022) 81.03 78.10 86.16 80.49 — — — — — —
SSEGCN-BERT (Zhang et al., 2022) 81.01 77.96 87.31 81.09 — — — — — —
TGCN-BERT (Li et al., 2021a) 80.88 77.03 86.16 79.95 83.38 82.77 86.00 72.81 — —
ASGCN-RoBERTa Dai et al. (2021) 83.33 80.32 86.87 80.59 — — — — — —
RGAT-RoBERTa Dai et al. (2021) 83.33 79.95 87.52 81.29 — — — — — —
PWCN-RoBERTa Dai et al. (2021) 84.01 81.08 87.35 80.85 — — — — — —
SARL-RoBERTa† (Wang et al., 2021) 85.42 82.97 88.21 82.44 88.19 73.83 94.62 81.92 — —
RoBERTa (Liu et al., 2019)‡ 82.76(0.63) 79.73(0.77) 87.77(1.61) 82.10(2.01) 78.06(0.55) 62.41(0.89) 93.01(0.19) 80.88(0.27) 83.83(0.49) 83.29(0.50)
DeBERTa (He et al., 2021)‡ 82.76(0.31) 79.45(0.60) 88.66(0.35) 83.06(0.29) 87.50(0.28) 73.76(0.36) 86.57(0.78) 73.59(0.95) 83.06(1.24) 82.52(1.25)
SARL-DeBERTa‡ (Wang et al., 2021) 83.32(0.42) 79.95(0.51) 86.69(0.27) 78.91(0.33) 86.53(0.19) 69.73(0.28) 93.31(0.19) 80.13(0.28) 82.03(0.57) 81.84(0.28)

LSAP-BERT

L
S
A

81.35(0.63) 77.79(0.48) 87.23(0.22) 81.06(0.67) 84.07(0.78) 70.62(0.68) 91.74(0.32) 78.25(0.88) 83.13(0.30) 82.53(0.44)
LSAT-BERT 81.35(0.39) 78.43(0.52) 87.32(0.22) 81.86(0.20) 84.93(0.59) 73.01(0.79) 91.42(0.45) 77.50(0.86) 83.51(0.26) 82.90(0.28)
LSAS-BERT 81.03(0.31) 77.45(0.37) 87.41(0.40) 81.52(0.49) 84.22(1.03) 71.98(0.85) 91.58(0.54) 77.54(0.71) 83.23(0.56) 82.68(0.52)
LSAS-BERT 81.03(0.31) 77.45(0.37) 87.41(0.40) 81.52(0.49) 85.56(0.41) 73.79(0.57) 92.20(0.63) 78.49(0.65) 83.23(0.56) 82.68(0.52)
LSAP-RoBERTa 83.39(0.35) 80.47(0.44) 88.04(0.62) 82.96(0.48) 87.01(0.18) 73.71(0.31) 90.31(0.94) 76.17(1.48) 83.37(0.31) 83.78(0.29)
LSAT-RoBERTa 83.44(0.56) 80.47(0.71) 88.30(0.37) 83.09(0.45) 86.64(0.57) 72.24(0.79) 94.22(0.71) 83.41(1.45) 83.31(0.41) 84.60(0.22)
LSAS-RoBERTa 83.23(0.44) 80.30(0.68) 88.48(0.52) 83.81(0.62) 88.31(0.47) 76.23(0.81) 93.65(0.89) 81.82(1.71) 83.58(0.39) 83.78(0.24)
LSAE-RoBERTa 84.12(0.27) 80.90(0.51) 89.11(0.38) 83.98(0.69) 88.39(0.53) 76.19(0.68) 94.15(0.64) 82.18(1.38) 85.48(0.29) 85.02(0.17)
LSAP-DeBERTa 84.33(0.55) 81.46(0.77) 89.91(0.09) 84.90(0.45) 89.05(0.28) 77.14(0.37) 93.49(0.43) 81.44(0.53) 83.91(0.31) 83.31(0.21)
LSAT-DeBERTa 84.80(0.39) 82.00(0.43) 89.91(0.40) 85.05(0.85) 89.61(0.72) 79.17(0.12) 93.65(0.39) 81.53(0.51) 84.28(0.32) 83.70(0.47)
LSAS-DeBERTa 84.17(0.08) 81.23(0.27) 89.64(0.66) 84.53(0.79) 89.42(0.38) 77.29(0.62) 94.14(0.11) 81.61(0.81) 83.61(0.30) 83.07(0.28)
LSAE-DeBERTa 84.80(0.31) 82.09(0.31) 91.43(0.28) 86.85(0.19) 89.47(0.59) 77.84(0.40) 94.47(0.37) 82.39(0.27) 85.85(0.18) 85.29(0.37)
LSAP-X-DeBERTa 86.00(0.07) 83.10(0.30) 90.27(0.61) 85.51(0.48) 89.98(0.11) 78.26(0.98) 95.11(0.69) 84.68(0.21) 82.78(0.96) 81.99(0.86)
LSAT-X-DeBERTa 86.31(0.20) 83.93(0.27) 90.86(0.18) 86.26(0.22)b 91.09(0.22) 81.22(0.34) 94.71(0.56) 84.34(0.38) 84.21(0.42) 83.72(0.46)
LSAS-X-DeBERTa 86.21(0.52) 83.97(0.64) 90.33(0.37) 85.55(0.46) 90.63(0.17) 80.24(0.33) 94.54(0.84) 83.50(0.73) 84.68(0.67) 84.12(0.64)
LSAE-X-DeBERTa 86.46(0.38) 84.41(0.39) 90.98(0.28) 87.02(0.42) 91.85(0.27) 81.29(0.51) 95.61(0.64) 84.87(0.71) 86.38(0.29) 85.97(0.18)

Firstly, LSA is a quite simple mechanism and re-384

lies on relatively basic aspect features to construct385

sentiment aggregation windows, which may not386

be as competitive as state-of-the-art methods that387

employ more complex features. Secondly, the388

current sentiment aggregation window, although389

intuitive, may not be perfect and could poten-390

tially lead to the loss of some sentiment infor-391

mation. Nevertheless, the performance of the392

three LSA variants may not consistently surpass393

some baselines, our models offer notable advan-394

tages in terms of efficiency and ease of integra-395

tion with existing models. With the improvement396

in the base model’s performance (e.g., DeBERTa,397

DeBERTa-Large), LSA achieves impressive re-398

sults across all datasets. Furthermore, it’s worth399

noting that methods such as ASGCN-RoBERTa,400

RGAT-RoBERTa, and PWCN-RoBERTa, while401

showing promising improvements, come at the cost402

of significantly higher resource requirements com-403

pared to other models.404

In summary, LSA presents a compelling choice405

for a trade-off between performance and resource406

efficiency with the potential to be integrated into407

existing models with minimal effort.408

4.4 Practice in Adversarial Defense409

Recent works have highlighted the threat of textual410

adversarial attacks (Xing et al., 2020) as critical411

threats. In this section, we embark on a pioneer-412

ing exploration of LSA’s capabilities, focusing on413

Table 5: Performance comparison of different mod-
els for adversarial defense on the Lap14-ARTS and
Rest14-ARTS datasets. The adversarial datasets are
from Xing et al. (2020).

Model
Lap14-ARTS Rest14-ARTS
Acc F1 Acc F1

BERT 63.98 56.11 72.01 65.62
DeBERTa 67.71 65.60 74.97 66.48

LSAP-BERT 72.31 68.94 78.06 70.23
LSAT-BERT 72.12 68.05 77.57 70.72
LSAS-BERT 70.88 65.98 77.99 71.01
LSAE-BERT 74.32 69.57 78.41 72.04

LSAP-DeBERTa 73.34 68.46 81.19 72.54
LSAT-DeBERTa 73.58 69.28 80.31 71.37
LSAS-DeBERTa 72.31 67.03 79.13 71.82
LSAE-DeBERTa 74.47 69.79 81.55 72.95

its ability to defend against adversarial attacks in 414

ABSC. To evaluate the robustness of LSA in the 415

face of these attacks, we employ existing adversar- 416

ial attack datasets, specifically Lap14-ARTS and 417

Rest14-ARTS2. 418

The results presented in Table 5 serve as a tes- 419

tament to the superior performance of our mod- 420

els when compared to the baseline models, i.e., 421

BERT and DeBERTa. Notably, when considering 422

the DeBERTa-based models, LSAP-DeBERTa, 423

LSAT-DeBERTa, and LSAS-DeBERTa consis- 424

tently outperform the baselines, underscoring the 425

robustness of LSA in defend against adversarial 426

attack. 427

2We will provide access to all our experiments through our
code.
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4.5 Ablation Study428

In this section, we study how gradient-based aggre-429

gation window optimization influences LSA. We430

begin by presenting the trajectory of η∗l and η∗r431

during the training process, as depicted in Fig. 4,432

which illustrates how LSA dynamically constructs433

the optimal window. This observation suggests that434

the model initially prioritizes the side aspects dur-435

ing early training stages, gradually shifting focus436

towards the central aspects. To further investigate

1 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

Epoch

L
S
A

P
-

L
a
p
to

p
14

⌘⇤l
⌘⇤r

1 5 10 15 20 25 30

0.6

0.8

1

1.2

1.4

Epoch

L
S
A

S
-

L
a
p
to

p
1
4

⌘⇤l
⌘⇤r

1 5 10 15 20 25 30

0.5

1

1.5

Epoch

L
S
A

T
-

L
a
p
to

p
1
4

⌘⇤l
⌘⇤r

1 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

Epoch

L
S
A

P
-

R
es

ta
u
ra

n
t1

4

⌘⇤l
⌘⇤r

1 5 10 15 20 25 30

1

1.1

1.2

1.3

1.4

Epoch

L
S
A

S
-

R
es

ta
u
ra

n
t1

4

⌘⇤l
⌘⇤r

1 5 10 15 20 25 30

0

0.5

1

Epoch

L
S
A

T
-

R
es

ta
u
ra

n
t1

4

⌘⇤l
⌘⇤r

1 5 10 15 20 25 30

0.4

0.6

0.8

1

Epoch

L
S
A

P
-

M
A

M
S

⌘⇤l
⌘⇤r

1 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

Epoch

L
S
A

S
-

M
A

M
S

⌘⇤l
⌘⇤r

1 5 10 15 20 25 30

0

0.5

1

1.5

Epoch

L
S
A

T
-

M
A

M
S

⌘⇤l
⌘⇤r

Figure 4: Trajectory visualization of learnable weights
in gradient-based sentiment aggregation window opti-
mization.

437
the impact of gradient-based aggregation window438

optimization, we conduct a comparative analysis439

by evaluating LSA’s performance with and two ab-440

lated models without DWA. Specifically, we assess441

the model’s performance when employing fixed442

static weights ηl and ηr to create sentiment ag-443

gregation windows, as opposed to the DWA. The444

experimental results provided in Fig. 6 demonstrate445

a consistent performance drop when DWA is omit-446

ted. In most scenarios, we observe a modest yet no-447

table improvement of approximately 0.2% to 0.5%448

when DWA is incorporated into our model. We449

also present the experimental results for an ablated450

version of LSA featuring a simplified sentiment451

aggregation window in Table 9. This comparison452

underscores the superior performance of LSA with453

DWA over its simplified counterpart. Consequently,454

we can conclude that gradient-based aggregation455

window optimization proves effective in facilitating456

implicit sentiment learning.457

4.6 Case Study458

In this section, we delve into a case study to val-459

idate the capability of our model in learning lo-460

cal sentiment coherency. We present a series of 461

examples in Table 6, which showcase instances 462

where LSA excels in identifying aspect sentiment 463

coherency. 464

Table 6: The examples for aspect sentiment coherency
found by LSA. The target aspects are denoted in bold
and the underlined words indicates the aspects with co-
herent sentiments. “Pos”, “Neg” and “Neu” represent
positive, negative and neutral, respectively.

No. Domain Examples Model Prediction

1 Restaurant

Not only was the food outstanding,
LSAP -BERT Pos(Pos) ✓, Pos(Pos) ✓but also the coffee and juice!

Not only was the food terrible,
LSAP -BERT Neg(Neg) ✓, Neu(Neg) ✗but also the coffee and juice!

2 Restaurant

The servers always surprise us
LSAS-BERT Pos(Pos) ✓with a different starter.

The servers always temporize us
LSAS-BERT Neg(Neg) ✓with a different starter.

3 TV

The speakers of this TV is great!
LSAT -DeBERTa Pos(Pos) ✓Just like its screen.

The speakers of this TV sucks!
LSAT -DeBERTa Neg(Neg) ✓Just like its screen.

4 Camera

If you are worried about usability,
DeBERTa Neu(Pos) ✗think about the quality !

If you are worried about usability,
DeBERTa Pos(Pos) ✓think about it good quality !

These examples offer compelling evidence of the 465

effectiveness of our model, as compared to a base- 466

line model (DeBERTa). For instance, in example 467

#4, the DeBERTa model produces two inference 468

errors in recognizing coherent sentiments, while all 469

our model variants based on the DeBERTa model 470

yield correct results. Furthermore, LSAP , LSAT , 471

and LSASmodels demonstrate remarkable robust- 472

ness in handling perturbed examples that involve 473

local sentiment coherency. While it is challenging 474

to present a comprehensive list of sentiment cluster 475

prediction examples, the consistent observations 476

obtained in these experiments align with those in 477

Table 6. Based on these experimental results, we 478

confidently assert the model’s proficiency in learn- 479

ing sentiment coherency within ABSC. 480

5 Discussions 481

5.1 How can LSA help to existing methods? 482

The primary function of LSA lies in aggregating 483

aspect features based on local sentiment coherency. 484

Thanks to its straightforward implementation, in- 485

tegrating LSA into existing models is a seamless 486

process. In practice, once aspect features have been 487

extracted using any existing methods, LSA can be 488

effortlessly applied to extract aspect sentiment clus- 489

ters, enhancing the overall performance of aspect 490

sentiment classification. 491

A simple yet effective way to incorporate LSA 492

into existing models involves removing their out- 493

put layer and passing the learned feature represen- 494

tations of adjacent aspects to LSA. Subsequently, 495

LSA can construct the sentiment aggregation win- 496
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dow and derive the weights for each aspect fea-497

ture using the Differential Weighted Aggregation498

(DWA) method.499

5.2 How does LSA works on adverse500

sentiment aggregation?501

In this section, we justify why LSA works for ad-502

jacent but inconsistent sentiment. It is intuitively503

that not all aspect sentiments in adjacent positions504

are similar but sometimes be opposite. However,505

LSA learns to discriminate whether they share sim-506

ilar sentiments based on the training data. If no507

local sentiment coherency is detected, LSA learns508

a weight close to 0 to the feature of adjacent aspects509

in the DWA.510

We have conducted experiments on a sub-dataset511

extracted from the MAMS dataset that only in-512

cludes both marginal aspects in clusters, denoted513

as Margin dataset. We evaluate the sentiment514

prediction accuracy of aspects near inconsistent515

sentiment clusters. The results are available in Ta-516

ble 7, and the performance of classifying margin517

aspects is still comparable to global performance in518

Table 4, indicating that differentiated weighting for519

LSA effectively mitigates the challenge of adverse520

sentiment aggregation.521

Table 7: The performance of sentiment predictions for
margin aspects in various models on the MAMS dataset.

Model Margin MAMS
Acc F1 Acc F1

LSAP -DeBERTa 83.49 82.71 83.91 83.31
LSAT -DeBERTa 82.58 81.79 84.28 83.70
LSAS-DeBERTa 83.87 83.11 83.61 83.07

6 Related Works522

The related works in this field can be broadly di-523

vided into three categories: sentiment dependency-524

based methods, sentiment coherency modeling, and525

implicit sentiment learning.526

Although sentiment coherency is prevalent in527

ABSC, it has received limited attention in re-528

cent years. However, the progress of sentiment529

dependency-based methods, such as the work by530

Zhang et al. (2019); Zhou et al. (2020); Tian et al.531

(2021); Li et al. (2021a); Dai et al. (2021), has con-532

tributed to the improvement of coherent sentiment533

learning. These studies explored the effectiveness534

of syntax information in ABSC, which mitigates535

issues related to sentiment coherency extraction.536

For refining syntax structure quality in senti-537

ment dependency learning, Tian et al. (2021) em-538

ploy type-aware GCN to distinguish different re- 539

lations in the graph, achieving promising results. 540

Similarly, Li et al. (2021a) propose SynGCN and 541

SemGCN for different dependency information. 542

TGCN model alleviates dependency parsing errors 543

and shows significant improvement compared to 544

previous GCN-based models. Despite the afore- 545

mentioned advances, transferring the new tech- 546

niques proposed in these studies is not straightfor- 547

ward. Dai et al. (2021) propose employing the pre- 548

trained RoBERTa model to induce trees for ABSC, 549

effectively solving the node alignment problem. 550

However, the efficiency of inducing trees needs 551

improvement. 552

Compared to coarse-grained implicit sentiment 553

research (de Kauter et al., 2015; Zhou et al., 2021; 554

Liao et al., 2022; Zhuang et al., 2022), the aspect’s 555

implicit sentiment learning in ABSC remains chal- 556

lenging. LSA leverages coherency to aggregate 557

implicit sentiments efficiently. Some researchers 558

have formulated tasks aimed at modeling implicit 559

sentiments and opinions. For instance, Cai et al. 560

(2021) proposed a quadruple extraction task (as- 561

pect, category, opinion, and sentiment), while Mur- 562

tadha et al. (2022) proposed a unified framework 563

that crafts auxiliary sentences to aid implicit aspect 564

extraction and sentiment analysis. In contrast to 565

these works, LSA sidesteps the efficiency bottle- 566

neck of syntax modeling by eliminating structure 567

information and proves to be adaptable to existing 568

methods as it is a transferable paradigm indepen- 569

dent of base models. Li et al. (2021b) presents 570

a supervised contrastive pre-training mechanism 571

to align the representation of implicit sentiment 572

and explicit sentiment. However, it relies on fine- 573

tuning a large-scale sentiment-annotated corpus 574

from in-domain language resources, which may be 575

resource-intensive and inefficient. 576

7 Conclusion 577

Aspect sentiment coherency has been overlooked 578

in existing studies. We introduced the concept of 579

LSA, a novel approach that brings the nuance of 580

local sentiment coherency into the foreground of 581

ABSC. This approach achieves state-of-the-art per- 582

formance when combined with various base mod- 583

els. Furthermore, we also introduce a practice of 584

LSA in the realm of adversarial defense. We hope 585

that our work will inspire further research into sen- 586

timent coherency modeling in the future. 587
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8 Limitation588

Although LSA achieves impressive perfor-589

mance for multiple-aspects situations, e.g.,590

SemEval-2014 datasets. However, while591

being applied in mono aspect situations, such592

as the Twitter dataset, LSA degenerates to be593

equivalent to a prototype model, e.g., the local594

context focus model.595

Another limitation is that LSA is a quite simple596

mechanism and relies on relatively basic aspect fea-597

tures to construct sentiment aggregation windows,598

which may not be as competitive as state-of-the-art599

methods that employ more complex features. Be-600

sides, the current sentiment aggregation window is601

intuitive but may not be perfect and could poten-602

tially lead to the loss of some sentiment informa-603

tion. In the future, we will explore more advanced604

sentiment aggregation windows to improve the per-605

formance of LSA.606
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A Challenges of Aspect Sentiment Cluster844

Extraction845

The challenges of concurrent aspect sentiment clus-846

ter extraction can be summarized in the following847

three aspects:848

• Data Annotation: Currently, there is no exist-849

ing aspect cluster dataset in the literature since850

addressing sentiment coherence is a novel851

topic. Re-annotating cluster data and labels852

presents a significant challenge, and modeling853

these clusters is notably more complex when854

contrasted with local sentiment coherence ag-855

gregation.856

• Data Insufficiency: Even after completing857

the data re-annotation process, the clusters858

within the datasets might still be insufficient859

for effectively training the model.860

• Modeling Difficulty: Cluster mining is a hard861

task compared to text classification, but it is862

worth studying in the near future.863

B Implementation Details 864

B.1 Model Architecture 865

We show the brief architecture of LSAP (based on 866

the BERT-SPC input format) in Fig. 5. The input 867

of LSAP is the same as BERT-SPC, which is a 868

sequence of tokens with the aspect marked by the 869

[ASP] token.
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Figure 5: The local sentiment aggregation paradigm
based on BERT-SPC, denoted as LSAP . “SA” indicates
the self-attention encoder.

870

B.2 Hyperparameter Settings 871

We fine-tune LSA using the following hyper- 872

parameters which are obtained by grid searching. 873

• We set k = 1 in sentiment aggregation window 874

construction. 875

• The learning rate for pre-trained models (e.g., 876

BERT and DeBERTa) is 2× 10−5. 877

• The learning rates for η∗l and η∗r are both 0.01. 878

• The batch size and maximum text modeling 879

length are 16 and 80, respectively. 880

• The L2 regularization parameters λ and λ∗ are 881

both 10−5. 882

We conduct experiments based on multiple 883

PLMs. We implement our model based on 884

the transformers: https://github.com/ 885

huggingface/transformers. 886

B.3 Compared Models 887

In our comparative analysis, we evaluate the per- 888

formance of LSA in relation to several state- 889

of-the-art ABSC models, many of which are 890

syntax-based methods. These models include 891

SK-GCN-BERT(Zhou et al., 2020), which utilizes 892

graph convolutional networks (GCN) to incorpo- 893

rate syntax and commonsense information for sen- 894

timent learning. DGEDT-BERT(Tang et al., 2020) 895

is a dual-transformer-based network enhanced by 896

a dependency graph, while SDGCN-BERT(Zhao 897
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et al., 2020) is a GCN-based model designed to898

capture sentiment dependencies between aspects.899

Dual-GCN(Li et al., 2021a) is an innovative GCN-900

based model that enhances the learning of syntax901

and semantic features.902

Additionally, we include models improved by903

Dai et al. (2021), such as RGAT-RoBERTa,904

PWCN-RoBERTa, and ASGCN-RoBERTa, which905

leverage RoBERTa to induce syntax trees906

that align with RoBERTa’s tokenization strat-907

egy. TGCN-BERT(Tian et al., 2021) intro-908

duces a type-aware GCN that uses an atten-909

tion mechanism to measure the importance910

of each edge in the syntax structure graph.911

SARL-RoBERTa(Wang et al., 2021) employs ad-912

versarial training to mitigate sentiment bias and913

align aspects with opinion words using span-based914

dependency. Finally, dotGCN-BERT(Chen et al.,915

2022), SSEGCN-BERT(Zhang et al., 2022), and916

TGCN-BERT (Li et al., 2021a) are also included917

in our comparison. These models represent the918

current landscape of ABSC research, allowing us919

to assess the effectiveness of LSA against well-920

established approaches.921

We do not compare with Cao et al. (2022) be-922

cause we fail to find the source code of their model.923

C Additional Experimental Results924

C.1 Resource Occupation of LSA925

The experiments are based on RTX2080 GPU,926

AMD R5-3600 CPU with PyTorch 1.9.0. The orig-927

inal size of the Laptop14 and Restaurant14928

datasets are 336kb and 492kb, respectively.929

Table 8: The resources occupation of state-of-the-art
ABSC models. “Proc.T.” and “Add.S.” indicate
the dataset pre-processing time (sec.) and additional
storage occupation (MB), respectively. “∗” represents
non-syntax tree based models, and “†” indicates our
models.

Model
Laptop14 Restaurant14

Proc.T. Add.S. Proc.T. Add.S.
BERT-BASE ∗ 1.62 0 3.17 0
LCF-BERT ∗ 2.89 0 3.81 0
ASGCN-BERT 13.29 0.01 0.02 9.4
RGAT-BERT 35.4k 157.4 48.6k 188
LSAT-BERT∗† 3.16 0 4.32 0
LSAS-BERT∗† 20.56 0 30.23 0
LSAP-BERT∗† 0.20 0 0.32 0

C.2 Experiment of Static Weighted Sentiment 930

Aggregation 931

Besides the dynamic sentiment window differen- 932

tial weighting, we also try static weight to control 933

the contribution of adjacent aspects’ sentiment in- 934

formation. We first initialize ηl, η ∈ [0, 1]), for 935

the left-adjacent aspects, while ηr = 1 − ηl. In 936

this case, a greater ηl means more importance of 937

the left-adjacent aspect’s feature and vice versa. 938

However, it is difficult to search for the optimal 939

static weights for many scenarios via gird search. 940

We even found that the performance trajectory is 941

non-convex while ηl ∈ [0, 1], indicating the ηl on a 942

dataset will be difficult to reuse on another dataset. 943

Fig. 6 shows the performance curve of LSA based 944

on DeBERTa under different ηl. 945
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Figure 6: Visualization of performance under static
differential weighting.

In other words, static differential weighting is 946

inefficient and unstable. We recommend applying 947

an automatic weights search to find a better con- 948

struction strategy for the sentiment window. 949

C.3 Experiment of Simplified Sentiment 950

Aggregation Window 951

To investigate the necessity of bidirectional aggre- 952

gation, we assess the effectiveness of the stream- 953

lined aggregation window. We simply concatenate 954

the left or right adjacent aspect’s feature with the 955

targeted aspect’s feature and then change the output 956

layer to accommodate the new feature dimension 957

of the simplified aggregation window. 958

Table 9 shows the experimental results. From the 959

performance comparison of simplified aggregation, 960

we observe that the full LSA is optimal in most 961

situations, despite the underlying PLM or training 962

dataset. Moreover, to our surprise, LSA with “RA” 963

outperforms LSA with “LA” in some situations. 964
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Table 9: The average performance deviation of ablated
LSA baselines. “LA” and “RA” indicates the simplified
aggregating window constructed only exploits the left-
adjacent aspect or right-adjacent aspect, respectively.

Model
Laptop14 Restaurant14

Acc F1 Acc F1
LSAP -DeBERTa 84.33(0.37) 81.46(0.52) 89.91(0.33) 84.90(0.49)
– w/ LA 83.65(0.47) 80.48(0.62) 89.20(0.28) 84.26(0.31)
– w/ RA 83.86(1.25) 80.41(1.26) 88.57(0.65) 83.16(0.78)
LSAT -DeBERTa 84.16(0.31) 81.40(0.55) 89.91(0.43) 84.96(0.40)
– w/ LA 84.08(1.25) 81.21(1.51) 89.55(0.62) 84.68(1.13)
– w/ RA 84.39(0.78) 81.54(1.22) 89.38(0.45) 83.99(0.68)
LSAS-DeBERTa 84.33(0.31) 81.68(0.44) 90.27(0.76) 85.78(0.56)
– w/ LA 83.57(1.10) 80.44(1.14) 89.29(0.89) 84.00(1.22)
– w/ RA 83.95(0.47) 80.89(0.88) 89.55(0.40) 84.26(0.39)

C.4 Experiments on Twitter Dataset965

The experimental results on the Twitter dataset966

reveal that the extended LSA-X models, with967

LSAT-X-DeBERTa demonstrating the best per-968

formance, effectively leverage local sentiment co-969

herency to achieve competitive accuracy and F1970

scores while maintaining consistent results across971

different runs.

Table 10: The performance of LSA models on the
Twitter datasets, and the best results are heightened
in bold. Numbers in parentheses denote IQR.

Model
Twitter

Acc F1
LSAP-DeBERTa

L
S
A

76.91(0.36) 75.90(0.41)
LSAT-DeBERTa 76.61(0.20) 76.12(0.27)
LSAS-DeBERTa 76.61(0.52) 75.84(0.64)
LSAP-X-DeBERTa

L
S
A
-
X 76.81(0.76) 76.09(0.50)

LSAT-X-DeBERTa 77.17(0.71) 76.45(0.65)
LSAS-X-DeBERTa 77.06(0.26) 76.23(0.29)

972
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