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ABSTRACT

Deep learning models excel at capturing complex representations through sequen-
tial layers of linear and non-linear transformations, yet their inherent black-box
nature and multi-modal training landscape raise critical concerns about reliabil-
ity, robustness, and safety, particularly in high-stakes applications. To address
these challenges, we introduce YES training bounds, a novel framework for real-
time, data-aware certification and monitoring of neural network training. The YES
bounds evaluate the efficiency of data utilization and optimization dynamics, pro-
viding an effective tool for assessing progress and detecting suboptimal behavior
during training. Our experiments show that the YES bounds offer insights beyond
conventional local optimization perspectives, such as identifying when training
losses plateau in suboptimal regions. Validated on both synthetic and real data,
including image denoising tasks, the bounds prove effective in certifying train-
ing quality and guiding adjustments to enhance model performance. By integrat-
ing these bounds into a color-coded cloud-based monitoring system, we offer a
powerful tool for real-time evaluation, setting a new standard for training quality
assurance in deep learning.

1 INTRODUCTION

Deep learning models have become crucial for tackling complex computational problems, owing to
the rich representations they develop through their multi-layered structures and non-linear transfor-
mations LeCun et al. (2015); Goodfellow et al. (2016). Despite their remarkable effectiveness, these
models are often perceived as black boxes, raising concerns related to their robustness, reliability,
and safety. As neural networks become increasingly integral to critical applications, ensuring that
they are properly trained and perform as intended is paramount.

To evaluate the training performance and a network’s ability to store a model after training (i.e.,
achieve zero loss), one approach is to statistically analyze neural networks under certain assump-
tions. This has been done for networks with thresholding activation functions like ReLU, where
researchers have determined the number of parameters needed to achieve full memory capacity
Vershynin (2020). It is well-known that for ReLU-based neural networks (NNs), once a sufficient
number of weights is reached, the network can achieve full memory capacity or even zero loss in
some cases. In Oymak & Soltanolkotabi (2019), the authors theoretically demonstrate that in the
over-parameterization regime, the stochastic gradient descent (SGD) algorithm can converge to the
global minimum. However, these methods are statistical in nature and rely on specific assumptions
about the input data and the model, which may limit their applicability.

The most widely encountered scenario in mathematical optimization, including for training deep
neural networks, is that the true optimum value of the objective function is not known a priori—
i.e., it is unclear to what extent the minimization objective can be reduced. Therefore, finding a
way to evaluate the effectiveness of optimizers in minimizing the training objectives is an intriguing
pursuit. In this paper, we introduce a novel framework for data-aware certification and monitoring
of deep neural network training, which we refer to as the YES training bounds. These bounds aim
to provide a qualified answer to the question: Is the neural network being properly trained by the
data and the optimizer (YES or NO)? The certificates are data-aware in the sense that they take
into account the specific structure and properties of the training data, allowing for more precise
and tailored bounds on the training performance. This means that rather than relying on generic or
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overly conservative estimates, the guarantees reflect the actual dataset being used, providing more
relevant insights into the training process. They are also real-time, fulfilling a long-standing desire
in the deep learning community for tools that can evaluate and certify the progress made in training
a neural network as it unfolds. By offering concrete, data-specific evaluations during training, these
guarantees allow practitioners to confidently assess when sufficient learning has taken place and
whether the model is converging toward optimal training, all without the need for extensive post-
hoc analysis or probabilistic approximations.

To facilitate the practical application of the YES bounds, we offer an intuitive cloud-based mon-
itoring system that visually represents the training progress. This system uses a color-coded
scheme—red (ineffective training), yellow (caution, training non-optimal), and green (effective
training in progress)—to certify the training status in real time; see Fig. 2. As the field of artificial
intelligence (AI) continues to evolve, there is a growing emphasis on AI safety and regulation to
ensure that AI systems meet the highest standards of reliability and effectiveness Howar & Hun-
gar; Tran et al. (2023); Aird—Affiliate (2023); Bengio et al. (2024); Balagurunathan et al. (2021);
Brundage et al. (2020); Hendrycks & Mazeika (2022); Marques-Silva & Ignatiev (2022); Qi et al.
(2024); Pinto et al. (2015); Zhong et al. (2023); Wing (2021); Li et al. (2023). The proposed YES
training bounds and the associated training cloud system present a promising pathway toward es-
tablishing a benchmark for the AI industry, regulators, and users alike. We envision a future where
these bounds are widely adopted, serving as a standardized measure to evaluate and ensure the opti-
mal training performance of AI systems across diverse applications. This standardization could play
a crucial role in fostering trust and accountability within the AI ecosystem.

The YES bounds and their associated cloud system primarily serve as a sanity check for the op-
timizer—the mechanism driving the training process. This system continuously challenges the
optimizer with intelligently crafted examples grounded in mathematically rigorous heuristics and
tailored to the layer-wise architecture of neural networks. By doing so, the bounds lay the proper
groundwork for standardization of training practices in deep learning. Two key observations support
this assertion:

1. The Bounds Go Beyond Local Optimization Perspectives: Traditional optimization ap-
proaches in neural networks predominantly focus on local information—examining the
immediate vicinity of the optimization landscape, such as attraction domains and local op-
tima. However, numerical examples demonstrate that training losses can often plateau in
regions where the YES bounds and the associated cloud unequivocally indicate subopti-
mality. This phenomenon underscores the bounds’ ability to transcend local optimization
insights, providing a more global perspective on training efficacy.

2. Deterministic Certification Without Randomization: Unlike methods that rely on random-
ization around the current training state to certify local or neighborhood optimality, the
YES bounds operate deterministically. They do not produce varying certification results
across different training realizations, even when initialized identically or following similar
optimization paths. This determinism is particularly advantageous for standardization, as
it ensures consistent and reproducible determinations of training quality. By eliminating
the variability introduced by randomization, the YES bounds present a robust and reliable
candidate for establishing standardized training benchmarks in deep learning.

The rest of the paper is organized as follows: In Section 2, we present the preliminaries of our
work and outline the architecture of the model to which we apply the YES bounds. Section 3
draws attention to a fundamental bound for single-layer NNs that will later aid in the development
of the YES bounds. In Section 4, we extend this idea to deep neural networks, accounting for
multiple layers and the nonlinearity of activation functions. Section 5 details our numerical analysis,
evaluating the training performance on both synthetic and real data across various applications,
such as phase retrieval and image denoising, demonstrating the capability of the proposed bound in
assessing AI reliability.

Notation: Throughout this paper, we use bold lowercase and bold uppercase letters for vectors
and matrices, respectively. We represent a vector x and a matrix B in terms of their elements as
x = [xi] and B = [Bi,j ], respectively. (·)⊤ is the vector/matrix transpose. The Frobenius norm of

a matrix B ∈ CM×N is defined as ∥B∥F =
√∑M

r=1

∑N
s=1 |brs|

2, where brs is the (r, s)-th entry
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of B. Given a matrix B, we define the operator [B]+ as max {Bi,j , 0}. B† is the Moore-Penrose
pseudoinverse of B.

2 PRELIMINARIES

Let Ak and bk denote the weight matrix and bias vector for layer k ∈ [K] of the network, respec-
tively. Suppose the input and output data are represented by matrices X ∈ Rn×d and Y ∈ Rm×d,
respectively, such that

X = [ x1 · · · xd ] , Y = [ y1 · · · yd ] , (1)

where {xi ∈ Rn}di=1 and {yi ∈ Rm}di=1 denote d observations of n-dimensional and m-
dimensional input and output features, respectively. Define the matrices {Bk}Kk=1 as Bk =
[ bk · · · bk ] ∈ Rm×d, k ∈ [K]. We consider two closely-related training losses for such
a DNN employing a nonlinear activation function Ω(.), namely

L0

(
{Ak}Kk=1,X,Y

)
≜ ∥Ω(AKΩ(AK−1Ω(· · ·Ω(A1X+B1) · · ·+BK−1) +BK)−Y∥2F, (2)

and

LK

(
{Ak}Kk=1, {Yk}Kk=2

)
≜

K∑
k=1

∥Ω(AkYk +Bk)−Yk+1∥2F, (3)

which is to be minimized with respect to {Ak} and {Yk} by setting (Y1,YK+1) = (X,Y). For
our purpose, we will use the following notations:

Ãk = [ Ak bk ] ,

Ỹk =
[
Y⊤

k 1
]⊤

.
(4)

Using these notations, the training loss expression in (3) can be reformulated as follows:

LK

(
{Ãk}Kk=1, {Ỹk}Kk=2

)
≜

K∑
k=1

∥Ω(ÃkỸk)−Yk+1∥2F. (5)

Note that any nonlinearity in DNNs can be dealt with by imposing the output structure of the ac-
tivation function on {Yk}. For instance, for a ReLU activation function, we only need Yk ≥ 0,
k ∈ {2, · · · ,K}. With this in mind, one may consider the alternative constrained quadratic program:

minimize
{Ãk}K

k=1, {Ỹk}K
k=2

K∑
k=1

∥ÃkỸk −Yk+1∥2F (6)

subject to Ỹk ∈ HΩ,

where HΩ denotes the matrix space created by applying Ω. This representation, which disregards
the activation function and imposes a space constraint on the solution, is useful in establishing the
foundation for our bounds in subsequent sections. For the rest of the paper, we present our for-
mulations without considering the effects of bias terms. However, these formulations can be easily
extended to include bias terms by substituting {Ak} and {Yk} with {Ãk} and {Ỹk}, respectively.

3 AN OPTIMALITY BOUND FOR SINGLE-LAYER NEURAL NETWORKS

We begin by considering a one-layer neural network where the goal is to approximate the function
f : Rn → Rm

+ . Let A be the weight matrix that we aim to optimize, such that the objective
∥Y − Ω(AX)∥2F is minimized. Assume Y is in the feasible set, i.e. the range of a non-linear
activation function Ω(.) of the layer. The weight matrix A that minimizes the alternative objective
∥Y −AX∥2F can then be expressed as:

A = YX†. (7)

The minimal achievable loss of training for a one-layer neural network is thus bounded as

∥Y − Ω(AOPTX)∥2F ≤ ∥Y − Ω(YX†X)∥2F, (8)
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where AOPT is the optimal weight matrix that minimizes the objective ∥Y−Ω(AX)∥2F. For instance,
if Ω(.) is the ReLU function, then we simply have

∥Y − [AOPTX]+∥2F ≤ ∥Y − [YX†X]+∥2F. (9)
Since the solution in (7) is feasible (not necessarily optimal, although meaningful) for the optimizer
of ∥Y−Ω(AX)∥2F, a well-designed training stage is generally expected to satisfy the bound in (8).

4 THE TRAINING PERFORMANCE BOUNDS FOR MULTI-LAYER NETWORKS

So, what is the case for depth and nonlinearity? In scenarios where a single-layer is insufficient,
neural learning models employ multiple layers with nonlinear activation functions such as ReLU to
progressively refine input mappings (leading to deep learning). The necessity for multiple layers
can be attributed to the complexity of the mapping task in question. The necessity for nonlinear
transformations in multi-layer mappings, however, comes from the fact that multiple consecutive
linear mappings are in effect equivalent to a single-layer mapping (with a weight matrix equal to the
product of linear mapping matrices).

Inspired by our observation in the single-layer case, in the following we introduce the YES training
bounds for multi-layer NNs. These bounds aim to provide a qualified answer to the question as to
whether a neural network is being properly trained by the data: YES or NO?

4.1 THE YES-0 BOUND

Assuming an initial value Y1 = X, the network aims to transform Y1 through intermediate states
Y2,Y3, . . . ,YK , finally achieving YK+1 = Y. A sensible but sub-optimal approach will be to
assume at each layer that we aim to project directly to Y, instead of other useful intermediate points
{Yk}. considering our one-layer bound, this no-intermediate approach will be equivalent to setting

Ak = YY†
k, k ∈ [K]. (10)

In particular, when there are no intermediate mappings we are dealing with an order-0 (referred to
as YES-0) bound:

L0

(
{AOPT

k }Kk=1,X,Y
)
≤ BYES-0 ≜ ∥Y −YK+1∥2F, (11)

where
Yk+1 = Ω

(
YY†

kYk

)
, k ∈ [K]. (12)

For instance, we have
Yk+1 =

[
YY†

kYk

]
+
, k ∈ [K], (13)

for the ReLU activation function.

Since the central idea behind the creation of the YES-0 bound, in essence, stems from sequential
projections, one may readily expect a decreasing behavior from the bound as the number of layers
grows large. This is theoretically and numerically verified in Appendix A.

Obtaining the YES-0 bound, which is evaluated for each layer and projects the input of each layer to
the final output, can be viewed as a layer-wise optimization with a linear closed-form operator. The
YES-0 bound can serve as an immediate benchmark for the assessment of training in deep learning:
One can verify whether the training has a YES-0 bound certificate, meaning that they are achieving
a training loss lower than YES-0. Otherwise, they can attest that the training is not proper.

4.2 BEYOND THE YES-0 BOUND

Note that the YES-0 bound is an easily calculated bound that may be used to immediately detect if
proper (not necessarily optimal) training has been carried out, in the sense that the network weights
have been meaningfully impacted by the training data. The answer (YES or NO) will provide
immediate relief as to whether training has been meaningful at all. More sophisticated bounds,
such as the YES bounds of higher degrees may be used to further assess the quality of training, as
discussed in the following.

We begin the construction of the promised bounds by examining whether one can enhance the
bounds by considering a more conducive route to the output Y.

4
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4.2.1 IS DIRECT PATH THE BEST PATH?

0 5 10 15 20 25
Layers

−25
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0

NM
SE

Train
Test

Figure 1: The illustration of a non-monotonic
per-layer error (in dB) observed across both
training and test stages for a DUN.

Consider a local optimizer tasked with navigating
a highly non-convex loss landscape riddled with
numerous local minima. Optimizers like SGD
may become trapped in suboptimal regions. In-
terestingly, allowing the optimizer to momentar-
ily increase the loss can enable it to escape these
attraction domains and ultimately reach a better
minimum. This fact highlights that sometimes,
a non-direct path—including temporary increases
in the loss function—can be more effective in
minimizing the ultimate objective.

This behavior has been widely observed in Deep
Unfolding Networks (DUNs) Chen et al. (2022),
which are typically formulated based on first-
order optimization methods exhibiting mono-
tonic convergence properties. When trained with sufficient data, DUNs learn to behave non-
monotonically, allowing temporary increases in loss to escape attraction domains associated with
poor local optima. As a result, they can achieve lower overall objectives compared to their original
first-order counterparts. Figure 1 illustrates this behavior, showing that the loss at each layer’s output
does not decrease monotonically.

We will leverage this observation and explore projecting the input from each layer onto a mean-
ingfully selected sequence of intermediate points in lieu of immediately projecting them onto Y.
Inspired by the indirect optimization path, this adjustment introduces the notion of the YES bounds
of higher degrees, which will be discussed in detail in the following.

4.2.2 EXPLORING STRUCTURED TRANSITION THROUGH NONLINEARITY-COMPLIANT
SPACES

Enhanced bounds can be established by defining a sequence of useful intermediate points {Yk} that
conform to the nonlinear activation function of the network, i.e. Yk ∈ HΩ. Let us assume we have
such a useful sequence as the outcomes of layers t2, · · · , tΣ (where tΣ = K + 1) as Y⋆

t2 , · · · ,Y
⋆
tΣ

(where Y⋆
tΣ = Y). This gives rise to the YES-Σ bound, i.e.,

L0

(
{AOPT

k }Kk=1,X,Y
)
≤ BYES-Σ ≜ ∥Y −YK+1∥2F, Yk+1 = Ω

(
Y⋆

tσY
†
kYk

)
, (14)

where tσ−1 ≤ k ≤ tσ, 2 ≤ σ ≤ Σ, with Y1 = X. Given a judicious selection of Y⋆
t2 , · · · ,Y

⋆
tΣ ,

the latter should provide a tighter error bound compared to the YES-0 bounding approach.

In addition to the local optimization perspective discussed in Sec. 4.2.1, a domain-aware viewpoint
is also helpful. While it is fair to say that we hope that by iterative mapping, we get closer and closer
to the output of interest, it has also been observed in various machine learning problems that after
extensive training (resembling what we can describe as optimal training), the output of some inner
layers become something meaningful to domain experts (see, e.g., the literature on object detection
in image processing, where the primary task of certain layers is well-understood, such as detecting
edges, and certain features). This observation closely associates with the vision put forth above on
tightening the YES-0 bound by considering useful and meaningful intermediate mapping points.

The key question in deriving the enhanced YES bounds is thus the judicious designation of interme-
diate mapping points. One may suggest these two ways:

1. Problem-specific construction-based sets of intermediate mapping points: As for the image
processing example above, in specific applications, we might have prior knowledge of the
structure of the intermediate projection points. This also presents very interesting points
of tangency with the literature on model-based deep learning, and in particular, DUNs. In
this context, the network layers and the input-ouput relations are strongly connected to a
well-established iterative procedure, which can help with identifying suitable intermediate
mappings discussed herein.

5
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2. Training data-driven generation of the mapping points: This approach takes advantage of
the training data to enhance the YES bounds along with the training loss. This is going to
be the focus of our proposed YES bounds of higher degree in the following.

4.2.3 THE YES-k TRAINING BOUNDS (k ≥ 1)

Leveraging the training data, we utilize the output from a subset of layers acquired during the train-
ing process as the intermediate mapping points and incorporate these points into the YES bounds
by projecting the input of the layer onto these intermediate outputs rather than relying solely on Y.
Specifically, one can utilize k ∈ [K−1] intermediate mapping points in a K layer network to create
associated YES bounds. To better illustrate this idea, we present the example of the higher-degree
YES bounds framework for the case of k = 1:

1. We set Y1 = X.
2. We choose Y⋆

2 as the output of the first layer during the training stage.
3. Following Section 3, we aim to optimize the weight matrix of the first layer A1, such that

the alternative objective ∥Y⋆
2 −A1Y1∥2F is minimized. This is achieved by

A1 = Y⋆
2Y

†
1. (15)

4. We then obtain the output of the first layer as Y2 = Ω
(
Y⋆

2Y
†
1Y1

)
.

5. Since we only chose k = 1 intermediate point, we then progressively project the input of
each layer to the output Y as

Yk+1 = Ω
(
YY†

kYk

)
, k ∈ {2, · · · ,K}. (16)

6. We compute the resulting error of this process as ∥Y −YK+1∥2F.
7. We repeat steps (3-6) by choosing other intermediate points Y⋆

3 , · · · ,Y⋆
K in step 2.

8. Take the minimum of all errors obtained in Step 6, leading to the creation of the YES-1
training bound.

The name YES-1 bound takes into account the fact that we have only considered k = 1 inter-
mediate point in the above process. Note that the above formulation can be easily extended to
k ∈ {2, · · · ,K − 1} intermediate points, generating higher degree YES bounds, namely YES-k
bounds for k ∈ {2, · · · ,K− 1}. In contrast to the YES-0 training bound, the YES bounds of higher
degree are real-time, i.e., they evolve alongside the training loss. It is important to note that YES-k
bounds for larger k are not necessarily smaller than those for smaller k, particularly at the initial
epochs where the training may not suggest excellent intermediate points. Higher degree bounds are,
however, highly likely to perform better when the training is in good condition. We numerically
validate this phenomenon in Appendix B. In Appendix C, we present a monotonic modification of
the YES-k bounds for k ≥ 1, along with an important observation that increasing the degree, i.e. k,
does not necessarily improve the YES bounds. In fact, all the bounds remain relatively close to each
other. This observation can be beneficial from a computational aspect.

4.2.4 THE YES TRAINING CLOUD-SYSTEM FOR QUALITY MONITORING

We now illustrate the integration of the proposed YES bounds with the training process, culminating
in the creation of an intuitive training cloud to monitor progress in real time (see Fig. 2). As the YES
bounds evolve over epochs, similar to the training loss, they enable users to visually observe the in-
teraction between training performance and the YES bounds. This visualization allows practitioners
to track key moments in the training process, such as when the training loss surpasses the YES-0
bound, when it improves beyond the best YES-k bounds, the epochs at which these transitions occur,
and how the bounds and training results interact throughout the process.

To help users navigate key transitions during the training process, the YES training cloud system em-
ploys a color-coding scheme. A training loss that remains above the YES training cloud—depicted
as the red area—indicates ineffective training. When the loss reaches and enters the cloud—the
yellow area—it signifies that meaningful training is taking place, with the network weights being

6
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Figure 2: YES training cloud system for quality monitoring: A training loss that remains above
the YES training cloud (red area) indicates ineffective training. When the loss penetrates the cloud
(yellow area), it suggests that meaningful training has occurred or is in progress—network weights
have been significantly influenced by the data. However, caution is advised, as the training is cer-
tainly not optimal. Dropping below the cloud (green area) signals effective training in in progress
and suggests potential for optimality. It may also indicate diminishing returns in the training pro-
cess, where further gains could be incremental.

substantially influenced by the data. However, caution is still advised at this stage, as the training
has not yet achieved optimality. A loss that descends below the cloud into the green area denotes
effective training, suggesting a potential for achieving optimal performance.

5 NUMERICAL EXAMPLES AND DISCUSSION

In this section, we numerically assess the effectiveness of our proposed YES bounds in evaluating
the performance of the training process for both synthetic and real-world data recovery tasks. For
the synthetic data, we generated datasets based on two models: phase retrieval and one-dimensional
signal denoising. For the real data example, we applied our bounds to real-world image recovery
from noisy quadratic measurements, which is provided in Appendix E.

To generate the dataset for the synthetic data recovery examples, we employ the following models
and configurations:

• Phase Retrieval: The data is generated by the following model:

bi = |Axi| , i ∈ [d], (17)

where A ∈ R20×20 is a Gaussian sensing matrix with entries drawn from N (0, 1/20), the
signal x ∈ R20 is generated as N (0, 1), and d = 1000 samples are generated.

• One-Dimensional Signal Denoising: The dataset is constructed using the model:

bi = xi + ni, i ∈ [d], (18)

where the signal x ∈ R20 is drawn from N (0, 1), and the noise n ∈ R20 follows N (0, 0.2).
For this model, we generate 50 fixed signals, each perturbed by 20 noise vectors sampled
from N (0, 0.2). This process is repeated to generate a dataset of d = 1000 samples.

We train five-layer fully connected networks to approximate models under different parameter con-
figurations, utilizing the ADAM algorithm for optimization. In all experiments, the learning rate is
initialized at η = η0 and reduced by a decay factor of 0.9 every 50 epochs. It is important to note that
the bias term is excluded in the phase retrieval model, whereas it is included in the one-dimensional
signal denoising task. We give the following criterion for stopping the training: the rate of change
in network weights is sufficiently low.

In Fig. 3, we present color-coded clouds illustrating the training process and corresponding bounds
for the phase retrieval model under various conditions and parameters. Figs. 3(a)-(c) show the

7
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(a) (b) (c)

(d) (e) (f)

Figure 3: YES training clouds for the phase retrieval model. The clouds are shown for a fully con-
nected network with 5 layers, each corresponding to different training parameter settings. Figs (a)-
(c) illustrate the performance of the YES bounds for different batch sizes: 20, 100, and 500, respec-
tively, with a learning rate of 1e − 3. Figs. (d)-(f) compare the YES bounds to the training process
with different learning rates: 1e − 3, 1e − 2, and 1e − 4. As seen in Figs. (b) and (c), increasing
the batch size slows the convergence rate, with the training loss entering the green region after more
than 100 epochs. Interestingly, when adjusting the learning rate to 1e − 2 and 1e − 4, as shown
in Figs. (e) and (f), the training struggles to reach the green region, suggesting that a learning rate
of 1e − 3 is the proper parameter for this task. This observation is further supported by comparing
the loss functions across Figs. (d)-(f). Another notable observation in Fig. (f) is that both the YES
bound and the training loss converge relatively closely until the final convergence, indicating that
the training solution behaves similarly to a linear projection.

clouds for different batch sizes, while Figs. 3(d)-(f) illustrate the clouds for varying learning rates.
Specifically, Fig. 3(a) corresponds to a batch size of 20, Fig. 3(b) to a batch size of 100, and Fig. 3(c)
to a batch size of 500, all with a fixed learning rate of 1e − 3. Similarly, Fig. 3(d) uses a learning
rate of 1e− 3, Fig. 3(e) uses 1e− 2, and Fig. 3(f) uses 1e− 4, all with a fixed batch size of 20.

As seen in Figs. 3(a)-(b), training enters the green region after approximately 100 epochs, signaling
effective training is in progress. Notably, the convergence rate for the batch size of 20 is slightly
faster than that of 100, as indicated by the earlier entry into the green region. In Fig. 3(c), the model
struggles to reach the green region, only doing so after 1250 epochs, suggesting that batch sizes
of 20 or 100 are more suitable for this task. Notably, by our real-time bounds, one can notice the
ineffectiveness of the chosen parameters in a real-time manner instead of running the model for
various parameter settings. In terms of learning rate, Fig. 3(d) shows that a rate of 1e − 3 leads to
effective training, with the loss entering the green region after 100 epochs. In Fig. 3(e), increasing the
learning rate to 1e−2 does not alter the entry point into the green region, but the training loss plateaus
closer to the YES bound, implying that the solution aligns with a linear projection—potentially
suboptimal in this context. This pattern is consistent in Fig. 3(f) with a learning rate of 1e−4, where
the model enters the green region after 1250 epochs and similarly plateaus near the YES bound.
Overall, these observations suggest that 1e − 3 is a better learning rate for this task compared to
1e− 2 and 1e− 4.

In Fig. 4, we present color-coded clouds illustrating the training process and corresponding bounds
for the signal denoising model under various conditions and parameters, following a similar ap-
proach as in the phase retrieval case. Figs. 4(a)-(c) highlight the effects of varying batch sizes, while
Figs. 4(d)-(f) show the impact of different learning rates. Specifically, Fig. 4(a) corresponds to a
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(a) (b) (c)

(d) (e) (f)

Figure 4: YES training clouds are utilized for the signal denoising task, displayed for a fully con-
nected network comprising five layers, each representing a unique training parameter configuration.
Figs. (a)-(c) demonstrate the YES bounds’ performance across different batch sizes: 20, 100, and
500 with a learning rate of 1e− 3. Lastly, Figs. (d)-(f) compare the YES bounds against the training
process employing varying learning rates: 1e− 3, 5e− 3, and 1e− 4. As shown in Fig. (b), training
with a batch size of 100 significantly delays reaching the green region, indicating that convergence
is faster with a batch size of 20 than 100. As shown in Fig. (c), the training plateaus in the yellow
region, indicating that the solution obtained by the network is far from the optimal. In Fig. (e),
increasing the learning rate to 1e− 2 accelerates convergence compared to 1e− 3, while in Fig. (f),
the training loss plateaus in the yellow region for the learning rate of 1e− 4.

batch size of 20, Fig. 4(b) to a batch size of 100, and Fig. 4(c) to a batch size of 500, all with a fixed
learning rate of 1e−3. Figs. 4(d)-(f) reflect learning rates of 1e−3, 5e−3, and 1e−4, respectively,
using a fixed batch size of 20.

Comparing Fig. 4(a) and Fig. 4(b), we see that the training loss with a batch size of 20 converges
faster than with a batch size of 100, as evidenced by the earlier entry into the green region. Although
the results of both batch sizes ultimately reach similar error levels, the YES bound for the batch size
of 100 is closer to the training loss, a characteristic of our real-time bounds, which are constructed
from specific intermediate instances along the optimization path. In Fig. 4(c), the training loss
plateaus in the yellow region, indicating that the training is influenced by the data but remains
suboptimal, failing to enter the green region.

Turning to the impact of learning rates, Fig. 4(d) shows that increasing the rate to 1e− 2 accelerates
convergence compared to 1e− 3. However, in Fig. 4(f), with a learning rate of 1e− 4, the training
loss again plateaus in the yellow region, failing to reach the green region and signaling suboptimal
performance. These insights into training effectiveness are achieved in real time, without requiring
multiple parameter comparisons retrospectively, providing an immediate and clear assessment of
the training process. It is important to observe that the bound is more capable than just a local
optimality check. For example, you can generate a number of random points around the current
weights and plot the minimum loss curve associated with them, noting that for local optimality we
should be on that curve. However, one can easily see that the YES bound goes further, as observed
in Figs. 4(c),(f), the training losses converge in the yellow.

To check the performance of the YES bounds across different layers, we train fully connected net-
works for the phase retrieval model, with results shown in Fig. 5. Specifically, Fig. 5(a) illustrates
the cloud for a fully connected network with 5 layers, Fig. 5(b) for 6 layers, and Fig. 5(c) for 7
layers. As observed, the convergence rate of 7-layer network appears to slow down under the same
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(a) (b) (c)

Figure 5: YES training clouds for networks with different numbers of layers are shown as follows:
(a) 5 layers, (b) 6 layers, and (c) 7 layers. As expected, increasing the number of layers makes
the optimization task in the training process more complex. Interestingly, in the case of the 7-layer
network, the training loss struggles to reach the green region and stays closely aligned with the result
of the YES bound.

parameter settings. For example, in Fig. 5(b), the training takes nearly 100 epochs to reach the green
region, whereas in Fig. 5(c), the loss enters the green region after more than 400 epochs. This sug-
gests that real-time monitoring using YES bounds can quickly indicate when the chosen parameters
may be suboptimal for the given model architecture.

It is often a challenge for both users and AI professionals to determine the optimal point to stop
training (cost vs performance trade-off). A common approach is to monitor the rate of change in the
loss function, waiting for the loss to plateau as a sign of potential convergence. However, as shown
in Fig. 4 of the Appendix, the training objective of neural networks (and our training procedures)
can result in the loss appearing to plateau multiple times before quality training is achieved. This is
where the YES clouds come to the rescue: To know when the smaller rate of change in the loss or
the weights of the neural network does not equate optimality, and when to act on it—i.e., when we
are in the green. Additionally, it is insightful to investigate how test results behave as the training
progresses through different regions of the color-coded clouds, which is investigated in Appendix D.

6 CONCLUSION

One may wonder why the YES bounds work as they do. The reason is simple: heuristics outper-
form random, and optimal beats heuristic. In mathematics, many effective bounds emerge from
insightful heuristics. The YES training bounds are similarly grounded in solid mathematical princi-
ples—specifically, that neural networks, with their non-linearities, should outperform linear projec-
tions. These bounds provide a useful heuristic that separates the wheat from the chaff, the random
from the meaningful. This is particularly evident with the YES-0 bound. But even with the more
sophisticated YES bounds and the associated training cloud, the principle holds: they expose the
randomness (in the sense of not sufficiently taking the shape of the optimal) in the solution by of-
fering a better real-time heuristic. Ultimately, as the process nears optimality, we witness the final
convergence—optimal surpasses heuristic. This transition is marked by entering the green zone
beneath the training cloud.

It is worthwhile to note that the YES bounds and their certification should be regarded as a necessary
condition for optimality, not a sufficient one. They provide a certificate of potential optimality—a
certificate one must certainly have to assert quality in training. They are, however, a concrete step
toward bridge the gap between the opaque nature of neural networks and the pressing need for
transparency and reliability in high-stakes applications.

Future work may explore the extension of the YES bounds to various network architectures and
training paradigms, as well as their integration into automated training systems. Developing more
sophisticated bounds and understanding their impact on the AI training ecosystem are promising
avenues for research.
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A THE DECREASING BEHAVIOUR OF YES-0 BOUND

Theorem 1. Let Ω be an activation function in a deep neural network. If Ω is applied in an element-
wise manner and satisfies the following conditions:

• 1-Lipschitz Condition:

∥Ω(x1)− Ω(x2)∥ ≤ ∥x1 − x2∥, ∀x1,x2 ∈ Rn, (1)

• Projection Property:
Ω(Y) = Y, if Y ∈ HΩ, (2)

then the YES-0 bound is monotonically decreasing with respect to the depth of the network. That is,
for each layer k:

∥Y −Yk+1∥2F ≤ ∥Y −Yk∥2F. (3)

Proof. Following our formulations, the error at layer (k − 1) is

Ek−1 = Y −Yk, (4)

where Y is the target output, and Yk is the network output after (k − 1) layers. At each layer, the
network updates its output via:

Yk+1 = Ω(AkYk), (5)
with Ak representing the weight matrix associated with the YES-0 bound at layer k. The error at
layer k is thus:

Ek = Y − Ω(AkYk). (6)
By considering the 1-Lipschitz and projection properties of the activation function Ω, we have:

∥Ek∥2F = ∥Y − Ω(AkYk)∥2F
= ∥Ω(Y)− Ω(AkYk)∥2F
≤ ∥Y −AkYk∥2F.

(7)

Since Ak is the minimizer of the quadratic criterion ∥Y −AkYk∥2F, we have:

∥Y −AkYk∥2F ≤ ∥Y −Yk∥2F = ∥Ek−1∥2F. (8)

Combining (8) with (7) completes the proof.

In Fig. 1, we validate Theorem 1 by demonstrating the decay of the YES-0 bound across layers.
This result is based on the phase retrieval model.
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Figure 1: YES-0 decay with respect to the number of layers.

Figure 2: YES training bounds with varying degrees, without imposing monotonicity, are presented.
As can be observed, increasing the degree of the bound does not necessarily improve it, as the
bounds remain closely aligned with each other.

B NON-DECREASING BEHAVIOUR OF YES-k BOUNDS WITHOUT
MONOTONICITY

YES training bounds with different degrees, without imposing monotonicity, are shown in Fig. 2 for
the phase retrieval model. An interesting observation from this figure is that increasing the degree
does not necessarily improve the YES bounds. In fact, all the bounds remain relatively close to each
other.
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Algorithm 1 Generation of the YES Training Bounds (k ≥ 1).
Input: (X ∈ Rn×d,Y ∈ Rm×d) are training data matrices with d denoting the number of
training samples.
Output: YES training bounds.

1: I ← {2, · · · ,K}.
2: e← 0K−1.
3: for k = 1 : (K − 1) do
4: H ← combination(I, k) ▷ combination(I, k) is the combination operator that selects k

items from the set I.
5: u← 0|H| ▷ 0|H| denotes a zero vector with the length |H|.
6: for i = 0 : |H| − 1 do
7: Hi ← H[i] ▷H[i] denotes the i-th combination item ofH.
8: l← 0.
9: Y⋆ ← [ ] ▷ [ ] denotes an empty tensor.

10: for j = 0 : (k − 1) do
11: Y⋆ . append(modelHi(X)) ▷ Y⋆ . append(T) denotes appending the matrix T in

an empty tensor Y⋆, modelHi(X) denotes the output of the training model at specific layers
specified by the elements inHi.

12: end for
13: Yt ← X.
14: for j = 0 : (k − 1) do
15: while l ≤ Hi[j] do
16: At ← Y⋆[j]Y†

t .
17: Yt ← Ω (AtYt).
18: l← l + 1.
19: end while
20: end for
21: for z = 1 : K − l − 1 do
22: At ← YY†

t .
23: Yt ← Ω (AtYt).
24: end for
25: u[i]← ∥Y −Yt∥2F/d.
26: end for
27: e[k − 1]← min u.
28: end for
29: YES bound← min e.
30: return YES bound

C THE YES-k TRAINING BOUNDS (k ≥ 1) WITH MONOTONICITY

In Algorithm 1, we reformulate the YES-k bounds for k ≥ 1, incorporating a monotonic modifica-
tion through the inclusion of YES-k subsets to ensure the bounds remain monotonic.

For the YES bounds with monotonicity, as illustrated in Fig. 3 with various initializations, it is
evident that the YES bounds are closely grouped. We investigated this observation using fully-
connected networks with both 5-layer and 7-layer architectures, conducted this experiment 1000
times, and consistently observed similar results. This observation suggests that we may leverage the
advantages of higher-degree YES bounds by calculating only the first few YES-k bounds, which
could be beneficial from a computational standpoint.
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(a) (b) (c)

Figure 3: YES training bounds with varying degrees, this time incorporating monotonicity across
different initializations, are presented. Similar to the non-monotonic case, increasing the degree of
the bound does not necessarily enhance it, as the bounds remain close to each other.

D TEST RESULTS FOR TRAINING PROCESS MONITORED BY YES CLOUDS

Beyond the training process, it is insightful to investigate how test results behave as the training
progresses through different regions of the color-coded clouds. To explore this, we present both
training and test outcomes for the phase retrieval model in Fig. 4. As observed, when the training
loss decreases in the red region, the test loss similarly declines. When training plateaus in the yellow
region, the test loss also plateaus. Interestingly, upon entering the green region, the training loss
initially exhibits fluctuations, likely due to the learning rate, before plateauing—a pattern mirrored
in the test loss. However, after approximately 2000 epochs, the test loss increases.

Figure 4: The YES bounds cloud for the training process is presented alongside the test stage for the
same training results monitored by the YES training bounds.
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E IMAGE RECOVERY FROM CORRUPTED QUADRATIC MODEL

To elucidate the practical significance of the YES bounds and their associated cloud system, we fur-
ther examine an image recovery task for an image degradation process characterized by the model:

bi = |Axi|2 + ni, i ∈ [d], (9)

where each xi represents a distinct patch of the original image undergoing recovery. This model
presents a complex degradation process that involves three primary challenges:

(a) (b) (c)

(d) (e) (f)

Figure 5: Monitoring the training process for the 5-layer fully-connected network used to reconstruct
the cameraman image, as shown in (a), from the corrupted phase retrieval model, with the YES
bounds cloud illustrated in (b). The quality of the reconstructed image is presented at different
stages of training: (c) at the initial training loss, (d) as the training loss enters the cautionary yellow
region, (e) when it reaches the green region, and (f) when the training loss converges to the final
solution in the green region. As observed from the reconstructed images, the training performance
improves progressively as the loss moves from the yellow region to the green region, achieving the
best performance upon convergence. This demonstrates the effectiveness of the YES bounds cloud
in monitoring the training process, even for tasks like image denoising.

1. Blurring Operation (Axi): The matrix A applies a blurring operator to the image patch xi,
necessitating deblurring techniques to counteract the smoothing effects.

2. Phase Loss (|·|2): The absolute value squared operation results in phase loss, requiring phase
retrieval methods to restore essential phase information for accurate reconstruction.

3. Additive Noise (ni): The term ni introduces additive noise, demanding denoising strategies to
mitigate its adverse effects on image quality.

The performance of the proposed YES bounds and cloud system is illustrated in Fig. 5 and Fig. 6,
which present the model’s recovery performance under four distinct conditions:

• Training Loss at Initial Value: At the outset, the training loss is significantly higher than the
YES bounds, indicating suboptimal performance. The recovery results at this stage exhibit
pronounced blurring, substantial phase distortions, and noticeable noise artifacts, reflecting
the model’s nascent state.
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• Training Loss at YES-0 (Top of the Cloud): As training progresses, the loss approaches the
YES-0 bound—the top of the cloud. At this juncture, the model achieves a moderate level
of recovery, with reduced blurring and phase errors, alongside diminished noise. However,
the performance remains below optimal, as indicated by the fact that the training loss has
not yet breached the lower bounds of the cloud.

• Training Loss at YES-(K−1) (Bottom of the Cloud): Further training brings the loss down
to the YES-(K − 1) bound—the bottom of the cloud. The recovery results at this stage
demonstrate significant improvements, with minimal blurring, accurate phase reconstruc-
tion, and negligible noise. This indicates that the model is nearing the performance limits
as prescribed by the YES bounds.

• Optimized Convergence: Upon convergence, the training loss reaches its optimal value,
falling within the YES bounds. The recovery results are exemplary, showcasing precise
deblurring, flawless phase retrieval, and excellent noise suppression. This final stage con-
firms that the model has achieved a state of optimal performance, as validated by the YES
bounds.

To numerically validate the training results monitored by the YES bounds cloud, we apply these
bounds to a corrupted phase retrieval model using two different images: the 128× 128 cameraman
and the boat, where we consider the patch size of 8× 8 of these images for the model in (9). These
images help assess the effectiveness of the YES cloud across various regions and determine whether
the training loss entering the green region can indeed lead to practical solutions for real-world tasks,
such as image denoising. Figs. 5 and 6 (a) show the original image of the cameraman and the boat,
respectively, (b) present the YES cloud used for tracking the training loss with the YES bounds, (c)
illustrate the initial results when the training loss is in the red region, (d) show the output as the
loss enters the cautionary yellow region, (e) depict the outcomes when the training loss reaches the
green region, indicating effective training according to the YES bounds, and finally, (f) shows the
point at which the training loss converges. As illustrated in Fig. 5(c) and Fig. 6(c), the quality of
the reconstructed images at the initial stage of training is poor, with noticeable noise, blurring, and
patch artifacts. However, in Fig. 5(d) and Fig. 6(d), these imperfections are reduced compared to the
earlier stage. Interestingly, by the time the training loss enters the green region, as shown in Fig. 5(e)
and Fig. 6(e), the background of the images appears much clearer, with a significant reduction in
noise and blurring artifacts. Finally, once the training fully converges in the green region, we observe
a well-reconstructed input version, with most distortions effectively removed.

Note that while dropping below the YES cloud signals entering into the effective training regime, it
is certainly not recommended to stop the training once this occurs. In fact, it would be reasonable to
continue the training, e.g, as long as the rate of decrease in the loss is satisfactorily large. However,
we show in this example that one may expect satisfactory performance even if they stop the training
prematurely in the green. Based on this, we recommend the following criteria for stopping the
training: 1) in the green, 2) the rate of change in network weights is sufficiently low.
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(a) (b) (c)

(d) (e) (f)

Figure 6: The training process of the 5-layer fully-connected network, which was utilized to re-
construct the boat image from a corrupted phase retrieval model, was closely monitored. The YES
bounds cloud, depicted in (b), guided the process. The progression of the image quality through
various training stages is showcased: (c) at the initial training loss, (d) as the loss enters the caution-
ary yellow region, (e) upon reaching the green region, and (f) when the loss stabilizes in the green
region, indicating the final solution. The reconstructed images clearly show that as the training loss
transitions from yellow to green, the performance steadily improves, culminating in optimal perfor-
mance at convergence.

F MNIST CLASSIFICATION

To further assess the performance of our YES bounds in practical scenarios, we conducted experi-
ments using the MNIST dataset, which was designed for classification tasks. We worked with 5000
training and 5000 test samples. Each image, representing a digit i ∈ {0, · · · , 9}, was encoded
by generating a zero matrix with the same dimension as the input image with a single 1 placed at
(i + 1, i + 1). A 5-layer fully connected network was trained with SGD, using an initial learning
rate η0 and a decay factor of 0.7 every 50 epochs. The classification was performed by minimizing
the MSE between model outputs and encoded images, with the success rate determined by accurate
classifications over the entire dataset.

As shown in Fig. 7(a), with a learning rate of 1e− 4, the training loss struggles to move beyond the
caution region and remains close to the bottom of the YES clouds. In terms of success rates, Fig. 7(b)
displays the training process, while Fig. 7(c) presents the test stage. Although the performance
appears satisfactory, the YES cloud suggests that the model’s solution is akin to a linear projection,
indicating suboptimal training parameters. Adjusting these parameters could lead to improved model
performance.

In Fig. 7(d), we apply a learning rate of 5e− 4 for the solver. In this case, the training loss reaches
the green region after approximately 30 epochs. The success rate for the training results, shown in
Fig. 7(e), indicates that when the training loss enters the yellow region, the success rate is 85 percent.
Once it enters the green region, the success rate increases to 95 percent, and at the convergence point,
we achieve 100 percent performance. For the test results depicted in Fig. 7(f), the loss reaches the
yellow region at 83 percent, and upon entering the green region, the success rate becomes 92 percent.
At the convergence rate, the test results reach 95 percent. As discussed earlier, when the training
loss plateaus in the green region, the model’s solution can be a strong candidate for optimality.
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(a) (b) (c)

(d) (e) (f)

Figure 7: The YES bounds cloud for the training process on the MNIST dataset is presented along-
side the success rates for both the training and testing stages. Figs. (a) and (d) show the YES clouds
for solvers with different learning rates: (a) 1e − 4 and (b) 5e − 4. Figs. (b) and (c) display the
success rates during the training and testing phases, respectively, within the color-coded YES cloud
regions. These figures demonstrate how effectively the YES bounds monitor solver performance
using a learning rate of 1e − 4. Figs. (e) and (f) illustrate the success rates within the YES cloud
regions for the solver using a learning rate of 5e− 4.

Figs. 7(e) and (f) illustrate the model’s effectiveness, achieving a 100% success rate in training and
95% in testing. This demonstrates the model’s high accuracy and generalization, indicating that it is
well-tuned to the task at hand.
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G BEYOND CERTIFICATION: CAN WE GUIDE THE TRAINING PROCESS?

It is our understanding that the YES bounds and their associated clouds provide not only a mathe-
matical framework for certifying AI training but may also aid practitioners as a method to guide the
training process. To harness this dual utility without compromising the integrity of the certification
process, it is imperative to maintain a clear information barrier between training and certification.
This separation ensures that the training algorithm does not gain access to the YES bound data or
the certification network weights. Allowing such access would undermine the certification’s pur-
pose by enabling the training process to exploit the bound information, leading to several adverse
consequences:

• Loss of Randomization Benefits: Randomization, particularly during initialization and
throughout training, plays a crucial role in escaping local minima and ensuring robust con-
vergence. If the training process can access YES bound data and network weights, it may
inadvertently eliminate these randomization benefits, resulting in deterministic and poten-
tially suboptimal training trajectories.

• Faulty Optimization Directions: The training algorithm might adopt step directions that
do not align with the true optimization landscape. Since there is no guarantee that the
certification network weights resemble the optimum, leveraging these weights could steer
the training process in misleading directions, ultimately degrading the quality of the trained
model.

• Obsolescence of the Certification Test: The primary purpose of the certification test is to
provide a reliable bound on the network’s training performance. If the training process can
consistently operate at or below this bound by utilizing certification data, the test will be
rendered ineffective.

To mitigate the risks associated with direct access to certification data, it is essential to devise mech-
anisms that allow the training process to benefit from the YES bounds without exposing the certifica-
tion test itself. One effective strategy is to share only the test results, such as those visualized through
the YES cloud, rather than the underlying certification data or network weights. This approach pro-
vides the training algorithm with a lower bound on the distance between the current loss and the
optimal loss without revealing any specific information about the certification criteria. Specifically,
the distance of the current loss from the bottom of the YES cloud serves as a valuable indicator for
adjusting the learning rate:

dk = max{Lk − LYES, 0}, (10)

where Lk is the current loss at epoch k, and LYES represents the lower bound provided by the
YES cloud. This distance dk may inform the training process on how large of a step size could be
chosen to make meaningful progress, ensuring that the learning rate adapts dynamically based on
the proximity to the optimal loss. A natural implementation of this guidance mechanism involves
defining an adaptive learning rate that incorporates both the traditional vanishing component and an
additional term based on the distance dk to the YES bounds.
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