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ABSTRACT

Incorporating delayed feedback is often crucial in applying multi-armed bandit
algorithms in real-world sequential decision making problems. In this paper, we
present finite-time regret upper bounds for ε-greedy type allocation strategies in a
flexible nonparametric contextual bandits framework with delayed rewards. The
strategies presented differ in how the exploration rate changes as a function of
delays. We consider unbounded random delays and use the Nadaraya-Watson
estimator for estimating the mean reward functions. We also propose practical
data-driven strategies that adaptively choose between the two proposed strategies.

1 INTRODUCTION

Multi-armed bandit is a sequential decision making problem with the goal of optimally choosing
from a set of available arms (or treatments) such that the accumulated sum of rewards received
over time is maximized. In this problem, the learner makes a sequence of choices (or actions)
from amongst the arms and observes the rewards corresponding to those choices. In addition to
this, in most decision making problems, one has access to side information (or covariates) which
can aid the decision-making. This framework is then known as contextual bandits or multi-armed
bandits with covariates. The first paper on contextual bandits by Woodroofe (1979) was motivated
by its application to clinical trials. Contextual bandit algorithms provide a natural framework in any
situation where treatment decisions need to be made to optimize some health outcome for the present
patients, as has been considered by, Lai et al. (1985); Lai & Liao (2012); Lai et al. (2019); Sklar et al.
(2021); Lu et al. (2021). These problems have been studied in both parametric and nonparametric
frameworks, see Tewari & Murphy (2017) for a comprehensive review. Most of the bandit algorithms
assume instantaneous observance of rewards, but in most practical situations like mobile health and
precision medicice, rewards are only obtained at some delayed time. It is often the case that many
patients have to be treated before the outcome for the current patient is observed. Below, we review
the existing literature on standard and contextual bandits with delayed rewards.
In the standard setting (without covariates), delayed rewards have been studied previously by Dudik
et al. (2011); Joulani et al. (2013), where the former consider constant known delay, while the latter
provides a systemic study of online learning problems with random delayed feedback. Joulani et al.
(2013) developed meta-algorithms which in a black-box fashion could use algorithms developed for
the non-delayed case into the ones that can handle delays in a feedback loop. Then, Mandel et al.
(2015) devise a method that guarantees good black-box algorithms when leveraging a prior dataset
and incorporating heuristics to help improve empirical performance of the algorithms. More recently,
Gael et al. (2020) relax the assumptions made in previous works and allow the delay distributions to
vary across arms, and consider cases where the delays are heavy-tailed. In the same spirit, Lancewicki
et al. (2021) further relax these assumptions on delay distributions using a regular and a phased version
of successive elimination approach for the reward independent and dependent case, respectively.
More recently, the problem of experts with arm-dependent delays in the non-stochastic case has
been studied by Van Der Hoeven & Cesa-Bianchi (2022). Other works on multi-armed bandits with
delayed rewards include Cella & Cesa-Bianchi (2020); Guha et al. (2010); Eick (1988). Delayed
rewards have also been studied in the adversarial setting (Cesa-Bianchi et al. (2016); Li et al. (2019);
Thune et al. (2019); Zimmert & Seldin (2020); Gyorgy & Joulani (2021)) and the delayed anonymous
composite feedback setting (Pike-Burke et al. (2017; 2018); Cesa-Bianchi et al. (2018)).
Given that delayed rewards are ubiquitous in a lot of practical applications, there is also growing
interest in contextual bandits with delayed rewards. Motivated by delayed conversions in advertising,
Vernade et al. (2017; 2020) consider potentially infinite stochastic delays, where the latter deals with
the delayed linear bandit problem (contextual) and does not assume prior knowledge of the delay
distribution unlike the former. Zhou et al. (2019) designed delay-adaptive algorithm for generalized
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linear contextual bandits using UCB-style exploration. Desautels et al. (2014) use Gaussian process
bandits and developed algorithms for parallelizing exploration-exploitation trade-offs. More recently,
Vakili et al. (2023) have studied UCB strategies for kernel bandits with delayed rewards. Arya
& Yang (2020; 2021) consider potentially infinite delays in nonparametric bandits. They provide
strong consistency results for the proposed randomized allocation strategies (ε-greedy) in the former
and present a case for taking into account the extent of delays and problem complexity in delayed
contextual bandits in the latter. However, they do not have results for finite-time regret performance
and our goal is to study that in this paper. Our focus lies in the study of ε-greedy algorithms due
to their ease of implementation and potential for good practical performance in various situations,
given appropriate exploration probability choices Dann et al. (2022),Bietti et al. (2021). Despite their
practical appeal and frequent selection as top choices in real-world scenarios, they have not been
extensively studied in the existing literature. Another motivation for investigating ε-greedy algorithms
is that they employ a randomization scheme, reminiscent of classical randomization approaches used
in clinical trials. In addition, our choice to study the non-parametric setting stems from the modeling
flexibility it offers, as it allows for non-linear and complicated mean reward functions.

Contribution: We study ε-greedy type randomized allocation strategies for nonparametric bandits
with random unbounded delayed feedback. We present two competing strategies that differ in how
the underlying exploration probability sequence is updated and derive finite time regret bounds for
them. We obtain sub-linear regret rates depending on the extent of delays. While bounding the
estimation error follows a similar path as Qian & Yang (2016) with carefully integrating delays in the
analysis, bounding the randomization error in the presence of unbounded delayed rewards is more
challenging and is a key theoretical contribution of our work. Another advantage of our work is that
it allows stochastic unbounded delays with a relaxed distributional assumption as compared to the
existing literature. In our knowledge, this is the first work presenting regret bounds for ε-greedy in
nonparametric bandits with delayed feedback setting. In addition, from a more practical point of view,
we propose two new data-driven schemes that select between the two proposed strategies such that
the resulting strategy is advantageous in most situations. We conduct simulation studies to examine
the performance of these algorithms under different data generating scenarios.

Organization: The rest of the paper is organized as follows. In Section 2, we describe the problem
setup of contextual bandits with delayed rewards. In Section 3, we state the two proposed randomized
strategies (ε-greedy type). Subsequently, in Section 4, we define the Nadaraya-Watson estimator
and specify the assumptions made on the model and kernels used in the estimation. Then, the main
theorems for finite time regret bounds for the two strategies are in Section 5, followed by a discussion
and comparison of the regret rates for the two strategies in Section 6. In Section 7, the adaptive
schemes are proposed and we conduct simulation studies to show the improvement in the rate of
regret decay by using the adaptive strategies.

2 PROBLEM SETUP

Assume that there are ` ≥ 2 arms available for allocation. Each arm allocation results in a reward
which is obtained at some random time after the arm allocation. Although this setup holds generally,
let us describe it from the point of view of treatment allocation. Suppose that for a specific disease,
there are ` competing treatments to be allocated to patients as they visit a doctor. For each patient
indexed by j = 1, 2, . . . , N , visiting at known times sj ∈ R+, a treatment Ij is alloted based on
previously observed data and the covariate (or context), Xj . We assume that the covariates are d-
dimensional continuous random variables and take values in the hypercube [0, 1]d. Since the rewards
can be obtained at some delayed time, we denote {tj ∈ R+, 1 ≤ j ≤ N} to be the observation time
for the rewards for arms {Ij , 1 ≤ j ≤ N} respectively. Let Yi,j denote the reward obtained at time
tj ≥ sj for arm i = Ij . Let fi(Xj), 1 ≤ i ≤ ` denote the mean reward for the ith arm with covariate
Xj . The observed reward with covariate Xj by pulling the ith arm is modeled as,

Yi,j = fi(Xj) + εij , (1)

where εij denotes random error with E(εij) = 0 and Var(εij) <∞ for j ∈ N and i = 1, . . . , `. The
functions fi, i = 1, . . . , ` are unknown and are estimated nonparametrically as described in section 4.
Note that our setup is applicable more widely, for example, in settings such as online advertisement
recommendations.
Since the rewards are observed at delayed times {tj ; 1 ≤ j ≤ N}, the delay in the reward for arm
Ij pulled at the jth time is given by a random variable, dj := tj − sj . We assume that these delays
are independent of both the covariates and arms. That is, let dj ∼ Gj , j ≥ 1 be independent random
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variables with Gj the probability distribution for jth delay. Let τn =
∑n
j=1 I(tj ≤ n) denote the

number of rewards observed by time n. Note that τn is a random variable and would be used often in
our algorithms and results.
Let {Xj , j ≥ 1} be a sequence of covariates independently generated according to an unknown
underlying probability distribution PX , from a population supported in [0, 1]d. We denote η to be
a sequential allocation strategy, which for each time j chooses an arm Ij based on the previous
observations and Xj . The total mean reward up to time n is

∑n
j=1 fIj (Xj). To evaluate the

performance of the allocation strategy, let i∗(x) = arg max1≤i≤` fi(x) and f∗(x) = fi∗(x)(x).
Without the knowledge of the random errors, the ideal performance occurs when the choices of
arms selected I1, . . . , In match the optimal arms i∗(X1), . . . , i∗(Xn), yielding the optimal total
reward

∑n
j=1 f

∗(Xj). Thus we measure the performance of the allocation strategy, η, by the regret,

Rn(η) =
∑n
j=1 f

∗(Xj) − fIj (Xj). Note that, we obtain a sub-linear regret rate if Rn(η)
n → 0 as

n→∞ with probability 1, and finite time analysis provides an upper bound on the rate of this decay.

3 THE PROPOSED STRATEGIES

In this section, we present the proposed allocation strategies for which we will derive the regret upper
bounds. Define Zn,i to be the set of observations for arm i whose rewards have been obtained up to
time n− 1, that is, Zn,i := {(Xj , Yi,j) : 1 ≤ tj ≤ n− 1 and Ij = i}. Let f̂i,n denote the regression
estimator of fi using a regression method based on the data Zn,i. Let {πj , j ≥ 1} be a sequence of
positive numbers in [0, 1] decreasing to zero, such that (`− 1)πj < 1 for all j ≥ 1. We propose two
strategies η1 and η2 with a subtle difference in the arm selection step but same algorithmic structure.
In the algorithms above, step 1 initializes the allocations by pulling each arm alternatively until

Algorithm 1 Randomized allocation with delayed rewards
1: Allocate arms randomly until we have at least one reward observed for each arm. Suppose, that

happens at time m0.
2: for n = m0 + 1, . . . , N do
3: Estimate the individual functions fi. For n = m0 + 1, based on Zn,i, estimate fi by f̂i,n for

1 ≤ i ≤ ` using the chosen regression procedure.
4: Best-performing arm (projected). For Xn, let în(Xn) = arg max1≤i≤` f̂i,n(Xn).
5: Select and pull. The arm pulled is given by:

a) Strategy η1: In =

{
în, with probability 1− (`− 1)πn
i, with probability πn, i 6= în, 1 ≤ i ≤ `.

b) Strategy η2: In =

{
în, with probability 1− (`− 1)πτn
i, with probability πτn , i 6= în, 1 ≤ i ≤ `.

6: Update the estimates.
a) If one or more rewards are obtained at the nth time, update the function estimates of fi for

the respective arms.
b) If no reward is obtained at the nth time, use f̂i,n+1 = f̂i,n ∀ i ∈ {1, . . . , `}.

7: end for

we observe at least one reward for each arm. Step 3 estimates the mean reward function for each
arm. This could be done using several regression methods, and we use Nadaraya-Watson regression
estimator as described in Section 4. Steps 4 and 5 enforce an ε-greedy type of randomization scheme
which prefers the projected best performing arm so far with some probability and explores with the
remaining. The preference is determined by a user determined sequence of exploration probability
{πn, n ≥ 1}, which for strategy η2 only gets updated when a new reward is observed, that is, πτn .
While for strategy η1, it is updated at every time point irrespective of a reward being observed or
not, that is, πn. Hence, the two strategies differ in the extent of exploration and exploitation that is
allowed over time. Finally in step 6, the mean reward function estimators are updated if new rewards
are observed or they remain the same if no new rewards are observed.

4 REGRESSION ESTIMATOR

We focus on Nadaraya-Watson regression for estimating the mean reward functions, fi, 1 ≤ i ≤ `, in
both the proposed allocation strategies η1 and η2. We choose hτn for the bandwidth sequence, where
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the subscript of τn (running index of the number of rewards observed by time n) means that we only
update the bandwidth when a new reward is observed. This choice is logical as it would make sense
to reduce the bandwidth only when new data is observed.

For arm 1 ≤ i ≤ `, at each time point n, define Ji,n = {1 ≤ j ≤ n− 1 : Ij = i, 1 ≤ tj ≤ n− 1},
be the indices corresponding to the rewards that were observed for that arm by time n − 1. Let
AN = {(sj , tj) : tj ≤ N, 1 ≤ j ≤ N}, denote the pair of time points at which arms were allotted
(known) and at which corresponding rewards were obtained (random) by time N , respectively. Note
that, given AN , we would exactly know the delay in observing a reward at each allocation. Also, let
Xn = σ〈X1, X2, . . . , Xn〉 denote the sigma-field generated by the covariates until time n.

Recall that, the Nadaraya-Watson estimator of fi(x) is,

f̂i,n+1(x) =

∑
j∈Ji,n+1

Yi,jK
(
x−Xj
hτn

)
∑
j∈Ji,n+1

K
(
x−Xj
hτn

) . (2)

Given x ∈ [0, 1]d, 1 ≤ i ≤ ` and n ≥ m0 + 1, define Qn+1(x) = {1 ≤ j ≤ n : 1 ≤ tj ≤
n, ||x−Xj ||∞ ≤ Lhτn} and Qi,n+1(x) = {1 ≤ j ≤ n : 1 ≤ tj ≤ n, Ij = i, ||x−Xj ||∞ ≤ Lhτn}.
In other words, these are the indices for the observed rewards in the a local bin containing Xj and
corresponding to arm i respectively. We use these sets in the proofs for Theorems 1 and 2. Let
Mn+1(x) and Mi,n+1(x) be the size of Qn+1(x) and Qi,n+1(x), respectively.
If for a given time instance n and arm i, the denominator of the Nadaraya-Watson estimator in
equation 2 is extremely small, we will replace the kernel K(·) in equation 2 with a uniform kernel
I(||u||∞ ≤ L). In particular for the case when the complement of the event Bi,n defined as,

Bci,n :=

 1

Mi,n+1(x)

∑
j∈Ji,n+1

K

(
x−Xj

hτn

)
< c5

 (3)

occurs almost surely for some small positive constant 0 < c5 < 1, we will use the uniform kernel.
Next, we present the assumptions required to establish the regret upper bound.

4.1 ASSUMPTIONS

We start by making some assumptions on the errors, the underlying functions, the kernel function
used in the definition of Nadaraya-Watson estimator in equation 2 and the delays.
Assumption 1. The errors satisfy a (conditional) moment condition that there exists v, c > 0 and c
such that for all integers k ≥ 2, i ∈ {1, . . . , `} and n ≥ 1, E(|εin|k|Xn) ≤ k!

2 v
2ck−2, almost surely.

This assumption imposes some moment conditions on the error distributions known as the refined
Bernstein condition (as in Birgé et al. (1998); Qian & Yang (2016)). Assumption 1 is met for a wide
range of distributions, for example, normal distribution and bounded errors, making it viable in a
wide range of applications. In the Supplementary files, we also consider sub-Exponential errors and
establish the corresponding regret upper bounds. Next, we consider two natural assumptions on the
mean reward functions and the covariate density, respectively. Although we restrict the covariate
space to [0, 1]d, any bounded and compact subset of Rd would suffice.
Assumption 2. The functions fi are continuous on [0, 1]d with, A := sup1≤i≤` supx∈[0,1]d(f∗(x)−
fi(x)) <∞.
Assumption 3. The design distribution PX is dominated by the Lebesgue measure with a continuous
density p(x) uniformly bounded above and away from 0 on [0, 1]d; that is, p(x) satisfies c ≤ p(x) ≤ c̄
for 0 < c ≤ c̄.

In other words, Assumption 3 guarantees that the contexts are sampled with a positive probability
across the entire domain of [0, 1]d. Next, for Kernel regression, we consider a multivariate nonnegative
kernel functionK(u) : Rd → R that satisfies Lipschitz, boundedness and bounded support conditions.
Note that these are standard assumptions made in nonparametric regression literature (see Theorem
1.8, Tsybakov (2004)).
Assumption 4. For some constants 0 < λ <∞, |K(u)−K(u′)| ≤ L||u−u′||∞, for all u, u′ ∈ Rd.
Assumption 5. There exists constants L1 ≤ L, c3 > 0 and c4 ≥ 1 such that K(u) = 0 for
||u||∞ > L,K(u) ≥ c3 for ||u||∞ ≤ L1 and K(u) ≤ c4 for all u ∈ Rd.
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Next, we make assumptions on the delays. Assumption 6 is an independence assumption on the
delays which is sensible in many applications. Assumption 7 mildly restricts the expected number of
delayed rewards such that we expect to observe an increasing number of rewards as time progresses.
Assumption 6. The delays, {dj , j ≥ 1}, are independent of each other, the arms and the covariates.
Assumption 7. The partial sums of delay distributions satisfy,

∑n
j=1Gj(n− sj) = Ω(q(n)), where

q(n) is a sequence such that q(n)→∞ as n→∞.

This assumption is not restrictive as it allows for rewards to be unbounded as long as a minimum
number of rewards are being observed in finite time. More precisely, based on condition equation 8
and equation 10, the result holds as long as q(n) grows faster than log n, we can choose hn and πn to
be such that the conditions equation 8 and equation 10 hold, respectively. In essence, this implies that
we can achieve sub-linear regret rates for both the proposed strategies, provided that the expected
number of observed rewards by time n grows strictly faster than log n for sufficiently large values
of n. This assumption would naturally hold for a lot of scenarios with delayed rewards where some
informed learning is plausible.

5 FINITE-TIME RESULTS

In this section we present finite time upper bounds for the cumulative regret for both strategies η1 and
η2. The proofs for all the results stated in this section can be found in the Supplementary files. To
characterize the underlying function class being considered for the mean reward functions, we define
the modulus of continuity, w(h; fi).
Definition 1. Modulus of continuity: For some h > 0,

w(h; fi) = sup{|fi(x1)− fi(x2)| : ||x1 − x2||∞ ≤ h}. (4)

Lemma 1. Under Assumption 6 and Assumption 7, τn
a.s.→ ∞ as n→∞.

Lemma 2 (For strategy η2). Suppose Assumptions 1,2, 5 and 6 are satisfied and {πn} is a decreasing
sequence. Given x ∈ [0, 1]d, 1 ≤ i ≤ ` and n ≥ m0 + 1, for every ε > w(Lhτn ; fi) a.s., we have
for strategy η2,

P η2Xn,AN (|f̂i,n+1(x)− fi(x)| ≥ ε) ≤ exp

(
−3Mn+1(x)πτn

28

)
+ 4N exp

(
−c

2
5Mn+1(x)πτn(ε− w(Lhτn ; fi))

2

4c24v
2 + 4c4c(ε− w(Lhτn ; fi))

)
(5)

where P η2Xn,AN (·) denotes the conditional probability for strategy η2 given the design points Xn =

σ〈X1, . . . , Xn〉, AN = {(sj , tj); tj ≤ N, 1 ≤ j ≤ N} and τn =
∑n
j=1 I{tj ≤ n}, which is a

known quantity given AN .
Lemma 3 (For strategy η1). Suppose Assumptions 1,2, 5 and 6 are satisfied and {πn} is a decreasing
sequence. Given x ∈ [0, 1]d, 1 ≤ i ≤ ` and n ≥ m0 + 1, for every ε > w(Lhτn ; fi) a.s., we have
for strategy η1,

P η1Xn,AN (|f̂i,n+1(x)− fi(x)| ≥ ε) ≤ exp

(
−3Mn+1(x)πn

28

)
+ 4N exp

(
−c

2
5Mn+1(x)πn(ε− w(Lhτn ; fi))

2

4c24v
2 + 4c4c(ε− w(Lhτn ; fi))

)
, (6)

where P η1Xn,AN (·) denotes the conditional probability for strategy η1 given the design points Xn =

σ〈X1, . . . , Xn〉 and AN = {(sj , tj); tj ≤ N, j ≥ 1} and τn =
∑n
j=1 I{tj ≤ n}, which is a known

quantity given AN .

It can be seen that Lemma 2 and Lemma 3 only differ in the hyper-parameter choice of πτn and πn,
other things remain the same. The reason for this is that both are conditional probability results, and
given AN , τn is a known quantity. Next, we provide the theorems for finite-time regret bounds on the
cumulative regret for strategy η2 and η1 respectively.
Given 0 < δ < 1 and the total time horizon N , for strategy η2, let,

n′δ = min

{
n > m0 : exp

(
−

3cã1(2Lhq(n))
dπq(n)q(n)

112

)
≤ δ

4`N

}
. (7)
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Theorem 1. Suppose Assumptions 1-7 are satisfied and {πn} is a decreasing sequence. Assume
N > n′δ from equation 7, for the kernel estimator in equation 2 and equation 3. Choose, {hn}n and
{πn}n such that,

h2dq(n)π
4
q(n)q(n)

log n
→∞, as n→∞. (8)

Then for 0 < δ ≤ 1/4, we have that, with probability at least 1− 32δ
9 , the regret for η2 satisfies,

RN (η2) < An′δ +

N∑
n=n′δ+1

2

max
1≤i≤`

w(Lhq(n); fi) +
CN,δ√

hdq(n)πq(n)q(n)


+A

N∗(δ)∑
t=1

Mδ(`− 1)πt + max

{
A

√
Mδ

E(τN )

2
log

(
2

δ

)
, A

√(
N

2

)
log

(
2

δ

)}
,

where N∗(δ) = E(τN ) +
√

N
2 log

(
1
δ

)
, CN,δ =

√
64c24v

2 log(12`N2/δ)/c25c(2L)d and Mδ is a

number chosen such that
(

1− a1q(Mδ/2)
Mδ/2

)Mδ/2

= δ, where q(.) comes from Assumption 7.

Under the condition equation 8, we have, n′δ/N → 0 as N → ∞. Therefore, the regret incurred
during the initialization phase is going to be dominated by the regret incurred during the algorithmic
phase in the long run. For strategy η2, we only update the exploration probability sequence when we
observe a new reward. Since delay in observing rewards is a random variable, the maximum distance
between consecutive observed rewards plays an important role in bounding the randomization error,
as can be seen from the upper bound in Theorem 1.
Now, given 0 < δ < 1, for strategy η1 and some positive constant ˜̃a1, let,

n′′δ = min

{
n ≥ m0 : exp

(
−

3c˜̃a1(2Lhq(n))
dπnq(n)

112

)
≤ δ

4`N

}
. (9)

Theorem 2. Suppose assumptions 1-7 are satisfied and {πn} is a decreasing sequence. Assume
N > n′′δ as defined in equation 9 and the kernel estimator as defined in equation 2 and kernel chosen
as described in equation 3. We choose, {πn} and {hn} so that,

h2dq(n)π
4
nq(n)

log n
→∞, as n→∞. (10)

Let CN,δ =
√

64c24v
2 log(12`N2/δ)/c25c(2L)d, then with probability larger than 1− 2δ, the cumu-

lative regret for strategy η1 satisfies,

RN (η1) < An′′δ +

N∑
n=n′′δ+1

2

max
1≤i≤`

w(Lhq(n); fi) +
CN,δ√

hdq(n)πnq(n)
+A(`− 1)πn


+A

√(
N

2
log

(
1

δ

))
,

Under the condition equation 10, we will have, n′′δ/N → 0 as N →∞. Therefore, for large enough
time horizon N , we will have N > n′′δ .
Also note, when we have no delays, we obtain the same regret rate as in Qian & Yang (2016) for
both the strategies η1 and η2. The right hand side of the inequalities in Theorems 1 and 2 above
consists of several terms that are insightful. The first term An′δ and An′′δ comes from the initial rough
exploration, respectively. The second term, max1≤i≤` w(Lhq(n); fi) is associated with the estimation

bias. The third terms in both the results, i.e., CN,δ/
√
hdq(n)πq(n)q(n) and CN,δ/

√
hdq(n)πnq(n) can

be associated with the estimation standard error, which depends on delay. That is, if the delays
are expected to be large, then q(n) will be small as a result of which the estimation standard
error will be large. The next term

∑N∗(δ)
t=1 Mδ(` − 1)πt and (` − 1)πn is the randomization error,

respectively, where Mδ is a probabilistic upper bound on the difference between consecutive reward
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observations. While the former may potentially be quite large for large delay situations leading to
large randomization error, the latter is not affected by the delay because as per the proposed allocation
strategy, allocations are made at each time point. Finally, the last term in both results is reflective of
the fluctuation of the randomization scheme, where the former depends on the extent of delays while
the latter does not.

6 COMPARISON AND DISCUSSION

As both the upper bounds in Theorem 1 and Theorem 2 consist of components that reflect the
bias-variance trade-off and the exploration-exploitation trade-off, we can compare the bounds to get
some idea of the underlying nature of the two strategies, η2 and η1, respectively. In order to compare
more specifically, we make an assumption on the class of functions and a specific delay scenario.
Assumption 8. There exist positive constants ρ and κ ≤ 1 such that for each reward function fi, the
modulus of continuity satisfies, ω(h; fi) ≤ ρhκ.
Assumption 9. Let E(τN ) = O(

√
N), i.e., on average we expect to observe about

√
N many

rewards by time N .

Then, we would have q(N) ≤ B
√
N for some constant B > 0. Under assumptions 8 and 9, and if

we choose {πn} = 1
`−1n

−1/(3+d/κ) and {hn} = 1
Ln
−1/(3κ+d), then we get the following rates.

Corollary 1. Suppose Assumptions 1-9 hold. Then if we choose, {πn} = 1
`−1n

−1/(3+d/κ) and
{hn} = 1

Ln
−1/(3κ+d), and for 0 < δ ≤ 1/4, we have that, with probability at least 1 − 32δ

9 , the
cumulative regret for η2 satisfies,

RN (η2) < An′δ + 2
(
2ρ+ C∗N,δ

)
N(1− 1

2(3+d/κ) ) +AM∗δN
1
2 (1− 1

(3+d/κ) )

+ max

A
√
Mδ

√
N

2
log

(
2

δ

)
, A

√(
N

2

)
log

(
2

δ

) , (11)

where C∗N,δ =
√

64c24v
2 log(12`N2/δ)/c25c2d,M∗δ = Mδ

(
1 +

√
log
(
1
δ

))1− 1
2(3+d/κ)

.

Remark 1: We can get a bound in expectation using the fact that E(RN (η2)) ≤
∫∞
0
P (RN (η2 >

ζ)dζ. For instance, consider the scenario where Mδ = O(
√
N). Under Assumptions 8 and

9, the first term dominates in equation 11, leading to the following result: E(RN (η2)) =

O
(

log(N)N(1− 1
2(3+d/κ) )

)
. Note that the rate is sub-linear in N . This sub-linearity still holds

even when the maximum difference between consecutive reward observation times, Mδ , is large.

Corollary 2. Suppose the same Assumptions 1-9 hold. Then if we choose, {πn} = 1
`−1n

−1/(3+d/κ)

and {hn} = 1
Ln
−1/(3κ+d), assume N > n′′δ . For C∗N,δ =

√
64c24v

2 log(12`N2/δ)/c25c2d, with
probability larger than 1− 2δ, the cumulative regret for strategy η1 satisfies,

RN (η1) < An′′δ + 2
(

2ρN(1− 1
2(3+d/κ) ) + C∗N,δN

(1− 1
4(3+d/κ) ) +AN(1− 1

3+d/κ )
)

+A

√(
N

2
log

(
1

δ

))
. (12)

Remark 2: Similar to Remark 1, we note that, under Assumptions 8 and 9, the expected regret
satisfies E(RN (η1)) = O

(
log(N)N1− 1

4(3+d/κ)

)
. Importantly, this rate remains independent of Mδ ,

meaning that regardless of the difference between consecutive reward observation times, we obtain
the same rate as long as, on average, we observe a total of O(

√
N) rewards by time N .

Note that there is a trade-off in the bounds of the two strategies in equation 11 and equation 12.
While the upper bound for the estimation bias (second term) in the two strategies remains the same,
the bound on the estimation standard error component (third term) for the former (η2) is smaller
than the latter (η1). However, the randomization error bound (fourth term) for strategy η2 is large
as compared to the randomization error bound for strategy η1 depending on the value of Mδ , which
could potentially be of the order O(N −

√
N) in the worst case. If Mδ is not too large (less than

7
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or equal O(
√
N)), we see that the last term corresponding to the fluctuation of the randomization

scheme in both the bounds could actually be about the same (≈ A
√

(N/2) log (1/δ)).
Thus, we notice that the extent to which estimation error or randomization error overpowers the other
is also determined by the severity of delays. Note that the rates obtained in theorems 1 and 2, are
sub-linear, and fast when d is small and κ is close to 1. For instance, when d = 1, κ = 1, we have
the estimation error bound to be of the order, Õ(N7/8) and Õ(N15/16) for η2 and η1, respectively,
when only O(

√
N) rewards are observed by time N . Note that it is relevant and important to study

randomized allocation strategies because of their easy applicability and good empirical performance.
Also, randomized strategies like ε-greedy open the doors to answering pertinent questions on statistical
inference and robustness for such online-learning algorithms, for example, Chen et al. (2021).
From the finite-time results of Theorem 1 and 2, we note that both strategies η1 and η2 can be
advantageous in different scenarios. This forms the motivation behind development of strategies that
can combine the two strategies η1 and η2 in a data-driven way. As these strategies make decisions
locally, we want to take into account the variability in the observed rewards for various arms in a
neighborhood of the current covariate, in order to decide between strategy η1 and η2. In the following
section, we propose two adaptive strategies that combine η1 and η2 in a data-driven fashion. Then,
we conduct a simulation study in Section 7 comparing η1, η2 and the adaptive strategies, ηadap1 and
ηadap2. We notice that in most situations it is beneficial to use the adaptive strategies as they perform
better (or at par) than both η1 and η2 in reducing the overall regret.

7 ADAPTIVE STRATEGIES AND SIMULATION STUDIES

Recall, given x ∈ [0, 1]d, 1 ≤ i ≤ ` and j ≥ m0+1,Qj(x) = {1 ≤ k ≤ j−1 : 1 ≤ tk ≤ j−1, ||x−
Xk||∞ ≤ Lhτj} and Qi,j(x) = {1 ≤ k ≤ j − 1 : 1 ≤ tk ≤ j − 1, Ik = i, ||x −Xk||∞ ≤ Lhτj},
with their respective sizes given by Mj(x) and Mi,j(x). Recall, îj is the arm with the highest
estimated mean reward corresponding to covariate Xj at time j, and τn =

∑n
j=1 I(tj ≤ n) is the

number of rewards observed by time n. Then for the first adaptive strategy, ηadap1 , we look at the
number of observed rewards locally, based on which we determine whether to choose η1 or η2. For
the second strategy, ηadap2 , instead of using the number of observed rewards locally, we compare the
local sample variance of rewards observed in the neighborhood of the current covariate of interest.
Let, σ̂2

Xj ,i
= Sample Variance{Yi,k : k ∈ Qi,j(Xj)} be the sample variance of rewards observed in

the bin of side-width hτj around Xj . After Step 5 of Algorithm 1, we implement the following to get
the new strategies.

Strategy ηadap1
: For λ1 > 0, if {Mîj ,j

(Xj) > λ1Mi,j(Xj) for all i 6= îj , j ≤ N}, then use strategy
η1, otherwise use strategy η2.
Strategy ηadap2

: For λ2 > 0, if {σ̂2
Xj ,̂ij

≤ λ2σ̂
2
Xj ,i

for all i 6= îj , j ≤ N}, then use strategy η1,
otherwise use η2.

For ηadap1 , the strategy η1 is preferred over η2 if the number of observations corresponding to a
projected best performing arm for that covariate is higher than other arms in a small neighborhood of
that covariate. For ηadap2 , the choice is made when the variance of a projected best performing arm is
lower than other arms in a small neighborhood of that covariate. This allows us to avoid unnecessary
exploration when we are more confident in our estimates locally. Note that the hyper-parameters,
λ1, λ2 > 0, are user-determined parameters which are chosen depending on the problem.

Simulation study: We conduct a simulation study to compare the per-round average regret for
strategies η1, η2, ηadap1 and ηadap2 under different delayed rewards scenarios. We assume d = 2, ` = 2,
x ∈ [0, 1]2, and the simulations run until time N = 8000 with first 30 rounds of initialization. For
each of the setups, we define one-dimensional functions g1 and g2, and then for x1, x2 ∈ [0, 1], we
define, f1(x1, x2) = g1(x1) ∗ x2 and f2(x1, x2) = g2(x1) ∗ x2. The one dimensional functions gi
for each of these setups are plotted in the leftmost panel of Figure 1.
Setup 1: In this setup, we consider two well-separated sinusoidal functions, where one is a shifted
above version of the other. g1(x) = (−2 sin(20πx) + 3), g2(x) = (−2 sin(20πx) + 2); x ∈ [0, 1].
Setup 2: Consider two sinusoidal functions such that the best arm alternates rapidly as the functions
oscillate. g1(x) = 2 cos(5πx) + 2, g2(x) = −2 sin(5πx) + 2, for x ∈ [0, 1].

We consider the following delay scenarios with delay 2 being more severe than delay 1.
Delay 1: Each case has probability 0.7 to delay and the delay is half-normal with scale, σ = 1500.
Delay 2: In this case we increase the number of non-observed rewards. Divide the data into four

8
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equal consecutive parts (quarters), such that, in part 1, we only observe every 10th (with Geom(0.3)
delay) observation by time N and not observe the remaining; in part 2, we only observe every 15th

reward; in part 3, only observe every 20th reward; in part 4, only observe every 25th reward.
We simulate the data from the above mentioned true mean reward functions in equation 1 where
εj

i.i.d.∼ N(0, σ = 0.5). We use Nadaraya-Watson estimator with Gaussian kernel in equation 2.
We run all four strategies η1, η2, ηadap1 and ηadap2 for 60 independent replications for time horizon
N = 8000. Then the average regretRn(η)/n for each time point also averaged over the replications is
plotted in figure 1. Therefore, the faster this goes to zero, the better it is. We consider hyper-parameter
sequences, {hn} = (log n)−1 and {πn} = (log n)−1, however results from other combinations show
similar trends and are included in the Supplementary files.
Note that we can tune the parameter λ1 and λ2 for both the strategies ηadap1 (purple) and ηadap2 (pink
dashed), respectively, but that is not the focus of this study. Further discussion on this can be found in
the supplementary material. We use λ1 = 1 for strategy ηadap1 for both simulation setups, whereas
for strategy ηadap2 , we use λ2 = 1 for setup 2 and λ2 = 3 for setup 1 in figure 1. In general for these
choices of λ’s, we notice that the two adaptive strategies performs either better or at par with both
strategies η1 and η2 for both delay scenario 1 and 2.
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Figure 1: Strategies ηadap1 and ηadap2 perform better (or at par with) than η1 and η2.

8 CONCLUSION

In this work, we present a finite-time regret analysis for randomized allocation strategies for nonpara-
metric bandits with delayed rewards. Delays are assumed to be independent and unbounded as long
as we expect to see a minimum number of observations in finite time. We study finite time regret
behavior of the two strategies that essentially differ in how the exploration probability sequence {πn}
is updated. Based on the finite time upper bounds, we notice that strategy η2 leads to lower estimation
standard error but higher randomization error, as compared to strategy η1. The extent to which one of
these competing error term would dominate the other may depend on the severity of delays. Since
both the strategies seem to be advantageous in different settings, we propose two adaptive strategies
that choose between η1 and η2 in a data-driven way, based on local behavior of rewards for the arms.
However, introducing the adaptive step in these algorithm induces additional dependence structure
posing new theoretical challenges which are left for future work. In many practical situations, it may
likely be the case that delays depend on the choice of arms and/or the covariates (or context) in the
problem. However, new tools and techniques would be required to tackle these problems and would
be an interesting future direction to consider.
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