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Abstract

Analogy is one of the core capacities of human001
cognition; when faced with new situations, we002
often transfer prior experience from other do-003
mains. Most work on computational analogy004
relies heavily on complex, manually crafted in-005
put. In this work, we relax the input require-006
ments, requiring only names of entities to be007
mapped. We automatically extract common-008
sense representations and use them to identify009
a mapping between the entities. Unlike previ-010
ous works, our framework can handle partial011
analogies, suggesting new entities to be added.012
Our method’s output is easily interpretable.013

Experiments show that our model correctly014
maps 81.2% of classical 2x2 analogy prob-015
lems. On larger problems, it achieves 77.8%016
accuracy (mean guess level: 13.1%). In an-017
other experiment, we show our algorithm out-018
performs human performance, and the auto-019
matic suggestions of new entities resemble020
those suggested by humans. We hope this021
work will advance computational analogy by022
paving the way to more flexible, realistic input023
requirements, with broader applicability.024

1 Introduction025

One of the pinnacles of human cognition is the026

ability to find parallels across distant domains and027

transfer ideas between them. This analogous rea-028

soning process enables us to learn new information029

faster and solve problems based on prior experi-030

ence (Minsky, 1988; Hofstadter and Sander, 2013;031

Holyoak, 1984; PJM, 1966).032

The most seminal work in computational anal-033

ogy is Gentner’s Structure Mapping Theory (SMT)034

(Gentner, 1983) and its implementation, Structure035

Mapping Engine (SME) (Falkenhainer et al., 1989).036

In a nutshell, SMT maps between objects in a base037

domain and objects in a target domain. The map-038

ping is based on a common relational structure,039

rather than on object attributes.040

For example, consider the Rutherford model of 041

the hydrogen atom, where the atom was explained 042

in terms of the (better-understood) solar system 043

(Falkenhainer et al., 1989). A planet revolving 044

around the sun is mapped to an electron revolving 045

around the nucleus. The mapping is due to shared 046

relations between objects (revolving around, being 047

attracted to), not object attributes (round, small). 048

One of the main criticisms brought against SME 049

and its follow-up work is their need for extensive 050

hand-coded input – structured representations of 051

both the entities and their relations (see Figure 1 052

for the input to the atom/solar system mapping). 053

Chalmers et al. (1992) argued that too much hu- 054

man creativity is required to construct this input, 055

and the analogy is already effectively given in the 056

representations: “A brief examination [...] shows 057

that the discovery of the similar structure in these 058

representations is not a difficult task. The repre- 059

sentations have been set up in such a way that the 060

common structure is immediately apparent. Even 061

for a computer program, the extraction of such 062

common structure is relatively straightforward.” 063

Some follow-up works avoid hand-coding LISP- 064

like representations, generating them from sketches 065

(Forbus et al., 2011), qualitative simulators (De- 066

hghani and Forbus, 2009), etc. However, they still 067

require much knowledge engineering, and thus are 068

hard to scale. Nowadays, when the web is full of in- 069

formation about potential domains to transfer ideas 070

from (McNeil Jr and Odón, 2013), such represen- 071

tations do not tap into the potential of web-scale 072

analogies for augmenting human creativity. 073

The method with the simplest input we are aware 074

of is Latent Relation Mapping Engine (LRME) 075

(Turney, 2008), which requires only two lists of en- 076

tities to be mapped. Given two entities, they search 077

a large corpus for phrases containing both and use 078

them to generate patterns. For example, “a sun cen- 079

tered solar system illustrates” gives rise to patterns 080

such as “a X * Y illustrates”. However, such pat- 081
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Figure 1: SME representation of the Solar system/Rutherform atom. Reproduced from Falkenhainer et al. (1989).

terns are extremely simple and brittle, and LRME082

requires exact matches between the domains (so083

“revolve around” is different from “rotate around”).084

In this work, we develop FAME, a Flexible Anal-085

ogy Mapping Engine. Our input consists of two086

sets of entities. We apply state-of-the-art NLP and087

IR techniques to automatically infer commonsense088

relations between the entities using a variety of089

data sources, and construct a mapping between the090

domains. Importantly, we do not require identical091

phrasings of relations. Moreover, our output is in-092

terpretable, showing how the mapping was chosen.093

Unlike previous works, we drop the strong bi-094

jectivity assumption and let the algorithm decide095

which entities to include in the mapping. Our al-096

gorithm can also generate new suggestions for the097

non-mapped entities. This paves the road to algo-098

rithms that can handle even more limited input –099

for example, using domain names (solar system,100

atom) as input, or just a single mapped entity pairs101

(e.g., turn white blood cells into policemen and see102

how the analogy unfolds). Our contributions are:103

• A novel, scalable and interpretable approach104

for automatically mapping two domains based105

on commonsense relational similarities. Our106

algorithm handles partial mappings and sug-107

gests additional entities.108

• We extend the work of Romero and109

Razniewski (2020) to discover salient knowl-110

edge about pairs of entities.111

• Our model’s accuracy is 81.2% on simple,112

2x2 problems. On larger problems, it achieves113

77.8% perfect mappings (guess level: 13.1%).114

In another experiment, we outperform humans115

(90% vs. 70.2%) and demonstrate that our au-116

tomatic suggestions resemble human sugges- 117

tions. We release code and data1. 118

2 Problem Definition 119

An analogy is a mapping from a base domain B 120

into a target domain T . The mapping is based on 121

relations, not object attributes. Base objects are 122

not mapped into objects that resemble them; rather, 123

there is a common relational structure, and they 124

are mapped to objects that play similar roles. We 125

follow the formulation of Sultan and Shahaf (2022), 126

brought here for completeness: 127

Entities and Relations. LetB = {b1, ..., bn} and T 128

= {t1, ..., tm} be two sets of entities. For example: 129

B = {sun, Earth, gravity, solar system, Newton}, T 130

= {nucleus, electrons, electricity, atom, Faraday}. 131

Let R be a set of relations. A relation is a set 132

of ordered entity pairs. The exact representation 133

is purposely vague, as we do not restrict ourselves 134

to strings, embeddings, etc. Intuitively, relations 135

should capture notions like “revolve around”. 136

In our example, relations between B and T in- 137

clude the Earth revolve around the sun, like elec- 138

trons orbit the nucleus; the Earth creates a force 139

field of gravity, similar to electrons creating elec- 140

tric force fields; the sun and the Earth are part of 141

the solar system, as the nucleus and electrons are 142

part of the atom; Newton discovered gravity, as 143

Faraday is credited with discovering electric force. 144

Note that relation is an asymmetric function, as 145

the pairs are ordered; e.g., Newton discovered grav- 146

ity, but gravity did not discover Newton. 147

Slightly abusing notation, we denote the set of 148

relations that hold between two entities e1, e2 as 149

1shorturl.at/ADIPR
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B Mapping T
Sun → Nucleus
Earth → Electrons
Gravity → Electric force
Solar system → Atom
Newton → Faraday

Table 1: Illustration of a relational analogy between the
solar system and the atom.

R(e1, e2) ⊆ 2R. For example, R(earth, sun)150

contains {revolve around, attracted to}, etc. For151

clarity, we sometimes use RB , RT to emphasize152

that the entities belong to the B, T domain.153

Similarity. Let sim be a similarity metric between154

two sets of relations, sim : 2R × 2R → [0,∞).155

Intuitively, when applied to singletons, we want156

our similarity metric to capture how relations are157

like each other. For example, “revolve around” is158

similar to “orbit” and (to a lesser degree) “spiral”.159

When applied to sets of relations, we want sim160

to be higher if the two sets share many distinct161

relations. For example, {revolve around, attracted162

to} should be more similar to {orbit, drawn into}163

than to {revolve around, orbit} (as the last set does164

not include any relation similar to attraction). In165

Section 3.2 we present our sim implementation.166

Given one pair from B and one from T , we de-167

fine similarity in terms of their relations. SinceR168

is asymmetric, we consider both directions:169

sim∗(b1, b2, t1, t2) =

sim(RB(b1, b2),RT (t1, t2))+

sim(RB(b2, b1),RT (t2, t1))

170

Objective. Output a mappingM : B → T ∪ ⊥171

such that no two B entities mapped to the same T172

entity (Table 1). Mapping into ⊥ means the entity173

was not mapped to any entity in the T domain.174

We look for the mappingM∗ that captures the175

best inter-domain analogical structure similarity by176

maximizing the relational similarity:177

argmax
M

n−1∑
j=1

n∑
i=j+1

sim∗(bj , bi,M(bj),M(bi))178

Note: if bi or bj maps to ⊥, sim∗ is defined to be 0.179

3 Analogous Matching Algorithm180

We wish to find the best B to T mapping. We first181

extract relations between entity pairs from the same182

domain (Section 3.1). Then, we compute similarity 183

between entity pairs that could be mapped (Section 184

3.2). Finally, we build the mapping (Section 3.3). 185

3.1 Relation Extraction 186

Automatically extracting relations is a key part of 187

our algorithm. We focus on commonsense rela- 188

tions (e.g., the Earth revolves around the sun), as 189

opposed to situational relations (e.g., the book is 190

on the table). This broadly falls under open infor- 191

mation extraction (OIE), the task of generating a 192

structured representation of the information in a 193

text. There has been a lot of work in this area, es- 194

pecially attempts to automate the construction of 195

commonsense datasets (Etzioni et al., 2008, 2004; 196

Yates et al., 2007; Lenat et al., 1985; Sap et al., 197

2019). 198

Given two entities, we automatically extract re- 199

lations from multiple sources: 200

ConceptNet. A commonsense dataset, containing 201

about 1.5M nodes (Liu and Singh, 2004). For each 202

entity, we receive a list of (predicate, entity), which 203

we filtered to match the second entity (single or 204

plural form). The predicates serve as our relations. 205

Open Information Extraction. A database auto- 206

matically extracted from a large web corpus (Et- 207

zioni et al., 2008). It contains over 5B triplets 208

of (subject, predicate, object). We searched for a 209

match between both entities in the (subject, object) 210

fields, and used the predicates as our relations. 211

GPT-32. We used a generative pretrained large 212

language model (LM) as a knowledge base in a 213

few-shot manner (Petroni et al., 2019; Brown et al., 214

2020b). We input a prompt of four analogies, e.g., 215

“Q: What is the relation between gravity and New- 216

ton?, A: Newton discovered gravity. A: Newton in- 217

vented gravity.” (see Section A.2.3 for full prompt). 218

GPT-3 outputs up to 3 sentences per query. We 219

kept only sentences of the form <entity> <text> 220

<entity>, treating the <text> as the relation. 221

Quasimodo. A commonsense knowledge base that 222

focuses on salient properties of objects (Romero 223

and Razniewski, 2020). It contains more than 3.5M 224

triplets of (subject, predicate, object). It considers 225

questions instead of statements. For instance, if 226

people search for an answer to “why is the sky 227

blue?”, this implies that the sky is blue. Whenever 228

our two entities appeared in the (subject, object) 229

fields, we extracted their predicates as relations. 230

2GPT-3 is the only data source that is not freely available.
All queries needed for this paper accumulated to less than $50.
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Figure 2: Quasimodo++. Example regex used to ex-
tract suggestions from Google (“<question> <entity1>
.* <entity2>”). We use questions such as “why does”,
“why did” and “how does”.

Quasimodo++. A relation extraction method that231

we develop, inspired by Quasimodo. Quasimodo232

was constructed using questions about a single en-233

tity; we extended it to questions exploring relations234

between pairs of entities. We used Google’s query235

auto-completion to tap into the query logs, asking236

questions containing both desired entities, such as237

“How does earth * sun”, “How is earth * sun”, and238

“Why does sun * earth” for every pair of entities239

(see Figure 2 for an example). The exact regular240

expressions we used can be found in Section A.1.241

Our algorithm is easy to extend to new sources.242

We expect robustness will increase with coverage.243

3.2 Scoring Entity Pairs244

We wish to calculate sim∗(bi, bj , tk, tp) for bi,j ∈245

B, tk,p ∈ T , 1 ≤ i < j ≤ n, 1 ≤ k 6= p ≤ m.246

In Section 2 we specified desiderata of sim, es-247

pecially that it is higher if the two sets share many248

distinct relations. We turn to our implementation.249

Without loss of generality, let us consider250

sim(RB(b1, b2),RT (t1, t2)). We first extract all251

relations RB(b1, b2),RT (t1, t2). Next, we calcu-252

late the score between each relation inRB(b1, b2)253

and each relation inRT (t1, t2). We create a com-254

plete bipartite graph where the left side nodes are255

the relations ofRB(b1, b2), and the right side nodes256

are the relations ofRT (t1, t2) (Figure 3). The edge257

weights (w) are the cosine similarity of the nodes’258

sBERT embedding (Reimers and Gurevych, 2019).259

We remove non-informative relations by extract-260

ing the top-frequent n-grams (n = {1, 2, 3, 4})261

from Wikipedia and setting their score to zero.262

Edges that did not reach a threshold (chosen us-263

ing fine-tuning, see Section 3.3) were set to zero.264

Next, we cluster similar relations on each side265

(e.g., “revolve around” and “circle around”) to266

avoid double-counting. We use hierarchical ag-267

glomerative clustering based on the cosine embed-268

revolve around

rotate around

orbit

spin around the

far from

fall into

be attracted to

collapse into

fall in

close to

spin around

surround the

travel around

attracted to

0.94

0.1
8

0.
92

0.87

Figure 3: Left: partial relations of Earth:sun. Right:
partial relations of electron:nucleus. This is the result
of the maximum weighted match on the clusters. Col-
ors correspond to clusters.

ding similarity (threshold = 0.5; see Section 3.3). 269

The weight of edges between two clusters is the 270

maximal weight of an edge between their nodes 271

(see Figure 3; colors correspond to clusters). 272

Finally, we apply Maximum-Weight Bipartite 273

Matching on the clusters (see Section 3.3). The 274

similarity score sim(RB(b1, b2),RT (t1, t2)) is de- 275

fined as the sum of the remaining edges. 276

3.3 Building a Mapping 277

Using the score mappings between pairs, we can 278

compose larger mappings. We use beam-search, 279

starting from the most promising pair-mappings of 280

Section 3.2. In each iteration, we expand the 20 281

most promising partial mappings, testing each pos- 282

sible mapping between single entities of B and T 283

(that are consistent with the current partial mapping 284

– i.e., a B entity cannot map to multiple T entities). 285

When expansions stop increasing the score, we stop 286

the search and select the highest score mapping. 287

Figure 4 shows a snippet from our UI. Input ap- 288

pears on the top. FAME’s output mapping is repre- 289

sented as a graph: nodes correspond to single entity 290

mappings (e.g., sun to nucleus). Edges represent 291

the shared relational structure. Each edge contains 292

some of the shared relations between the mapped 293

pairs corresponding to its endpoints (e.g., “more 294

massive than”) and their similarity score (note the 295

edges are directional). To ease visualization, we 296

show at most two relations per edge. The weight 297

of an edge corresponds to its strength. 298

A note on the solution space. In other works 299

n = m and M is a bijective function, and the 300

solution space’s cardinality is n!. We allow for 301
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Figure 4: A snippet from our UI. Top: Input. Bottom: The mapping our algorithm found (output), is represented as
a graph. Nodes correspond to mappings between single entities (e.g., sun to nucleus). Each edge is annotated with
some of the shared relations between the mapped pairs corresponding to its endpoints and their similarity score.
For the sake of visualization, we show at most two relations for each edge. Edge weight corresponds to strength.

n 6= m and unmapped entities. Without loss of302

generality let n ≤ m. The cardinality is then303 (∑n
i=0

(
n
i

)
m!

(m−i)!

)
−(n·m), where i is the number304

of matched entities. We subtract n ·m because we305

do not allow for a mapping of size 1; our algorithm306

starts by mapping pairs and then adds single-entity307

mapping at each iteration of the beam search.308

We note that relaxing the bijective constraint309

drastically increases the space. For n = 7, n! =310

5, 040, while our space is of size 130, 922.311

Fine-tuning. We constructed a new dataset to fine-312

tune our model’s hyper-parameters (See Appendix313

A). The dataset contains 36 analogical mapping314

problems created by ten volunteers, not from our315

research team. We showed them example analogies316

and asked them to generate new ones. An expert317

from our team verified their output, discarding 4318

analogies. Domain size was 3-5 (average 3.4).319

On the problems generated by the volunteers,320

we achieve 83.3% perfect mappings (whole map-321

ping is correct). If we consider single mappings322

separately, the algorithm achieves 89.4% accuracy.323

4 Entity Suggestion324

One of the main limitations of previous analogical325

mapping algorithms is their inability to automat-326

ically expand analogies. This is especially inter-327

esting in our case, as we allow for unmapped enti-328

ties; suggesting new entities could identify poten-329

tial mapping candidates for the unmapped entities.330

For example, let B = {sun, Earth, gravity, New-331

ton} and T = {nucleus, electron, electricity}. The332

correct mapping is sun→ nucleus, Earth→ elec-333

tron, gravity→ electricity, leaving Newton with no334

mapping. Our goal is to suggest candidate entities 335

that preserve the relational structure. 336

Intuitively, we look at the relations Newton 337

shares with other B entities (e.g., discovered grav- 338

ity), and try to see which T entity plays a corre- 339

sponding role (i.e., who discovered electricity?). 340

More formally, suppose we wish to find candi- 341

dates t∗ for mapping to bn. We first extract the 342

relations of Rb(bi, bn), ∀i ∈ [n] (denoted as Rbi). 343

We then iterate over all relations r ∈ Rbi and use 344

the pair {M(bi), r} to extract suggestions for t∗. 345

We use Open Information Extraction, Quasi- 346

modo, and Quasimodo++. While our method was 347

previously used to extract relations given a pair of 348

two entities, we now use it to extract entities given 349

a pair of {entity, relation}. This entails filtering 350

on the predicate field in our commonsense datasets 351

and changing the queries in Quasimodo++. 352

As suggestions tend to be noisy, we cluster all 353

extracted entities (similarly to the clustering from 354

Section 3.2). We remove clusters of size < 2. 355

For each suggestion cluster, we rerun our anal- 356

ogous matching algorithm with a representative 357

entity from that cluster (the closest to the cluster’s 358

center of mass). We pick the cluster whose repre- 359

sentative resulted in the mapping with the highest 360

score. As the commonsense datasets we work with 361

operate mostly on string matching, small changes 362

(e.g., Benjamin Franklin/Ben Franklin) could some- 363

times result in slightly different results. Thus, we 364

perform one final round, with all entities from our 365

chosen cluster, and pick the highest score mapping. 366
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Sources Near Far Extended
All 85% 77.5% 77.8%

All-ConceptNet 85% 77.5% 77.8%
All-Open IE 85% 67.5% 58.3%
All-Quasimodo 85% 77.5% 72.2%
All-Quasimodo++ 80% 72.5% 72.2%
All-GPT3 57.5% 50% 66.7%

Table 2: Ablation study on the 2x2 near and far prob-
lems and our extended set, leaving out knowledge
sources. Results show the importance of the generative
LM approach (GPT-3) as a knowledge source. Open In-
formation Extraction also contributes much, especially
for the complex analogies (2x2-far and extended).

5 Evaluation367

In this section, we evaluate FAME. We test its368

ability to identify the correct mapping (Section369

5.1), and compared it to related works (Section 5.2)370

and human performance (Section 5.3).371

5.1 Performance on Analogy Problems372

2x2 problems. One of the things that might have373

held computational analogy back is the lack of374

high-quality, large-scale datasets. Most datasets375

are small and focus on classical 2x2 problems (A :376

B :: C : D), similar to SAT questions.377

We start by testing FAME on this standard type378

of analogies. We use 80 problems from Green379

et al. (2010), split into 40 near and 40 far analogies380

(e.g., for “answer:riddle”, near analogy is “solu-381

tion:problem”, far analogy is “key:lock”). While382

the dataset is small, we believe it is still interesting383

to explore. Our algorithm managed to perfectly384

map 85% of near analogies and 77.5% of far ones.385

Random guess baseline is 33.3% (Section 3.3).386

Extended problems. Encouraged by the results of387

the 2x2 problems, we explore more complex prob-388

lems. We decided to extend the Green far analogies389

(which are harder than the near ones). We had three390

experts go over the dataset together and brainstorm391

potential extensions. On four problems, the ex-392

perts did not manage to agree on any additional393

mappings, leaving us with 36 extended problems394

(average domain size 3.3).395

Our algorithm perfectly mapped 77.8% of the396

extended problems. Random baseline is 13.1% on397

average. As we relax the bijection assumption, our398

algorithm’s average guess level is 2.2% (Section399

3.3). If we look beyond the top-rated solution,400

our algorithm has the correct solution in its top-2401

guesses 83.3% of the time and 91.7% for top-3. 402

Error analysis. We found 3 main causes of error: 403

• Coverage (for example, we could not find 404

a relation between “hoof” and “hoofprint”). 405

This prompted us to ablate the knowledge 406

sources FAME uses (Table 2). Results show 407

the importance of the generative LM approach. 408

Open IE is also important, especially for the 409

more complex analogies (far and extended). 410

Some sources, such as ConceptNet, did not 411

seem to contribute much. 412

• Noisy relations that are either peculiar or 413

plain wrong (e.g., “a footballer can iron”). 414

• Embedding similarity (for example, “pro- 415

duce” and “is produced by” have a high simi- 416

larity score). This is exacerbated by ambigu- 417

ity (e.g., the word “pen” referred to “pigpen” 418

and not to the writing instrument). 419

5.2 Comparison to Related Work 420

SME line of work. We had difficulty comparing 421

FAME to SME (Falkenhainer et al., 1989) and its ex- 422

tensions, due to their complex input requirements. 423

LRME (Turney, 2008) is closest to our setting, but 424

no code or demo is available. Thus, we compare to 425

their published results on a set of 20 problems. 426

LRME’s entities include nouns, verbs, and ad- 427

jectives. Since FAME expects noun phrases, we 428

filtered out all other input terms (one problem has 429

only a single noun, so we are left with 19 prob- 430

lems). It is hard to compare in this setup (and 431

unfortunately, authors did not report which partial 432

mappings were correct). Still, LRME’s accuracy 433

was 75%, whereas FAME achieved 84.2%. 434

While the size of the problems is smaller when 435

restricted to nouns, we believe the noun-only set- 436

ting is harder. The verbs and adjectives often pro- 437

vide hints that significantly constrain the search 438

space. For example, in problem A6 (Turney, 2008) 439

(mapping a projectile to a planet) there is one adjec- 440

tive in each domain (parabolic, elliptical). Those 441

adjectives can only apply to one or two of the nouns 442

(i.e., you cannot have parabolic earth, air, or grav- 443

ity), effectively giving away the noun mapping. 444

As a side note, we also believe that our noun- 445

only input is a cleaner problem setting, as it is 446

often easier to automatically identify the entities in 447

a domain than to identify the attributes and verbs 448

relevant for the analogy. In the words of LRME’s 449

authors, “LRME is not immune to the criticism 450

of Chalmers et al. (1992), that the human who 451

6



Algorithm Near Far Extended
FAME 85.0% 77.5% 77.8%
GPT-3 “:” 92% 80% 44%
GPT-3 “–>” 88% 80% 58%

Table 3: Comparison of FAME and GPT-3. GPT-3
does well on the 2x2 datasets (far and near). We note
that data leakage is a concern. GPT-3’s performance
sharply drops on the extended problem set, where prob-
lems are bigger and do not appear on the web.

generates the input is doing more work than the452

computer that makes the mapping.” We believe453

FAME is a step in the right direction in this regard.454

Pretrained LMs. In the absence of a baseline, we455

turn to a generative pretrained large LM known to456

have impressive commonsense abilities – GPT-3.457

We used 4 random examples from the fine-tuning458

dataset. After some experimentation with prompt459

engineering, we chose two variants (see A.2.3).460

The results are summarized in Table 3. GPT-3461

does well on the 2x2 datasets (Green et al., 2010).462

However, both datasets appear on the web, and463

perhaps GPT-3 was exposed to them during training464

(data leakage). In particular, we found some of the465

answers via a simple web search (Figure A.6).466

Moreover, GPT-3’s performance drops on the ex-467

tended set, where problems are complex and do not468

appear on the web. Interestingly, it does not even469

manage to return a valid mapping in some of the470

cases. This exercise improves our understanding471

of FAME’s strengths and weaknesses.472

E-KAR dataset. Chen et al. (2022) recently re-473

leased a relevant dataset, E-KAR, for rationaliz-474

ing analogical reasoning. The dataset consists475

of multiple-choice problems from civil service476

exams in China. For example, for the source477

triplet “tea:teapot:teacup”, the correct answer is478

“talents:school:enterprise”. The reasoning is that479

both teapot and teacup are containers for tea. After480

the tea is brewed in the teapot, it is transported into481

the teacup. Similarly, both school and enterprise482

are organizations. After talents are educated in483

school, they are transported into enterprise3.484

The E-KAR test set has no labels, so we used485

their validation set (N=119) to test FAME. As our486

task is different, we only took source entities (as B)487

and entities from the correct answer (as T ). We fil-488

tered questions without nouns, resulting in N=101.489

3Interestingly, the authors of this paper thought that the
“passengers:bus:taxi” answer was the correct one, based on
containment and size relations.

FAME found the right mapping 68.3% of the 490

time. A closer examination of FAME’s mistakes re- 491

vealed that∼ 75% of them occurred due to relation 492

types that are not at all covered by our framework: 493

either ternary relations (soldier:doctor:military doc- 494

tor→ car:electric vehicle:electric car; the last term 495

is a combination of the first two) or relations based 496

on sharing some attribute (so “both containers 497

for holding tea” is mapped to “both are organi- 498

zations”). Some of the attribute-based mappings 499

work at the whole-set level, so each entity on B 500

could map to each entity on T (yellow:red:white 501

→ sad:happy:angry). Thus, we conclude there is a 502

big gap between FAME and E-KAR’s assumptions. 503

5.3 Comparison to People 504

We compare FAME with human thinking in a 2- 505

phase experiment4. In the closed-world phase, the 506

participants received ten structure mapping prob- 507

lems, in which they were asked to match instances 508

from B to T . The domains included between 3-5 509

entities (Table A.4). Participants were instructed to 510

map each B entity into exactly one T entity. 511

In the open-world phase, participants received 512

five mapped problems, but one entity was left blank 513

(Table A.5). Participants were instructed to fill in 514

the blank with an entity that preserves the analogy. 515

Participants. We recruited 304 participants using 516

social media. The compensation was a chance to 517

win one of three $30 vouchers. 76.6% of our par- 518

ticipants were between the ages 18-35 and 17.2% 519

are between 36-45 (self-reported). 520

Closed-world mapping. FAME missclassified one 521

problem compared to gold standard (A9, Table 522

A.4), achieving 90% accuracy (human baseline was 523

70.2%; see full distribution in Table A.4). 524

Problem A6 has the lowest human accuracy 525

(35.5%), and is also the largest one (|B| = |T | = 526

5). A closer examination of its confusion matrix 527

reveals that while FAME correctly mapped water to 528

heat and pressure to temperature, 15% of people 529

switched the two. This might be due to the strong 530

semantic pairing of water and temperature. FAME 531

is immune to this, as it relays on relations. 532

On average, each participant mapped the prob- 533

lem the same as FAME 78% of the times. Overall, 534

FAME outperforms humans, and most of the dis- 535

agreement is due to human errors. 536

Open-world: entity suggestion. We presented 537

4The experiment received ethics committee approval. See
full instructions in Section A.4.
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Figure 5: Word cloud of human completions for B1
(Table A.6). While most responses were from the same
semantic domain, some were creative and appropriate
(e.g., treasure chest, jewelry box, car).

participants with five mapped problems where one538

entity was left blank (Table A.5) and asked them to539

fill in the black while preserving the analogy.540

For all five problems, an entity from FAME’s top541

two completions appeared in humans’ top three542

completions (Table A.6). Meaning, our algorithm’s543

top suggestions are similar to humans’. Only in544

one example (B5) one of the top two algorithm’s545

completions appeared third in humans’ (in the rest546

it is first or second). We suspect that gravity and547

Newton reminded participants of the term apple.548

Figure 5 shows a word cloud for answers to prob-549

lem B1. While most responses are quite similar,550

some participants returned creative and appropriate551

solutions (e.g., treasure chest, jewelry box, car).552

6 Related Work553

Computational analogy-making dates back to the554

1960s (Evans, 1964; Reitman, 1965). Analogy-555

making approaches are broadly categorized as sym-556

bolic, connectionist, and hybrid (French, 2002;557

Mitchell, 2021; Gentner and Forbus, 2011).558

Symbolic approaches usually represent input as559

structured sets of logic statements. Our work falls560

under this branch, as well as SME (Falkenhainer561

et al., 1989) and its follow-up work. LRME (Tur-562

ney, 2008) is the closest to our work, as it automat-563

ically extracts the relations. Unlike FAME, LRME564

requires exact matches of relations across different565

domains. We also focus on nouns only, making the566

problem harder, and relax the bijection assumption,567

allowing for automatically extending analogies.568

NLP. Analogy-making received relatively little at-569

tention in NLP. The best-known task is word analo-570

gies, often used to measure embeddings’ quality571

(inspired by Word2Vec’s “king - man + woman =572

queen” example (Mikolov et al., 2013)). Follow-up573

work explored embeddings’ linear algebraic struc- 574

ture (Arora et al., 2016; Gittens et al., 2017; Allen 575

and Hospedales, 2019) or compositional nature 576

(Chiang et al., 2020), neglecting relational similar- 577

ity. A recent work on analogies between procedural 578

texts (Sultan and Shahaf, 2022) did study relational 579

similarity, but extracted the relations from the input 580

texts, with no commonsense augmentations. 581

Recently, there have been efforts to study LMs’ 582

analogical capabilities (Ushio et al., 2021; Brown 583

et al., 2020a). Findings indicate they struggle with 584

abstract and complex relations and results depend 585

strongly on LM’s architecture and parameters. 586

Kittur et al. (2019) combined NLP and crowds 587

for product analogies without explicitly modeling 588

entities and relations, but instead automatically ex- 589

tracting schemas of the product. 590

7 Conclusions and Future Work 591

Detecting deep structural similarity across distant 592

domains and transferring ideas between them is 593

central to human thinking. We presented FAME, 594

a novel method for analogy making. Compared 595

to previous works, FAME is more expressive, scal- 596

able, robust and interpretable. It also allows partial 597

matches and automatic entity suggestions to extend 598

the analogies. 599

FAME correctly maps 81.2% of classical 2x2 600

analogy problems. On larger problems, it 601

achieves 77.8% perfect mappings (mean guess 602

level: 13.1%). FAME also outperforms humans 603

in solving analogy mapping problems (90% vs. 604

70.2%). Interestingly, our automatic suggestions of 605

new entities resemble those suggested by humans. 606

In future work, we plan to improve coverage 607

and extend our framework to more than just bi- 608

nary relations, as sometimes the key to an analogy 609

is a relation involving more than two objects. In 610

addition, we plan to improve our similarity mea- 611

sure, to address both context (to solve ambiguity) 612

and the difference between active and passive rela- 613

tions. We plan to explore different forms of input, 614

such as algorithms that take as input very partial 615

domains, perhaps even just domain names (solar 616

system, atom) and populate the domains with enti- 617

ties, or algorithms incorporating user feedback. 618

To conclude, we hope FAME will pave the way 619

for analogy-making algorithms that require less- 620

restrictive inputs and can scale up and tap into the 621

vast amount of potential inspiration the web offers, 622

augmenting human creativity. 623

8



8 Ethical Considerations & Limitations624

While FAME can assist humans by inspiring non-625

trivial solutions to problems, it might also be some-626

what misleading. It has been shown that humans627

struggle with detecting caveats in presented analo-628

gies (Holyoak et al., 1995). For example, the629

cardiovascular system is often taught to medical630

students in terms of water supply system (Swain,631

2000). However, this analogy might also confuse632

them, as it ignores important differences between633

water and blood (e.g., blood clots). Thus, while634

our output is interpretable, it might still mislead635

people, and it is important to alert the users to this636

possibility.637

Another ethical consideration is the fact that638

FAME’s coverage highly depends on external re-639

sources (ConceptNet, Google AutoComplete, etc.).640

This might be particularly problematic when ap-641

plied to low-resource languages. As the relations642

we look for are commonsense relations, rather than643

cultural or situational ones, using automatic trans-644

lation might ameliorate the problem.645

Lastly, we also note these resources evolve over646

time, and thus if one is interested in reproducibility,647

it is necessary to save the extracted relations.648
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A Implementation Details 827

We fine-tune our model using 36 problems de- 828

scribed in Section 3.3. 829

We used the pre-trained model msmarco- 830

distilbert-base-v4 which is based on sBERT 831

(Reimers and Gurevych, 2019). We set the sim- 832

ilarity threshold (the similarity between two rela- 833

tions) to be 0.2 (range checked: 0-0.6). We set 834

the number of top n-grams which was filtered (the 835

top frequencies n-grams in Wikipedia) to 500. The 836

clustering distance threshold is set to 0.5 (range 837

checked: 0.3-0.9). The number of clusters we con- 838

sider when computing the sum is set to 3 (range 839

checked: 1-maximum number of clusters). We set 840

the beam search size to 20 (range checked: 1-40). 841

All of these parameters describes in Section 3. 842

We provide access to our anonymous repository 843

can be found1. We note that the usage of Docker 844

is not supported in this version for the purpose of 845

maintaining anonymity. However, the algorithmic 846

content is available. 847

A.1 Quasimodo++ regular expressions 848

We use the following regex for our Quasimodo++: 849

“<question> <prefix> <entity1> .* <entity2>”. The 850

questions we used are: {“why do”, “why is”, “why 851

does”, “why does it”, “why did”, “how do”, “how 852

is”, “how does”, “how does it”, “how did”}. The 853

prefix is optional and can be {“a”, “an” and “the”}. 854

We use both singular and plural forms of the enti- 855

ties. 856

A.2 GPT-3 857

A.2.1 Prompts used for relation extraction 858

The prompt used for GPT-3 is: 859

Q: What are the relations between a blizzard and 860

snowflake? 861

A: A blizzard produces snowflakes. 862

A: A blizzard contains a lot of snowflakes. 863

864

Q: What are the relations between an umbrella and 865

rain? 866

A: An umbrella protects from rain. 867

A: An umbrella provides adequate protection from 868

rain. 869

870

Q: What are the relations between a movie and 871

screen? 872

A: A movie displayed on a screen. 873

A: A movie can be shown on a screen. 874

875
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Figure 6: Looking for analogies from the original
Green eval dataset online.

Q: What are the relations between Newton and876

gravity?877

A: Newton discovered gravity.878

A: Newton invented gravity.879

880

Q: What are the relations between an electron and881

nucleus?882

A: An electron revolves around the nucleus.883

A: An electron is much smaller than the nucleus.884

A: An electron attracts the nucleus.885

886

Q: What are the relations between water and a pipe?887

A: Water flows through the pipe.888

A: Water passes through the pipe.889

A.2.2 Prompts used for baseline comparison890

After some experimentation with prompt engineer-891

ing, we chose two variants of the prompt:892

Q: Find an analogical mapping between the entities893

“eraser”, “paper” and “pencil” and the entities894

“keyboard”, “delete” and “screen”.895

A: eraser:pencil:paper::delete:keyboard:screen896

(or)897

A: eraser -> delete, pencil -> keyboard, paper898

-> screen899

A.2.3 Possible leakage900

Example answers for chosen analogies from Green901

eval dataset found via a simple web search can be902

found in Figure 6903

A.3 Repository904

To ease the access and usage of our code we use905

Docker. Its main goal is to shift the cross-platform906

installation burden from the user to the developer.907

Unfortunately, we cannot share our Docker due to908

anonymity concerns (username). We will include 909

it in the non-anonymized version. 910

We provide a React based web interface, cur- 911

rently available only locally. This system is used 912

to visualize the graphs created by the algorithm’s 913

mapping output. In addition, it visualizes the re- 914

lations between entities, their similarity, and the 915

clustering. This interface is useful for assisting in 916

developing, debugging and understanding the algo- 917

rithm’s output. The demo is accessible using our 918

repository1. 919

A.4 Experiments 920

Snippets of the experimental setup (including in- 921

structions) can be found in Figures 7, 8. 922

Table 4 depicts the ten analogical proportion 923

problems used in the structure mapping experiment 924

(closed-world mappings in Section 5.2). Accuracy 925

denotes the percentage of human participants who 926

mapped from B to T correctly. Results show this 927

task is non-trivial even for humans. 928

Table 6 illustrates the experimental setup for the 929

second phase of our experiment, in which partici- 930

pants received a solved mapping problem with one 931

entity left out (open-World in Section 5.2). 932

Table 5 contains all solved analogy problems 933

used in the second phase of the experiment (entity 934

suggestion, see open-World in Section 5.2). Partic- 935

ipants were given with the complete mapping, but 936

with a missing entity (as presented here). 937

A.5 E-kar 938

Table 7 shows an example of a problematic problem 939

from E-KAR dataset. 940
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Figure 7: Closed-World Mapping: Experiment instructions with the first question.

Figure 8: Open-World Entity Suggestion: Experiment instructions with the first question.
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B Mapping T
Human Accuracy

(Guess Level)

A1

Baker

→

Scientist
79.6%
(4.2%)

Cake Discovery
Recipe Research
Ingredients Data

A2
Eraser

→
Amnesia

71.7%
(16.7%)Pencil Memory

Paper Mind

A3
Jacket

→
Wound

68.8%
(16.7%)Zipper Suture

Cold Infection

A4
Train

→
Signal

74.0%
(16.7%)Track Wire

Steel Copper

A5
Thoughts

→
Astronaut

53.9%
(16.7%)Brain Space

Neurons Stars

A6

Water

→

Heat

35.5%
(0.8%)

Pressure Temperature
Bucket Kettle
Pipe Iron
Rain Sun

A7

Waves

→

Sounds
65.1%
(4.2%)

Water Air
Shore Ear
Breakwater Earplugs

A8

Goal

→

Basket
94.1%
(4.2%)

Soccer Basketball
Grass Hardwood
Feet Hands

A9
Seeds

→
Ideas

64.5%
(16.7%)Fruit Product

Bloom Success

A10

Morning

→

Evening
95.1%
(4.2%)

Breakfast Dinner
Start End
Coffee Wine

Table 4: The ten analogical proportion problems used in the structure mapping experiment. Accuracy denotes the
percentage of human participants who mapped from B to T correctly. Note that each row under the B column is
mapped to its T column. Problem’s guess level appears in brackets below the accuracy. Results show this task is
non-trivial even for humans.

B Mapping T
Electrons → Earth
Electricity → Gravity
Faraday → Newton
Nucleus → ?

Table 5: Solved mapping problem with one missing T entity. Participants instructed to fill in the missing entity.
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B T Algorithm Humans

B1

Answer

→

Key
Logic Mechanism
Riddle ?

Problem
Lock

Feedback

Lock (58.9%)
Door (11.8%)

Question (4.6%)

B2

Earth

→

Electrons
Gravity Electricity
Newton Faraday
? Nucleus

Sun
Moon
Mars

Earth’s core (15.8%)
Apple (13.2%)
Sun (10.2%)

B3

Stylist

→

Landscaper
Hair Lawn
Gel ?

Fertilizer
Water
Lime

Fertilizer (29.3%)
Lawn Mower (21.1%)

Shears (10.2%)

B4

Chef

→

Baker
Meal Cake
Pan Oven
Salt ?

Butter
Sugar
Onion

Sugar (63.5%)
Flour (6.9%)

Pepper (3.3%)

B5

Sun

→

Rain
Summer Winter
Sunscreen ?

Umbrella
Birds

Flooding

Umbrella (51.0%)
Coat (20.7%)
Cream (9.9%)

Table 6: Examples used in the second phase of the experiment. Participants were given with the complete mapping,
but with a missing entity (as presented here). The algorithm top three completions are sorted according to certainty.
Humans’ top three completions are sorted according to their frequency in the experiment (in brackets).
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B Mapping T
Ice → Grass
Fog → Tree

Table 7: "ice" and "fog" are different forms of the
same substance, and both "ice" and "fog" are natural ob-
jects.". "grass" and "tree" are both plants, and "grass"
and "tree" are both natural objects.
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