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Abstract

We propose the use of U-statistics to estimate the (gradients of) the importance-weighted
evidence lower bound (IW-ELBO), a variational objective that uses multiple samples from a
proposal distribution to lower-bound the log-likelihood. We propose a complete U-statistic
estimator, which has variance that is never higher than the standard IW-ELBO estimator,
and, under certain conditions, the lowest variance of any unbiased estimator. However, it
requires evaluating the objective on a large number of subsets of samples from the proposal
distribution, which can be computationally expensive. We propose to use incomplete U-
statistics as practical alternatives. We find empirically that both methods reduce estimator
variance for its gradients with little computational cost, and lead to faster optimization.

1. INTRODUCTION

An important recent development in variational inference (VI) is the use of ideas from
Monte Carlo sampling to obtain tighter variational bounds (Burda et al., 2016; Maddison
et al., 2017; Le et al., 2018; Naesseth et al., 2018; Domke and Sheldon, 2019). These
lead to better approximations of the log-likelihood for learning (Burda et al., 2016) and
better approximate posterior distributions (Cremer et al., 2017; Domke and Sheldon, 2018;
Naesseth et al., 2018; Domke and Sheldon, 2019).
Assume a target distribution p(z, x) = p(z)p(x | z) where x is observed and z is latent. VI
uses the following evidence lower bound (ELBO), given approximating distribution q, to

approximate ln p(x) (Saul et al., 1996; Blei et al., 2017): L = EZ∼q
[
ln p(Z,x)

q(Z)

]
≤ ln p(x).

Burda et al. (2016) first showed that a tighter bound can be obtained by using the average of
m importance weights within the logarithm. The importance-weighted ELBO (IW-ELBO)

is Lm = EZ1:m

[
ln 1

m

∑m
i=1

p(Zi,x)
q(Zi)

]
≤ ln p(x), where the expectation is over Z1, . . . , Zm drawn

independently from q. We expect Jensen’s inequality to provide a tighter bound because the
distribution of this sample average is more concentrated around p(x) than the distribution
of one estimate. Indeed, Lm ≥ Lm′ for m > m′ and approaches ln p(x) as m → ∞ (Burda
et al., 2016).
In practice, the IW-ELBO is estimated by sampling. It is convenient to define the log-
weight random variables Wi = ln p(Zi) − ln q(Zi) for Zi ∼ q and rewrite the IW-ELBO as

∗ Work done while at UMass.
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Figure 1: (a) Envelope across different learning rates of the objective on three Bayesian
logistic regression models with m = 4. Left a1a (d = 120), center ionosphere

(d = 34), and right sonar (d = 60). (b) Ratio of the trace of the gradients’
covariance when using the methods to that of using standard-IW on a1a.

Lm = EW1:m

[
ln 1

m

∑m
i=1 e

Wi

]
. Then, for example, with m = 2, we can draw two log-weights

W1 and W2 and estimate the IW-ELBO as L̂2 = ln(eW1 + eW2)− ln 2.
It is standard to use multiple replicates to reduce variance (Rainforth et al., 2018; Domke and
Sheldon, 2018). For example, we could draw four log-weights instead of two and estimate
the IW-ELBO as L̂4,2 = 1

2 ln(eW1 + eW2) + 1
2 ln(eW3 + eW4)− ln 2. However, using the same

n log-weights, we could instead compute

L̂U4,2 = 1
6 ln(eW1 + eW2) + 1

6 ln(eW1 + eW3) + 1
6 ln(eW1 + eW4) + 1

6 ln(eW2 + eW3)

+ 1
6 ln(eW2 + eW4) + 1

6 ln(eW3 + eW4)− ln 2,

which uses all possible pairs of log-weights instead of two disjoint pairs. This is an instance
of a complete U-statistic, a family of estimators introduce by Hoeffding (1948) following
the work of Halmos (1946). It is clear that both estimators are unbiased estimators of L2.
Additionally, it was proven by Halmos that the complete U-statistics (and hence L̂U4,2) are
optimal in the sense of having the smallest variance among all unbiased estimators (of L2 in
our case). These two properties suggest that the complete U-statistics are good candidates
for the task of optimizing the IW-ELBO, thus motivating our work.
The contributions of this paper are: i) we propose the complete U-statistic IW-ELBO es-
timator, which is the unbiased estimator of Lm with the smallest variance [Section 2], and
describe how to construct an analogous estimator for gradient estimation that is compat-
ible with different base gradient estimators [Section 2.1]; ii) to reduce the computational
burden of evaluating the objective on

(
n
m

)
sets for the complete U-statistic, we construct

particular incomplete U-statistics (Blom, 1976) and prove they achieve most of the variance
reduction of complete U-statstics at a modest cost [Section 3]; iii) we show empirically that
our approaches consistently reduce the trace of the gradients’ covariance compared to the
standard IW-ELBO estimator [Section 4], which leads to faster learning [Fig. 1(a)].
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2. U-STATISTIC ESTIMATORS

We now formalize the examples above by introducing the standard IW-ELBO estimator
and its corresponding complete U-statistic IW-ELBO estimator, and applying the theory of
U-statistics to relate their variances. The theory of U-statistics was developed in a seminal
work by Hoeffding (1948) and extends the theory of unbiased estimation introduced by
Halmos (1946). Detailed background can be found in the original works, or see (Lee, 1990;
van der Vaart, 2000).
Our goal is to estimate the IW-ELBO Lm and its gradient with respect to parameters of
the log-weight distribution. We focus here on IW-ELBO estimation, but an analogous de-
velopment holds for reparameterization gradients (see Section 2.1). We consider estimators
that are functions of n independent log-weights W = (W1, . . . ,Wn), where we assume for
convenience that n = rm for an integer number of replicates r ≥ 1.

Estimator 1 The standard IW-ELBO estimator is

L̂n,m(W) =
1

r

r−1∑
j=0

ln
( 1

m

m∑
i=1

eWi+rj

)
.

This estimator partitions the n log-weights into r disjoint sets and computes the average of
the unbiased estimates from each set. In contrast, estimators based on U-statistics will use
overlapping sets of log-weights. To set this up, we introduce notation for size-m subsets of
the indices from 1 to n. Let JnK = {1, . . . , n} ⊆ N, let

(
A
m

)
denote the set of all subsets of

A with exactly m elements, and, for s ∈
(JnK
m

)
, let si be the ith smallest index in s.

Estimator 2 The complete U-statistic IW-ELBO estimator is

L̂Un,m(W) =

(
n

m

)−1 ∑
s∈(JnK

m )

ln
( 1

m

m∑
i=1

eWsi

)
.

In words, L̂Un,m takes the average of ln
(

1
m

∑m
i=1 e

Wsi

)
over all distinct subsets s of m indices.

Contrast this to L̂n,m, which takes the same average but over r disjoint subsets of m indices.
It follows from linearity of expectation that both L̂Un,m and L̂n,m are unbiased estimators
for Lm.
The relationship to general U-statistics studied by Halmos (1946) and Hoeffding (1948) is
as follows. Given n random variables W1, . . . ,Wn drawn iid from a distribution F , and an
unbiased estimator of the form θ(F ) = Eh(W1, . . . ,Wm) for a kernel h that is symmetric

in its m ≤ n arguments, the complete U-statistic is
(
n
m

)−1∑
s∈(JnK

m ) h(Ws1 , . . . ,Wsm). Our

estimator is a complete U-statistic for h(W1, . . . ,Wm) = ln
(

1
m

∑m
i=1 e

Wi
)
.

A result of Halmos (1946) implies that, subject to certain conditions, L̂Un,m has the smallest
variance of any unbiased estimator of the IW-ELBO. The technical conditions are needed
to define the class of “unbiased estimators” as ones that are unbiased for all log-weight
distributions in a non-trivial class.
We observe in practice that there is a gap between the two variances that leads to practical
gains for the complete U-statistic estimator in real VI problems.
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2.1. Gradients

Variance reduction via U-statistics also applies to gradient estimators. For example, as-
sume the log-weights are reparameterizable as Wi = W (εi, θ) for εi drawn iid from a
fixed base distribution. By linearity, the reparameterization partial derivative estima-
tor ∂

∂θj
L̂Un,m

(
W (ε1, θ), . . . ,W (εn, θ)

)
is itself a complete U-statistic corresponding to the

kernel hj(ε1, . . . , εm; θ) = ∂
∂θj

ln 1
m

∑m
i=1 e

W (εi,θ), which is “base” reparameterization gra-

dient estimator. More broadly, we can form a complete U-statistic gradient estimator(
n
m

)−1∑
s∈(JnK

m ) h(εs1 , . . . , εsm ; θ) from any base gradient estimator, for example, the doubly

reparameterized gradient estimator hj(ε1, . . . , εm; θ) =
∑m

i=1

(
eW (εi,θ)∑m
k=1 e

W (εk,θ)

)2
∂W (εi,θ)
∂θj

(Tucker

et al., 2018), or the score function estimator.
Because the theory of this section derived from general U-statistic theory, for each base
estimator, it holds an exact analog of Prop 9 in the Appendix, this time using hj . The
complete U-statistic estimator will have variance that is never higher, and usually lower,
than the base estimator averaged over r disjoint samples. As a concrete result, this implies
that E ‖∇θL̂Un,m‖22 ≤ E ‖∇θL̂n,m‖22. The same situation will apply in the next section:
results about variance of U-statistic estimators for the IW-ELBO also apply to U-statistic
estimators of gradients.
Analogs of Proposition 7 also hold for gradient estimation, but should be taken lightly.
Gradient estimators often use properties of the underlying sampling distribution of the
log-weights—e.g., that the distribution can be reparameterized, or that log p(Z; θ) is dif-
ferentiable with respect to θ (for the score function estimator)—that make the conditions
unlikely to hold. Indeed, it is precisely by using these properties that different approaches
are often able to reduce variance.

2.2. Computational Complexity

There are two main factors to consider for the computational complexity of an IW-ELBO
estimator:

1) The cost to compute n log-weights Wi = ln p(Zi, x)− ln q(Zi) for i ∈ JnK, and

2) the cost to compute the estimator given the log-weights.
A problem with L̂Un,m is that it averages

(
n
m

)
distinct subsets of indices in 2), which is

expensive. It should be noted that the individual operations to compute L̂Un,m are very
simple, while, for many probabilistic models, computing each log-weight is expensive, so,
for modest m and n, the computation may still be dominated by Step 1). However, for
large enough m and n, Step 2) is impractical.

3. INCOMPLETE U-STATISTIC ESTIMATORS

In practice, we can achieve most of the variance reduction of the complete U-statistic IW-
ELBO estimator with only modest computational cost by averaging over only k �

(
n
m

)
subsets of indices selected in some way. Such an estimator is called an incomplete U-statistic.
Incomplete U-statistics were introduced and studied by Blom (1976). Note that the standard
IW-ELBO estimator L̂n,m is itself an incomplete U-statistic, where the k = r = n

m index
sets are disjoint. We can improve on this by selecting k > r sets.
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Given S a collection of size-m subsets of JnK, a general incomplete U-statistic for the IW-

ELBO is defined as L̂S(W) = 1
|S|
∑

s∈S ln
(

1
m

∑m
i=1 e

Wsi

)
. We will allow S to be a multi-set,

that is, the same subset may appear more than once.

Estimator 3 (Random subsets) The random-subset incomplete-U-statistic estimator
for the IW-ELBO is the estimator L̂Sk where Sk is a set of k subsets (si)

k
i=1 drawn uniformly

at random (with replacement) from
(JnK
m

)
.

Estimator 4 (Permuted block) The permuted-block incomplete-U-statistic estimator
for the IW-ELBO is the estimator L̂S`Π with the collection S`Π defined as follows. Let π

denote a permutation of JnK. Define Sπ as the collection obtained by permuting indices
according to π and then dividing them into r disjoint sets of size m. That is,

Sπ =
{{
π(1), π(2), . . . , π(m)

}
, . . . ,

{
π
(
(r − 1)m+ 1

)
, . . . , π(rm)

}}
Now, let S`Π =

⊎
π∈Π Sπ where Π is a collection of ` random permutations and

⊎
denotes

union as a multiset. The total number of sets in S`Π is k = r`.

Both incomplete-U-statistic estimators can achieve variance reduction in practice for a large
enough number of sets k, but the permuted block estimator has an advantage: its variance
with k subsets is never more than that of the random subset estimator with k subsets, and
never more than the variance of the standard IW-ELBO estimator (and usually smaller).
On the other hand, the variance of the random subset estimator is more than that of the
standard estimator unless k ≥ k0 for some threshold k0 > r.

Proposition 5 Given m and n = rm, the variances of the estimators satisfy the following
partial ordering:

Var[L̂Un,m]︸ ︷︷ ︸
complete

(a)

≤ Var[L̂S`Π ]︸ ︷︷ ︸
permuted

(b)

≤

standard︷ ︸︸ ︷
Var[L̂n,m]

≤
(c)

Var[L̂Sr` ]︸ ︷︷ ︸
random subset

.
(1)

Moreover, if ` > 1 and Var[L̂Un,m] < Var[L̂n,m], then (a) is strict; if r > 1, then (b) is strict.

(Note that L̂S`Π and L̂Sr` both use k = r` subsets.)

A remarkable property of the permuted-block estimator is that we can choose the number of
permutations ` based on how much of the available variance reduction we want to achieve.
Say we would like to achieve 95% of the variance reduction; then it suffices to set ` = 20.
The following Proposition formalizes this result.

Proposition 6 Given m and n = rm, for ` ∈ N the permuted-block estimator achieves a
(1− 1/`) fraction of the variance reduction provided by the complete U-statistic IW-ELBO
estimator, i.e.,

Var[L̂n,m]︸ ︷︷ ︸
standard

−Var[L̂S`Π ]︸ ︷︷ ︸
permuted

= (1− 1
` )( Var[L̂n,m]︸ ︷︷ ︸

standard

− Var[L̂Un,m]︸ ︷︷ ︸
complete

).
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4. EXPERIMENTS

In this section we analyze empirically the methods proposed in this paper for IW-VI (i.e.,
optimizing the IW-ELBO with respect to the parameters of the proposal distribution q).
The general setup is shared across experiments: we experiment with Bayesian logistic re-
gression using a diagonal Gaussian prior and a posterior approximated with a Gaussian
distribution with full covariance matrix.1 The models were optimized using stochastic gra-
dient descent with fixed learning rate. We will set n = 16, except for the analysis of the
required time [see below]. We ran the experiments with m ∈ [2, 4, 8] and we report the
results for m = 4. We set ` = 20 for the permuted block estimator, and for the random
subsets estimator, we put k = 20 n

m . We show the results on the a1a (d = 120), ionosphere
(d = 34) and sonar (d = 60) datasets, but additional figures can be found in the Appendix.
Ultimately, our goal is to provide a more efficient optimization method. To empirically show
this, we optimized each alternative over a range of different learning rates.2 In Fig. 1(a) we
show the envelope of the objective for all methods, i.e., at every iteration and method, we
take the maximum value of the objective across all learning rates. The Figure shows that
the presented methods outperform the standard IW-ELBO estimator. The reason is that
those methods allow for higher learning rates.
We conjecture that this phenomenon is due to the total variance of the gradients, i.e.,
the trace of the covariance matrix of the gradients. We estimated this quantity for each
estimator taking 200 samples every 200 iterations. We present in Fig. 1(b) the ratio to the
estimation of the total variance of the gradients for the standard IW-ELBO estimator using
the a1a dataset. The ratio is approximately 60% for all methods, with the random subsets
estimator showing the highest ratio, and the complete U-statistic the lowest. Moreover, the
permuted estimator with ` = 20 achieves approximately 95.58% of the variance reduction,
as predicted by Proposition 6.
To complete, we provide in Table 1 the times required to complete 1k iterations of the
optimization. Here we used n = 24 and m = 12, which makes it a challenging setting for
the complete U-statistic IW-ELBO estimator because there are

(
24
12

)
= 2, 704, 156 sets. As

expected, the only outlier method is the complete U-statistic. The differences in the required
times by the other methods to the time required by the standard IW-ELBO estimator are
not statistically significant and can be attributed to noise in the environment.

1. That is, p(θ) = N (θ; 0, σ2Id) and p(y | θ) =
∏N
i=1 Bernoulli

(
yi; logistic(θTxi)

)
for fixed xi ∈ Rd, and

W = ln p(θ, y) − ln q(θ) for θ ∼ q(θ) with q(θ) = N (θ; µ,LLT ); we optimize over (µ,L), where L is
constrained to be lower triangular with positive diagonal.

2. We used 15 logarithmically-spaced learning rates.
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Table 1: Times for 1000 iterations on the a1a dataset (d = 120) with n = 24, m = 12, and
15 rep. of the experiments.

Method
Time (s)

Mean Std

L̂24,12 standard IW-ELBO 2.22 0.45

L̂U24,12 complete U 2265.48 43.25

L̂S
20 24

12

random subsets 2.07 0.11

L̂20
SΠ

permuted block 2.16 0.35
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Appendix A. Additional results

Proposition 7 Let EF [ · ] and VarF [ · ] denote expectation and variance with respect to log-
weights W1, . . . ,Wn drawn independently from distribution F , and denote the IW-ELBO
with log-weight distribution F by Lm(F ) = EF

[
ln 1

m

(∑m
i=1 e

Wi
)]

. Let F denote the set
of distributions supported on a finite subset of R. Suppose Φ is any estimator such that
EF [Φ(W1:n)] = Lm(F ) for all F ∈ F . Then,

VarF [L̂Un,m(W1:n)] ≤ VarF [Φ(W1:n)]

whenever the latter quantity is defined, for any distribution F on the real numbers (up to
conditions of measurability and integrability).

Proof The result is a direct application of Theorem 5 of Halmos (1946).

For IW-ELBO estimation, the conditions are rather mild: we expect an IW-ELBO esti-
mator to work for generic log-weight distributions. For gradient estimation, we take the
conclusion lightly, because gradient estimators often use specific properties of the underlying
distributions; see Section 2.1.

A.1. Variance Comparison

How much variance reduction is possible with the complete U-statistic IW-ELBO estimator?
This section shows the variance of the L̂Un,m is never more than that of L̂n,m, and is strictly
less under certain conditions (that occur in practice), using classical bounds on U-statistic
variance due to Hoeffding (1948). Since L̂Un,m is a sum of terms, one for each s ∈

(JnK
m

)
, its

variance depends on the covariances between pairs of terms for index sets s and s′, which
in turn depends on how many indices are shared by s and s′. This motivates the following
definition:

Definition 8 Let W1, . . . ,W2m be i.i.d. log-weights. For 0 ≤ c ≤ m, take s, s′ ∈
(JnK
m

)
with

|s ∩ s′| = c. Define

ζc = Cov
[
ln
( m∑
i=1

1
me

Wsi

)
, ln
( m∑
i=1

1
me

Ws′
i

)]
,

which does not depend on the particular choices of s and s′.

For example, when m = 2 we have ζ0 = 0,

ζ1 = Cov[ln(1
2e
W1 + 1

2e
W2), ln(1

2e
W1 + 1

2e
W3)], and ζ2 = Var[ln(1

2e
W1 + 1

2e
W2)].

Then, due to Hoeffding’s classical result,

Proposition 9 Let L̂n,m and L̂Un,m be as in Estimators 1 and 2 for n = rm with r ∈ N.
Then

m2

n ζ1 ≤ Var[L̂Un,m] ≤ m
n ζm = Var[L̂n,m].

Moreover, for a fixed m, the quantity nVar[L̂Un,m] tends to its lower bound m2ζ1 as n in-
creases.

9



U-Statistics for IW-VI

Proof The inequalities and asymptotic statement follow directly from Theorem 5.2 of Ho-
effding (1948). The equality follows from the definition of ζm.

We can now proceed to prove Proposition 5 and 6 from the paper.

Proposition 5 Given m and n = rm, the variances of the estimators satisfy the following
partial ordering:

Var[L̂Un,m] ≤ Var[L̂S`Π ]

(a)

≤ Var[L̂n,m]

≤
(b)

Var[L̂Sr` ].
(1)

Moreover, if ` > 1 and Var[L̂Un,m] < Var[L̂n,m], then (a) is strict; if r > 1, then (b) is

strict. (Note that L̂S`Π and L̂Sr` both use k = r` subsets.)

Proof The complete U-statistic is at the lhs of (1) because all the estimators are unbiased,
and L̂Un,m is the one with smallest variance [cf. Prop. 7].

By Def. 8, if s and s′ are uniformly drawn from
(JnK
m

)
, we have

E[ζ|s∩s′|] = Var[L̂Un,m]. (2)

Observe now that, from the definition of L̂S`Π and for a given permutation π, all sets in
Sπ will be independent. Hence, all dependencies between different sets are due to relations
between permutations, i.e., each of the `r terms will have a dependency with the (` − 1)r
terms not in the same permutation. Therefore, it follows from (2) that the total variance
of L̂S`Π is

Var[L̂S`Π ] = 1
`rζm + (1− 1

` ) Var[L̂Un,m], (3)

i.e., a convex combination of 1
r ζm = Var[L̂n,m] and Var[L̂Un,m]. Hence, (a) holds.

By a similar argument, the total variance of L̂Sr` is

Var[L̂Sr` ] = 1
`rζm + (1− 1

r`) Var[L̂Un,m].

Then, (b) holds because

Var[L̂S`Π ]−Var[L̂Sr` ] = 1
` (

1
r − 1) Var[L̂Un,m] ≤ 0.

Proposition 6 Given m and n = rm, for ` ∈ N the permuted-block estimator achieves a
(1− 1/`) fraction of the variance reduction provided by the complete U-statistic IW-ELBO
estimator, i.e.,

Var[L̂n,m]−Var[L̂S`Π ] = (1− 1
` )(Var[L̂n,m]−Var[L̂Un,m]).

Proof Indeed, this follows directly from Eq. (3).

10
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Appendix B. Experiments

B.1. Variance of Objective

The use of U-statistics was motivated because they provide a framework to potentially
reduce the variance of the objective (and gradients) within IW-VI, and we confirm this em-
pirically. We performed IW-VI using the complete U-statistic L̂Un,m, and every 200 iterations
we estimated the variance of the objective for the alternatives presented: the standard IW-
ElBO estimator, the complete U-statistic IW-ELBO, the permuted-block estimator with
` = 20, and the random subsets estimator with k = 20 n

m , i.e., a number of sets equal to
the permuted version. Recall that, according to Prop. 6, ` = 20 implies that the permuted
estimator achieves a 95% of the variance reduction provided by the complete-U-statistic
IW-ELBO. In Figure 2, we show the ratio of the variance of the alternatives to that of the
standard IW-ELBO estimator for the a1a dataset. This Figure confirms that it is possi-
ble to reduce the variance of the objective by considering the U-statistics. Moreover, the
estimators can be ordered by their variances, with the complete U-statistic IW-ELBO esti-
mator showing the smallest variance, the permuted-block estimator in a middle ground, and
finally the random subsets estimator being the one with the smallest variance reduction.
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Figure 2: Ratio of the objective’s variance when using a given method to that of using
standard-IW on a1a.

B.2. Additional Figures

In this section we augment the Figures shown in the paper with two additional datasets,
australian and mushrooms, and for m ∈ [2, 4, 8]. In all cases we used n = 16 independently
sampled log-weights W1, . . . ,W16. We trained all models for 10k iterations, but we show
results for all iterations only for the largest models, i.e., a1a (d = 120) and mushrooms

(d = 112), and the rest, i.e, australian (d = 14), ionosphere (d = 34) and sonar

(d = 60), we show the results for the first 1k iterations.
Additionally, we reported in Fig. 4 the objective achieved by each method after 2k and
10k iterations as a function of the learning rate [cf. Domke and Sheldon (2018)]. In each
case, we evaluated the learned approximating distribution using the standard IW-ELBO
estimator with n′ = 1000 ∗m.
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Figure 3: Envelope across different learning rates of the objective on five Bayesian logistic
regression models with the methods presented in this paper and m ∈ [2, 4, 8].
From left to right: a1a (d = 120), australian (d = 14), ionosphere (d = 34),
mushrooms (d = 112) and sonar (d = 60). [See Section 4.]
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Figure 4: Value of the objective after 2k iterations (dashed lines) and 10k iterations (solid
lines) on five Bayesian logistic regression models using m ∈ [2, 4, 8], and optimized
using the standard IW-ELBO, complete-U-statistic and random subsets estima-
tors. Consistently across datasets and m, the alternatives allow to use higher
learning rate values.
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