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Abstract

Over-segmentation of an image into superpixels has be-

come an useful tool for solving various problems in com-

puter vision. Reflection symmetry is quite prevalent in both

natural and man-made objects. Existing algorithms for es-

timating superpixels do not preserve the reflection symme-

try of an object which leads to different sizes and shapes of

superpixels across the symmetry axis. In this work, we pro-

pose an algorithm to over-segment an image through the

propagation of reflection symmetry evident at the pixel level

to superpixel boundaries. In order to achieve this goal, we

exploit the detection of a set of pairs of pixels which are

mirror reflections of each other. We partition the image

into superpixels while preserving this reflection symmetry

information through an iterative algorithm. We compare

the proposed method with state-of-the-art superpixel gen-

eration methods and show the effectiveness of the method

in preserving the size and shape of superpixel boundaries

across the reflection symmetry axes. We also present an ap-

plication called unsupervised symmetric object segmenta-

tion to illustrate the effectiveness of the proposed approach.

1. Introduction

Superpixels. A superpixel is a collection of spatially

proximal and similar pixels [38]. Similarity could be de-

fined in terms of color, texture, etc. The superpixels are

known to preserve the local image features such as object

boundaries, their regular shape and size, simple connectiv-

ity, and reduce the cost of computation of many computer

vision problems. This is due to the fact that superpixel over-

segmentation effectively reduces the number of units to be

processed in an image. The superpixel segmentation has

been used in applications such as segmentation [38], image

parsing [48], tracking [55], and 3D reconstruction [12].

Symmetry. The symmetry present in real world objects is

proven to play a major role in object detection and object

recognition processes in humans and animals [51]. There-

fore, detecting the symmetry evident in the objects has be-

come an important area of research. The major types of

symmetry are: reflection symmetry, rotation symmetry, and

translation symmetry. The most commonly occurring sym-

metry in nature is the reflection symmetry. We mainly focus

on preserving the reflection symmetry present in the image

in this work. The reflection symmetry present in natural

images has been used to solve many problems in computer

vision such as object detection, image matching [11], facial

images analysis [33], real-time attention for robotic vision

[41], tumour segmentation in medical images [25], 3D re-

construction [14, 44], shape manipulation, model compres-

sion, and symmetrization [30]. The common way to repre-

sent reflection symmetry is through a set of pairs of pixels

which are mirror reflections of each other and the axis of

symmetry.

Motivation. The perceptual grouping of local object fea-

tures is a major cue in understanding objects in the human

visual system [58]. The symmetry present in real world ob-

jects is proven to play a major role in object detection and

object recognition processes in humans as well as animals

[51]. Therefore, the symmetry present in objects should be

preserved even after perceptual grouping in order to per-

ceive the objects efficiently from the perceptually similar

groups. The existing superpixel algorithms do not attempt

to preserve the symmetry present in the image. The main

motivation behind preserving symmetry at superpixel level

is that the time complexity of algorithms using symmetry

such as [11], can be reduced significantly by working at su-

perpixels level. However, without preserving the symme-

try at superpixels, their performance might get degraded.

There have been attempts in preserving structure [56, 22].

However, no emphasis has been made on preserving sym-

metry. In this work, we propose an algorithm to partition

an image into superpixels while preserving the reflection

symmetry. At the superpixel level, we would like to repre-

sent the symmetry as a set of pairs of superpixels which are

mirror reflections of each other. We develop a modified ver-

sion of SLIC algorithm [1] to achieve this task. In Figure 1,

we show an example output generated by the proposed ap-

proach along with another recent superpixel segmentation

method [22] for illustration. The main contributions of this
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(a) (b) (c)
Figure 1. (a) The results for the Manifold SLIC [22], (b) results for the proposed algorithm SymmSLIC, and (c) zoomed mirror symmetric

windows for both the methods (top: MSLIC, bottom: ours). We observe that the symmetry at the superpixel level is preserved in ours.

work are the following.

1. We propose an algorithm, termed SymmSLIC, in or-

der to partition an image into superpixels such that the

reflection symmetry present at the pixel level is pre-

served at the superpixel level.

2. We also propose a novel algorithm to detect pairs of

pixels which are mirror reflections of each other.

3. We introduce an application of SymmSLIC called un-

supervised symmetric object segmentation.

We organize remainder of the paper as follows. In Sec-

tion 2, we review the existing works on superpixel seg-

mentation and reflection symmetry detection. In Section

3.1, we discuss the proposed method for the detection of

mirror symmetry point pairs. In Section 3.2, we develop

the SymmSLIC algorithm to achieve reflection symme-

try aware superpixel over-segmentation. In Section 4, we

present the results for reflection symmetry aware superpixel

segmentation. In Section 5, we introduce a novel applica-

tion called unsupervised symmetric object segmentation. In

Section 6, we conclude the paper with limitations and future

directions.

2. Related Works

Superpixel segmentation and symmetry detection prob-

lems have been studied thoroughly and are active research

problems in computer vision and computer graphics. To the

best of our knowledge, there have not been any previous

attempt on the problem of symmetry preserving superpixel

segmentation. We discuss the state-of-the-art methods for

superpixel segmentation and symmetry detection methods.

Superpixels. There are two major categories of algorithms

for superpixel segmentation - graph based and clustering

based. Following are the major graph based approaches.

Shi and Malik proposed normalized cut algorithm to over-

segment an image [43]. Felzenszwalb proposed a graph-

based image segmentation approach [8]. Li and Chen used

linear spectral clustering approach [18]. [54] and [52]

used optimization techniques for superpixel segmentation.

Zhang et al. proposed a boolean optimization framework

for superpixel segmentation [61]. Moore et al. posed the

problem of superpixel detection as lattice detection [35].

Duan and Lafarge used shape anchoring techniques on the

set of detect line segments in order to partition the image

into convex superpixels [7]. The key idea in the cluster-

ing based approaches is to first initialize some cluster cen-

ters and then refine these cluster centers using various tech-

niques. Achanta et al. proposed a k-means clustering based

approach called simple linear iterative clustering (SLIC)

[1]. They initialize cluster centers at the centers of equally

spaced squares. They perform clustering by assigning each

pixel to the nearest center based on the color and location

similarity. Levinshtein et al. proposed a geometric flow

based approach [17]. Wang et al. proposed a content sen-

sitive superpixel segmentation approach where the distance

between the cluster center and a pixel is the geodesic dis-

tance [56]. Liu et al. proposed a fast algorithm to get struc-

ture sensitive superpixels, where authors perform the SLIC

on a 2-dimensional manifold [22]. Liu et al. used the en-

tropy rate for homogeneous and compact superpixels [19].

Reflection Symmetry. The problem of detecting reflection

symmetry present in images have been thoroughly stud-

ied recently [21, 30]. The existing approaches for sym-

metry detection in images can be categorized in four cat-

egories - direct approach [53, 15], voting based approaches

[36, 59, 31, 24, 2], basis function based approaches [60],

and moment based approaches [26, 42]. Loy and Eklundh

mirrored the scale invariant feature transform (SIFT [23])

descriptors in order to get the reflection invariant SIFT de-

scriptors. In order to match two points they used SIFT

descriptor for one point and mirrored-SIFT descriptor for

the other point. Then, they detect the symmetry axis us-

ing Hough transform based line detection algorithm [24].

Kondra et al. proposed a kernel based approach [13]. Pa-

traucean et al. used affine invariant edge features and a

contrarion validation scheme [37]. Michaelsen et al. used
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Gestalt algebra [29]. Atadjanov and Lee detected symmetry

axes using appearance of structure features [2]. The works

[49, 40, 62, 45, 4, 3, 30, 34, 57, 5, 50, 47] present good

methods for symmetry detection. There also have been

works in detecting symmetry in 3D geometric models [32].

3. Proposed Approach

3.1. Approximate and Partial Reflection Symmetry
Detection

Let I :W×H → R
3 be a color image with width w and

hight h, whereW = {1, 2, . . . , w} and H = {1, 2, . . . , h}.
Most of the real images exhibit only the partial reflection

symmetry, which means that the mirror symmetric pixel ex-

ists for only a fraction of pixels. This is due to the fact that

the images have square boundaries and the boundaries of

real object are not necessarily square and furthermore there

could be occlusions and missing parts. Since the real ob-

jects are not perfectly mirror symmetric, we attempt to de-

tect the approximate reflection symmetry. Our goal is to de-

tect the partial and approximate reflection symmetry present

in the input image I . In order to do so, we detect the pairs

of pixels which are mirror reflections of each other. We rep-

resent the reflection symmetry present in the image by two

subsets, L ⊂ W ×H and R ⊂ W ×H, satisfying the fol-

lowing property. For each pixel xi ∈ L, ∃ xi′ ∈ R such

that

xi′ = Rii′QR⊤
ii′(xi − tii′) + tii′ , and I(xi) = I(xi′).

Here, the point tii′ = xi+x
i′

2 , the matrix Q =

[

1 0
0 −1

]

,

and the matrix Rii′ =

[

cos θii′ − sin θii′
sin θii′ cos θii′

]

. The angle θii′

is the slope of the symmetry axis which is a line perpendic-

ular to the vector xi−xi′ and passes through the mid-point

tii′ . In order to determine the sets L and R, representing

the reflection symmetry, we use the profile and orientations

of edges present in the image. We first extract the edges

from the image using [6] and represent them as curves. Let

E : W ×H → {0, 1} be the image representing the edges

present in the image I . Let E = {x : E(x) = 1} be the set

of pixels lying on the edges. Now, for each pixel xi ∈ E ,

we extract an edge of length p pixels passing through the

pixel xi such that the pixel xi lies at equal distance from

the end points of the edge. We determine with how much

confidence two pixels are mirror reflections of each other

based on the following observation.

Let xi, xi′ ∈ E be any two edge pixels, where i ∈
{1, 2, . . . , |E|}, i′ ∈ {1, 2, . . . , |E|}, and |E| is the cardi-

nality of the set E . Let ci(α) : [0, 1] → R
2 be an edge or a

curve such that ci(0.5) = xi. Let ci′(α) : [0, 1] → R
2 be

another curve such that ci′(0.5) = xi′ . If the pixels xi and

xi′ are mirror reflections of each other and the image I is

mirror symmetric in the proximity of the pixels xi and x′
i ,

then the following equalities hold true.

ci′(α) = Rii′QR⊤
ii′ci(α)−Rii′QR⊤

ii′tii′ + tii′ (1)

ci(α) = Rii′QR⊤
ii′ci′(α)−Rii′QR⊤

ii′tii′ + tii′(2)

∀α ∈ [0, 1]. Now let us define the following two quantities

using equations (1) and (2).

oii′ =

∫

α∈[0,1]

‖ci′(α)−Rii′QR⊤
ii′(ci(α)−tii′)−tii′‖

2
2dα

(3)

oi′i =

∫

α∈[0,1]

‖ci(α)−Rii′QR⊤
ii′(ci′(α)−tii′)−tii′‖

2
2dα.

(4)

For the case of perfect symmetry, we require oii′ = 0
and oi′i = 0. However, due to the presence of noise and

illumination variations, this might not hold true. Therefore,

in order to determine the pairs of mirror symmetric pixels,

we use the Hough transform. We determine the symme-

try axis, ρii′ = x cosφii′ + y sinφii′ , defined by each pair

(xi,xi′) of pixels xi and xi′ , which is a line passing through

the mid-point tii′ and perpendicular to the vector xi − xi′ .

In Figure 2 (a), we show a graphical illustration. For this

axis, we define the weight equal to e−
o
ii′

+o
i′i

4σ2 . We choose

σ = 24. In the transformation space, we determine the

dominant clusters and obtain the pairs of mirror symmetric

pixels corresponding to these clusters. Using these pairs,

we form the sets L andR by picking randomly one pixel of

a pair and include it in the set L and the other pixel in the set

R. We further remove the outlier pairs using the following

property of a symmetric function. Let the points xi and xi′

be mirror reflections each other. Therefore,

I(xi) = I(xi′)⇒ ∇xi
I(xi) = ∇xi

I(xi′)

∇xi
I(xi) = ∇xi

I(Rii′QR⊤
ii′xi −Rii′QR⊤

ii′tii′ + tii′)

∇xi
I(xi) = Rii′QR⊤

ii′∇x
i′
I(xi′). (5)

We only keep those pairs satisfying

∇xi
I(xi)

⊤Rii′QR⊤
ii′∇x

i′
I(xi′) > 1− ǫ.

Where, 0 < ǫ < 1. Since the number of pixels, |E|, ly-

ing on the edges is very high, it results in huge number
|E|(|E|−1)

2 of pairs. Therefore, we randomly pick pairs and

vote in order to reduce the computational complexity. For

each edge pixel, we select h << |E| pixels which results in

a total number of h|E| pairs. We now show that the prob-

ability of selecting the correct mirror reflection pixel of a

pixel using the proposed randomization scheme is very high

for h << |E|. Since the symmetry present in the image is

approximate symmetry, we consider a pixel to be a mirror

reflection even if it is shifted in a square of width u from its

ideal location. Now, the probability of selecting the approx-

imate mirror reflection pixel of a pixel under consideration
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Figure 2. (a) Detection of pairs of mirror symmetric pixels. The pair (xi,xi′) is more symmetric pair than the pair (xi,xi′′) since the

curves cr
i(α) and ci′(α) are more aligned. (b) The symmetric assignment: if the superpixels Si and Si′ are mirror reflections of each other,

pixels xi and xi′ are mirror reflections of each other, and the pixel xj is assigned to the center ci, then we assign the pixel xj′ to the center

ci′ .

in one attempt is u2

|E|−1 . Therefore, the probability of not

selecting in one attempt is 1− u2

|E|−1 . Therefore, probability

of not selecting the approximate mirror reflection pixel of

a pixel under consideration in h attempts is
(

1 − u2

|E|−1

)h
.

Hence, the probability of selecting the approximate mirror

reflection pixel of a pixel in h attempts is 1−
(

1− u2

|E|−1

)h
.

For example, for |E| = 3000, h = 200, and u = 5, this

probability is 0.8124 which is quite high.

3.2. Symmetry Aware SLIC

We extend the SLIC algorithm to preserve reflection

symmetry at the superpixel level. In order to preserve the

reflection symmetry present in the input image, represented

by the sets L andR, we have to make sure that for each pair

(xi,xi′) of pixels xi and xi′ which are mirror reflections

of each other, there should be a pair (Si,Si′) of superpix-

els, Si and Si′ , which are mirror reflections of each other.

We define two superpixels, Si and Si′ , to be mirror reflec-

tions of each other if for each xj ∈ Si, ∃xj′ ∈ Si′ such that

the pixels xj and xj′ are mirror reflections of each other.

We extend the SLIC algorithm proposed in [1] to estimate

symmetry aware superpixels. The SLIC algorithm is based

on the k-means clustering algorithm. Cluster centers are

initialized on the center of equally spaced squares of sizes

s×s. In order to update the cluster centers, the distances be-

tween a center and all pixels within the square of size 2s×2s
centered at these pixels is computed. Then a pixel is as-

signed the nearest center. Then the center is updated using

its new neighboring pixels by taking the average location

and the average color. This process is continued till con-

vergence. The distance between the pixels and the centers

is defined as below. Let
[

li ai bi
]⊤

be the color at the

pixel xi in the CIELab color space. The distance between

any two pixels xi =
[

xi yi
]⊤

and xi′ =
[

xi′ yi′
]⊤

is defined as d(xi,xi′) =

√

d2c +
(

ds

s

)2
m2, where

dc =
√

(li − li′)2 + (ai − ai′)2 + (bi − bi′)2, ds =
√

(xi − xi′)2 + (yi − yi′)2. Here m is the compactness

factor and generally chosen in range [1, 40] [1]. Higher val-

ues of m result in compact superpixels and poor boundary

adherence and lower values m result in poor compactness

of superpixels and better adherence to boundaries.

Symmetric Initialization. In order to preserve the reflec-

tion symmetry represented in the sets L and R, we have to

make sure that for a pair of pixels which are mirror reflec-

tions of each other, there should be a corresponding pair of

superpixels which are mirror reflections of each other. Let

the pixels xi ∈ L and xi′ ∈ R be mirror reflections of each

other. We initialize the centers ci and ci′ of two superpix-

els Si and Si′ at the pixels xi and xi′ . We observe that the

symmetric object present in the image might not cover the

full image and therefore in the non-symmetric region, we

follow the same initialization strategy as used in SLIC. We

first find the convex hull, C, of the set L ∪ R which rep-

resent the symmetric region. Now, in the non-symmetric

region {W × H} \ C, we initialize the centers at the cen-

ters of equally spaced squares and in the region C, we do

the symmetric initialization. We observe that the reflection

symmetric pixels obtained lie on the edges. Therefore, ac-

cording to [1], it is an unstable initialization. However, we

observe that these pairs of reflection symmetric pixels ex-

hibit high accuracy. Therefore, we transfer each pair to a

new location such that the image gradient at both the pix-

els of the new pair is minimum in the local vicinity and are

mirror reflections of each other.

Number of superpixels. If we want k superpixels, then we

partition the image into square windows of sides equal to

1767



Algorithm 1 SymmSLIC

1: Input: Image I , number of superpixels k, and parame-

ter m.

2: Initialize the label matrix L(xi) =
−1, and the distance matrix D(xi) = ∞, ∀xi ∈
W ×H.

3: Determine the sets L andR as discussed in Section 3.1.

4: Initialize the cluster centers as discussed in Section 3.2.

5: while not converged do

6: for each cluster center ci in L do

7: Determine Rii′ and tii′ using ci and ci′ .

8: for each pixel xj in the 2s × 2s square around

ci do

9: Compute the distance d(xj , ci) between ci
and xj .

10: if d(xj , ci) < D(xj) then

11: D(xj)← d(xj , ci) and L(xj)← i

12: xj′ ← Rii′QR⊤
ii′xj −Rii′QR⊤

ii′tii′ +
tii′

13: D(xj′)← d(xj′ , ci′) and L(xj′)← i′

14: end if

15: end for

16: end for

17: for each cluster center ci′ inR do

18: Determine Rii′ and tii′ using ci and ci′ .

19: for each pixel xj′ in the 2s× 2s square around

ci′ do

20: Compute the distance d(xj′ , ci′) between

ci′ and xj′ .

21: if d(xj′ , ci′) < D(xj′) then

22: D(xj′)← d(xj′ , ci′) and L(xj′)← i′

23: xj ← Rii′QR⊤
ii′xj′ −Rii′QR⊤

ii′tii′ +
tii′

24: D(xj)← d(xj , ci) and L(xj)← i

25: end if

26: end for

27: end for

28: for all the centers in the region
(

{W × H} \

convexhull(L ∪R)
)

do

29: Perform SLIC.

30: end for

31: Update the cluster centers.

32: end while

√

wh
k

. If the number of pairs of mirror symmetric points

| L | in the symmetric region C is greater than (k − s), then

we randomly select (k− s) pairs from the | L | pairs. Here,

s is the number square windows in the non-symmetric re-

gion {W×H}\C. If the number pairs of mirror symmetric

points | L | in the symmetric region C is less than (k − s)
then we randomly select (k − s− | L |) points in the sym-

metric region and then reflect them using the symmetry axis

defined by their nearest pair.

Symmetric Assignment. Now, we propose an assignment

strategy in order to achieve pairs of reflection symmetric

superpixels with equal areas and similar boundaries. We

assign pixels to their nearest centers such that each pair of

superpixels (Si,Si′) remains mirror reflection of each other

in all iterations. Let us consider the centers ci and ci′ of two

superpixels, Si and Si′ , which are mirror reflections of each

other. Let xj be a pixel inside the square of size 2s × 2s
around the center ci. If the nearest center to the pixel xj is

ci, then we assign the center ci′ as the nearest center to the

pixel xj′ = Rii′QR⊤
ii′(xj−tii′)+tii′ . Here, tii′ =

ci+c
i′

2
and Rii′ is the rotation matrix with angle θii′ equal to the

slope of the line passing through the pixels ci and ci′ . Fig. 2

(b) graphically illustrates this concept. We prove that, using

this assignment strategy, a pair of reflection symmetric su-

perpixels remains a pair of reflection symmetric superpixels

after one iteration.

Claim 1. Let Sti and Sti′ be two superpixels which are mir-

ror reflections of each other at the iteration t. Let cti and cti′

be their centers respectively. Then, at the iteration t+1, the

updated superpixels St+1
i and St+1

i′ will also be the mirror

reflections of each other.

Proof. Using assignment strategy, if we assign xi to Si,
then we assign the pixel Rii′QR⊤

ii′xj−Rii′QR⊤
ii′tii′+tii′

to Si′ . Let us assume that we assign ni pixels to the super-

pixel Si, and Ji = {i1, i2, . . . , ini
}, Ji′ = {i

′
1, i

′
2, . . . , i

′
ni
}

be the sets of indices of pixels belonging to the superpixels

Si and Si′ , respectively. The center of the superpixel Si is

ct+1
i = 1

ni

∑

j∈Ji
xj . Now, the center of the superpixel Si′ is

ct+1
i′ =

1

ni

∑

j′∈Ji

xj′ =

1

ni

∑

j∈Ji

Rii′QR⊤
ii′xj−

1

ni

∑

j∈J
i′

Rii′QR⊤
ii′tii′+

1

ni

∑

j∈J
i′

tii′

= Rii′QR⊤
ii′

1

ni

∑

j∈Ji

xj −Rii′QR⊤
ii′tii′ + tii′

= Rii′QR⊤
ii′c

t+1
i −Rii′QR⊤

ii′tii′ + tii′ .

Therefore, the center of superpixels at the iteration t+1 and

the updated superpixels St+1
i and St+1

i′ will also be mirror

reflections of each other. �

We further observe that the centers of mirror symmetric

superpixels follow the curves that are mirror reflections of

each other. It is easy to prove this claim from the Claim

1. In Algorithm 1, we present all the steps involved in the

proposed SymmSLIC algorithm.

4. Results and Evaluation

In Figure 3, we show the major steps of the proposed ap-

proach using an example image where we detect two sym-

metric regions. We observe that the symmetry present at
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(a) (b) (c)

(d) (e) (f)
Figure 3. (a) Input image I , (b), detected edges, (c) the pairs of mirror symmetric points (L and R), (d) the initialized centers, the red

centers are in the non-symmetric regions and the green centers are in the symmetric regions, (e) the symmetric superpixel segmentation

with the pairs of mirror symmetric superpixels, and (f) The movement of the centers. The mirror symmetric centers move on the mirror

symmetric paths (shown using the same color).

(a) (b) (c)
Figure 4. (a) Under segmentation error, (b) Boundary recall, and (c) Achievable segmentation accuracy vs the number of superpixels plots.

Figure 5. A failure case: Input, Edges, and SymmSLIC

the pixel level, as shown in Figure 3 (c), is well preserved

at the superpixel level, as shown in Figure 3 (e). In Figure

3 (f), we show the movement of the mirror symmetric cen-

ters. We observe that the mirror symmetric centers move

along the mirror symmetric paths. In Figure 5, we present a

failure case. The SymmSLIC fails due to the improper de-

tection of the edges across the symmetry axis. However, we

observe that the resulting over-segmentation is near to the

SLIC superpixels.

For the quantitative evaluation, we measure the boundary

recall and the under-segmentation error for the proposed ap-

proach and the approaches [1], [18], and [52] on the dataset

BSDS500 [27]. We do evaluation only on the images con-

taining symmetric objects from this dataset. In order to

measure the performance, we use the three metrics: under

segmentation error [17], boundary recall [28], and achiev-

able segmentation accuracy [19]. The under segmentation

error measures the leakage of estimated superpixels. The

higher values of boundary recall represents better adherence

to the ground truth boundaries. The achievable segmenta-

tion accuracy measures the object segmentation accuracy

which can be achieved through the estimated superpixels. In

Figure 4, we plot the under segmentation error, boundary re-

call, and achievable segmentation accuracy as the function

of number of superpixels for SLIC [1], LSC [18], SEEDS

[52] and the proposed approach. We observe that the per-

formance of the proposed method is comparable to that of
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the SLIC [1], since SymmSLIC works similar to SLIC al-

gorithm and on average almost 60 % region of the images

is non-symmetric. Therefore, in these regions only SLIC is

performed.

In Figure 7, we show the results for the proposed ap-

proach. We compare the results of the proposed approach

to the results of the methods TURBO [17], SLIC [1], ERS

[19], LSC [18], SEEDS [52], and MSLIC [22]. In each im-

age, we zoom two windows which are mirror reflections of

each other. In odd numbered rows, we show the results ob-

tained on images for all the methods. In the even numbered

rows, we show two zoomed-in mirror symmetric windows

from the images in the odd numbered rows. There does not

exist any dataset in which, for an image containing symmet-

ric objects, the ground truth pairs of reflection symmetric

pairs of superpixels are present. Therefore, we only report

the results obtained through all the methods on images con-

taining symmetric objects. We choose the length, p, of the

curve cx(α) to be equal to 64 pixels, the threshold ǫ = 0.2,

the variable m ∈ [1, 40], and σ = 24. We observe that,

using the proposed algorithm SymmSLIC, we are able to

generate pairs of mirror symmetric superpixels in the sym-

metric regions. In some cases, our algorithm partitions an

perceptually uniform region into many superpixels and due

to the symmetric assignment strategy, we achieve a similar

segmentation in the mirror symmetric counterpart. We im-

plemented SymmSLIC in MATLAB on a 2.90GHz×4, 8GB

RAM machine. The average time is ∼ 10s for an image of

size 640 × 480 for 500 superpixels including the detection

of pairs of pixels which are mirror reflections of each other.

(a) (b) (c)
Figure 6. (a) Input, (b) Kernel Cut [46], and (c) Proposed.

5. Application: Unsupervised Symmetric Ob-

ject Segmentation

Object segmentation is a challenging problem which is

generally performed either with user interaction and graph

cuts ([39], [9], [46]) or with supervised learning [10]. Our

approach also differ from [16] in the sense that they perform

local symmetry grouping whereas we perform global sym-

metry grouping. We would like to demonstrate how object

segmentation can be performed in an unsupervised manner

using SymmSLIC. This section is meant to provide an il-

lustration as to how the algorithm developed in this paper

can be used to solve this classic computer vision applica-

tion. The application is however limited to images contain-

ing objects exhibiting reflection symmetry.

We use the SymmSLIC superpixels to segment a sym-

metric object. This approach is clearly an unsupervised ob-

ject segmentation approach. The proposed segment is the

area, ∪i∈ISi ∪ Si′ , occupied by the pairs (Si,Si′) of the

superpixels Si and Si′ , which are mirror reflections of each

other. Here I is the set of indices of the pairs of mirror sym-

metric superpixels. We compare our method with the state-

of-the-art interactive method [46] on this challenge dataset

[20]. The method in [46] assumes that the bounding box

around the symmetric object is given. Whereas, our method

does not require any such user interaction. In this dataset

[20], each 2D reflection symmetric image contains a sym-

metric object. We manually created the ground truth seg-

mentations. We compute the error rate defined as the ratio

of the mis-classified pixels to the total number of pixels.

The averaged error rate on all the images from [20] for the

method in [46] is 0.3622 and for the proposed approach is

0.527. In Figure 6, we show the results on an example im-

age from [20]. We observe that our method does not require

any user interaction and still we get a comparable error rate.

The performance of our method depends on how well the

edges are extracted in the given image.

6. Conclusion

In this work, we have proposed an algorithm to partition

an image into superpixels, such that the symmetry present at

the pixel level is preserved at the superpixel level. We first

detect the symmetry present at the pixel level, presented as

pairs of mirror symmetric pixels and then extend the SLIC

algorithm to preserve the symmetry at the superpixel level

by proposing a novel symmetric initialization and symmet-

ric pixel center assignment strategies. We observe that we

are able to achieve mirror symmetric superpixels in the sym-

metric regions. The main limitations of the proposed al-

gorithm are that it is applicable only to the fronto-parallel

views containing reflection symmetry and heavily depends

on the performance of the edge detection algorithms. As a

future work, we would like to extend the proposed method

for the rotation symmetry, translation symmetry, and curved

reflection symmetry. We also would like to prepare a dataset

containing the set of ground truth pairs of superpixels for

benchmarking the performance of the algorithm developed.
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TURBO SLIC ERS LSC SEEDS MSLIC SymmSLIC

Figure 7. Results for the approaches TURBO [17], SLIC [1], ERS [19], LSC [18], SEEDS [52], MSLIC [22], and the proposed method.

For each image, we show two zoomed-in mirror symmetric windows to visualize whether the superpixels are mirror reflections of each

other or not. Window border represents its location in the image. The tilted windows are aligned horizontally.
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