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Abstract

Understanding the generalization behaviour of deep neural networks is an important1

theme of modern research in machine learning. In this paper, we follow up on2

a recent work of Neu [49] and present new information-theoretic upper bounds3

for the generalization error of neural networks trained with SGD. Our bounds and4

experimental study provide new insights on the SGD training of neural networks.5

They also point to a new and simple regularization scheme which we show performs6

comparably to the current state of the art.7

1 Introduction8

The outstanding performance of deep learning has brought to the surface some intriguing properties9

of deep neural networks, one of which is the observation that despite their high capacity, deep neural10

networks tend to generalize well [80]. This contradicts classical wisdom in statistical learning theory11

(e.g., [71] ) and has stimulated intense research interest in understanding the generalization behaviour12

of modern neural networks.13

One theme of research focuses on the study of over-parameterized neural networks, where generaliza-14

tion bounds are obtained [22, 1, 6, 50, 52, 53, 2, 3] and a curious “double descent” phenomenon is15

observed and analyzed [9, 46, 78]. New bounding techniques for analyzing generalization have also16

been developed, utilizing information theoretic quantities [64, 65, 77, 5, 13, 69, 23, 7, 4, 30, 84]. The17

bounds provided by these techniques have the advantages of accounting for both the data structure18

and the learning algorithm.19

The generalization ability of neural networks trained with mini-batched stochastic gradient descent20

[61], simply referred to SGD in this paper, has also been widely studied. Specifically, built on a21

connection between stability and generalization [12], a stability-based bound is first presented in [32],22

followed by a surge of research effort exploiting similar approaches [44, 17, 26, 43, 8]. Information-23

theoretic bounding techniques have also demonstrated great power in analyzing SGD-like algorithms.24

For example, [55] is the first to utilize information-theoretical bound in analyzing the generalization25

ability of SGLD [28, 74]. The bound was subsquently improved by [47, 31, 62, 72]. Inspired by the26

work of [55], [49] presents an information- theoretic analysis of the models trained with SGD. The27

analysis of [49] constructs an auxiliary weight process parallel to SGD training and upper-bounds the28

generalization error through this auxiliary process.29

Another line of research connects the generalization of neural networks with the flatness of loss30

minima [35] found by SGD or its variant [40, 20, 24, 51, 16, 37, 38, 83, 27]. This understanding31

has led to the discovery of new SGD-based training algorithms for improved generalization. For32

example, in a concurrent development by [83] and [27], a local “max-pooling” operation is applied to33
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the loss landscape prior to the SGD updates. This approach, referred to as AMP[83] or SAM[27], is34

shown to make SGD favor flatter minima and achieve the state-of-the-art performance among various35

competitive regularization schemes [83].36

In this paper, we focus on investigating the generalization of neural networks trained with SGD.37

We build upon the work of [49]. Following the same construction of the auxiliary weight process38

in [49], we present upper bounds of generalization error that improve upon [49] in two ways. The39

first improvement is via removing an unnecessary term in the bounds of [49] by invoking the HWI40

inequality [60]. The second improvement is via replacing a sample-level mutual information term in41

[49] with an instance-level mutual information term, exploiting a recent result of [13]. The bounds we42

obtain decompose into two terms, one measuring the impact of training trajectories (“the trajectory43

term”) and the other measuring the impact of the flatness of the found solution (“the flatness term”).44

We empirically validate the derived bounds. Various insights are also obtained experimentally45

concerning the generalization of neural networks under SGD training. For example, the batch size of46

SGD appears to impact the trajectory term and the flatness term in opposite ways, which complicates47

the overall dependency of generalization error on batch sizes. A particular interesting observation48

from our experiments is that a key quantity arising in the trajectory term of the bounds, which we49

refer to as gradient dispersion1, reveals a double descent phenomenon with respect to training epochs.50

Most intriguingly, the valley in the double descent curve appears to mark the great divide between the51

“generalization regime” and the “memorization regime” of training. Furthering from this observation,52

we also show that it is possible to reduce the memorization effect by dynamically clipping the gradient53

and reducing its dispersion.54

Our bounds also inspire a natural and simple solution to alleviate generalization error. Specifically,55

we propose a new training scheme, referred to as Gaussian model perturbation (GMP), aiming at56

reducing the flatness term of the bounds. This scheme effectively applies a local “average pooling” to57

the empirical risk surface prior to SGD, greatly resembling the “max-pooling” approach adopted in58

AMP[83]. We demonstrate experimentally that GMP achieves a competitive performance with the59

current art of regularization schemes.60

Length constraints precludes elaboration at places. The reader is referred to supplementary materials61

for proofs and additional information.62

Other Related Literature Gradient dispersion is mostly studied from optimization perspectives[11,63

63, 39, 75, 25]. Prior to this work, only a few works relate gradient dispersion with the generalization64

behaviour of the networks. In [49, 72], gradient dispersion also appears in the generalization bounds.65

In [38], gradient dispersion is argued to capture a notion of “flatness” of the local minima of the loss66

landscape, thereby correlating with generalization.67

Injecting noise in the training process has been proposed in various regularization schemes, for68

example, [10, 14, 15, 68, 73]. But unlike the Gaussian model perturbation scheme derived in this69

paper, where noise is injected to the model parameters, noise in those schemes is injected either to70

the training data or to the network activation.71

Gradient clipping is a common technique for preventing gradient exploding (see, e.g., [45, 56]).72

This technique is also used in [82] to accelerate training. In this paper, gradient clipping is used to73

investigate and control the impact of gradient dispersion on generalization error.74

2 Preliminaries75

Population Risk, Empirical Risk and Generalization Error Unless otherwise noted, a random76

variable will be denoted by a capitalized letter (e.g., Z), and its realization denoted by the correspond-77

ing lower-case letter (e.g. z). Let Z be the instance space of interest and µ be an unknown distribution78

on Z , specifying random variable Z. Let W ⊆ Rd be the space of hypotheses. Suppose that a79

training sample S = (Z1, Z2, . . . , Zn) is drawn i.i.d. from µ and that a stochastic learning algorithm80

A takes S as its input and outputs a hypothesis W ∈ W according to some conditional distribution81

PW |S mapping Zn toW . Let ` : W × Z → R+ be a loss function, where `(w, z) measures the82

“unfitness” or “error” of any z ∈ Z with respect to a hypothesis w ∈ W . The population risk, for any83

1The quantity is often referred to as gradient variance in the literature [49, 72], but we prefer “dispersion” to
“variance” so as to better comply with the mathematical conventions and avoid possible confusion.
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w ∈ W , is defined as84

Lµ(w) , EZ∼µ[`(w,Z)].

The goal of learning is to find a hypothesis w that minimizes the population risk. But since µ is only85

partially accessible via the sample S, in practice, we instead turn to the empirical risk, defined as86

LS(w) ,
1

n

n∑
i=1

`(w,Zi).

The expected generalization error of the learning algorithm A is then defined as87

gen(µ, PW |S) , EW,S [Lµ(W )− LS(W )],

where the expectation is taken over the joint distribution of (S,W ) (i.e., µn ⊗ PW |S).88

Throughout this paper, we take ` as a continuous function (adopting the usual notion “surrogate loss”89

[66].). Additionally, we assume that ` is differentiable almost everywhere with respect to both w and90

z. Furthermore we assume that `(w,Z) is R-subgaussian2 for any w ∈ W . Note that a bounded loss91

is guaranteed to be subgaussian for all µ and all w ∈ W . Let I(X;Y ) denote the mutual information92

[18] between any pair of random variables (X,Y ). The following results are known.93

Lemma 1 ([77, Theorem 1.]). The expected generalization error of algorithm A is bounded by94

|gen(µ, PW |S)| ≤
√

2R2

n
I(W ;S),

95

Lemma 2 ([13, Proposition 1.]). The expected generalization error of algorithm A is bounded by96

|gen(µ, PW |S)| ≤ 1

n

n∑
i=1

√
2R2I(W ;Zi),

97

Stochastic Gradient Descent We now restrict the learning algorithm A to be the mini-batched98

stochastic gradient descent (SGD) algorithm for empirical risk minimization. For each training epoch,99

the dataset S is randomly split into m disjoint mini-batches, each having size b, namely, n = mb.100

Based on each batch, one parameter update is performed. Specifically, let Bt denote the batch used101

for the tth update. Define102

g(w,Bt) ,
1

b

∑
z∈Bt

∇w`(w, z),

namely, g(w,Bt) is the average gradient computed for the batch Bt with respect to parameter w. The103

rule for the tth parameter update is then104

Wt ,Wt−1 − λtg(Wt−1, Bt),

where λt is the learning rate at the step t. The initial parameter setting W0 is assumed to be drawn105

from the zero-mean spherical Gaussian N (0, σ2
0Id) with variance σ2

0 in each dimension. We will106

assume that the SGD algorithm stops after T updates and outputs WT as the learned model parameter.107

Given the training sample S, let ξ govern the randomness in the sequence (B1, B2, . . . , BT ) of108

batches. For the simplicity of notion, we will fix the configuration of ξ. That is, we will assume a109

fixed “batching trajectory”, or a fixed way to shuffle the example indices {1, . . . , n} and divide them110

into m batches in each epoch. The presented generalization bounds of this paper can be extended111

to the case where the batching trajectory is uniformly random (as we set up above). This merely112

involves averaging over all batching trajectories or taking expectation over ξ.113

Auxiliary Weight Process We now associate with the SGD algorithm an auxiliary weight process114

{W̃t}. Let σ2 be given, and let σ1, σ2, . . . , σT be a sequence of positive real numbers. Define115

W̃0 ,W0, and W̃t , W̃t−1 − λtg(Wt−1, Bt) +Nt, for t > 0,

where Nt ∼ N (0, σ2
t Id) is a Gaussian noise. The relationship between this auxiliary weight process116

{W̃t} and the weight process {Wt} in SGD is shown in the Bayesian network below.117

2Recall that a random variable X is R-subgaussian [60] if for any ρ, logE exp (ρ (X − EX)) ≤ ρ2R2/2.
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N1 N2 · · · NT−1 NT
↓ ↓ ↓ ↓

W̃0 → W̃1 → W̃2 → · · · → W̃T−1 → W̃T

‖ ↗ ↗ ↗ ↗
W0 → W1 → W2 → · · · → WT−1 → WT

118

Let ∆t =
∑t
τ=1Nτ . Noting that the weight updates in {W̃t} uses the same gradient signal as that119

used in {Wt} (which depends onWt−1 not W̃t−1), it is immediate that W̃t = Wt+∆t. Note that this120

auxiliary process follows the same construction as [49], which we will use to study the generalization121

error of SGD.122

To that end, define gradient dispersion at parameter w by123

V(w) , E
[
||∇w`(w,Z)− E [∇w`(w,Z)] ||22

]
,

where the expectation is taken over Z ∼ µ.124

For a given sample s ∈ Zn, define125

γ(w, s) , E [Ls(w + ∆T )− Ls(w)] ,

where the expectation is taken over ∆T and Ls(w) is the empirical risk of s at parameter w.126

In the remainder of the paper, let S′ denote another sample drawn from µn, independent of all other127

random variables. The main generalization bound in [49] is re-stated below.128

Lemma 3 ([49, Theorem 1.]). The generalization error of SGD is upper bounded by129

|gen(µ, PWT |S)| ≤

√√√√2R2

n

T∑
t=1

λ2
t

σ2
t

E
[
Ψ(Wt−1) +

V(Wt−1)

b

]
+ |E [γ(WT , S)− γ(WT , S

′)]| ,

where Ψ(wt−1) , E
[
||∇w`(wt−1, Z)−∇w`(wt−1 + ζ, Z)||22

]
and ζ ∼ N (0, 2

∑t−1
i=1 σ

2
i Id).130

The term Ψ(wt−1) in the bound is referred to as “local gradient sensitivity” in [49].131

3 New Generalization Bounds for SGD132

We first prove that the generalization bound in Lemma 3 can be tightened by removing the local133

gradient sensitivity term Ψ(wt−1). The key observation is that an independence condition used for134

establishing Lemma 3 in [49] is unnecessary (see Lemma 4 in [49]). This requires invoking a vector135

version of the HWI inequality [60, Lemma 3.4.2], which we prove in this paper.136

Lemma 4. Let X and Y be two random vectors in Rd, and let N ∼ N (0, Id) be independent of137

(X,Y ). Then, for every t > 0, DKL(PX+
√
tN ||PY+

√
tN ) ≤ 1

2tE
[
||X − Y ||2

]
.138

Here DKL is the KL divergence. Note that the bound in Lemma 3 relies on a similar result which139

however requires the independence of X and Y . Using Lemma 4, we obtain the following theorem.140

Theorem 1. The generalization error of SGD is upper bounded by141

|gen(µ, PWT |S)| ≤

√√√√2R2

nb

T∑
t=1

λ2
t

σ2
t

E [V(Wt−1)] + |E [γ(WT , S)− γ(WT , S
′)]| .

142

The proof of this theorem, as the bounds in [49], relies on Lemma 1 and the sample-level mutual143

information bound therein. This theorem can be further tightened by exploiting the fact that the144

instance-level mutual information bound in Lemma 2 is in fact tighter than the sample-level mutual145

information bound in Lemma 1, as shown in [13]. The main ingredient to proceed in this direction is146

the following lemma.147

Lemma 5. LetGt = −λtg(Wt−1, Bt). If Zi ∈ Bt, then I(Gt+Nt;Zi|W̃t−1) ≤ λ2
t

σ2
t b

2E [V(Wt−1)].148

149
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In this lemma, the mutual information I(Gt +Nt;Zi|W̃t−1) roughly indicates the degree by which150

the SGD’s updating signal Gt (smoothed with noise) depends on an individual training instance151

Zi, when Zi is used for computing the gradient. When this dependency is strong (giving rise to a152

high value of the mutual information), the model conceivably tends to overfit the individual training153

instances. This lemma suggests that the strength of this dependency can be upper-bounded by the154

expected gradient dispersion at the current weight configuration. In our experiments, we will estimate155

the expected gradient dispersion and validate this intuition.156

It is remarkable that the noise {Nt} plays an important role for the bound to hold. To see this,157

consider b = 1 and Z is countable and large. Then I(Gt;Zt|Wt−1) is merely the conditional entropy158

H(Zi|Wt−1), which would grow with sample size n at least as log n. Upper-bounding it with a159

quantity independent of n would be impossible – This justifies the construction of the auxiliary160

weight process.161

We now state our main theorem. Unlike Theorem 1, which considers a random batching trajectory,162

this theorem considers a fixed batching trajectory to keep the expression less cluttered. For that163

batching trajectory, we will use Ti to denote the set of indices of batches Bt containing instance Zi.164

Theorem 2. The expected generalization error of SGD is bounded by165

|gen(µ, PWT |S)| ≤ R

nb

n∑
i=1

√√√√∑
t∈Ti

2λ2
t

σ2
t

E [V(Wt−1)] + |E [γ(WT , S)− γ(WT , S
′)]| .

166

With an additional assumption, the second term in the bound can be re-expressed, as shown in the167

following corollary.168

Corollary 1. Assume Lµ(wT ) ≤ E∆ [Lµ(wT + ∆T )], then the following holds,169

gen(µ, PWT |S) ≤ R
nb

n∑
i=1

√√√√∑
t∈Ti

2λ2
t

σ2
t

E [V(Wt−1)] +

∑T
t=1 σ

2
t

2
Tr (E [HWT

(Z)]) ,

where HWT
is the Hessian matrix of the loss with respect to WT and Tr(·) denotes trace.170

Corollary 1 follows directly from the second order Taylor expansion of the second term in the bound171

of Theorem 2. The condition Lµ(wT ) ≤ E∆ [Lµ(wT + ∆T )] indicates that the perturbation does172

not decrease the population risk. This is also assumed in [27] in the derivation of a PAC-Bayesian173

generalization bound.174

Notably, in the bound of Theorem 2, the first term captures the impact of the training trajectory175

(“trajectory term”), and the second term captures the impact of the final solution. As seen in Corollary176

1, this term in fact measures the flatness for the loss landscape at the found solution (“flatness term”).177

The previous bound of [49] (Lemma 3) and its tightened version in Theorem 1 also similarly contain a178

trajectory term and a flatness term. Despite that the flatness term there are identical to that in Theorem179

2, we now show the trajectory term in Theorem 2 does improve on its counter-part in Theorem 1.180

Lemma 6. Assume the instances are sampled without replacement in every epoch. Then the trajectory181

term in Theorem 2 is upper-bounded by182

min

Rn
T∑
t=1

√
2λ2

t

σ2
t

E [V(Wt−1)],

√√√√2R2

nb

T∑
t=1

λ2
t

σ2
t

E [V(Wt−1)]

 .

183

The condition in Lemma 6 is usually satisfied in practice. This lemma then immediately implies that184

the trajectory term in Theorem 2 is no worse than that in Theorem 1. Incorporating this result, if we185

restrict the smoothness of the loss function `, we may obtain another version of the generalization186

bound (although the flatness term therein is expected to be looser than that in Corollary 1).187

Corollary 2. If the loss function is differentiable and β-smooth with respect to w, then under the188

condition of Lemma 6,189

|gen(µ, PWT |S)| ≤min

Rn
T∑
t=1

√
2λ2

t

σ2
t

E [V(Wt−1)],

√√√√2R2

nb

T∑
t=1

λ2
t

σ2
t

E [V(Wt−1)]

+ βd

T∑
t=1

σ2
t .

190
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To conclude, we remark that these bounds suggest that in order for the model to generalize well, both191

the trajectory term and the flatness term need to be small — the former involves the interaction of the192

learning rate and batch size with the gradient dispersion along the training trajectory, whereas the193

latter depends on the flatness of the empirical risk surface at the found solution.194

4 Experimental Study195

Bound Verification We first verify our bound in Corollary 1 by training an MLP (with one hidden196

layer) and an AlexNet [42] on MNIST and CIFAR10 [41], respectively. To simplify estimation, we197

fix the weight initialization and set σt and λt to be constants σ and λ, respectively. To compute198 ∑n
i=1

√∑
t∈Ti E [V(Wt−1)], we compute the gradient dispersion as its empirical estimate from a199

batch, utilizing a PyTorch [54] library BackPack [19]. To compute Tr (E [HWT
(Z)]), we randomly200

sample 10% of the training data and use the PyHessian library [79] to compute the Hessian. Since201

every choice of σ gives a valid generalization bound in Corollary 1, we need to find the optimal202

σ, which gives the tightest bound. This can be done by simply utilizing the fact A/σ + σ2B ≥203

3(A/2)2/3B1/3 for any positive A and B, where the equality is achieved by the optimal σ. We set204

the sub-gaussian parameter R = 0.1. The implementation in this paper is on PyTorch, and all the205

experiments are carried out on NVIDIA Tesla V100 GPUs (32 GB).206

We perform experiments with varying network width and varying levels of label noise. Specifically,207

label noise level ε refers to the setting where we replace the labels of ε fraction of the training and208

testing instances with random labels. The estimated bound is compared against the true generalization209

gap, namely, the difference between the training loss and testing loss, and is shown in Figure 1.210
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Figure 1: Estimated bound and empirical generalization gap (“gap”) as functions of network width
((a) and (b)) and label noise level ((c) and (d)). Left Y-axis: gap value; right Y-axis: bound value.

In Figure 1, we see that in all cases the estimated bound follows closely the trend of the true211

generalization gap. The fact that the bound curve consistently tracks the gap curve under various212

label noise levels indicates that our bound very well captures the changes of the data distribution.213

Note that in Figure 1 (a) and (b), our bound decays with the increase of the model size, showing a214

trend as opposite to the bounds obtained in classical learning theory. But such a trend clearly better215

explains the generalization behaviour of modern neural networks.216
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Figure 2: The impact of learning rate and batch size on the trajectory term and the flatness term.

Learning Rate and Batch Size. The learning rate and batch size in SGD have explicitly appeared217

in the trajectory term of the bound in Theorem 2. From the way they appear in the bound, one may be218

tempted to assert that a small learning rate or large batch size will improve generalization. This would219

then contradict some previous observations [37, 76, 33], in which increasing the ratio of learning rate220
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to batch size will benefit generalization. We now investigate this by performing experiments with221

varying learning rates and batch sizes. In our experiments, the model is continuously updated until222

the average training loss drops below 0.0001. We separate trajectory and flatness terms of the bound223

and plot them in Figure 2.224

A key observation in Figure 2 is that the learning rate impacts the trajectory term and the flatness term225

in opposite ways, as seen, for example, in (a) and (b), where the two set of curves swap their orders in226

the two figures. On the other hand, the batch size also impacts the two terms in opposite ways, as seen227

in (a) and (b) where curves decrease in (a) but increase in (b). This makes the generalization bound,228

i.e., the sum of the two terms, have a rather complex relationship with the settings of learning rate229

and batch size. This relationship is further complicated by the fact that a small learning rate requires230

a longer training time, or a larger number T of training iterations, which increases the number that231

are summed over in the trajectory term. Nonetheless, we do observe that a smaller batch size gives a232

lower value of the flatness term ((b) and (d)), confirming the previous wisdom that small batch sizes233

enable the neural network to find a flat minima [40].234
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(d) noise=0.6 (MNIST)
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(e) noise=0 (CIFAR10)
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Figure 3: Epoch-wise double descent of gradient dispersion, in relation to training/testing accuracies.

Double Descent of Gradient Dispersion We experimentally investigate the impact of gradient235

dispersion on the training of the neural networks by fixing the learning rate, batch size and weight236

initialization for the each model (MLP for MNIST, AlexNet for CIFAR10). For each model and237

various label noise levels, we plot in Figure 3 the evolution of the (empirical) gradient dispersion238

V̂(wt), training accuracy and testing accuracy across training epochs.239

An intriguing epoch-wise “double descent” phenomenon is observed, particularly when the labels are240

noisy. According to the double descent curve, the training may be split into three phases (e.g., Figure241

3 (h)). In the first phase, the gradient dispersion rapidly descends and maintains a very low level. In242

this phase, both training and test accuracies increase while maintaining a very small generalization243

gap. This suggests that the network in this phase is extracting useful patterns and generalizes well.244

In the second phase, the gradient dispersion starts increasing until it reaches a peak value. In this245

phase, the training and testing accuracies gradually diverge, marking the model entering an overfitting246

or “memorization” regime – when the data contains the noisy labels, the network mostly tries to247

memorize the labels in the training set. In the third phase, the gradient dispersion descends again,248

reaching a low value. In this phase, the model continuously overfits the training data, until the training249

and testing curves reach their respective maximum and minimum. It appears that the timing of the250

three phases depends on the dataset and the label noise level. For simpler data (e.g. MNIST) and251

cleaner datasets (e.g. CIFAR10 with low label noise), the first phase may be shorter. This is arguably252

because in these datasets, extracting useful patterns is relatively easier. Nonetheless, the valley in the253

double-descent curve appears to mark a “great divide” between generalization and memorization.254

Dynamic Gradient Clipping Inspired by our generalization bounds and above observations, one255

way to reduce the generalization error is to control the trajectory term of the bounds by reducing the256

gradient dispersion in each training step. Here we investigate a simple scheme that dynamically clips257
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Figure 4: Dynamic Gradient Clipping.

the gradient norm so as to reduce the gradient dispersion. Specifically, whenever the current gradient258

norm is larger than the gradient norm K steps earlier, or ||g(Wt, Bt)||2 > ||g(Wt−K , Bt−K)||2 (i.e.,259

the model is expected to have entered the “memorization” regime), we reduce the norm of the current260

gradient g(Wt, Bt) to α fraction of ||g(Wt−K , Bt−K)||2, for some prescribed value α < 1. The261

effectiveness of this scheme is best demonstrated when the labels contain noise. As shown in Figure262

4, dynamic gradient clipping significantly closes the gap between the training accuracy and the testing263

accuracy. The models trained with this scheme maintain a near-optimal testing accuracy (e.g., about264

80% when the label noise level of MNIST is 0.2), without suffering from the severe memorization265

effect as seen in models trained without this scheme. Further understanding of the double-descent266

phenomenon of the gradient dispersion may enable more delicate design of such a dynamic clipping267

scheme and potentially lead to novel and powerful regularization techniques.268

5 A Practical Implication: Gaussian Model Perturbation269

The appearance of the flatness term in our generalization bounds suggests that for an empirical270

risk minimizer w∗ to generalize well, it is necessary that the empirical risk surface at w∗ is flat,271

or insensitive to a small perturbation of w∗. This naturally motivates a training scheme using the272

following regularized loss:273

min
w
Ls(w) + ρ E

∆∼N (0,σ2Id)
[Ls(w + ∆)− Ls(w)],

where ρ is a hyper-parameter. Replacing the expectation above with its stochastic approximation274

using k realizations of ∆ gives rise to the following optimization problem.275

min
w

1

b

∑
z∈B

(
(1− ρ)`(w, z) + ρ

1

k

k∑
i=1

(`(w + δi, z))

)
.

We refer to the SGD training scheme using this loss as Gaussian model perturbation or GMP. Notably,276

GMP requires k + 1 forward passes for every parameter update. Empirical evidence shows that a277

small k, for example, k = 3, already gives competitive performance. Implementing the k+ 1 forward278

passes on parallel processors further reduces the computation load.279

We experimentally compare GMP with several major regularization schemes in the current art, includ-280

ing Dropout [68], label smoothing [70], Flooding [36], MixUp [81], adversarial training [29], and281

AMP [83]. The compared schemes are evaluated on three popular benchmark image classification282

datasets SVHN [48], CIFAR-10 and CIFAR-100 [41]. Two representative deep architectures PreAc-283

tResNet18 [34] and VGG16 [67] are taken as the underlying model. We train the models for 200284

epochs by SGD. The learning rate is initialized as 0.1 and divided by 10 after 100 and 150 epochs.285

For all compared models, the batch size is set to 50 and weight decay is set to 10−4. For GMP, we286

choose ρ = 0.5 and set the standard deviation of the Gaussian noise ∆ to 0.03. The value of k is287

chosen as 3 and 10 respectively (referred to as GMP3 and GMP10).288

The performances of all compared schemes are given in Table 1. For the compared regularization289

schemes except GMP, we directly report their performances as given in [83]. Performances of vanilla290

ERM without regularization are also included as a reference.291

Table 1 demonstrates the effectiveness of GMP. Overall GMP performs comparably to the current292

art of regularization schemes, although appearing slighly inferior to the most recent record given by293

AMP [83]. Noting that the key ingredient of AMP, “max-pooling” in the parameter space, greatly294

resembles regularization term in GMP, which may be seen as “average-pooling” in the same space.295
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PreActResNet18 Top-1 Acc. (%)

ERM 97.05±0.063
Dropout 97.20±0.065
Label Smoothing 97.22±0.087
Flooding 97.16±0.047
MixUp 97.26±0.044
Adv. Training 97.23±0.080
AMP 97.70±0.025
GMP3 97.43±0.037
GMP10 97.34±0.058

VGG16 Top-1 Acc. (%)

ERM 96.86±0.060
Dropout 97.04±0.049
Label Smoothing 96.93±0.070
Flooding 96.85±0.085
MixUp 96.91±0.057
Adv. Training 97.06±0.091
AMP 97.27±0.015
GMP3 97.18±0.057
GMP10 97.09±0.068

(a) SVHN

PreActResNet18 Top-1 Acc. (%)

ERM 94.98±0.212
Dropout 95.14±0.148
Label Smoothing 95.15±0.115
Flooding 95.03±0.082
MixUp 95.91±0.117
Adv. Training 95.01±0.085
AMP 96.03±0.091
GMP3 95.64±0.053
GMP10 95.71±0.073

VGG16 Top-1 Acc. (%)

ERM 93.68±0.193
Dropout 93.78±0.147
Label Smoothing 93.71±0.158
Flooding 93.74±0.145
MixUp 94.52±0.112
Adv. Training 93.51±0.130
AMP 94.35±0.147
GMP3 94.33±0.094
GMP10 94.45±0.158

(b) CIFAR-10

PreActResNet18 Top-1 Acc. (%)

ERM 75.69±0.303
Dropout 75.52±0.351
Label Smoothing 77.93±0.256
Flooding 75.50±0.234
MixUp 78.22±0.210
Adv. Training 74.77±0.229
AMP 78.49±0.308
GMP3 78.05±0.208
GMP10 78.07±0.170

VGG16 Top-1 Acc. (%)

ERM 72.16±0.297
Dropout 72.28±0.337
Label Smoothing 72.51±0.179
Flooding 72.07±0.271
MixUp 73.19±0.254
Adv. Training 70.88±0.145
AMP 74.40±0.168
GMP3 74.45±0.256
GMP10 75.09±0.285

(c) CIFAR-100

Table 1: Top-1 classification accuracy on (a) SVHN, (b) CIFAR-10 and (c) CIFAR-100. We run
experiments 10 times and report the mean and the standard deviation of the testing accuracy.

6 Conclusion and Outlook296

This paper presents new generalization bounds for neural networks trained with SGD, improving297

upon the results of [49]. Our bounds naturally point to new and effective regularization schemes. At298

the same time, they reveal interesting phenomena in the SGD training of neural networks. While299

these phenomena deserve further investigation in their own right, we here suggest another direction300

for improving the bounds, namely, via the use of strong data-processing inequalities (DPI) [57–59]301

(noting that the standard DPI is in fact needed for establishing Theorem 2).302

For any Markov chain U → X → Y , we will denote by U , X , and Y the spaces in which U ,303

X , Y take values, respectively. For any distribution P on X , we will use PY |X ◦ P to denote the304

distribution on Y induced by the push-forward of the distribution P by PY |X , namely, for any y ∈ Y ,305 (
PY |X ◦ P

)
(y) ,

∫
PY |X(y|x)P (x)dx. Let S(U) be the support of PU and H(U,PX|U ) be the306

convex hull of {PX|U=u : u ∈ S(U)}. Define307

η(U → X → Y ) , sup
P,Q∈H(U,PX|U )

DKL(PY |X ◦ P ||PY |X ◦Q)

DKL(P ||Q)

Lemma 7. For any Markov chain U → X → Y , I(U ;Y ) ≤ η(U → X → Y )I(U ;X).308

Here η(U → X → Y ) serves as the “contraction coefficient” for the stochastic kernel PY |X ,309

characterizing the greatest extent by which the kernel may bring closer any two distributions on S(U)310

in its output space. It is easy to see that η(U → X → Y ) ≤ 1, giving rise to a stronger DPI.311

Denote Vt , W̃t−1 + Gt. It can be verified that Zi → Vt → W̃t form a Markov chain. Denote312

ηi,t , η(Zi → Vt → W̃t), and Γti = {t+ 1, t+ 2, . . . , T} \ Ti. Theorem 2 can be improved to:313

Theorem 3. The expected generalization error of SGD is bounded by314

|gen(µ, PWT |S)| ≤2R

nb

n∑
i=1

√√√√∑
t∈Ti

λ2
t

σ2
t

E [V(Wt−1)] ·
∏
τ∈Γt

i

ηi,τ + |E [γ(WT , S)− γ(WT , S
′)] |.

315

It remains to characterize the contraction coefficient ηi,τ in a computable form. Simply bounding it316

via the Dobrushin’s coefficient [21], as suggested in [72] for analyzing SGLD, is unlikely to make317

the bound in this theorem significantly tighter than that in Theorem 2.318
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