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ABSTRACT

Advances in computational power and hardware efficiency have enabled tackling
increasingly complex, high-dimensional problems. While artificial intelligence
(AI) achieves remarkable results, the interpretability of high-dimensional solutions
remains challenging. A critical issue is the comparison of multidimensional quan-
tities, essential in techniques like Principal Component Analysis. Metrics such
as cosine similarity are often used, for example, in the development of natural
language processing algorithms or recommender systems. However, the inter-
pretability of such metrics diminishes as dimensions increase. This paper analyzes
the effects of dimensionality, revealing significant limitations of cosine similar-
ity, particularly its dependency on the dimension of vectors, leading to biased
and poorly interpretable outcomes. To address this, we introduce a Dimension
Insensitive Euclidean Metric (DIEM), which demonstrates superior robustness
and generalizability across dimensions. DIEM maintains consistent variability
and eliminates the biases observed in traditional metrics, making it a reliable tool
for high-dimensional comparisons. An example of the advantages of DIEM over
cosine similarity is reported for a large language model application. This novel
metric has the potential to replace cosine similarity, providing a more accurate
and insightful method to analyze multidimensional data in fields ranging from
neuromotor control to machine learning.

1 INTRODUCTION

The growth of computational capability and improvement of hardware efficiency (Chen, 2016)
enabled approaching problems of growing complexity and dimensionality. Over a little more than
two decades, Artificial Intelligence (AI) agents defeated humans in games previously considered
dominated by humans: chess (Hsu, 2022), Go (Silver et al., 2017), StarCraft II (Vincent, 2019).
This ability to handle complex and high-dimensional problems also led to promising results in
fields such as molecular biology (Jumper et al., 2021) or robotics (Kober et al., 2013). On one
hand, the results of these computing techniques are undeniably impressive; on the other hand, their
interpretability decreases with their complexity and dimensionality. One prominent concern is the
comparison of multidimensional quantities. For example, in dimensionality reduction techniques,
such as Principal Component Analysis (PCA), Singular Value Decomposition (SVD), or k-means
clustering, the algorithms extract significant combinations of a selected set of input features. The
number of input features can vary greatly, from tens – e.g., the joint angles of the hand (West et al.,
2023) – to thousands as with text embeddings of Natural Language Processing (NLP) algorithms,
and Large Language Models (LLMs) (OpenAI, 2025). A reasonable question is: “How similar or
different are these combinations of features?”

Consider, for instance, the task of identifying an individual user’s preference for movies based on
input features such as the movies the user has watched, his/her evaluation of them, and the date
when they were watched (Bennett & Lanning, 2007). Alternatively, consider the task of identifying
during e.g., grasping an object, how an individual coordinates his/her joints (shoulder, elbow, wrist,
phalanges) to successfully complete the task (Santello et al., 1998; Mason et al., 2001). Assuming the
algorithm identifies a specific individual’s preferences, how can we compare two different individuals’
preferences? As long as the number of input features is limited to 2 or 3, humans are visually
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able to interpret them using a planar or spatial analogy. However, when feature spaces go beyond
3D, visualization and interpretation become more complex and less intuitive. As a consequence,
researchers typically rely on mathematical measures to gain an understanding of the similarity (or
difference) between n-dimensional quantities. Among the many methods for multidimensional
comparisons, cosine similarity stands out as one of the ‘gold standards’ (Ye, 2011; Lahitani et al.,
2016; Xia et al., 2015; Nguyen & Bai, 2011; Luo et al., 2018; Eghbali & Tahvildari, 2019). This is
likely related to its analogy with angular measurements and its bounded, well-defined range (between
0 and 1, or -1 and 1, depending on formulation).

In this work, we present a detailed analysis of the effects of dimensionality on cosine similarity. Some
interesting limitations and properties emerge, leading to the conclusion that the use of cosine similarity
might not be the most appropriate choice for multidimensional comparisons. An alternative – named
DIEM (Dimension Insensitive Euclidean Metric) – is proposed, which shows better robustness and
generalizability to increasing numbers of dimensions. The advantages of DIEM over cosine similarity
are showcased by a comparison of text embeddings from an existing open-source large language
model. The new metric proves to surpass cosine similarity for high-dimensional comparisons.

2 COSINE SIMILARITY AND EUCLIDEAN DISTANCE

Given two vectors a = [a1, . . . , an] and b = [b1, . . . , bn], with ai, bi ∈ R, the cosine similarity
between these vectors is defined as:

cos(θ) =
|aT · b|
∥a∥ · ∥b∥

(1)

This value ranges between 0 and 1, with 0 meaning the two vectors are orthogonal, and 1 meaning
the vectors are collinear. We can consider the vectors a and b as points in an n-dimensional space
and compute the Euclidean distance (2-norm) between them as:

d =

√√√√ n∑
i=1

(ai − bi)2 =⇒ d2 =

n∑
i=1

a2i +

n∑
i=1

b2i − 2

n∑
i=1

aibi (2)

We can then reformulate Equation 1 in index notation:

cos(θ) =
|aT · b|
∥a∥ · ∥b∥

=
|
∑n

i=1 aibi|
∥a∥ · ∥b∥

(3)

Remembering that the Euclidean norm of a vector is equal to ∥x∥ =
√∑n

i=1 x
2
i , and combining

Equation 3 and Equation 2, we obtain:

cos (θ) =
1

∥a∥ · ∥b∥
·
∣∣∣∣∥a∥2 + ∥b∥2 − d2

2

∣∣∣∣ (4)

Equation 4 shows that the cosine similarity has a quadratic correlation with the Euclidean distance.
Moreover, in the case in which our vectors a,b have unit length, this relation simplifies to:

cos (θ) =

∣∣∣∣1− d2

2

∣∣∣∣ (5)

For unit-length vectors, the Euclidean distance can only range between 0 ≤ d ≤ 2, since the
vectors—independently of the dimension of space that they span—can at most be on a diameter of a
hypersphere of radius 1.

An alternative definition of cosine similarity excludes the absolute value of the scalar product in
Equation 1. This results in the cosine similarity ranging from −1 to 1, thereby accounting for sign
differences in the vectors. The relation with the Euclidean distance is presented in an Appendix.
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3 EFFECT OF VECTOR DIMENSIONALITY

An interesting aspect is the sensitivity of the cosine similarity metric to the dimension (n) of the
considered vectors as well as to the space spanned by them: Rn, Rn+, Rn−. To test the sensitivity
to these two aspects, a numerical simulation was run using the algorithm presented in Figure 1. All
the numerical simulations were performed using Matlab 2023b on a laptop computer with 16 GB of
RAM and an 11th Gen. Intel i7-11800H.

Generate 104 pseudo�random 

vectors , with elements

extracted from a uniform distribution

Select Vectors 

Dimension

Compute the 

cosine similarity

between and

Select Vector 

Space domain:

, +, −

Figure 1: Algorithm used for the sensitivity analysis of cosine similarity with respect to vector
dimension and domain.

The idea was to iterate through growing dimensions while comparing two randomly generated vectors
(a,b). The vectors were generated from a pseudo-uniform distribution in order to avoid bias in the
mean value of each vector’s elements. The cosine similarity was computed for a range of dimensions
going from 2 (planar case) to 102. Vectors a,b were scaled such that, in the three different domains,
their lengths assumed the following range of values R → −1 ≤ ai, bi ≤ 1, ∀i,R+ → 0 ≤
ai, bi ≤ 1, ∀i,R− → −1 ≤ ai, bi ≤ 0, ∀i. These ranges were arbitrarily chosen to resemble
the activation level of some feature, e.g., a surface electromyographic signal scaled to the maximum
voluntary activation, or the text embedding vector of a large language model. A sensitivity analysis
showed that vector scaling produced no effect on cosine similarity. The resulting cosine similarities
for each vector dimension and each vector domain are presented in Figure 2.a.

Interestingly, the growing dimensionality of these random vectors led to a convergence of the average
cosine similarity. For the only-positive or only-negative vectors, cosine similarity rapidly converged
to a value of about 0.75 ± 0.1. For the vectors that could span both negative and positive values,
cosine similarity converged to a value approaching 0. The Appendix presents a theoretical proof of
the convergence of cosine similarity in all cases.
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Figure 2: Panel (a): Cosine similarity boxplots for increasing dimension of the vectors a and b. Panel
(b): Normalized Euclidean distance boxplots for increasing dimension of the vectors a and b. The
three sub-panels show, respectively, the case in which vector elements were only positive (left), only
negative (center) or could assume all real values within the given range (right).

The numerical analysis was repeated using the Euclidean distance between normalized vectors
(Figure 2.b). Again, the normalized Euclidean distance converged toward a constant value with
reduced variability. Specifically, for the real positive and negative cases, the metric converged to
about 0.7± 0.1, while for the all-real case, it converged to 1.41± 0.2. This value is close to

√
2, the

expected distance between two unit vectors that are perfectly orthogonal to each other.

A more troubling aspect, emerging from both the cosine similarity and normalized Euclidean distance
(Figure 2), was the fact that the variability of these metrics was a strong function of the number of
dimensions (n). Specifically, the variability of these random comparisons tended to narrow with an
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increasing number of dimensions. Different distributions for sampling the vectors a,b, (Gaussian
or uniform spherical) were tested, showing equivalent results to those presented in Figure 2; see
Appendix. If, instead, we consider the non-normalized Euclidean distance, we observe the behavior
presented in Figure 3.a.
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Figure 3: Panel (a): Euclidean distance for increasing dimension of the vectors a and b. The three
sub-panels show, respectively, the case in which vectors elements were only positive (left), only
negative (center) or could assume all real values within the given range (right). Panel (b): Euclidean
distance for increasing dimension of the vectors a and b. The blue circles show the minimum,
maximum and expected analytical Euclidean distance values.

The center of the Euclidean distance distribution tended to grow without bound, but the variability of
each boxplot remained approximately constant. This is an improvement over the cosine similarity
or normalized Euclidean distance case for two reasons: (i) the variability does not change with the
dimension of the vectors a and b, i.e., the variance (σ2

ed) is only a function of the range vm, vM but
not of the number of dimensions n, and (ii) the metric does not converge towards a plateau.

4 MATHEMATICAL PROPERTIES OF THE EUCLIDEAN DISTANCE

Some interesting properties can be analytically derived from the definition of Euclidean distance
(Equation 2), assuming that each element of any two vectors a,b is bounded between a minimum vm
and maximum value vM , with vM > vm. Boundedness is a reasonable assumption, since measurable
physical quantities are typically bounded either by physical or measurement limitations. Considering
these assumptions, the minimum Euclidean distance between any two n-dimensional vectors a and b
is always zero, independent of dimension:

dmin(n) = 0 ∀n (6)

This is trivially demonstrated by assuming that: ∀i = 1, . . . , n ⇒ ai = bi.

The maximum Euclidean distance can be computed considering that—for a given dimension n—each
element of the vector a assumes its maximum value vM , while each element of the other vector b
assumes its minimum value vm. At that point, the Euclidean distance from Equation 2 becomes:

d =

√√√√ n∑
i=1

(ai − bi)2 ≤

√√√√ n∑
i=1

(vM − vm)2 =
√

n(vM − vm)2 ⇒ dmax(n) =
√
n·(vM−vm) (7)

Moreover, assuming the elements of the two vectors (a,b) are sampled from two independent and
identically distributed (i.i.d.) random variables with uniform distributions ai ∼ U(vm, vM ), bi ∼
U(vm, vM ), the upper bound of the expected Euclidean distance can be derived analytically, i.e., the
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main trend observed in Figure 3.a. Specifically, by applying Jensen’s inequality1 (Jensen, 1906) and
the "Law Of The Unconscious Statistician (LOTUS)" (Groot & Schervish, 2014), we obtain:

E[d] = E

√√√√ n∑
i=1

(ai − bi)2

 ≤

√√√√E

[
n∑

i=1

(ai − bi)2

]

=
√
n · E[(a− b)2] =

√
n

(∫∫ vM

vm

(a− b)2

(vM − vm)2
da db

) 1
2

(8)

The integral in Equation 8 can easily be solved by direct integration. We leave readers the pleasure to
do so. The final result can be expressed in the following form:

E[d] ≤
√
n

√
2

3
(v2M + vMvm + v2m)− 1

2
(vM + vm)2 =

√
n

6
(vM − vm) (9)

Equation 9 provides an analytical upper bound to the expected Euclidean distance between any two
random vectors a,b ∼ U(vm, vM ). Figure 3.b provides a graphical representation of the Euclidean
distance along with its maximum (Equation 7), minimum (Equation 6), and expected (Equation 9)
value across dimensions.

Interestingly, the analytical expected value of the Euclidean distance (Equation 9) is practically
indistinguishable from the numerically simulated Euclidean distance median value for any dimension
n > 2. Moreover, it is also interesting to observe that the expected value is smaller than the arithmetic
mean between the maximum and minimum Euclidean distances:

dmin(n) + dmax(n)

2
=

√
n

2
(vM − vm) ⇒

√
n

2
(vM − vm) >

√
n

6
(vM − vm) (10)

Another interesting aspect to observe is the evolution of the Euclidean distance distribution for
growing dimensions (Figure 4.a). The Real Positive case was considered, but equivalent results were
obtained for the Real Negative and All Real cases. For each of the simulated dimensions (n), a
Kolmogorov-Smirnov test was performed to check whether the observed simulated distribution was
significantly different from a normal distribution with mean and standard deviation equal to those of
the simulated data, i.e., N (mean(d), std(d)). Interestingly, the test showed a significant difference
only for n = 2 (p < 0.05); while, for all the other tested dimensions, the distribution of Euclidean
distances was not significantly different from a normal distribution.

A finer simulation on a subset of dimensions (2 ≤ n ≤ 12) revealed a smooth transition between
non-normal and normal distribution around n ≈ 7; see Appendix.

A confirmation of these results can be found in the work of Thirey and Hickam (Thirey & Hickman,
2015), who analytically derived the distribution of Euclidean distances between randomly distributed
Gaussian vectors and observed a normalization of the distribution with an increasing number of
dimensions n.

Despite this trend toward normality in the distribution of Euclidean distances, it is important to
emphasize that the distribution tails are not symmetric. This is clearly observable from Figure 3.b,
and it is also demonstrated by Equation 10, since the expected value E[d] is smaller than the mean
between the maximum and minimum Euclidean distances. However, though the distribution is not
strictly normal, it is indistinguishable from normal.

1Jensen’s Inequality assumes concavity, and the square root function is indeed concave. This accounts for the
‘less-than-or-equal’ in Equation 8.
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Figure 4: Panel (a): Histograms of the non-normalized Euclidean distance for growing dimensions
‘n’. Panel (b): Histograms of the detrended Euclidean distance for growing dimensions ‘n’.

5 A DIMENSION-INSENSITIVE METRIC FOR MULTIDIMENSIONAL
COMPARISON

At this point, we can obtain a dimension-insensitive metric by subtracting the expected value E[d(n)]
from each Euclidean distance distribution, normalizing it by the variance σ2

ed of the Euclidean
distance

√∑n
i=1(ai − bi)2, and scaling it to the range of the analyzed quantities (vM − vm). This

metric is defined as the Dimension Insensitive Euclidean Metric (DIEM):

DIEM =
vM − vm

σ2
ed

√√√√ n∑
i=1

(ai − bi)2 − E[d(n)]

 (11)
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Figure 5: Dimension Insensitive Euclidean Metric (DIEM) for increasing dimension of the vectors
a and b. The three panels show, respectively, the case in which vector elements were only positive
(left), only negative (center) or could assume all real values within the given range (right).

The distributions of DIEM are presented in Figure 5, which shows that increasing the number of
dimensions does not affect either the converged value or the variance of the measures, thus providing
a more reliable comparison metric for high-dimensional vectors. Moreover, the histograms of the
Dimension Insensitive Euclidean Metric demonstrate that the distributions are practically identical
for n ≥ 7 (Figure 4.b). This facilitates precise statistical testing.

A more intuitive understanding of similarity and dissimilarity using DIEM is provided in Figure
6. In general, vectors may have different magnitudes and orientations. Lower values of DIEM
represent similar vectors, while higher values of the metric represent dissimilar vectors. Since
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DIEM is detrended, its expected value E[DIEM] is 0. The shaded red areas respectively show one,
two, and three standard deviations (σ). Three dotted lines are added to indicate: (i) the maximum
Dimension Insensitive Euclidean Metric (DIEMmax), which represents antiparallel vectors with
maximum magnitude, (ii) the expected Dimension Insensitive Euclidean Metric for orthogonal
vectors, E[DIEMorth], and (iii) the minimum Dimension Insensitive Euclidean Metric (DIEMmin),
which represents identical vectors.
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Figure 6: Explanation of the Dimension Insensitive Euclidean Metric (DIEM). This image was
generated considering n = 12, vM = 1, vm = 0, σ2

ed = 0.06. The dashed black line represents
the DIEM expected for random vectors. The red-colored bands represent respectively one (σ =
4.09), two, and three standard deviations of the DIEM distribution. The right-most dotted black
line is the maximum DIEMmax = 34.61, representing two opposing vectors with maximum
magnitude. The second from right dotted black line is the median value of DIEM for orthogonal
vectors E [DIEMorth] = 13.95. The left-most dotted black line is the minimum DIEMmin =
−23.35, representing two identical vectors.

The mean Dimension Insensitive Euclidean Metric between orthogonal vectors (E[DIEMorth]) was
computed by generating a series of orthogonal vectors and numerically computing their expected
value. From the considered case in Figure 6 (n = 12, vM = 1, vm = 0, σ = 4.09), the probability of
two random vectors being orthogonal was more than three standard deviations from the mean.

The minimum DIEM is easily obtained by combining Equation 6 with Equation 11:

DIEMmin = −vM − vm
σ2
ed

E[d(n)] (12)

while the maximum DIEM is obtained by considering Equation 7 in combination with Equation 11:

DIEMmax =
vM − vm

σ2
ed

(√
n · (vM − vm)− E[d(n)]

)
(13)

It is worth emphasizing that, while the expected value of the Dimension Insensitive Euclidean
Metric (E[DIEM]) as well as its variance (and standard deviation) remain constant independent of
the number of dimensions, the values of the maximum and minimum Dimension Insensitive Eu-
clidean Metric (DIEMmax,DIEMmin), as well as the expected distance between orthogonal vectors
(E[DIEMorth]), are functions of E[d(n)] and, thus, of the number of dimensions. Both quantities are,
however, numerically computable either by numerical simulation (E[DIEMorth]) or by direct deriva-
tion (DIEMmax,DIEMmin). Code is available at https://anonymous.4open.science/r/
DIEM-5D68/README.md

6 A CASE STUDY: LLMS TEXT EMBEDDINGS

Cosine similarity is widely used in Large Language Models (LLMs). Here we compare it with
DIEM to showcase the advantages of DIEM over cosine similarity. A critical element of Large

7
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Language Models (LLMs) are their text embedding models (OpenAI, 2025). Their function is to
convert portions of the text (words, sentences, or entire documents) into numerical representations —
typically vectors — that capture the semantic meaning and relationships within the text input.

Several embedding models exist and can be classified into three main categories: word-level
(Word2Vec,GloVe), sentence-level (all-MiniLM-L6-v2 (Wang et al., 2020)) and document-level
(BERT, GPT) embedders. Each model transforms text input (of variable length) into a fixed-length
numerical vector. Word-level embedders typically output vectors of dimension n = 300, sentence-
level embedders have n = 384, and document-level embedders have up to n = 3072 for large GPT
models (OpenAI, 2025).

Text embedding models are necessary to perform most of the natural language processing (NLP)
tasks, such as text generation or information retrieval. It is important to evaluate the similarity (or
distance) between the output vector embeddings, thus providing us with a practical use-case to show
the difference between cosine similarity and DIEM.
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Figure 7: Histograms representing the similarity between text embeddings using cosine similarity
(left column) and DIEM (right column), considering "pair-wise comparisons" (first row), "all-possible
comparisons", and "random comparisons". The histograms are normalized to the total number of
samples. The vertical black dashed lines show the most similar (left) and most dissimilar (right)
sentences (vector embeddings) in the whole dataset. The vectors embeddings could range over all
real values, but the cosine similarity was constrained between 0 and 1 as per Equation 1.

We used an existing language model, ‘all-MiniLM-L6-v2’ developed by Wang et al. (2020)
to generate numerical vector embeddings (n = 384) from an existing dataset of sentences,
i.e., the “Semantic Textual Similarity Benchmark“ developed by Cer et al. (2017) and avail-
able at: https://huggingface.co/datasets/sentence-transformers/stsb#
dataset-details. This dataset provides a fairly large (8, 628 entries) collection of sentence
pairs drawn from news headlines, video and image captions, and natural language inference data.
A pair could be: “Three men are playing chess” - “Two men are playing chess.” We computed
both Cosine Similarity and DIEM between the generated vector embeddings for each pair (8, 628
comparisons) and between all possible entries (74, 442, 384 comparisons). Moreover, we also gen-
erated an additional dataset of 104 random vectors of dimension n = 384 spanning the same range
(vmin, vmax) of the text embeddings. Note that the vector embeddings were not normalized to avoid
the issues related to vector normalization highlighted in Figure 2.
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Figure 7 shows histograms of the similarity between vector embeddings using Cosine Similarity
and DIEM for ‘pair-wise comparisons’,‘all-possible comparisons’, and ’random comparisons’. The
Cosine Similarity converges from a modal value of about 0.8 in the ‘pair-wise comparisons’ case
to a mode at 0 in the ‘all-possible comparisons’ case. Then, it maintains the same mode in the
’random comparisons’ case. This represents a strong limitation of Cosine Similarity as a metric for
comparison of large dimension (n = 384 in this case) big datasets ( 74 million points). On the other
hand, DIEM does not present this drastic change when moving from the ‘pair-wise comparisons’ to
the ‘all-possible comparisons’. Instead, we observe a smooth distribution well clear of the ends of
its range with its mode shifted from about -120 to about -100. This indicates a larger dissimilarity
in the ‘all-possible comparisons’ case compared to the ‘pair-wise comparisons’ case, as would be
expected. However, when moving from the ’all-possible comparisons’ to the ’random comparisons’,
we see a further difference - not present in the Cosine Similarity case. Interestingly, a z-test between
the ’all-possible comparisons’ case and the known ’random comparisons’ case reveals a significant
difference between the two (p ≪ 0.001). This suggests that the data in the ’all-comparisons case’
are indeed less similar but still statistically distinguishable from random comparisons. The same
could not be said for cosine similarity. In the ’all-possible comparisons’ case, cosine similarity is
statistically indistinguishable from 0, its expected value for purely random vectors in high dimensions.

7 DISCUSSION

In the study of multidimensional quantities (e.g., principal components extracted through PCA),
cosine similarity is widely used as a metric to assess similarity between such quantities. Our results
show that this metric is strongly influenced by the dimension of the vectors. This means that randomly
generated vectors in high dimensions will result in a constant orientation with respect to each other.
This is a completely misleading way to compare quantities, as it risks leading a naïve investigator to
consider two vectors to be very different (or very similar) based on pure chance.

Similar considerations apply to many different fields, including recommender systems, data mining
algorithms, and computational neuroscience models, in which high-dimensional quantities are
commonly generated. This emphasizes the importance of a dimension-independent measure to
correctly assess whether two vectors are similar (collinear) or dissimilar (orthogonal). By detrending
the Euclidean distance boxplots (Figure 5) using the expected value we obtain a metric to compare
high-dimensional vectors that is independent of the number of dimensions (n). This feature appears
to be a particular property of the Euclidean distance. Using a different norm (Manhattan distance -
see Appendix), the resulting behavior does not guarantee a dimension-insensitive variance (Figure
6). Moreover, for n ≥ 7, for vectors selected at random, the distribution of detrended Euclidean
distances is statistically indistinguishable from a normal distribution (Figure 4.b). This enables access
to a broad set of rigorous statistical tests for comparisons, e.g., t-tests or ANOVA.

The analysis and comparison of multidimensional quantities—such as synergies in the human
neuromotor control literature, principal components and clusters in deep learning methods, or vector
embeddings in large language models—have long been a thorny and often neglected problem. Most
studies rely on comparison metrics, such as cosine similarity, without a complete understanding of
how they depend on the number of dimensions of the considered features. Our study revealed that
this dimensional dependency can significantly bias the interpretation of these metrics, leading to
potentially erroneous conclusions.

In response to this challenge, we introduce the Dimension Insensitive Euclidean Metric (DIEM),
which effectively mitigates the dimensional dependency problem, providing a more accurate and
interpretable measure for multidimensional comparisons. As may be expected, this metric does
have limitations: it is unsuitable for multidimensional comparisons of normalized (unit-length)
quantities (see Figure 2.b). If the problem context calls for normalization, this metric is inappropriate.
Nonetheless, by avoiding normalization and adopting DIEM, researchers can enhance the reliability
of their multidimensional analyses, paving the way for more precise and meaningful interpretations
in fields including language processing, data mining, recommender systems, and computational
neuroscience. Future research should continue to explore and refine this metric, ensuring its broad
applicability and further validating its advantages over traditional methods.

9
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results and have taken the following steps to
support this goal:

• Code Availability: We provide the full source code for computing the DIEM metric,
generating all experiments, and reproducing the figures and tables in the paper. The code
is structured, documented, and is publicly available at: https://anonymous.4open.
science/r/DIEM-5D68/README.md .

• Data: All experiments are based on publicly available datasets. Instructions for downloading
and preprocessing these datasets are provided. When synthetic data is used, we include the
code to generate them.

• Experimental Setup: All hyperparameters, evaluation protocols, and random seeds are
specified in the paper or configuration files. Scripts to launch all experiments are provided.

• Statistical Reporting: For all experiments, we report averages over multiple runs and
include standard deviations where appropriate. Sampling procedures and seed settings are
clearly documented.

We believe these efforts ensure that our results are fully reproducible and that the DIEM metric can
be evaluated and extended by the community.
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A SUPPLEMENTARY MATERIAL

A.1 COSINE SIMILARITY AND EUCLIDEAN DISTANCE

Figure 8 provides a graphical representation of the relation between cosine similarity and Euclidean
distance for unit length vectors as well as a geometrical interpretation of their relationship.
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(a) (b)

Figure 8: Panel (a): Graphical representation of the relation between cosine similarity and Euclidean
distance for unit length vectors. Panel (b): Geometrical relation between the angle spanned by two
unit vectors and the Euclidean distance between their end points.

A.2 SIGNED COSINE SIMILARITY

The cosine similarity can also be expressed as:

cos (θ) =
aT · b

∥a∥ · ∥b∥
(14)

where the vectors a and b are defined as: a = [a1, . . . , an], b = [b1, . . . , bn], with ai, bi ∈ R.

In this case, the cosine similarity spans from −1 (opposing vectors) to 1 (aligned vectors), with 0
representing orthogonal vectors. The mathematical relationship between this alternative definition of
cosine similarity and the Euclidean distance remains equivalent. Equations 4 and 5 become:

cos (θ) =
1

∥a∥ · ∥b∥
· ∥a∥

2 + ∥b∥2 − d2

2
(15)

cos (θ) = 1− d2

2
(16)

The signed cosine similarity still exhibits a quadratic relationship with the Euclidean distance. The
considerations on the convergence of the cosine similarity remain valid.

A.3 EFFECT OF VECTORS’ DISTRIBUTION

The effect of dimensionality on randomly generated vectors (a,b) was tested on elements drawn
from three different distributions: (i) uniform (Figure 2.a), (ii) Gaussian (Figure 9.a), (iii) uniformly
distributed on a unit sphere (Figure 9.b) (Marsaglia, 1972; Muller, 1959).

The same algorithm proposed in Figure 1 was adopted. In the Gaussian distribution case, the elements
of the vectors (a,b) were sampled from Gaussian distributions with mean and standard deviation
respectively equal to: Real positive: µ = 0.5, σ = 0.3, Real negative µ = −0.5, σ = 0.3, All real
µ = 0, σ = 0.6.

In the case of a uniform unit sphere distribution, the elements of the vectors (a,b) were sampled
from a uniform distribution following the approach presented in the main manuscript (Section Effects
of Vectors’ Dimensionality) and then projected onto a unit n-sphere using the algorithm proposed in
the works of Marsaglia and Muller (Marsaglia, 1972; Muller, 1959).

Figure 9 aligns with the results presented in Figure 2.a, confirming that the cosine similarity metric
shows a converging trend with decreasing variance for every tested distribution. The reason for this
behavior can be attributed to the normalization of the vectors (a,b) in the mathematical formulation

12
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Figure 9: Panel (a): Cosine similarity boxplots for increasing dimension of the vectors a and b.
The elements of the vectors were sampled from a Gaussian distribution. Panel (b):Cosine similarity
boxplots for increasing dimension of the vectors a and b. The elements of the vectors were sampled
from a uniform unit n-sphere distribution. The three sub-panels show, respectively, the case in which
vectors elements were only positive (left), only negative (center) or could assume all real values
within the given range (right).

of cosine similarity (Equation 1). This normalization causes the considered distributions to "collapse"
onto a unit n-dimensional sphere.

In the authors’ opinion, a uniform distribution is the most representative of a real scenario, especially
when the vectors represent physical quantities. For example, if the elements of the vectors a,b are
physical quantities—such as force or position—acquired through sensors, they will arguably have
the same probability of being sampled between the minimum vm and maximum vM of the sensor
sampling range, thus justifying the uniform distribution. However, for completeness, we explored
distributions that might occur in different data processing conditions.

Figure 10 provides an intuitive bi-dimensional understanding of the differences between vectors (or
points) sampled from the uniform, Gaussian, and uniformly distributed unit sphere distributions.
Despite these different distributions, Figure 9 and Figure 2 show that the main trends used to define
DIEM were observed in all cases.

-1 0 1

x
1

-1

0

1

x
2

Uniform

-1 0 1

x
1

-1

0

1

x
2

Gaussian

-1 0 1

x
1

-1

0

1

x
2

Uniform Uni-sphere

Figure 10: Two dimensional points sampled with from three different distributions. The left plot (red
dots) shows points sampled from a uniform distribution U(−1,1). The central plot (blue dots) shows
points sampled from a Gaussian distribution with mean 0 and standard deviation 0.3. The right plot
(black dots) shows points sampled from a uniform distribution on the unit sphere (r = 1).

A.4 TRANSITION FROM NON-NORMAL TO NORMAL DISTRIBUTION

We observed that the distribution of Euclidean distances between randomly generated vectors tended
to become normal with the increase in the vectors’ dimension. Here, we present the results of a finer
simulation that shows the transition between non-normal and normal distributions. All three cases
(Real Positive, Real Negative, and All Real) were considered and yielded equivalent results.

The simulation was performed considering vector dimensions spanning from n = 2 to n = 12.
Kolmogorov-Smirnov tests were conducted to check whether the observed simulated distribution was
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significantly different from a normal distribution with mean and standard deviation equal to those of
the simulated data, i.e., N (mean(d), std(d)). A p-value of p < 0.05 was consistently observed for
distributions with n < 5, while it was consistently p > 0.05 for n > 7.
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Figure 11: Histograms of the non-normalized Euclidean distance for growing dimensions n in the
range 2 ≤ n ≤ 12.

Figure 11 presents the trend of the Euclidean distance distribution for the Real Positive case in
the range 2 ≤ n ≤ 12. The results confirm a smooth transition from a non-normal to a normal
distribution for n > 7.

A.5 EFFECT OF DIMENSIONS ON MANHATTAN DISTANCE

Considering two vectors a,b, each composed of n elements, the Manhattan distance is defined as:

dM =

n∑
i=1

|ai − bi| (17)

Applying the same algorithm presented in Figure 1, Figure 12 presents the Manhattan distance
evolution with increasing dimensions (n). The Manhattan distance grows linearly with respect to
the number of dimensions, and this can be demonstrated by calculating the maximum Manhattan
distance value between two random vectors and realizing that it grows proportionally to n:

dMmax(n) = n |vmax − vmin| (18)
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Figure 12: Manhattan distance for increasing dimension of the vectors a and b. The three panels
show, respectively, the case in which vectors elements were only positive (left), only negative (center)
or could assume all real values within the given range (right).

More importantly, the variance of the Manhattan distance does not remain constant with the increase
in dimensions as it does for the Euclidean distance. It actually grows with dimensions. This is a
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limitation of its applicability for a dimension-insensitive metric compared to the Euclidean metric
presented in this work. Higher-order norms, e.g., 3-norm, 4-norm, and so on, could be attempted, but
that investigation is not treated here.

A.6 PROOF OF CONVERGENCE OF COSINE SIMILARITY

A.6.1 ALL REAL CASE

Consider two vectors a,b ∈ Rn and assume these vectors are independently sampled on the uniform
unit-sphere such that ∥a∥ = ∥b∥ = 1.

The cosine similarity, i.e., the angle between these vectors, follows Equation 1 (unsigned version) or
Equation 14 (signed version). For simplicity, but without loss of accuracy, we consider the form in
Equation 14:

cos (θ) =
aT · b

∥a∥ · ∥b∥
= aT · b =

n∑
i=1

aibi (19)

Since a and b are i.i.d. uniformly distributed on the unit sphere centered around 0, each of their
entries ai and bi has zero mean:

E[ai] = E[bi] = 0 (20)

This is due to the symmetry of the unit sphere. As a consequence, the expectation of the inner product,
i.e., the cosine of their angle, is equal to:

E[aT · b] = E

[
n∑

i=1

aibi

]
=

n∑
i=1

E[ai]E[bi] = 0 (21)

This is already sufficient to show that the expected value of the cosine similarity between uniformly
distributed points on a unit-sphere is 0, and thus their resulting angle is 90 degrees.

To show the convergence for higher dimensions, we compute the variance of the cosine similarity:

Var(aT · b) = E
[(
aT · b

)2]− (E[aT · b]
)2

= E
[(
aT · b

)2]
(22)

Expanding the square of the inner product, we obtain:

(aT · b)2 =

(
n∑

i=1

aibi

)2

=

n∑
i=1

a2i b
2
i + 2

n∑
i<j

aibiajbj (23)

Taking expectations:

E
[(
aT · b

)2]
= E

( n∑
i=1

aibi

)2
 = E

 n∑
i=1

a2i b
2
i + 2

n∑
i<j

aibiajbj


= E

[
n∑

i=1

a2i b
2
i

]
+ 2E

 n∑
i<j

aibiajbj

 (24)

Since ai and bi are i.i.d., we have:

E

 n∑
i<j

aibiajbj

 = 0 (25)
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Hence:

E
[(
aT · b

)2]
= E

[
n∑

i=1

a2i b
2
i

]
=

n∑
i=1

E[a2i ]E[b2i ] (26)

However, since a and b lie on the unit sphere, their norms satisfy:

∥a∥2 = ∥b∥2 =

n∑
i=1

a2i =

n∑
i=1

b2i = 1 (27)

Therefore:

E

[
n∑

i=1

a2i

]
= nE[a2i ] = 1 =⇒ E[a2i ] =

1

n
= E[b2i ] (28)

Substituting Equation 27 into Equation 23, we obtain:

E
[(
aT · b

)2]
= n

(
1

n
· 1
n

)
=

1

n
(29)

We finally obtain that the variance of the cosine similarity between a and b is equal to:

V ar
(
aT · b

)
=

1

n
(30)

According to Equation 29, the variance of the cosine similarity for uniformly sampled vectors on the
unit-sphere decreases with the increase of dimensions. Moreover, from the Central Limit Theorem,
we can write that the cosine similarity assumes a normal distribution with mean 0 and variance 1/n:

cos (θ) = aT · b ∼ N

(
0 ,

1

n

)
(31)

For completeness, we demonstrate the convergence of this distribution for n → ∞. To do this, we
can consider Chebyshev’s inequality for a random variable X with mean µ and variance σ2:

Pr (|X − µ| ≥ kσ) ≤ 1

k2
, ∀k ∈ R+ (32)

Applying Equation 31 to our cosine similarity distribution, we obtain:

Pr (|cos (θ)| ≥ α) = Pr
(
|aT · b| ≥ α

)
≤ σ2

α2
, with α = kσ

=⇒ Pr (|cos (θ)| ≥ α) ≤
V ar

(
aT · b

)
α2

=
1

nα2

(33)

The limit for n → ∞ of 1
nα2 is equal to 0, while Pr (·) ≥ 0. As a consequence:

lim
n→∞

Pr (|cos (θ)| ≥ α) = 0, ∀α ∈ R+ =⇒ lim
n→∞

|cos (θ)| = 0 (34)

Therefore, as n → ∞, the vectors a and b will be orthogonal with shrinking variance. This
demonstrates the convergence observed in Figure 2.a for the all-real case.
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A.6.2 REAL POSITIVE CASE

Unlike the all-real case, we now consider the elements of the vectors a and b sampled as i.i.d. of the
type ai, bi ∼ U(0, 1). In this case, the vectors are no longer unit vectors, and the cosine similarity
remains equal to Equation 14: cos (θ) = aT ·b

||a||·||b||

Recalling the generic uniform distribution X ∼ U(a, b), we know that:

E [X] =
1

2
(a+ b) , V ar (X) =

1

12
(b− a)

2 (35)

Therefore, applying Equation 34 to our case, we obtain:

E [ai] = E [bi] =
1

2
, V ar (ai) = V ar (bi) =

1

12
(36)

We can now compute the expectation as follows:

E [aibi] = E [ai]E [bi] =
1

4
,

E
[
a2i
]
= E

[
b2i
]
=

∫ 1

0

a2da =
1

3
,

E
[
(aibi)

2
]
= E

[
a2i
]
E
[
b2i
]
=

1

9
,

E
[
a3i
]
= E

[
b3i
]
=

∫ 1

0

a3da =
1

4
,

E
[
a4i
]
= E

[
b4i
]
=

∫ 1

0

a4da =
1

5

(37)

The variances will then result in:

V ar (aibi) = E
[
(aibi)

2
]
− (E [aibi])

2
=

1

9
−
(
1

4

)2

=
7

144
,

V ar
(
a2i
)
= V ar

(
b2i
)
= E

[(
a2i
)2]− (E [a2i ])2 =

1

5
− 1

9
=

4

45

(38)

To simplify the cosine similarity expression, we define the following quantities:

An =

n∑
i=1

aibi, Bn =

n∑
i=1

a2i , Cn =

n∑
i=1

b2i (39)

Then, the cosine similarity equation becomes:

cos (θ) =
aT · b

||a|| · ||b||
=

An√
BnCn

(40)

We can now decompose each term in Equation 39 into its expected value plus a fluctuation term to
analyze the behavior for n → ∞:

An = nE [aibi] + δAn =
n

4
+ δAn ,

Bn = nE
[
a2i
]
+ δBn

=
n

3
+ δBn

,

Cn = nE
[
b2i
]
+ δCn

=
n

3
+ δCn

(41)
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The associated fluctuation terms are:

δAn =

n∑
i=1

(aibi − E [aibi]) ,

δBn
=

n∑
i=1

(
a2i − E

[
a2i
])

,

δCn
=

n∑
i=1

(
b2i − E

[
b2i
])

(42)

The fluctuations δAn , δBn , and δCn are sums of i.i.d. random variables with zero mean. Therefore,
according to the Central Limit Theorem, the sum of a large number of i.i.d. random variables
with finite mean and variance will be approximately normally distributed, regardless of the original
distribution of the variables. Mathematically, for i.i.d. random variable zi with mean µ and standard
deviation σ, its sum S =

∑n
i=1 zi satisfies:

lim
n→∞

S − nµ√
nσ

∼ N(0, 1) (43)

Using the sum of i.i.d. random variables, V ar(X + Y ) = V ar(X) + V ar(Y ), we calculate the
standard deviations of the terms An, Bn, and Cn as follows:

σA =
√
nV ar (aibi) =

√
7n

12
,

σB = σC =
√
nV ar (a2i ) = 2

√
n

45

(44)

Since we only care about the order of the fluctuations, we can consider that:

δAn
= δBn

= δCn
= O

(√
n
)

(45)

Hence:

δAn

n
=

δBn

n
=

δCn

n
= O

(
1√
n

)
(46)

We can now expand the cosine similarity presented in Equation 39 using Equation 40:

cos (θ) =
An√
BnCn

=
n
4 + δAn√(

n
3 + δBn

) (
n
3 + δCn

) (47)

The denominator of Equation 47 can be further simplified by re-expressing it in a differ-
ent form and using the binomial approximation expansion truncated at the first-order terms(√

(1 + b)(1 + c) ≈ 1 + b+c
2

)
:

√
BnCn =

n

3

√(
1 +

3δBn

n

)(
1 +

3δCn

n

)
≈ n

3

(
1 +

3

2n
(δBn + δCn)

)
=

n

3
+

1

2
(δBn + δCn)

(48)

Plugging Equation 48 into Equation 47 we obtain:
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cos (θ) =
An√
BnCn

≈
n
4 + δAn

n
3 + 1

2 (δBn + δCn)
=

1
4 +

δAn

n

1
3 + 1

2

(
δBn

n +
δCn

n

) (49)

From Equation 49, we can immediately see that the cosine similarity converges to 3
4 as n approaches

∞. For a more rigorous analysis of the convergence rate, we can now consider the variance of the
cosine similarity.

For clarity, we define:

α =
δAn

n
, β =

δBn

n
, γ =

δCn

n
(50)

Therefore, Equation 49 becomes:

cos (θ) ≈
1
4 + α

1
3 + 1

2 (β + γ)
(51)

The denominator of Equation 51 can be further simplified by using the Taylor series expansion
truncated at the first-order terms:

1

3
+

1

2
(β + γ) =

1

3
(1 + ϵ) , with ϵ =

3

2
(β + γ) (52)

Applying the first-order approximation:

1

1 + ϵ
≈ 1− ϵ = 1− 3

2
(β + γ) (53)

Thus,

1
1
3 (1 + ϵ)

≈ 3− 9

2
(β + γ) (54)

We can now substitute Equation 54 into Equation 51 to obtain:

cos (θ) ≈
(
1

4
+ α

)(
3− 9

2
(β + γ)

)
≈ 3

4
+ 3α− 9

8
(β + γ) (55)

In Equation 55, we neglected the higher-order terms of the binomial product as they will diminish
faster than first-order terms. Remember that the orders of α, β, and γ are O

(
1√
n

)
(refer to Equation

46). Therefore, the order of the standard deviation of cosine similarity (Equation 55) will also be
O
(

1√
n

)
. This indicates that for n → ∞, cos (θ) converges to 3

4 = 0.75, which is the same result
observed in Figure 2.a for the real positive case.

The real negative case does not need to be proven, as the reasoning will follow the same logic as
presented above.
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