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Abstract

Action chunking in reinforcement learning is a promising approach, as it signifi-
cantly reduces decision-making frequency and leads to more consistent behavior.
However, due to inherent differences between the action chunk space and the
original action space, uncovering its underlying structure is crucial. Previous works
cope with this challenge of single-step action space through action representation
methods, but directly applying these methods to action chunk space fails to capture
the semantic information of multi-step behaviors. In this paper, we introduce
Action Chunk Representation (ACR), a self-supervised representation learning
framework for uncovering the underlying structure of the action chunk space to
achieve efficient RL. To build the framework, we propose the action chunk bisimu-
lation metric to measure the principled distance between action chunks. With this
metric, ACR encodes action chunks with a Transformer that extracts the temporal
structure and learns a latent representation space where action churns with similar
bisimulation behavior semantics are close to each other. The latent policy is then
trained in the representation space, and the selected latent action chunk is decoded
back into the original space to interact with the environment. We flexibly integrate
ACR with various DRL algorithms and evaluate it on a range of continuous manip-
ulation and navigation tasks. Experiments show that ACR surpasses existing action
representation baselines in terms of both learning efficiency and performance.

1 Introduction

Figure 1: Overview. The latent policy is trained
in the ACR action chunk representation space
guided by the bisimulation metric. The selected
latent action chunk is decoded back into the orig-
inal space to interact with the environment.

Action chunking reinforcement learning (RL) agents
learn a policy that produces a sequence of actions at
each step to solve tasks, which has been proven to re-
duce interaction frequency and lead to more consistent
behavior [1, 2, 3, 4, 5, 6]. A common approach is to use
the Cartesian product of the original action space as the
action chunk space [6]. While straightforward, this ap-
proach leads to an exponential increase in dimensional-
ity and introduces meaningless action combinations [7],
making policy optimization challenging. Since only a
few action combinations yield meaningful behaviors,
learning the underlying structure of the action chunk
space is crucial. While action representation methods
[8] have shown promise in handling complex action
spaces, they often focus on single-step action space
settings, constructing representation spaces through for-
ward prediction [9, 10, 11] or reconstruction [12, 7].
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Figure 2: The training process of ACR. Left: We train the Transformer encoder to construct the action chunk
representation space, ensuring that the ℓ1 distance between any two latent action chunks equals the distance
measured by the ACB Metric. During training, we sample pairs (st, ci,Rcist) and additional chunks cj from
random samples. The encoder first generates latent action chunks c̄i and c̄j , after which the transition model and
reward model predict the transitions for (st, ci) and (st, cj), and the cumulative reward for (st, cj). Right: We
train the action chunk decoder once the encoder is fully trained. The decoded action chunk c∗ is then passed
through the fixed encoder to obtain c̄∗.

Unfortunately, directly using single-step representation methods in the action chunk space still intro-
duces the curse of dimensionality and fails to capture the semantic information of multi-step behavior,
largely due to the inherent underlying structure. Therefore, we aim to develop a behavior-centric
self-supervised representation method that is inherently suitable for action chunk space.

In this paper, we propose a novel self-supervised representation learning framework for action chunk
space, called Action Chunk Representation (ACR), which constructs a compact and decodable action
chunk representation space, enabling efficient policy learning and interaction with the environment.
An overview of ACR is shown in Fig.1. In contrast to commonly used forward prediction or
reconstruction objectives, we introduce a novel action chunk bisimulation metric as the distance
metric for constructing the ACR representation space, thereby regularizing the learned representation
to focus on the behavior influence of action chunks. Moreover, ACR utilizes a Causal Transformer [13]
encoder to capture the temporal information within action chunks, which is crucial for constructing a
semantically rich representation space. In principle, ACR is algorithm-agnostic, allowing integration
with any continuous control DRL algorithm. Our experiments on nine manipulation and navigation
control tasks demonstrate the significant performance advantage of ACR compared to other action
representation learning methods.

2 ACR: Action Chunk Representation

ACR considers solving a multi-step MDP, M = (S,A, k, C, C̄,P,R, γ), where S is the state
space, A is the action space, k is the length of action , C =

∏
kA is the action chunk space,

C̄ is the representation space, P and R are the lifted transition function and reward function to
accept action chunks, respectively. An action chunk can be defined as a multi-step action c =
{at, at+1, ..., at+k−1} ∈ C. The main idea of ACR is to learn an encoder Eϕ(c̄|c) that constructs a
compact representation space for action chunks. The latent policy π(c̄|s) explores and learns in this
space. It selects latent action chunks, which can be decoded to the original action space by the ACR
decoder Dψ(c|c̄) to interact with the environment. The overview is shown in Fig.1, and the training
process of ACR can be divided into two parts:

Learning the representation space with Action Chunk Bisimulation Metric. Our insight is that
action chunks with similar behaviors should cluster closely in the representation space, indicating
those leading to the same transitions and rewards are equivalent in the associated multi-step MDP.
We extend the bisimulation metric [14] to measure the principled distance between action chunks:

Definition 1 (Action Chunk Bisimulation Metric). Given a multi-step MDP M and a state st, a
state-conditional action chunk bisimulation metric is a function dc1: S × C × C 7→ R≥0 such that:

d(ci, cj |st) =
∣∣Rci

st −Rcj
st

∣∣+ γ ·W2

(
Pcist ,P

cj
st ; dc

)
(1)

1dc is a pseudometric for which d(x, y) = 0⇒ x = y.
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where W2 is the 2nd Wasserstein distance between two distributions. Here, Rc
st represents the sum

of cumulative discounted reward, i.e.
∑k−1
i=0 γ

iRat+i
st+i . Pcst represents the distribution of st+k after

executing c starting from st. The training process of ACR is shown in Fig. 2. To ensure action chunks
in representation space satisfy the property d(ci, cj |st) := |c̄i − c̄j |1, we train a Causal Transformer
encoder Eϕ(c̄|c) to learn the representation space. We minimize self-supervised loss:

J(ϕ) = Est,ci,cj ,Rci
s ∼D,

(
∥c̄i − c̄j∥1 − d̂(ci, cj | st)

)2

, (2)

where d̂(ci, cj |st) = |Rci
st − R̂(st, cj)|+ γ ·W2(P̂(·|st, c̄i), P̂(·|st, c̄j)). (3)

d̂(ci, cj |st) represents an estimate of d(ci, cj |st), R̂ and P̂ is the reward model and transition model,
which are trained with the encoder separately. Please note that all inputs to the transition and reward
model are stop-gradient. During the training of the decoder Dψ, we fix the trained Transformer
encoder and minimize the decoder objective function:

J(ψ) = Ec∼D

[
∥Eϕ(Dψ(Eϕ(c)))− Eϕ(c)∥22 + λ ∥Dψ(Eϕ(c))∥22

]
(4)

The first term ensure that Dψ serves as a one-sided inverse of Eϕ, which means Eϕ(Dψ(c̄) = c̄ but
Dψ(Eϕ(c)) ̸= c. The second term guarantees that Dψ is the minimum-norm one-sided inverse of
Eϕ, ensuring the validity of the decoded action chunk in the original action space.

Optimizing the policy over the learned representation space. ACR is algorithm-agnostic, allowing
for integration with any continuous control DRL algorithm through minor modifications. Here, we
use TD3 [15] as an example. The latent policy πω is trained in the representation space and should
fully utilize the temporal information within the action chunk. Therefore, the TD3 double critic
networks Qθm=1,2 additionally take as input the current step i ∈ [0, k) within the executed action
chunk. With a buffer of collected transition sample b = (st:t+k, c̄, rt:t+k−1, i0:k−1), the critics are
trained by Clipped Double Q-Learning:

LCDQ(θm) = Eb∼D[(y −Qθm(st+i, c̄, i)],where

y =

k−i−1∑
j=0

(γjrt+j) + γk−i min
n=1,2

Qθ̄n(st+k−i, πω̄(st+k−i), 0)
(5)

θ̄n=1,2, ω̄ are the the target network parameters. The actor considers the action chunk generated
based on the initial state st of each sample. We then update the actor as follows:

∇ωJ(ω) = Est [∇ωπω(st)∇πω(st)Qθ1(st, c̄, 0)|c̄=πω(st)] (6)

Please note that as the latent policy improves the outdated representation may no longer reflect the
same behavioral effects [16]. We propose two mechanisms to ensure the validity of the representation
space: Periodic Update and Adaptive Constraint. Details are provided in Appendix A.

3 Experimental results

We evaluate ACR across nine continuous control tasks spanning three domains: 2DoF Arm Control
[17], 7DoF Arm Control [18], and Maze Navigation [19] (See Appendix B.1 for more details),
and aim to answer the following research questions (RQs): 1) Can combining ACR with DRL
algorithms improve learning efficiency and performance? 2) Compared to other self-supervised
action representation learning methods, what advantages does ACR offer? 3) What components and
design choices of ACR contribute to the improved performance in our experiments?

RQ1: We combine ACR with three widely used DRL algorithms: DDPG, TD3, and SAC [20, 15,
21]. For a fair comparison, we use the default hyperparameters and architectures of them. As shown in
Fig. 3 (Left), we observe significant performance improvements and faster convergence when ACR is
combined with all three algorithms, especially in the challenging 7DoF robotic arm control tasks and
sparse reward Maze navigation tasks. Notably, in Striker and Thrower, the original algorithms struggle
to explore effectively due to the complexity of the action space, leading to unstable performance or
even collapse. However, with ACR, the algorithms are able to learn stably. This evidence suggests
that the action chunk representation space constructed by ACR captures the underlying structure of
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Figure 3: Experimental results. Left: Comparing ACR applied to three DRL algorithms against directly
training them on the original action spaces. Right: Comparing the performance of ACR against different
self-supervised action representation learning methods, each combined with TD3. The curve and shade denote
the mean and a standard deviation over 5 random seeds.

the original action space, allowing the latent policy to explore and make decisions more effectively,
thereby simplifying the tasks and significantly improving learning efficiency and performance.

RQ2: We combine ACR and other self-supervised action representation methods with TD3,
training latent policies in their respective action representation spaces. These methods include: 1)
Reconstruction: PLAS [12], 2) Forward Prediction: CVAE, LASER [9] and DynE [17], 3) Inverse
Prediction: PGRA [8], 4) Bisimulation: MERLION [22] (see Appendix B.2.2 for details). As
shown in Fig. 3 (Right), we observe that as task difficulty increases, other action representation
learning methods suffer from performance collapse and unstable learning, while ACR maintains
stable performance, especially in 7DoF arm control tasks. Additionally, we find that constructing
action chunk representation space outperformed single-step action representation space, with ACR
achieving significantly better performance and faster learning in the first two domains. These results
demonstrate the intrinsic value of constructing an action chunk representation space.

0.0 0.4 0.8 1.2 1.6 2.0200

180

160

140

120

100

80

60 ReacherPush-v2

0.0 0.5 1.0 1.5 2.050

45

40

35

30

25

20 Pusher-v2

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

Ultra Maze

Environment Steps (×1e6)

Av
er

ag
e E

pi
so

de
 R

etu
rn

ACR-TD3 w/o ACB Metric w/o Transformer w/o Periodic Update w/o Adaptive Constraint

Figure 4: Ablation studies. The performance of ACR-
TD3 relative to the version without the corresponding
component or mechanism.

RQ3: As shown in Fig. 4, we conduct ab-
lation studies on 3 tasks: 1) w/o ACB metric:
Removing the self-supervised learning objective
for measuring action chunks distance (Equation
2) degrades ACR to a structure similar to con-
ditional VAE, resulting in poor performance,
indicating that the ACB metric is crucial for the
representation space. 2) w/o Transformer: Re-
placing the Transformer encoder with an MLP
leads to performance decline, highlighting the
importance of temporal information within action chunks for high-quality representation. 3) w/o
Periodic Update: The representation space is not continuously updated during policy training. 4)
w/o Adaptive Constraint: The representation space range is fixed, similar to [12]. The experimental
results show the absence of these two mechanisms harms learning performance and stability.

4 Conclusion

In this paper, we introduce ACR, a novel framework that uses the action chunk bisimulation metric as
the self-supervised learning objective to construct a compact, low-dimensional, and decodable action
chunk representation space for multi-step action, effectively capturing the semantic information of
multi-step behavior. ACR is algorithm-agnostic, enabling integration with any continuous control
DRL algorithm to enhance performance and learning efficiency. Our experiments demonstrate
that ACR significantly outperforms other action representation learning methods, highlighting that
the Action Chunk Bisimulation Metric captures richer semantic information. Additionally, the
representation space constructed by ACR incorporates temporal information within action chunks,
which is beneficial for uncovering the underlying structure of the action chunking space.
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Algorithm 1 ACR-TD3
1: Initialize actor πω and critic networks Qθ1 , Qθ2 with random parameters ω, θ1, θ2, and β = 1

2: Initialize components of ACR, including Eϕ, Dψ , P̂ and R̂
3: Prepare replay buffer Dr = {(st:t+k, c, rt:t+k−1)} with random samples, where c = {at, . . . , at+k−1}
4: # Stage 1: Learning the representation space with Action Chunk Bisimulation Metric
5: // Pre-training Transformer encoder
6: for t = 1, . . . , TE do
7: Sample a batch of N tuples (st:t+k, ci, rt:t+k−1) and another batch of cj from Dr
8: Compute latent action chunk: c̄i = Eϕ(ci) and c̄j = Eϕ(cj)

9: Predict the transition distributions and the reward of (st, cj): P̂(·|st, c̄i), P̂(·|st, c̄j) and R̂(st, cj)
10: Compute the distance of ci and cj : d̂(ci, cj |st) ▷ see Eq. 3
11: Train Transformer encoder: J(ϕ) ▷ see Eq. 2
12: Train transition and reward model: J(P̂, R̂) = (P̂(·|st, c̄i)− st+k)2 + (R̂(st, ci)−Rcist)

2

13: end for
14: // Pre-training the action chunk decoder
15: for t = 1, . . . , TD do
16: Sample a large batch of action chunks c and compute latent space range [−b, b]
17: Train action chunk decoder J(ψ) ▷ see Eq. 4
18: end for
19: # Stage 2: Optimizing the policy over the learned representation space
20: for t = 1 to max environment step number Tmax do
21: // select latent action chunk in latent space and decode into original action space
22: if t% k = 0 then
23: Observe state st and select latent action chunk c̄ = πω(st) + ϵe, with ϵe ∼ N (0, σb)
24: Decode latent action chunks using the decoder c = Dψ(c̄)
25: Execute action chunk c, observe st+1:t+k and rt:t+k−1

26: Store k experiences {(st+i, c̄, at+i, rt+i, st+i+1)i} in D, where i ∈ [0, k − 1]
27: end if
28: Sample a batch of N experiences from D
29: Update actor πω and critic Qθ1 , Qθ2 ▷ see Eq. 5 and Eq. 6
30: Update β ← β − 4/Tmax until β = 0
31: // Update ACR at the intervals (I)
32: if t% I = 0 then
33: Sample βN experiences from Dr and (1− β)N experiences from D
34: Update ϕ, ψ, P̂ and R̂
35: end if
36: end for

A Additional Details of ACR

A.1 Details of Periodic Update and Adaptive Constraint

Periodic Update We default to using samples generated by a random policy to learn the repre-
sentation space before training the latent policy, as random samples can cover the environmental
dynamics during the initial stage of exploration, thereby accelerating the early learning rate of the
latent policy. However, as the latent policy improves, outdated representations may no longer reflect
the same behavioral effects [7]. To address this issue, we periodically update the ACR during training
to adjust the distribution of representation space continuously. Specifically, we introduce a parameter
β, initially set to 1, which decays to 0 when reaching 1/4 of the maximum environment steps. At
every interval I , we update the ACR using a proportion of β random samples and 1− β real samples.

Adaptive Constraint The range of the representation space constrains the output range of the latent
policy, ensuring that latent action chunks remain meaningful within the current latent space. Similar
evidence has been found in [12]. To address this issue, at the end of each ACR adjustment, we sample
a large batch of action chunks c and obtain latent action chunks using the updated encoder c̄ = Eθ(c).
We then calculate the mean µc̄ and standard deviation σc̄, and compute the max representation space
value b = max| c̄−µc̄

σc̄
|. This constrains the current representation space range to a reasonable interval

[−b, b], i.e., the latent policy uses tanh activation and scales the output by the value b. Compared to
previous methods with explicit constraints, our approach is more flexible and easier to optimize.
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B Details of Experimental Setup

B.1 Environments

As shown in Fig.5, the first domain in this paper is 2DoF Arm Control provided by [17] which is
based on the Reacher-v2 MuJoCo [18] task from OpenAI Gym [23]. This domain includes three
distinct tasks: ReacherVertical, a standard target-reaching task; ReacherTurn, inspired by the
DeepMind Control Suite’s Finger Turn environment, where a 2-link Reacher robot must rotate a
spinner to a specified random location; and ReacherPush, derived from the Stacker environment,
requiring the Reacher to push a block to a randomly generated target position. The rationale behind
selecting this domain lies in the constrained nature of the 2DoF arm’s action space. Specifically, in
tasks like ReacherPush, the arm’s actions are only meaningful when interacting with the brown
box in the lower half region. Actions in the upper region are effectively inconsequential, creating a
structured action space that is particularly suitable for evaluating ACR.

(a) ReacherVertical (b) ReacherTurn (c) ReacherPush

Figure 5: 2DoF Arm Control. ReacherVertical requires the agent to move the tip of the arm to
the red dot. ReacherTurn requires the agent to turn a rotating spinner (dark red) so that the tip of the
spinner (gray) is close to the target point (red). ReacherPush requires the agent to push the brown
box onto the red target point. The initial state of the simulator and the target point are randomized for
each episode. In each task the rewards are dense and there is a penalty on the norm of the actions.
Every episode consists of 100 steps.

As shown in Fig.6, the second domain is 7DoF Arm Control from OpenAI Gym [23], including
Pusher-v2, Striker-v2, and Thrower-v2. These tasks are considerably challenging because the
target points are randomly generated, and it is impractical for the robotic arm to explore the original
action space’s invalid regions (e.g., rapidly moving the arm up or down). We propose ACR, which
constructs action chunking representation space, making the exploration for policy easier and more
efficient.

As shown in Fig.7, the third domain is Maze Navigation, including Medium Maze and Large Maze
are versions of the Maze2D tasks from D4RL [19]. Additionally, we have constructed a more complex
Ultra Maze. In these three tasks, due to the sparse reward signal, exploring within the effective
action space is crucial.

B.2 Baselines

B.2.1 Continuous-control DRL Algorithms

For TD3 and DDPG, we use the official implementations (https://github.com/sfujim/TD3).
For SAC, we implement it with reference to the hyperparameters from the official implementation
(https://github.com/haarnoja/sac). For details of the combination of ACR and the three DRL
algorithms, please refer to Appendix C.

B.2.2 Action Representation Methods

In this section, we introduce other self-supervised action representation learning methods that have
been proven effective in both online and offline settings, though our focus is on the online setting. We
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(a) Pusher-v2 (b) Striker-v2 (c) Thrower-v2

Figure 6: 7DoF Arm Control. Pusher-v2 requires the agent to use a C-shaped end effector to push
a puck across the table onto a red circle. Striker-v2 requires the agent to use a flat-end effector
to hit a ball so that it rolls across the table and reaches the goal. Thrower-v2 requires the agent to
throw a ball to a target using a small scoop. Each task features dense rewards, and every episode
consists of 100 steps.

(a) Medium Maze (b) Large Maze (c) Ultra Maze

Figure 7: Maze Navigation. Medium Maze, Large Maze and Ultra Maze require the agent (green
ball) to navigate through mazes of varying complexity until it reaches the target point (red ball). For
each episode, the position of the target point is fixed while the position of the agent is randomly
generated. The reward signal for each task is sparse, and each episode consists of 600, 800, and 1000
steps, respectively.

provide implementation details for each baseline used in our experiments, along with any reasonable
and necessary modifications made to ensure fair comparison.

Reconstruction PLAS [12] uses a conditional VAE [24] on offline datasets to construct the single-
step state-conditioned action representation space, then employs the VAE decoder to reconstruct the
action. We use the official implementation of PLAS (https://github.com/Wenxuan-Zhou/PLAS)
but focus on the online setting. Specifically, we pre-train the VAE model with samples generated
by a random policy and allow the latent policy to explore and update online over this space. The
hyperparameters are presented in Table 1.

Forward Prediction Forward prediction-based self-supervised learning objectives are widely
used in action representation methods. We introduce the following three methods based on their
learning objectives and network structures: 1) CVAE can be viewed as a simplified version of
HyAR [7] without the embedding table for discrete action. HyAR focuses on hybrid action space
settings, using an embedding table and a conditional VAE to capture dependency between discrete
and continuous action. The decoder then reconstructs the continuous action, and an additional
cascaded network predicts the state residual caused by the hybrid action. The embedding table is
removed in CVAE, allowing the model to predict the state residual caused by continuous action.
The hyperparameters and network structure are presented in Table 2. 2) LASER [9] is similar
to CVAE but replaces the cascaded network with an additional transition model to predict the
next state. The learning objective shifts to action reconstruction and state transition prediction.
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Table 1: Hyperparameters of PLAS.
Hyperparameter Value

Encoder hidden layers 3
Encoder input dimension state dim + action dim

Latent dimension action dim · 2
Decoder hidden layers 3

Decoder input dimension state dim + (action dim · 2)
Layer width 256
Activation ReLU
Batch size 100
Optimizer Adam

Learning rate 10−4

We modified the PLAS code to implement LASER. The hyperparameters and network structure
are presented in Table 3. 3) DynE [17] uses a conditional VAE to construct a multi-step action
representation space, with the VAE decoder predicting the state distribution after executing the
multi-step actions. To enable the latent policy to interact with the environment over the representation
space, DynE additionally learns an action decoder that decodes the high-level action into multi-
step actions. We used the official implementation (https://github.com/dyne-submission/
dynamics-aware-embeddings).The hyperparameters and network structure are presented in Table
4.

Table 2: Hyperparameters and network structure of CVAE.
Model Component Layer (Name) Structure (Value)

VAE encoder Fully Connected (input) (state dim + action dim, 256)
Activation ReLU

Fully Connected (256, 256)
Activation ReLU

Fully Connected (mean) (256, latent dim)
Fully Connected (logstd) (256, latent dim)

VAE decoder Fully Connected (latent) (state dim + latent dim, 256)
Activation ReLU

Fully Connected (256, 256)
Activation ReLU

Fully Connected (reconstruction) (256, action dim)
Fully Connected (256, 256)

Activation ReLU
Fully Connected (prediction) (256, state dim)

Latent dimension action dim
Batch size 100
Optimizer Adam

Learning rate 10−4

Inverse Prediction PGRA [8] embeds single-step discrete action influence on environmental
dynamics to construct the action representation space, enabling generalization over large discrete
action sets and allowing latent policy learning over the representation space. We implement PGRA’s
action representation network with an encoder as a 3-layer MLP, which encodes st and st+k to the
latent space z, and a decoder, structured as a 2-layer MLP, which decodes the latent action into the
original action space action â. The action representation network is optimized by minimizing the
mean squared error between the original action a and the predicted action â. The hyperparameters
are presented in Table 5.

Bisimulation MERLION [22] focuses on the offline setting for large discrete action spaces,
extending the bisimulation metric to single-step actions to measure behavioral relation between
actions in the dataset. We implement this baseline for continuous action spaces in online setting. The
hyperparameters and network structure are presented in Table 6.
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Table 3: Hyperparameters and network structure of LASER.
Model Component Layer (Name) Structure (Value)

VAE encoder Fully Connected (input) (state dim + action dim, 256)
Activation ReLU

Fully Connected (256)
Activation ReLU

Fully Connected (mean) (256, latent dim)
Fully Connected (logstd) (256, latent dim)

VAE decoder Fully Connected (latent) (state dim + latent dim, 256)
Activation ReLU

Fully Connected (reconstruction) (256, action dim)

Transition model Fully Connected (latent) (state dim + latent dim, 256)
Normalization Layer Normalization

Activation ReLU
Fully Connected (prediction) (256, state dim)

Latent dimension 4
Batch size 100
Optimizer Adam

Learning rate 10−4

Table 4: Hyperparameters and network structure of DynE.
Model Component Layer (Name) Structure (Value)

VAE encoder Fully Connected (input) (action dim · k, 256)
Activation SeLU

Fully Connected (256)
Activation SeLU

Fully Connected (mean) (256, latent dim)
Fully Connected (logstd) (256, latent dim)

VAE decoder Fully Connected (latent) (state dim + latent dim, 256)
Activation SeLU

Fully Connected (latent) (256, 256)
Activation SeLU

Fully Connected (prediction) (256, state dim)

Action decoder Fully Connected (latent) (latent dim, 256)
Activation SeLU

Fully Connected (256, 256)
Activation SeLU

Fully Connected (decode) (256, action dim · k)
Activation Tanh

Multi-step action length k 4
Latent dimension action dim

Batch size 100
VAE Optimizer Adam

action decoder Optimizer Adam
Learning rate 10−4

C Implementation Details

C.1 Actor and Critic Networks

When combining ACR with DDPG, TD3, and SAC, we modified the network architecture of the
algorithms to enable the policy to explore and train over the action chunking representation space.
Specifically, we changed the output dimension of the actor network from the original single-step
action dimension to the latent dimension, representing the policy’s output of latent action chunks. For
the Critic network, we added an 1-dimension i to the state and latent dimension, representing the
current step i ∈ [0, k) within the executed action chunk. In contrast, when other single-step action
representation methods are combined with DRL algorithms, the input dimension i is not required.
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Table 5: Hyperparameters of PGRA.
Hyperparameter Value

Encoder hidden layers 3
Encoder input dimension state dim · 2

Latent dimension action dim
Decoder hidden layers 2

Layer width 256
Activation ReLU
Batch size 100
Optimizer Adam

Learning rate 10−4

Table 6: Hyperparameters and network structure of MERLION.
Model Component Layer (Name) Structure (Value)

Action encoder Fully Connected (input) (state dim + action dim, 256)
Activation ReLU

Fully Connected (256)
Activation ReLU

Fully Connected (latent) (256, latent dim)

Transition model Fully Connected (latent) (state dim + latent dim, 256)
Normalization Layer Normalization

Activation ReLU
Fully Connected (prediction) (256, state dim)

Reward model Fully Connected (input) (state dim + latent dim, 256)
Activation ReLU

Fully Connected (256)
Activation ReLU

Fully Connected (latent) (256, 1)
Activation Tanh

Multi-step action length k 4
Latent dimension action dim

Batch size 100
VAE Optimizer Adam

action decoder Optimizer Adam
Learning rate 10−4

C.2 Network structures of ACR

Our implementation of the Causal Transformer encoder Eϕ is based on the implementation of
the Decision Transformer [25] available at https://github.com/kzl/decision-transformer.
In our implementation, we encode only the action chunk c without conditioning on the state st.
Additionally, the relative temporal information i ∈ [0, k) within each action chunk is embedded and
added to the action tokens. As a result, the encoder outputs k feature vectors. We take only the last
vector as the latent action chunk because it encapsulates both the temporal information across k
steps and the semantic information. The reward model R̂ is parameterized as a 3-layer MLP with
ReLU activations after each layer except the last. For the transition model P̂ , please refer to the
implementation of MERLION. Both R̂ and P̂ take the current state st and latent action chunk c̄ as
inputs to predict the cumulative discounted reward and the state transition st+k, respectively.
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Table 7: Hyperparameters of ACR.
Training Stage Hyperparameter Value
Pre-training Eϕ Number of layers 2

Number of attention heads 1
Hidden dim 128
Activation ReLU
Dropout 0.1

Weight decay 10−4

Eϕ optimizer AdamW
Betas of AdamW (0.9, 0.99)
P̂ and R̂ optimizer Adam

Learning rate 10−4

Batch size N 100

Action chunk length k 8 Thrower
4 Other

Pre-training steps TE 104

Random buffer size Dr 104

Pre-training Dψ Hidden dim 256
Layer 3

Activation ReLU
Coefficient λ 10−4

Pre-training steps TD 104

Policy training Discount Factor γ 0.99
Buffer size D 105

Update intervals I 100 steps
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