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Abstract—Human intent is often hard to model and predict.
In fields such as robotics and biomechanics, one type of human
motion that is important to model is the bipedal walking motion.
As a type of legged locomotion, bipedal walking has unique
advantages in daily-life environments such as stairs and muddy
surfaces, compared to rolling locomotion that are used by many
autonomous mobile robots. In this paper, recent development in
predicting bipedal gait dynamics and the corresponding human
motion trajectory is presented. Such prediction usually require
two main steps: data collection and data analysis. We inspect and
compare existing solutions in each of the two steps, summarize
the common approaches, and discuss the potential opportunities
in the field going forward.

I. INTRODUCTION

The modeling and prediction of human intent are crucial
in many areas of robotics research. An example of such a
human motion that is commonly studied is the bipedal walking
motion. Bipedal walking is significant since the form of loco-
motion is key to mobile robots. In recent times, wheel-based
robots such as autonomous vehicles and delivery robots, have
seen an increase in commercial usage. Those robots are able
to move efficiently on paved, smooth surfaces, however they
face the “last mile” problem in the real-world environment.
Realistically, our world is full of natural obstacles such as
rocks, muddy surfaces, and complex terrains such as stairs and
hills. These environments are hard for wheeled locomotion and
more suitable for legged mechanisms [48].

Bipedal gait analysis and motion prediction can be used in
many robotics applications. Exoskeletons and active prosthesis
could use gait data to help train patients in rehabilitation [2],
gait monitoring and prediction could help with fall prevention
[4], gait analysis can be used in bipedal robots control [9],
and gait cycle could help predicting pedestrian intent at
intersections [16].

There is an abundance of literature on human motion data
collection, modeling and prediction in various applications.
In this work we select the ones that are most relevant to
human intent prediction in the context of bipedal walking.
Recent papers were selected to reflect the state of the art. The
citations and impact factors of the references are also taken
into account, especially for more established fields such as
data collection.

The rest of the paper is structured as follows. Data collection
will be covered in Section II, where various methods for cap-
turing bipedal gait data will be reviewed. Data analysis will be

covered in Section III, which includes mostly learning-based
methods but also some traditional approaches. Discussions on
open research questions and opportunities will be presented in
Section IV, with the conclusion presented in Section V.

II. DATA COLLECTION

To study bipedal gait, collecting gait-related data is the first
necessary step. Various methods exist, but overall, data col-
lection can be done with two primary considerations: human
and environment observations.

Data collection using human observations tracks the move-
ments in the human body itself. Tools such as Kinect, regular
stereo cameras and motion capturing system can be used to
log visual data of human motion. On the other hand, the
surrounding obstacles and terrain are also helpful to infer gait
information, and tools such as wearable cameras and reaction
force plates can help collect those data.

Worth noting is that most data collection system are coupled
with some format of data processing. The focus in this section
is the data collection setup itself and how they might contribute
to the subsequent data analysis.

A. Kinect Sensors

Most visual data collection methods for bipedal walking
are done using one or multiple camera from the perspective
of the environment. This type of approach is popular due to its
relative simplicity, where cameras can easily see the entirety
or part of the human walking motion. One commonly used
visual sensor is Kinect, a Microsoft product that accompany
their Xbox 360 gaming system. It is equipped with a depth
camera based on infrared (IR) sensing that could perform
skeletal tracking and gesture recognition [42].

Preis et al. [32] have built a system based on the Kinect
with the goal of gait recognition. Specifically, they collect
13 biometric features including the height, the length of
limbs, and the step length directly using the skeleton points
generated by the Kinect software development kit (SDK).
Afterwards, the actual pose estimation is done based on a
view-invariant approach [3] that includes gait cycle, stride
and height estimations. Using this setup, a 85.1% feature
classification success rate is achieved when using a Naive
Bayes classifier.

Staranowicz et al. [39] have presented a multi-Kinect
framework. The proposed system estimates the extrinsic and



TABLE I

COMPARISON BETWEEN DATA COLLECTION METHODS

Ref | Objective Method

Pros

Cons

[32] | Gait recognition from visual
data

ment kit (SDK)

Used Microsoft Kinect as visual sen-
sor, direct skeletal data points collec-
tion from Kinect software develop-

Relatively simple to use and set
up, achieves decent recognition
accuracy

Experiment setup could be ex-
panded to track more parameters
in multi-human scenarios

[39] | Gait monitoring for fall preven-
tion with easy-to-use Kinect-
based system

of-use and accuracy

Two Kinect sensors are used, intrin-
sic and extrinsic calibration parame-
ters are estimated, focuses on ease-

Easy to set up, multiple Kinects
provide additional volume and ac-
curacy over single-Kinect setups

The two-camera setup is determin-
istic, a more generalizable cali-
bration algorithm could see more
applications

[43] | Human gait and pose collec-
tion, recognition and tracking

by Kinect SDK

Single Kinect hidden for unobtrusive
data capturing, raw depth streaming
from Kinect sensor is used instead of
the skeletal joints tracking provided

Able to recognize human gait for
a longer range than native Kinect
SDK supports

Single Kinect might not be
enough to capture all areas of a
room for fall prevention

[46] | Human gait estimation from vi-

sual data son’s thigh, close to the waist area

Used a camera mounted on a per-

Thigh-mounted camera is mobile,
can be used outdoors and can
capture environmental information
around a person

Could use more testing to find
the best point and/or orientation
to mount the camera, also could
adjust the type of camera mounted

[36] | Gait data collection (joint angle
measurements)
foot

Strategically placed inertial measure-
ment units (IMUs) on thigh, calf and

The proposed method is agnostic
to sensor placements and initial
human postures

Joint angle measurements is still
only 2D for now, plug-and-play
wireless data communication is
not yet supported

[47] | Gait initiation estimation and
detection

tection

Electromyography (EMG) sensors
for gait initiation estimation, and
IMUs for gait initial movement de-

Demonstrates that EMG could be
used to predict initial movements
in gait motion

EMG prediction only seems use-
ful when prosthetic leg leads in
the gait motion, EMG sensors are
harder to work with and requires a
much higher sampling frequency

[21] | Gait data collection and biome-
chanics analysis

various locations of human subject

Proposed 3D GAIT, a 3D biome-
chanical gait data collection system
where Vicon markers are placed on

Automated system, relatively easy
to use among marker-based meth-
ods, designed for best practices in
biomechanics using big data

Marker system are still relatively
more complicated to deploy than
other alternatives

[27] | Gaze and fully-body gait kine-
matics data collection (for
studying relationship between
gaze and footstep planning)

gait capturing

Mobile eye tracker for gaze tracking,
IMU-based system for motion and

Captures both gaze and gait data
accurately and completely in a
mobile package, sensors can be
obtained off-the-shelf for easier

Though the system works in an
outdoor environment, there are
still a high number of sensors,
making the system complicated in

experiment set up a mobile scenario

intrinsic calibration parameters for each individual Kinect,
as well as the rigid-body transformation between multiple
Kinects. One of the novel contributions of the paper is
the multi-Kinect calibration. A set of 3-D sphere centers
{D-fo}?:l,{Din}f;l is collected, where D; and D;
represents depth frame of either Kinect, and F' > 3 is the
number of frames. An initial estimate of ng can then be
obtained using a 3-step process. Afterwards, bundle adjustment
is done to refine the set of initial estimates.

Kinect can also be used for fall detection and prevention.
Stone and Skubic [43] have presented a system where the
Kinect is placed above the front door of an elderly residence.
The computer processing the data of the Kinect is hidden
in a cabinet to make the setup not easy to notice for the
residents. This method uses the raw depth streaming from the
Kinect rather than the skeleton points provided by the SDK
like in the previous study, due to the range limitations of the
SDK-provided skeleton tracking. In this setup, foreground and
background pixels are differentiated based on a mixture of
distributions approach [40], projected onto a Kinect-based 3-
D space, before being translated into world-based coordinates.
This setup, paired with a two-stage fall detection algorithm,
can successfully detect 98% of standing falls in an indoor
elderly residence study.

B. Wearable Camera

Though not the most widely used method for data collection
due to its relative complexity, egocentric visual data can
be helpful in many cases. Such data are useful especially
in dynamic and outdoor environments where static external
cameras are hard to position and mobile wearable sensors
are desired. Watanabe et al. [46] have shown a unique setup
where camera was mounted on the human thigh. The camera
is mounted facing downward as it is sufficient to capture
environmental data and can reduce accumulated sensor errors,
but forward-facing cameras can contain more information.
Pose estimation from this single camera is then performed
with algorithm based on extended Kalman filter (EKF).

Cameras can be head-mounted to provide first-person point-
of-view (POV) visual data. These data are usually available as
datasets open for the public for further training, learning and
benchmarking [38, 37].

Overall, we observe that visual data can be captured by
either Kinect-based systems or regular stereo cameras. Kinect
sensors that perform depth sensing using active IR sensors are
more suitable in indoor environments due to less interference
by sunlight, and can be effective no matter if the scene is
visual-feature rich. On the other hand, stereo cameras can
work in either indoor or outdoor scenarios, but accuracy
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Fig.2. A possible approach for waist-mounted wearable RealSense™ camera,

inspired by [40]

depends on sufficient number of features in the scene. Com-
bination of Kinect and stereo camera can be used to reduce
environmental limitations, with an example being the Intel®
RealSense™camera [1] shown in Fig. 1. A possible usage of
RealSense™ inspired by [46] is shown in Fig. 2.

C. Wearable Inertial Sensors

Using sensors such as IMUs is another approach to gather
gait kinematics data. Seel et al. [36] have presented an IMU-
based system for joint angle calculation in gait motion. This
method makes IMU measurements agnostic of factors such
as sensor placements and initial human postures. Knee joints
are modeled as mechanical hinge joints, where kinematic
constraints are used to obtain position vectors and direction
vectors of knee muscles axis in sensor coordinates. IMUs
are placed on the thigh, calf and foot of the human subjects.
Experiments are carried out on transfemoral amputeess (TFAs)
and results are compared with a baseline gathered by motion
capture system, showing a root-mean-square error (RMSE) of
about 1deg on ankle joints measurements.

Li et al. [23] have shown a similar but more mobile system
composed of multiple IMUs on hip, knees and ankles, with
force sensors built into human subject’s shoes. The collected
joint angle data also matched that of an optical motion cap-
turing system, proving its potential applications in ambulatory
and mobile environments.

D. Wearable Biosensors

Wentink et al. [47] have looked into whether it is feasi-
ble to use EMG for gait initiation detection and prediction,
with the goal of helping active prosthesis development. The
study includes TFA as human subjects, and investigates two
scenarios in the walking motion: prosthetic leg leads or intact
leg leads. Self-adhesive EMG sensing electrodes are placed on
eight upper leg muscles of the residual part of the prosthetic
leg. 16 bipolar channel Porti-system is used to measure EMG
at 2048 Hz. During experiments, subjects are asked to stand in
upright positions initially, walk 5 steps, turn around and walk
back to the original point, with pauses in between for posture
measurements. EMG data are high pass filtered at 10 Hz and
low pass filtered at 500 Hz with a second order Butterworth
filter. The results show that EMG sensors can predict initial
movement up to 138ms in advance, and are most effective
when the prosthetic leg was leading in the walking motion.

E. Motion Capturing

Wearable markers, and most famously a marker system
called Vicon, is a common optical gait analysis tool often used
in clinical applications [28, 14]. Gait data collection using both
Kinect and Vicon is compared by Pfister et al. [30], and it is
found that Kinect and Vicon system correlate well in stride
timing measurements, but not well enough in hip and knee
measurements.

Phinyomark et al. [31] have presented a 3D GAIT system
for gait data collection. This is a motion capture system
for treadmills, so free environment might not be supported.
This also means that sensors are not mounted on the humans
directly. Only the reflective markers for motion capture are put
on human subjects.

Matthis et al. [27] have showcased a data collection sys-
tem for studying the relationship between gaze and foothold
planning. A Positive Science mobile eye tracker is used to
record gaze data. The eye tracking also works in sunlight,
with the help of an infrared-blocking face shield. For gait data,
a full body motion capture system from Motion Shadow is
used. Since the system can be strapped to the human tester,
a traditional indoor environment with external motion capture
sensors are not needed. Finally, a backpack-mounted MacBook
Air is worn by the tester for easy data collection in outdoor
environments. This suite of sensors helps researchers identify
the consistent importance of eye gaze to the planning of
footsteps, especially on relatively complex terrains.

FE. Additional Methods

Quite a few other methods for gait measurements are
possible. Real life applications such as security cameras often
capture various views of gait. Chattopadhyay et al. [6] have
demonstrated gait recognition from frontal view, and Zhao
et al. [49] have shown that multiple cameras can be used to
capture 3D gait information. Visual-inertial odometry (VIO)
technologies [33, 22] are also potential solutions to gait
analysis if they are able to be used as wearable sensors.



In addition, traditional external cameras can be used with
novel computer vision (CV) algorithms to capture motion. Joo
et al. [19] have presented a method that allows markerless
motion capture for both full body motion and lower-level
details such as facial expressions. Existing models for face,
hand and body motion are combined in one skeleton hierarchy.
A new model is then derived from that hierarchy to capture
more total body motion information with less parameters.

III. DATA ANALYSIS

Data processing is the actual step where the analysis and
prediction of gait and the resulting motion is generated. In
some cases, predictions are focused on parameters used to
characterize gait, including gait cycle frequency, joint po-
sitions, joint kinematics and so on. In other scenarios, the
higher-level human trajectory is the objective of the prediction.
Most prediction methods in recent research are based on deep
learning (DL), with optimization or state-estimation methods
also possible. A brief categorization of DL methods reviewed
in this paper in shown in Fig. 3.
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Fig. 3. Popular deep neural network (DNN) methods used in gait prediction

A. Sequence-to-sequence (seq2seq) Recurrent Neural Network
(RNN)

RNN has been commonly used for learning sequential data
[10, 24], and seq2seq [44] is a type of problem where RNN
can be utilized to train models to solve machine transla-
tion problem. Martinez et al. [26] have proposed a seq2seq
architecture using RNN for smooth and light weight short-
term human motion prediction. A single gated recurrent unit
(GRU) is used rather than the more popular multi-layer Long
Short-Term Memory (LSTM), where ground truth is fed into
an encoder network with the error computed on a decoder
network. Parameter tuning is not necessary as decoder took
in its own samples as input. A residual connection is added
between the RNN input and output to model velocity better,
since continuous motion might better be predicted based upon
velocity instead of pose configuration. The results are optimal

where zero-velocity motion prediction is much more continu-
ous and smooth compared to that of traditional methods.

B. LSTM

LSTM is a type of RNN architecture that aims to tackle
the vanishing gradient problem [15], thus having better per-
formance in predicting time-series data.

Du et al. [13] have shown a LSTM-based method using
biomechanics-inspired loss function for pedestrian pose and
gait prediction. More specifically, the goal of the prediction
is full-body 3D mesh represented in Skinned Multi-Person
Linear (SMPL) [25] parameters. The basic network architec-
ture includes a two-layer stacked LSTM RNN followed by a
fully connected (FC) neural networks (NN) layer, with each
LSTM layer consists of 32 units. The loss function is uniquely
designed according to biomechanics and can be written as:

minL = Lo + M Ly + Ao L, (1)

where L. is gait cycle loss, Ls is body mirror symmetry
loss, L, is the loss based on volume from the ground plane
and \q, Ao are regularization parameters. Experimentation on
the PedX dataset [21] returns more accurate and biologically
realistic result while being more robust to noise.

C. Seq2seq based on GRU with Attention Mechanism

Sang et al. [35] have proposed a RNN model consists
of an encoder part based on GRU [&] and a decoder part
with attention mechanism. When decoding, the decoder makes
the input of each moment different according to time. This
is helpful to better learn the correlations between multiple
content modalities. In this framework, the output is no longer
a fixed-length vector, but rather a vector containing multiple
subsets for selective decoding. The attention distribution ov;
is calculated from the degree of correlation e;; among encoder
output vectors with a softmax normalization operation. This
framework shows accuracy in motion prediction in a range
around 4 s, much longer than the referenced methods.

D. Feature Learning

Guo and Choi [17] have divided the prediction into long-
term and short-term tasks, and proposed a prediction model
that learns using local feature representations. This improves
upon previous methods based on feature learning[5], where
body dynamics are partitioned into local features to account for
different moving dynamics for different parts of the body. For
long-term prediction, a network called SkelNet is proposed.
Standard feed-forward network is used as the basic sequence
generator and residual connection used to predict velocity
instead of pose. Leaky Rectified Linear Units (LReLUs),
dropouts are added to reduce overfitting, and the first few
layers of the network are split into five branches according
to five different sets of human body components. For shorter
term predictions, a single-GRU-based RNN network is trained
alongside SkelNet. The output of both networks is then fed
into another feed-forward NN for merging, with the new
resulting system called Skel-TNet. Ablation study reveals the



two networks show decent performance while only needing
1/30 number of parameters compared to other state-of-the-art
methods.

E. Context-aware Prediction

Since human motions are often influenced by interactions
with other agents, Corona et al. [| 1] have presented a context-
aware architecture using semantic-graph model and RNN.
The graph model parameterizes agents as nodes and interac-
tion as edges, where the interactions are learned through a
graph attention layer. The learned graph model is fed into
a RNN with two branches for prediction. In one branch,
baseline human motion prediction is generated using basic
encoder-decoder RNN with residual layer. In another branch,
interactions and context feature vectors are predicted to be
used together with the baseline to generate context-aware
human motion prediction. Experimental results show that this
approach performs much better than context-less methods for
both human and object predictions.

F. Conditional variational autoencoder (CVAE)

Many human motion prediction algorithms generate deter-
ministic outputs, but uncertainties are common in the predic-
tion of time series such as trajectories, and are sometimes
helpful. Ivanovic and Pavone [18] have proposed Trajectron,
a deep generative model that generates a distribution of
trajectory prediction for multimodal and multi-agent scenarios.
The model combines aspects of CVAE (an extension of
variational autoencoder (VAE)), LSTM and spatiotemporal
graphical models. The multi-agent relations are captured in
a graph model, where the node history and future are encoded

using 32-unit LSTM and edge influences are encoded using 8-
unit LSTM with attention mechanism. The encoder output are
concatenated and latent variable z is sampled incorporating a
CVAE structure. The 128-unit LSTM decoder then outputs
a Gaussian Mixture Model (GMM) prediction for trajec-
tory sampling. The experimental results show more accurate
prediction and much fast trajectory generation compared to
existing methods.

G. Convolutional neural networks (CNN)

Nikhil and Tran Morris [29] have presented an end-to-
end CNN approach for motion prediction. This differs from
traditional LSTM-based methods, as the authors argued that
temporal motion prediction is inherently continuous, and the
spatial and temporal correlations might be exploited better by
CNN. The trajectory history is directly fed into the model,
where they are padded to a fixed length using a FC layer and
passed into stacked convolutional layers. The output of the last
layer is then concatenated and fed into another FC layer, which
generates all predicted positions across the prediction horizon
at once. The layers can be easily parallelized. Ablation study
shows that this method predicts more accurately than those
that predict sequentially by time steps. This is most likely due
to the reduced error propagation when predicting all time steps
at once.

H. Additional Methods

Soo Park et al. [38] have shown that motion prediction is
also possible if we just have egocentric stereo images. A 2.5D
representation called EgoRetinal map is constructed to allow
motion prediction using trajectory-optimization incorporating
both visual and spatial data. Cheng et al. [7] have proposed a

TABLE I
COMPARISON BETWEEN DATA ANALYSIS METHODS

Ref | Objective Method

Pros Cons

[13] | Predict 3D full-body meshes in
future frames, given 3D poses
in past frames

Biomechanics-based loss
under LSTM architecture

function

Novel loss function is a first step
in biomechanical constraints on
gait prediction, robust to noise

Independence between pedestrians
is assumed, genders are not differ-
entiated though it could be [45]

[35] | Human motion prediction

Seq2seq model based on GRU with
attention mechanism added in the

Improves the accuracy in longer-
term predictions

Study was performed with single
person in a single environment

decoder
[26] | Human motion prediction  Seq2seq with sampling-based loss  Reduces the discontinuity at the  Best prediction results are depen-
(short term) function start of the prediction, lightweight,  dent on high-level supervision in
action-agnostic the form of action labels
[17] | Human motion prediction Learning using local structure repre-  First to model human pose by  Using feature learning on human

(long term and short term)

sentations, together with GRU-based

different body components in  pose prediction is not new

RNN representation learning network,
lightweight
[11] | Motion prediction of human Branched RNN, encoder-decoder Predicts both  human and Prediction error increases with

and interacting objects model as baseline,

graph model

incorporating
interactions represented by semantic-

object motion well in human-  noise

environment interaction dataset

[18] | Multi-modal multi-agent tra-
jectory prediction (no incorpo-

ration of human pose) spatiotemporal graphs

Trajectron, a framework that com-
bines CVAE, LSTM and dynamic

Able to generate distribution of
trajectory prediction for multiple
agents simultaneously, in a multi-
modal environment

How robots might incorporate this
for lower-level planning is not yet
explored

[29] | Trajectory prediction (no incor-  Parallelizable CNN

poration of human pose)

Very lightweight model, uses
CNN to leverage the continuous
and temporal nature of trajectory

Model is basic with no social con-
text or physical modeling; number
of layers might be reduced by
dilated convolutions




semi-adaptable NN to account for time-varying human behav-
iors and bound the uncertainties in the generated predictions.
Watanabe et al. [460] have used EKF-based method to estimate
human gait from a wearable sensor.

IV. DISCUSSIONS
A. Overall Findings

The two necessary steps (data collection and data analysis)
are summarized and compared in the above two sections. We
found that there are relatively few variations of methods for
the data collection step. Recent work on this step focuses
on getting refined results, instead of having new fundamental
approaches. On the other hand, data analysis has seen lots of
recent research. Multiple types of machine learning methods
for analysis and prediction have been proposed. More tradi-
tional or physical model-based methods for prediction such
as optimization or state-estimation are less used in recent
literature.

B. Common Approaches

From literature, we can tell that certain approaches have
been shown to be effective. For example, in home environ-
ments, Kinect-based system has proved to be a adequate
substitute for complex motion capture system like Vicon [41],
even in healthcare-related scenarios [43]. For data analysis,
RNN-based methods are very popular, with various models
based on LSTM, GRU and attention are proposed for specific
applications. We can also see that more research start to look
into the multimodal and uncertain nature of prediction, with
more VAE and CVAE methods being proposed and predictions
generated with a distribution.

C. Opportunities

On the other hand, there are still opportunities for a few
important aspects that researchers haven’t fully addressed.

1) High Level: What are the use case objectives of gait
prediction, and what advances are still required to achieve
these objectives? Current literature have been focusing on
improving the quality of gait predictions, including factors
such as accuracy, smoothness and time range. But from a
higher-level, the end goals of those predictions and how
predictions affect those end goals are still not quite clear. For
example, in-home healthcare [12] and fall prevention [41, 39]
have been regularly mentioned as “potential applications” of
gait predictions. However, exactly how the change in gait
analysis could impact the clinical end results is still not fully
discussed.

In addition, human’s environment information has not been
incorporated into data collection or prediction. Such informa-
tion could potentially be useful, since interactions with the
environment (staircases or obstacles) could influence human
motion. Leveraging environmental input, gait prediction based
on EMG sensors could be explored more, especially with the
objective of improving lower-limb exoskeleton control. Using
EMG sensors, signals from brain could be intercepted before
reaching the leg to generate predictions and detect gait phases

[47, 20]. It is easy to see that the faster the human motion
is (e.g. running), the shorter the effective prediction horizon
from EMG would be. However, if environment information is
used, prediction horizon could be extended.

2) Opportunities in Data Collection: As described in Sec-
tion II, wearable cameras and sensors could be used as
tools for gait-related data collection. This approach enjoys
advantages such as being more mobile and better at capturing
environment data. However, for those wearable devices, a
metric for sensor limitations and invasiveness has not been
proposed. For example, research shows that for some non-
clinical use cases, systems based on IMUs can achieve suf-
ficient gait capture accuracy, if benchmarked against motion-
capture system. In that case, IMUs-based approaches are less
invasive since a complex motion-capture space is not required.
Using untethered wearable sensors also means that human
could be less restricted, therefore the data captured can be
more natural and realistic [34].

3) Opportunities in Data Analysis: In terms of predictions,
one problem that could be investigated further is how might
we predict for longer time horizons. Currently short term pre-
dictions are accurate within 4s [35], and CNN-based methods
could be used to improve this situation due to reduced error
accumulation and more continuous motion prediction. GRU
and carefully-designed RNN networks that predict based on
velocity could also improve long-term predictions.

Another question in feature definitions and general gait
analysis is, how can “gait” be efficiently and more completely
characterized? What might be the minimum number of states
that are required to describe the gait, and what might those
parameters be? Furthermore, what could we say about the
minimum degree-of-freedom (DOF) that we need to describe
gait motion? For example, assume we have a walking robot
where leg motions are phase-locked and leg movements could
be modeled in perfect circles, is it possible to describe this
system and gait with only 1 DOF, and can the terrain be
included as a parameter? If so, then a single IMU measuring
ground impact might be sufficient to model this gait motion.
Investigations into these questions could potentially reduce the
sensors needed for gait modeling and control. Reduced gait
parameters could also mean less features for learning, therefore
the speed of prediction can be improved without negatively
affecting the accuracy.

V. CONCLUSION

In this work, various approaches on the data collection and
analysis for human walking gait and motion is presented. Most
methods are analyzed and compared in details with two tables
showing their differences. Recent development in the field
are summarized, and future opportunities are discussed with
potential questions raised. We hope this meta-analysis could
be a useful review for various methods in gait predictions, and
inspire more future research.
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