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ABSTRACT

Recently, self-supervised representation learning with Siamese structure (Siamese
representation learning) has shown promising results. Current methods com-
monly adopt instance discrimination to learn invariant global representations at
the image-level from randomly cropped views, which risks introducing object-
irrelevant nuisances of background information in the image-level representations,
i.e., random cropping induces nuisances of background. Further works aiming to
solve the problem simply match the visual patterns across views independently,
failing to look into the foreground and background regions. Intuitively, the nui-
sances of background could be alleviated by separating foreground and back-
ground in random crops. Therefore, we present a new self-supervised learning
framework, Semantic-guided Consistency and Discrimination (SCD) that learns
to separate the foreground and background semantics in random crops while learn-
ing image-level representations. Specifically, we extract foreground and back-
ground semantics by aggregating the global feature map encoding the image con-
tent, using the learned feature-level saliency maps (indicating the foreground pix-
els on feature maps) as weights. Then we construct triplets from the foreground
and background semantics of the two augmented views and distinguish foreground
from background with triplet loss. Our SCD strategy can easily be applied to ex-
isting Siamese representation learning frameworks, including contrastive learning
(e.g., MoCo-v2) and non-contrastive learning (e.g., BYOL) paradigm. By apply-
ing our SCD to both paradigms, we show that our method can achieve consistent
improvements on classification and dense prediction tasks.

1 INTRODUCTION
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Figure 1: Visualization of object-irrelevant nuisances of background information induced
by random cropping. (a) and (b) present the randomly cropped patches through random crop-
ping. On the right side of (b), we visualize the predicted salient regions for the raw image from
LEWEL (Huang et al., 2022) and our SCD.

Self-supervised representation learning (SSL) aims to learn representations without manual anno-
tations, which can be transferred to various downstream tasks such as image classification, object
detection and segmentation (Ji et al., 2019; Khosla et al., 2020; Ye et al., 2019; Hjelm et al., 2019;
Dwibedi et al., 2021; Wang et al., 2021; Xie et al., 2021c). Due to the potential of leveraging large
amount of data available on the Internet, SSL has become a challenging and promising field in
Computer Vision (Peng et al., 2022; Zhang et al., 2022a;a). Among them, Siamese self-supervised
learning (Siamese representation learning, Siamese SSL) has achieved competitive performance with
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supervised learning by adopting a Siamese structure to learn view-invariant representations shared
between two augmented views of the same input image (Chen et al., 2020a; He et al., 2020; Chen
et al., 2020c; Li et al., 2021; Grill et al., 2020; Chen & He, 2021).

Generally, there are mainly two paradigms in Siamese representation learning: contrastive learn-
ing (Chen et al., 2020a; He et al., 2020; Li et al., 2021) and non-contrastive learning (Grill et al.,
2020; Chen & He, 2021). These works commonly perform instance discrimination to learn con-
sistent global representations at the image-level between the two augmented views, which are ob-
tained through random cropping. Since random cropping samples image crops equiprobably on the
image, the generated views tend to contain both foreground and background (co-occurrence of object
and background) and learning image-level invariant representations from these randomly cropped
patches risks introducing “object-irrelevant nuisances of background information” in the repre-
sentations and thus degrades the discrimination ability of the learned representations (Huang et al.,
2022; Mo et al., 2021). As shown in Fig. 1, object and background co-exists in the random crops,
which introduces irrelevant nuisance and harm the discriminability of the learned representations.
Even worse, the model could be misled by the object-irrelevant background as sometimes the back-
ground shares similar visual patterns with the object (e.g., the polar bears and the snow surrounding
them have similar color in Fig. 1b). In Fig. 1b, we also show that the proposed strategy in this
work allows the model to discriminate the polar bears and the snow while another closely related
work LEWEL (Huang et al., 2022) fails to do so. More visualizations are provided in Figs. 4 and 5
(Appendix C).

Recent efforts to alleviate the limitation discussed above can be coarsely categorized into two types
of research. One stream of works use a set of heuristic masks to aggregate the feature maps to
extract representations for visual patterns, of which the similarity are maximized across augmented
views to exclude the influence of object-irrelevant background (Hénaff et al., 2021; Huang et al.,
2022). Despite the strong performance on dense prediction tasks, these works simply match the
visual patterns across views independently, failing to look into the foreground and background
regions. Another line of works (Mo et al., 2021; Peng et al., 2022; Chen et al., 2023) extract
representations for visual patterns by sampling cropped patches around the salient regions before
feeding them to the encoder and optionally replacing the background (Mo et al., 2021). However,
these works are still limited by random cropping. In contrast to recent works, we design a novel
self-supervised objective that tries to separate foreground and background in random crops,
so that the model learns to look into the foreground and background regions to exclude the
influence of nuisances of background and preserve more spatial information in the learned
representations.

In this work, in order to alleviate object-irrelevant nuisances of background induced by random
cropping, we propose a new self-supervised learning framework, Semantic-guided Consistency and
Discrimination (SCD) that learns representations by separating the foreground and background se-
mantics in random crops while enforcing the image-level representation consistency. Specifically,
we extract foreground semantics by aggregating the global feature map encoding the image con-
tent, using the learned feature-level saliency maps (indicating the foreground pixels on feature
maps) as weights. We also reverse the saliency map and aggregate the feature map again to get the
background semantics. By adopting the framework of Siamese representation learning, we obtain
foreground/foreground and background/background pairs from the two augmented views. Then we
use triplet loss (Schroff et al., 2015) to distinguish foreground from background for each image,
i.e., the similarity between the foreground and background semantics of the two views is smaller
than the similarity between the foreground/foreground or background/background pairs. Moreover,
we enforce the consistency of image-level representations across views simultaneously so that the
model learns to preserve invariant image-level (identity) information in the learned representations.

As a flexible plug-and-play method, our SCD can be easily applied to the Siamese representation
learning frameworks, including contrastive learning (e.g., MoCo-v2 (Chen et al., 2020c)) and non-
contrastive learning (e.g., BYOL (Grill et al., 2020)) paradigm with negligible training overhead.
Experimental results show that our SCD significantly improves MoCo-v2 (Chen et al., 2020c) and
BYOL (Grill et al., 2020) on ImageNet classification and dense prediction tasks like detection and
segmentation.

The contributions of this work can be summarized as follows:
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• In order to alleviate the influence of object-irrelevant nuisances of background information
that affects both contrastive learning and non-contrastive learning (i.e., Siamese represen-
tation learning), we propose a new self-supervised learning framework, Semantic-guided
Consistency and Discrimination (SCD) that learns to separate the foreground and back-
ground in random crops while learning consistent global representations. This allows the
model to look into the foreground and background regions to exclude the influence of
object-irrelevant background, and preserve more spatial information in the learned repre-
sentations.

• The proposed method can be easily integrated into existing Siamese representation learning
frameworks, including contrastive learning (e.g., MoCo-v2 (Chen et al., 2020c)) and non-
contrastive learning (e.g., BYOL (Grill et al., 2020)), as a flexible plug-and-play method.

• Our method consistently improves popular Siamese representation learning baselines (i.e.,
MoCo-v2 and BYOL) on classification and dense prediction tasks, which shows its ef-
fectiveness and generalizability. More importantly, we outperform another state-of-the-art
(SOTA) plug-and-play method LEWEL (Huang et al., 2022) that targets the same problem
on all tasks.

2 RELATED WORK

2.1 INSTANCE DISCRIMINATION

Siamese representation learning has advanced self-supervised learning by learning invariant repre-
sentations shared between two augmented views of the same input image based on instance discrim-
ination (Li et al., 2020; He et al., 2020; Chen et al., 2020c;a;b; Henaff, 2020; Robinson et al., 2021;
Ramé et al., 2021). Among them, contrastive learning learns to map positive samples close while
keep negative samples apart in the latent space. SimCLR (Chen et al., 2020a) first proposes to gen-
erate positive pair through a composition of well-designed random augmentations and negative pairs
using different images within the same mini-batch. It also adopts a MLP head on top of the encoder
to improve the quality of the learned representations. Instead of using the samples within the mini-
batch to generate negative pairs, MoCo (He et al., 2020) proposes to use a memory bank to store
embeddings from previous training steps, which are used as the negative samples. MoCo-v2 (Chen
et al., 2020c) further improves the work MoCo (He et al., 2020) by using the strong augmentations
and the projector proposed in SimCLR (Chen et al., 2020a). In contrast to contrastive learning that
requires negative samples to prevent the model from collapse, non-contrastive learning methods
such as BYOL (Grill et al., 2020) and SimSiam (Chen & He, 2021) aim to learn representations
without negative samples by using techniques like stop-gradient (Chen & He, 2021), momentum
encoder (Grill et al., 2020) and predictor (Grill et al., 2020).

2.2 PIXEL DISCRIMINATION

In contrast to instance discrimination, other works learn dense representations by performing pixel-
level contrastive learning. These works commonly discover the correspondence between pixel fea-
tures across augmented views to produce positive pixel pairs (Wang et al., 2021; Xie et al., 2021c;
Bardes et al., 2022b). DenseCL (Wang et al., 2021) proposes to match each pixel feature in one view
with the most similar pixel feature in the other view. PixPro (Xie et al., 2021c) first warps the pixel
features to the original image space and then treats the pixel features within the local neighborhood
as the positives. Despite the remarkable performance on dense prediction tasks, these works perform
worse on classification than instance discrimination, because they are delicately designed for dense
prediction while lacking the ability to model image-level information.

2.3 REGIONAL/SEMANTIC DISCRIMINATION

In order to exclude the influence of nuisances of background and learn consistent local represen-
tations, further works focus on maximizing the similarity of local regions or visual patterns across
views (Xie et al., 2021a; Roh et al., 2021; Xiao et al., 2021; Hénaff et al., 2021; Huang et al., 2022;
Zhang et al., 2022b). Some work on performing regional representation matching for selected image
crops (Xie et al., 2021a; Roh et al., 2021; Xiao et al., 2021). Others propose to match the represen-
tations of the objects or visual patterns, which are obtained with heuristic strategies such as saliency

3



Under review as a conference paper at ICLR 2024

estimators (Selvaraju et al., 2021; Mo et al., 2021; Peng et al., 2022), selective-search (Wei et al.,
2021; Xie et al., 2021b), and unsupervised segmentation algorithms (Hénaff et al., 2021). Among
these works, some closely related works to this work use a set of heuristic masks to aggregate the
feature maps that encode the image content to extract representations for visual patterns (Hénaff
et al., 2021; Huang et al., 2022). DetCon (Hénaff et al., 2021) uses external unsupervised segmenta-
tion algorithm to produce a set of binary masks segmenting the image into different regions spatially.
Instead of using external unsupervised segmentation algorithm, LEWEL (Huang et al., 2022) pro-
poses to learn a set of heatmaps. However, these methods simply match the visual patterns inside the
image independently and overlook the similarity relationships among the visual patterns. Another
line of works (Mo et al., 2021; Peng et al., 2022) sample randomly cropped patches around salient
regions to obtain the representation for objects or visual patterns under the guidance of salient re-
gions. ContrastiveCrop (Peng et al., 2022) sums over the channel dimension of last convolutional
layer to generate saliency maps. ContraCAM (Mo et al., 2021) predicts the salient regions by re-
fining the GradCAM (Selvaraju et al., 2017; Shu et al., 2023). Despite different techniques, these
works are still limited by random cropping. In contrast to previous methods, taking the foreground
and background relation into account, we propose a simplified framework that explicitly learns to
separate the foreground and background semantics in random crops while learning consistent global
representations.
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Figure 2: Overview of the proposed SCD framework. For each input image x, the two augmented
views x1 and x2 are transformed to get the global embeddings z1 and z2, of which the similarity
is maximized with semantic consistency loss. Moreover, for each branch, we produce feature-level
saliency maps indicating the foreground and background pixel features using a saliency map net-
work, which operates on the convolutional feature map before global average pooling. Then we
aggregate the feature map using the saliency maps as weights to extract foreground and background
semantics, i.e., zfg1 , zbg1 , zfg2 , and zbg2 . We enforce the semantic discrimination with the triplet loss
(right side) to separate the foreground and background between the two views.

3 PRELIMINARIES ON SIAMESE REPRESENTATION LEARNING

Typically, the Siamese representation learning framework consists of two branches parameterized
by θ and ξ, respectively. θ and ξ could either be shared weights (Chen et al., 2020a; Chen & He,
2021) or be defined with an exponential moving average strategy (Chen et al., 2020c; Grill et al.,
2020) through ξ ← mξ + (1 −m)θ, where m is the momentum coefficient. For each input image
x, we apply two random augmentation operations T1 and T2 to get two different views x1 = T1(x)
and x2 = T2(x). Then, the augmented views x1 and x2 are passed into two encoders Eθ and Eξ

to get the latent representations h1 = Eθ(x1) and h2 = Eξ(x2). Next, h1 and h2 are transformed
by the non-linear projectors Hθ and Hξ to obtain the embeddings z1 = Hθ(x1) and z2 = Hξ(x2).
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Contrastive learning adopts InfoNCE (Oord et al., 2018) loss to distinguish the augmented views
from the negative samples:

Lnce = − log
exp (fs(z1, z2)/τ)

exp (fs(z1, z2)/τ) +
∑

ẑi
exp (fs(z1, ẑi)/τ)

, (1)

where fs(u,v) = u⊤v
∥u∥2∥v∥2

denotes the cosine similarity between the vectors u and v, τ is the
temperature hyper-parameter, and ẑi is the negative sample.

Non-contrastive learning methods add an additional predictor to one of the branches. Suppose the
predictor is Gθ, then z1 is transformed to get p1 = Gθ(z1). The negative cosine similarity is used
to drive the training:

Lcos = −
Gθ(z1)

⊤
z2

∥Gθ(z1)∥2∥z2∥2
. (2)

The negative cosine similarity has another equivalent form:

Lmse = ∥p̄1 − z̄2∥22, (3)

where p̄1 and z̄2 are ℓ2 norm of p1 and z2.

4 METHODOLOGY

4.1 OVERVIEW

The overview of the proposed framework is shown in Fig. 2. The goal is to enforce semantic discrim-
ination by separating the foreground and background semantics in current Siamese representation
learning framework. The proposed framework is driven by two objectives that are optimized jointly:
semantic discrimination and semantic consistency. Semantic discrimination is aimed to separate
the foreground and background semantics (Sec. 4.2) while semantic consistency learns to preserve
invariant identity information in the learned representations by matching the image-level representa-
tions between the two augmented views (Sec. 4.3), which is the objective of Siamese representation
learning. The training cost is provided in Tab. 9.

4.2 SEMANTIC DISCRIMINATION

As shown in Fig. 2, our method consists of two networks: the online network parameterized by
θ including an encoder Eθ, a global projector Hθ, and a semantic projector Hs

θ ; the target net-
work parameterized by ξ that has the same architecture with the online network. Given an input
image x, we generate two augmented views x1 = T1(x) and x2 = T2(x), following Siamese
representation learning. For the first augmented view x1, we pass it through the encoder Eθ to ob-
tain the feature map F1 ∈ RC×H×W (before global average pooling) and the latent representation
h1 = Eθ(x1) (after global average pooling), which is then transformed by a projector Hθ to get
the corresponding global embedding z1 = Hθ(h1), where C, H , W are the number of channels,
height and width of F1, respectively. Note that the latent representation h1 can be expressed as
h1[c] =

∑H
i=1

∑W
j=1

1
HW F1[c, i, j], c = 1, . . . , C, where h1[c] denotes the c-th element of the

representation vector h1 and F1[c, i, j] is the c-th element of the pixel feature vector at (i, j) of F1.

Then for the pixel features F1[∗, i, j] at every location of the feature map F1, we compute the proba-
bility map corresponding to foreground pixels (i.e., foreground saliency map Mfg

1 = Mθ(F1) ∈
RH×W ) with a saliency map network Mθ, where larger activation indicates higher probability of
foreground pixels. Next, we can extract the foreground semantics hfg

1 using the saliency map as
weights to aggregate the feature map F1:

hfg
1 = Mfg

1 ⊗ F1 =
1∑

i,j M
fg
1 [i, j]

∑
i,j

Mfg
1 [i, j]F1[∗, i, j], (4)

where ⊗ denotes channel-wise weighted average pooling. The foreground semantics is then pro-
jected by a semantic projector Hs

θ to obtain the foreground embedding zfg1 = Hs
θ (h

fg
1 ). Here,
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Mθ consists of two 1x1 convolutional layers with batch normalization (Ioffe & Szegedy, 2015) and
ReLU, followed by a sigmoid activation producing the probability that Mfg

1 [i, j] corresponds to the
foreground pixel for F1[∗, i, j]. By inverting Mfg

1 , the background saliency map Mbg
1 highlight-

ing the background pixel features is obtained by Mbg
1 = 1 −Mfg

1 . Following the same procedure
above, we extract the background semantics hbg

1 as hbg
1 = Mbg

1 ⊗F1 and the background embedding
zbg1 = Hs

θ (h
bg
1 ). Likewise, the global embedding z2, foreground embedding zfg2 , and background

embedding zbg2 for the second augmented view x2 are obtained.

Since there are two augmented views, the foreground and background embeddings from the two
views are paired, i.e., pair zfg1 /zfg2 , and pair zbg1 /zbg2 . Taking the foreground and background relation
into account, we encourage the foreground similarity is larger than foreground and background
similarity by a certain margin between the two views. To this end, we use the triplet loss (Schroff
et al., 2015) to measure their relative similarity. Take the foreground pair zfg1 and zfg2 as an example,
we form triplet by treating zfg1 , zfg2 , zbg2 as anchor, positive and negative, respectively. Then, the
semantic discrimination loss Ld is used to separate the foreground and background:

Ld = 0.5× (max{fs(z
fg
1 , zbg2 )− fs(z

fg
1 , zfg2 ) + α, 0}+

+max{fs(z
bg
1 , zfg2 )− fs(z

bg
1 , zbg2 ), 0}), (5)

where α is the margin. Note that we enforce a strict constraint on the foreground pair in the first
term by adding a margin α while keeping a loose constraint on the background pair without using a
margin. We simply force the similarity between the background pair to be larger than that between
the foreground and background across views because we want to avoid inducing too much noisy
background information.

4.3 SEMANTIC CONSISTENCY

In addition to the foreground and background semantics separation, we also encourage the model to
preserve invariant identity information by maximizing the similarity between two augmented views
at the image-level. To achieve that, we maximize the similarity between the global representations
z1 and z2 of the augmented views with semantic consistency loss Lc. Note that Lc is a general
criterion for measuring the similarity between augmented views, which can adopt various objectives
in Siamese representation learning discussed in Sec. 3.

In this work, we adopt two variants for Lc. The first variant is based on the InfoNCE (Oord et al.,
2018) loss, i.e., Lnce defined in Eq. (1) and this variant of our framework is termed as SCD-MoCo.
Following MoCo-v2 (Chen et al., 2020c), we use memory bank to store negatives for the semantic
consistency loss Lc. The other variant is based on the normalized Mean Square Error Lmse given
by Eq. (3) where negatives are not used. We term this variant as SCD-BYOL and follow the protocol
of BYOL (Grill et al., 2020). Note that BYOL (Grill et al., 2020) uses symmetric loss by passing
each augmented view through both encoders and backpropping through the online encoder twice at
each training step, which is termed as 2x backprop methods in the literature (Zheng et al., 2021;
Huang et al., 2022). In SCD-BYOL, instead of using symmetric loss, we adopt the asymmetric
loss where only one of the view is used to update the online encoder, which has less time and GPU
memory consumption.

4.4 OVERALL OBJECTIVE

The semantic consistency and semantic discrimination are optimized jointly. Altogether, the overall
objective is expressed as follows:

L = Lc + λLd, (6)
where λ is the loss weight for balancing the semantic consistency and semantic discrimination,
which is set to 0.5 empirically. We investigate the impact of λ in Sec. 5.4.3.

5 EXPERIMENTS

In this section, we evaluate the proposed framework on widely used self-supervised learning bench-
marks, including large-scale classification dataset ImageNet-1k (Deng et al., 2009) (IN-1K) and de-
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tection/segmentation datasets (i.e, PASCAL VOC (Everingham et al., 2010) and COCO (Lin et al.,
2014)).

Table 1: Linear classification on IN-1K. Top-1 accuracy on validation set of IN-1K is reported.
“fg” is the result using foreground semantics as the input to the linear classifier. †: our reproduction
using the official codes. ∗: results cited from Chen & He (2021); Koohpayegani et al. (2021).

Method Backprop Epochs Batch
Size

Linear
Acc.

Supervised 1x 100 256 76.5

Asymmetric loss
MoCo-v2 (Chen et al., 2020c) 1x 200 256 67.5
BYOL-asym (Grill et al., 2020)∗ 1x 200 256 69.3
MSF (Koohpayegani et al., 2021)† 1x 200 256 71.0
ContrastiveCrop (Peng et al., 2022) 1x 200 256 67.8
LEWEL-MoCo (Huang et al., 2022) 1x 200 256 68.4
SCD-MoCo (Ours) 1x 200 256 68.6
SCD-MoCo (fg) (Ours) 1x 200 256 68.9
SCD-BYOL (Ours) 1x 200 512 72.2
SCD-BYOL (fg) (Ours) 1x 200 512 72.6
Symmetric loss. 2× FLOPS
SimCLR (Chen et al., 2020a)∗ 2x 200 4096 68.3
SwAV (Caron et al., 2020)∗ 2x 200 4096 69.1
SimSiam (Chen & He, 2021)∗ 2x 200 256 70.0
BYOL (Grill et al., 2020)∗ 2x 200 4096 70.6
LEWEL-BYOL (Huang et al., 2022) 2x 200 512 72.8
SCD-BYOL (2x) (Ours) 2x 200 512 73.1

5.1 EXPERIMENTAL SETUPS

5.1.1 IMPLEMENTATION DETAILS

By default, SCD-BYOL adopts asymmetric loss for fast pre-training. However, for a fair comparison
under the same training cost, we also report the results of SCD-BYOL with symmetric loss, i.e.,
SCD-BYOL (2x). The architecture details are provided in Appendix A.

The margin α in the semantic discrimination loss is set to 1.0 empirically. The other hyper-
parameters are kept the same as the baselines in all experiments for a fair comparison.

5.1.2 BASELINES

The baselines of the two variants of our SCD, i.e., SCD-MoCo and SCD-BYOL are MoCo-v2 (Chen
et al., 2020c) and BYOL (Grill et al., 2020), respectively. We also compare our SCD with another
SOTA method LEWEL (Huang et al., 2022) that tackles the nuisances of background, which also
has MoCo/BYOL-based variants (i.e., LEWEL-MoCo and LEWEL-BYOL).

5.2 LINEAR CLASSIFICATION

Following previous works (Chen et al., 2020c; Guo et al., 2022), we perform linear classification
to evaluate the model pre-trained on IN-1K. We train a linear classifier on top of the fixed encoder
backbone. The training details are provided in Appendix A.

We report Top-1 accuracy on IN-1K validation set in Tab. 1. With the same pre-training epochs,
our method improves MoCo-v2/BYOL by a noticeable margin: with 200 pre-training epochs, SCD-
MoCo/SCD-BYOL improve the corresponding baselines MoCo-v2/BYOL by 1.1%/1.6%, respec-
tively. More importantly, our method outperforms both variants of LEWEL (i.e., LEWEL-
MoCo and LEWEL-BYOL). In particular, using foreground semantics for classification achieves
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better performance than directly using representation vectors after global average pooling, which
shows the foreground semantics successfully capture the information of the foreground regions.

Table 2: Transfer learning on PASCAL VOC and COCO. All models are pre-trained for 200
epochs on IN-1K. ResNet-50-C4 backbone (Ren et al., 2015) is used for fine-tuning. Average pre-
cisions of detection box (APbb) and segmentation mask (APmk) are reported. †: our reproduction
using the official codes. ∗: results cited from Chen & He (2021); Huang et al. (2022).

Method VOC 07+12 Det. COCO Det. COCO Instance Seg.

APbb APbb
50 APbb

75 APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

Asymmetric loss
MoCo-v2 (Chen et al., 2020c) 57.0 82.4 63.6 38.8 58.0 42.0 34.0 55.2 36.3
ReSSL (Zheng et al., 2021)† 56.1 82.2 62.5 38.3 57.7 41.3 33.4 54.7 35.3
MSF (Koohpayegani et al., 2021)† 55.9 81.8 62.3 38.6 58.2 41.6 33.8 54.9 36.0
ContrastiveCrop (Peng et al., 2022) 57.3 82.5 63.8 39.2 58.8 42.2 34.5 55.5 36.4
LEWEL-MoCo (Huang et al., 2022) 57.3 82.3 63.6 38.9 58.6 42.0 34.1 55.3 36.3
SCD-MoCo (Ours) 57.3 82.6 64.0 39.3 58.8 42.6 34.4 55.7 36.6
SCD-BYOL (Ours) 57.1 82.6 64.0 39.3 59.1 42.7 34.4 55.8 36.7
Symmetric loss. 2× FLOPS
SimCLR (Chen et al., 2020a)∗ 55.5 81.8 61.4 37.9 57.7 40.9 33.3 54.6 35.3
SwAV (Caron et al., 2020)∗ 55.4 81.5 61.4 37.6 57.6 40.3 33.1 54.2 35.1
SimSiam (Chen & He, 2021)∗ 56.4 82.0 62.8 37.9 57.5 40.9 33.2 54.2 35.2
BYOL (Grill et al., 2020)∗ 55.3 81.4 61.1 37.9 57.8 40.9 33.2 54.3 35.0
LEWEL-BYOL (Huang et al., 2022) 56.5 82.6 63.7 38.5 58.9 41.2 33.7 55.5 35.5
SCD-BYOL (2x) (Ours) 57.3 82.7 64.1 39.5 59.3 42.8 34.6 55.9 36.9

5.3 TRANSFER LEARNING

In this section, we evaluate the generalizability of the learned representations on object detection
and instance segmentation. The standard benchmarks PASCAL VOC (Everingham et al., 2010)
and COCO (Lin et al., 2014) are used for the evaluation. We use the model pre-trained on IN-
1K to initialize the backbone of the downstream task model, following Chen et al. (2020c); Huang
et al. (2022). Further details are provided in Appendix A. The transfer learning results are reported
in Tab. 2. SCD-MoCo/SCD-BYOL improve the baselines MoCo-v2/BYOL in terms of all metrics.
Furthermore, with comparable or even lower training cost, our method achieves better results than
LEWEL, e.g., SCD-BYOL (1x backprop with asymmetric loss) significantly outperforms 2x back-
prop method LEWEL-BYOL (symmetric loss) on both PASCAL VOC and COCO, which has much
higher pre-training cost. In particular, LEWEL (LEWEL-MoCo) only has marginal performance
gain over MoCo-v2 on COCO (+0.1), while our gain is considerable (+0.5 on COCO Det., +0.4
on COCO seg.). The transfer learning results show that our method helps improve the performance
on dense prediction tasks. More classification and transfer learning results are reported in Tab. 5
(Appendix B), including comparison with dense representation learning (Mo et al., 2021; Hénaff
et al., 2021) and results with longer pre-training epochs.

Table 3: Effect of components in semantic dis-
crimination loss. “SC” denotes the semantic con-
sistency loss Lc, “FG” denotes the first term of
the semantic discrimination loss Ld and “BG”
represents the second term of Ld.

SC FG BG IN-100 VOC 07+12

✓ - - 81.4 52.9
✓ ✓ - 83.6 53.5
✓ - ✓ 83.3 53.0
✓ ✓ ✓ 83.8 53.6
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Figure 3: Effect of semantic discrimination mar-
gin α. The red dashed line indicates the base-
line (Grill et al., 2020).
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5.4 ABLATION STUDIES

We pre-train the model on IN-100 and then evaluate it on IN-100 linear classification and VOC
07+12 object detection, as described in Secs. 5.2 and 5.3. By default, we use SCD-BYOL.

5.4.1 EFFECT OF COMPONENTS IN SEMANTIC DISCRIMINATION LOSS

In Tab. 3, we investigate the effect of the two terms in the semantic discrimination loss Ld defined
in Eq. (5). Note that “SC” is exactly the objective used in BYOL. We have the following obser-
vations: (1) The proposed SCD achieves the best result by using both terms “FG” and “BG”. (2)
“FG” has better results than “BG”, especially on detection, as it explicitly matches the foreground
semantics across views to learn consistent representations while “BG” constrains background. (3)
Regardless of different combinations, all variants outperform the baseline BYOL (first row). The
results demonstrate the effectiveness of the proposed semantic discrimination.

5.4.2 SEMANTIC DISCRIMINATION MARGIN

We use margin α to control the degree of foreground and background separation in semantic dis-
crimination, where a larger α results in more strict separation between foreground and background.
Therefore, the margin is an important parameter in our framework. We vary the value of the margin
from 0 to 1.4 to evaluate the effect of the margin in Fig. 3. We find that α ≥ 0.4 achieves better per-
formance in terms of classification and detection. By default α is set to 1.0 for simplicity. Note that
when α → 0, the model performs relatively worse than those with a large α because the constraint
on foreground and background separation is very loose. As α gets larger, the separation starts to take
effect by preserving more spatial information, which leads to more discriminative representations
and better performance on both tasks. However, when α is too large, the performance slightly drops.
The observation shows that the proposed semantic discrimination helps learn better representations.

5.4.3 LOSS WEIGHT

Table 4: Effect of semantic discrimination loss weight
λ.

λ 0 0.1 0.5 1.0 2.0

IN-100 81.4 83.8 83.8 83.7 82.5
VOC 07+12 52.9 53.4 53.6 53.9 53.2

We investigate the effect of the loss
weight λ, which is used to control the
balance between semantic consistency
loss and semantic discrimination loss.
We evaluate the values of λ from set
{0.1, 0.5, 1.0, 2.0}. By default, we fix λ =
0.5 for simplicity. The results are provided
in Tab. 4. We find that when λ is set to
a smaller value, the model achieves rela-
tively worse results. When λ is larger, the
model performs better. However, when λ is too large (e.g., λ = 2.0), the performance gets much
worse. The results indicates that the proposed foreground and background discrimination encour-
ages the model to preserve more spatial information in the learned representations and thus helps
improve the performance on dense prediction tasks. Moreover, the foreground and background dis-
crimination also helps learn global representation, which benefits classification performance.

6 CONCLUSION

In order to alleviate the nuisances of background induced by random cropping in Siamese representa-
tion learning, we propose a new self-supervised learning framework, Semantic-guided Consistency
and Discrimination (SCD) that learns to separate the foreground and background semantics in ran-
dom crops while learning consistent global representations. The proposed method can be easily
integrated into Siamese representation learning frameworks, including contrastive learning and non-
contrastive learning paradigm, as a plug-and-play method. The extensive experiments on classifica-
tion and dense prediction tasks demonstrate the effectiveness and generalizability of our method.
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A ADDITIONAL IMPLEMENTATION DETAILS

A.1 ARCHITECTURE

Following the common practice in Siamese representation learning (Chen et al., 2020a;c; Grill et al.,
2020; Chen & He, 2021), we adopt ResNet-50 (He et al., 2016) as the encoder backbone and two-
layer multi-layer perceptron (MLP) as the projector. For the saliency map network, the output
dimensions of the 1x1 convolutional layers are set to 2048/1, respectively. For MoCo-v2 based
variant SCD-MoCo, we follow the settings of MoCo-v2 (Chen et al., 2020c) to set the hidden and
output dimension of the projector to 2048 and 128, respectively. For SCD-BYOL, the corresponding
dimensions of projector are set to 4096 and 512, following Koohpayegani et al. (2021). We also
adopt an additional predictor with the same architecture as the projector, following Grill et al. (2020).
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A.1.1 PRE-TRAINING DETAILS

For SCD-MoCo, we use the batch size of 256, and SGD optimizer with learning rate of 0.06, weight
decay of 10−4, and momentum of 0.9. For SCD-BYOL, we pre-train the model using the batch size
of 512, and SGD optimizer with 0.05 learning rate, 10−4 weight decay, and 0.9 momentum. The
model is trained for 200 epochs using cosine annealing schedule (Loshchilov & Hutter, 2017) for
learning rate decay. By default, the pre-training is performed on the training set of IN-1K with 2
NVIDIA A100 GPUs. In ablation studies, we perform the pre-training on ImageNet-100 (Tian et al.,
2020) (IN-100) dataset for 200 epochs and follow the same training settings as in IN-1K pre-training
except the learning rate is doubled following Huang et al. (2022).

A.2 LINEAR CLASSIFICATION

For SCD-MoCo, we train the linear classifier for 100 epochs with batch size of 4096, learning rate of
3.2, no weight decay, momentum of 0.9, LARS optimizer (You et al., 2017) and cosine learning rate
decay, following Chen & He (2021). For SCD-BYOL, we train the linear classifier for 100 epochs
with batch size of 256, learning rate of 30.0, no weight decay, momentum of 0.9, SGD optimizer
and cosine learning rate decay, following Peng et al. (2022).

A.3 SEMI-SUPERVISED CLASSIFICATION

The models are fine-tuned on the labelled data using SGD optimizer with batch size of 256, weight
decay of 0, and momentum of 0.9. For SCD-MoCo, we fine-tune for 50 epochs with classification
head learning rate 0.5, feature extractor backbone learning rate 0.0002, which are decayed by a
factor of 0.1 after 30 and 40 epochs. For SCD-BYOL, we fine-tune for 50 epochs with classification
head learning rate 20.0/5.0, feature extractor backbone learning rate 0.0001/0.0001 for the 1%/10%
subset, respectively, which are decayed by a factor of 0.1 after 30 and 40 epochs.

A.4 TRANSFER LEARNING

PASCAL VOC object detection. We use Faster R-CNN (Ren et al., 2015) with ResNet-50-C4
backbone as the detector. The detector is fine-tuned on training and validation splits of VOC 2007
and VOC 2012 and then evaluated on test set of VOC 2007. Following the standard schedule in Chen
et al. (2020c), we fine-tune Faster R-CNN for 24k iterations.

COCO object detection and instance segmentation. We adopt the Mask R-CNN (He et al., 2017)
architecture with ResNet-50-C4 backbone for fine-tuning. The training set of COCO 2017 is used
for fine-tuning and the validation set is used for evaluation. Following Chen et al. (2020c); Zheng
et al. (2021), we adopt the 1x schedule used in the detetron2 (Wu et al., 2019) by fine-tuning the
model for 90, 000 iterations.

B ADDITIONAL EXPERIMENT RESULTS

B.1 COMPARISON WITH DENSE REPRESENTATION LEARNING AND LONGER PRE-TRAINING
EPOCHS

In Tab. 5, we further provide comparison with popular dense representation learning baselines (e.g.,
DenseCL (Wang et al., 2021), PixelPro (Xie et al., 2021c), DetCon (Hénaff et al., 2021)) and re-
sults with longer pre-training epochs. The downstream results on COCO adopt Mask R-CNN with
ResNet-50-FPN backbone, following Huang et al. (2022). We have the following observations: (1)
Despite dense representation learning is tailored for dense prediction tasks, we significantly outper-
form these baselines on COCO with same pre-training epochs, e.g., SCD outperforms DenseCL by
1.2 on COCO detection with 200 epochs. In particular, we surpass DenseCL and PixelPro signif-
icantly on ImageNet classification. (2) Our SCD with 400 epochs pre-training outperforms BYOL
with 1000 epochs on COCO detection and segmentation. (3) LEWEL (LEWEL-MoCo) only has
marginal performance gain over MoCo-v2 on COCO (+0.2), while our gain (SCD-MoCo) is consid-
erable (+0.9 on COCO Det., +0.7 on COCO seg.). (4) After 700 epochs our improvements have met
diminishing returns, so we don’t pre-train for more epochs. The results demonstrate the effectiveness
and generalizability of our method.
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Table 5: Comparison with dense representation learning using longer IN-1K pre-training
epochs. On COCO, Mask R-CNN with ResNet-50-FPN backbone is used for fine-tuning. †: our
reproduction using the official codes. ∗: results cited from Zhang et al. (2022b); Wen et al. (2022).

Method Epochs IN-1K COCO Det. COCO Seg.

Dense representation learning
DetCon (Hénaff et al., 2021)∗ 200 - 40.6 36.4
DetCo (Xie et al., 2021a)∗ 200 - 40.1 36.4
DenseCL (Wang et al., 2021) 200 63.6 40.3 36.4
PixelPro (Xie et al., 2021c) 400 60.2 41.4 37.4

Image-level pre-training
MoCo-v2 (Chen et al., 2020c)∗ 200 67.5 39.8 36.1
SimCLR (Chen et al., 2020a)∗ 200 68.3 38.5 34.8
SimSiam (Chen & He, 2021)∗ 200 70.0 40.4 36.4
BYOL (Grill et al., 2020)∗ 200 70.6 38.4 34.9
MSF (Koohpayegani et al., 2021)† 200 71.0 38.5 35.0
LEWEL-MoCo (Huang et al., 2022) 200 68.4 40.0 36.1
LEWEL-BYOL (Huang et al., 2022) 200 72.8 41.3 37.4
SCD-MoCo (Ours) 200 68.6 40.7 36.8
SCD-BYOL (2x) (Ours) 200 73.1 41.5 37.3

Longer pre-training epochs
VICReg (Bardes et al., 2022a) 1000 73.2 39.4 36.4
BYOL (Grill et al., 2020) 1000 74.3 40.4 37.2
LEWEL-BYOL (Huang et al., 2022) 400 73.8 41.9 37.9
SCD-BYOL (2x) (Ours) 400 74.2 42.1 37.7
SCD-BYOL (2x) (Ours) 700 74.8 42.1 37.9

B.2 SEMI-SUPERVISED CLASSIFICATION

Table 6: Comparison on IN-1K semi-supervised classification with models pre-trained on IN-
1K. Top-1 and Top-5 validation accuracy are reported. †: our reproduction using the official codes.
∗: results cited from Huang et al. (2022).

Method Epochs 1% Labels 10% Labels

Top-1 Top-5 Top-1 Top-5

Asymmetric loss
MoCo-v2 (Chen et al., 2020c)∗ 200 43.8 72.3 61.9 84.6
LEWEL-MoCo (Huang et al., 2022) 200 45.1 71.1 62.5 84.9
SCD-MoCo (Ours) 200 47.7 75.6 64.7 87.3
SCD-BYOL (Ours) 200 53.6 78.5 67.7 88.2
Symmetric loss. 2× FLOPS
SimCLR (Chen et al., 2020a) 1000 48.3 75.5 65.6 87.8
SwAV (Caron et al., 2020) 800 53.9 78.5 70.2 89.9
BYOL (Grill et al., 2020) 1000 53.2 78.4 68.8 89.0
LEWEL-BYOL (Huang et al., 2022) 200 56.1 79.9 68.7 88.9
SCD-BYOL (2x) (Ours) 200 55.6 79.6 68.9 89.0

Following Huang et al. (2022); Chen et al. (2020a), we evaluate the fine-tuning performance of the
pre-trained model using a small subset of IN-1K training set. We use the same splits of 1% and
10% labelled data in IN-1K as in SimCLR (Chen et al., 2020a). The training details are provided
in Appendix A. We report the Top-1 and Top-5 accuracy on 1N-1K validation set in Tab. 6. Our
method outperforms the corresponding baselines MoCo-v2/BYOL under both 1% and 10% settings.
The results on IN-1K linear classification and semi-supervised classification show that our SCD
learns better image-level representations.
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B.3 PRE-TRAINING WITH SCENE-CENTRIC DATA

Table 7: Transfer learning results with COCO pre-training. ∗: results cited from Wen et al.
(2022).

Method Epochs COCO Det. COCO Instance Seg.

APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

ContraCAM (Mo et al., 2021) 800 36.6 - - 32.4 - -
CAST (Selvaraju et al., 2021) 800 39.4 60.0 42.8 35.8 57.1 38.6
DetCon (Hénaff et al., 2021)∗ 1000 39.8 59.5 43.5 35.9 56.4 38.7
ORL (Xie et al., 2021b)∗ 800 40.3 60.2 44.4 36.3 57.3 38.9
SCD-ORL 800 40.6 60.7 44.8 36.5 57.8 39.2

In this section, we extend our method to scene-centric data COCO. We use ORL (Xie et al., 2021b)
as the pre-training backbone by applying our semantic separation to the global and local patches
used in ORL. The model is pre-trained for 800 epochs on COCO and then evaluated on COCO
detection and segmentation, following Xie et al. (2021b). The results reported in Tab. 7 show that
our method performs consistently well for scene images.

C ADDITIONAL ANALYSES ON SCD

C.1 VISUALIZATION OF LEARNED SALIENCY MAPS

To better understand the foreground and background separation, we visualize the learned saliency
maps generated by SCD-BYOL on IN-1K validation set. As shown in Fig. 4, the saliency maps
can identify the rough location of the foreground feature pixels (of feature map), including the
region of an object (i.e., 1st column) and the region of multiple objects (i.e., 2nd-6th columns).
By contrast, LEWEL can’t separate foreground and background properly and sometimes it even
fails to locate the object regions. We also have similar observations on scene images from the
visualization on COCO validation set in Fig. 5. The visualizations on both IN-1K and COCO suggest
that the proposed foreground and background separation encourages the model to look into the
foreground and background regions, which helps alleviate the influence of nuisances of background.
However, we want to emphasize that locating salient regions is just a proxy to learn generalizable
representations, but not the target of this work.

C.2 VISUALIZATION OF SALIENCY MAPS AT DIFFERENT PRE-TRAINING STAGES

To better understand the process of saliency map prediction, we visualize the saliency map gener-
ated at different pre-training stages (i.e., 0th, 15th, 100th, 200th epoch) in Fig. 6. As the learned
feature improves with the model optimization, it becomes more discriminative and the foreground
localization gets better.

C.3 IN-1K CLASSIFICATION USING FOREGROUND SEMANTICS

Table 8: Results of IN-1K linear classification using foreground semantics. “fg” is the result
using foreground semantics as the input to the linear classifier.

Method IN-1K

MoCo-v2 67.5
SCD-MoCo 68.6
SCD-MoCo (fg) 68.9
BYOL 70.6
SCD-BYOL 72.2
SCD-BYOL (fg) 72.6
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Figure 4: Visualization of the learned saliency maps generated by LEWEL (Huang et al., 2022)
(LEWEL-BYOL) and our method SCD (SCD-BYOL) on IN-1K validation set. Each column
shows the original image and the corresponding saliency maps. For LEWEL, we visualize the
heatmap with the highest variance, following Shu et al. (2023).

We investigate the effectiveness of foreground semantics by using it for linear classification. The
results are provided in Tab. 8. With foreground semantics, SCD outperforms its counterpart that di-
rectly uses representation vectors after global average pooling for classification, which demonstrates
the foreground semantics successfully capture the information of the foreground regions while ex-
cluding the influence of nuisances of background information.

D TRAINING COST ANALYSIS

In this section, we provide the comparison of training cost on IN-1K pre-training. We perform the
pre-training on IN-1K with ResNet-50 backbone using 2 NVIDIA A100 GPUs. In Tab. 9, we report
the time cost of a single training epoch (“Time/Epoch”) relative to supervised training (“Super-
vised”). As shown in Tab. 9, with comparable or even lower training cost, our method significantly
outperforms the baselines, e.g., SCD-BYOL with asymmetric loss considerably outperforms BYOL
with symmetric loss while the training time of our method is much shorter (1.98 vs. 2.90).
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Figure 5: Visualization of the learned saliency maps on COCO validation set. Each column
shows the original image and the corresponding saliency maps. For LEWEL, we visualize the
heatmap with the highest variance, following Shu et al. (2023). The models are pre-trained on IN-
1K and then evaluated on COCO.

Image Epoch 0 Epoch 100 Epoch 200Epoch 15

Figure 6: Visualization on IN-1K w.r.t. pre-training epochs.

E DISCUSSIONS

E.1 DISCUSSION WITH LEWEL

Both LEWEL (Huang et al., 2022) and our SCD seek to alleviate object-irrelevant nuisances of back-
ground induced by random cropping (Huang et al., 2022). However, our method is fundamentally
different as follows:
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Table 9: Comparison of pre-training running time relative to supervised training. Batch size is
set to 256 for all methods for a fair comparison.

Method Epochs Time/
Epoch IN-1K VOC 07+12

Supervised 100 1.00 76.5 53.5

MoCo-v2 (Chen et al., 2020c) 200 1.62 67.5 57.0
SCD-MoCo 200 1.79 68.6 57.3

BYOL (Grill et al., 2020) 200 2.90 70.6 55.3
SCD-BYOL 200 1.98 72.2 57.1

• Motivation. LEWEL, which is inspired by segmentation, simply matches various visual
patterns (local regions) across views independently, failing to look into the foreground and
background relations. In contrast, inspired by salient object detection, we explicitly sepa-
rate foreground and background in random crops, so that the model learns to look into the
foreground and background regions (exclude the influence of object-irrelevant background)
and preserve more spatial information in the learned representations. In a nutshell, our sep-
aration strategy, i.e., locating foreground regions is designed to encourage the model
to preserve the object information and disregard the background while background
still remains nuisances in LEWEL as there is no explicit constraint on foreground and
background for LEWEL.

• Results. We outperform LEWEL on all tasks, including classification, detection and
segmentation. More importantly, as shown in Tab. 5, LEWEL (LEWEL-MoCo) only
has marginal performance gain over MoCo-v2 on COCO with ResNet-50-FPN backbone
(+0.2), while our gain is considerable (+0.9 on COCO Det., +0.7 on COCO seg.). More-
over, we show that our method has better ability to identify foreground regions compared
with LEWEL on ImageNet and COCO (see Figs. 4 and 5).

E.2 DISCUSSION WITH DENSE REPRESENTATION LEARNING

In this paper, we focus on alleviating the nuisances of background induced by random cropping,
which is a crucial step in Siamese representation learning (Peng et al., 2022; Huang et al., 2022).
We verify the effectiveness of our method on image-level pre-training (object-centric ImageNet),
where the augmented views have the same identity so that the objective of contrastive learning
and non-contrastive learning can be directly applied to learn object-centric representations. As
for learning from scene images (i.e., dense representation learning (Mo et al., 2021; Hénaff et al.,
2021)), since the scene-centric data usually has objects with multiple identities, preprocessing the
scene-centric data to generate object-centric crops is required, i.e., identify object instances from
object regions first (which could be achieved with thresholding and clustering the predicted saliency
maps) and then obtain object-centric crops through random cropping (Mo et al., 2021; Chen et al.,
2023). Therefore, the core idea of dense representation learning is still to learn object-centric
representations for these objects and image-level pre-training is the fundamental step for dense
representation learning. In other words, dense representation learning computes embedding for
each cropped object instance, which is still limited by the nuisances of background induced by ran-
dom cropping. Moreover, dense representation learning only cares about the dense prediction
performance, at the cost of degraded classification performance. In contrast, we aim to learn
general representations that benefit both classification and dense prediction tasks (e.g., detec-
tion and segmentation), which is the goal of image-level pre-training. Despite the differences, our
SCD outperforms popular dense representation learning baselines (e.g., DenseCL, PixelPro, Det-
Con) in Tab. 5. In particular, we significantly outperform DenseCL and PixelPro on classification.

We show that compared with baseline LEWEL, our SCD has better ability to identify object re-
gions on object-centric data like ImageNet and scene-centric data (multiple objects) like COCO
in Figs. 4 and 5. In addition, we also verify the effectiveness of our solution to nuisances of back-
ground by showing that our foreground embedding from weighted average pooling achieves higher
performance on classification than embedding from global average pooling in Tab. 8.
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