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Abstract

Variational Inequality (VI) problems have at-
tracted great interest in the machine learning (ML)
community due to their application in adversarial
and multi-agent training. Despite its relevance in
ML, the oft-used strong-monotonicity and Lips-
chitz continuity assumptions on VI problems are
restrictive and do not hold in many machine learn-
ing problems. To address this, we relax smooth-
ness and monotonicity assumptions and study
structured non-monotone generalized smoothness.
The key idea of our results is in adaptive stepsizes.
We prove the first-known convergence results for
solving generalized smooth VIs for the three pop-
ular methods, namely, projection, Korpelevich,
and Popov methods. Our convergence rate results
for generalized smooth VIs match or improve ex-
isting results on smooth VIs. We present numeri-
cal experiments that support our theoretical guar-
antees and highlight the efficiency of proposed
adaptive stepsizes.

1. Introduction
We consider a constrained variational inequality (VI) prob-
lem on a set U ⊆ Rm. Given an operator F : U → Rm,
the variational inequality problem, denoted as VI(U,F ), is
defined as

find u∗ ∈ U such that ⟨F (u∗), u− u∗⟩ ≥ 0, ∀u ∈ U.
(1)

Many numerical problems, such as constrained optimization,
saddle-point problems, and multi-agent games are important
and pertinent practical examples of VI problems. The recent
interest in VIs is due to their application in machine learn-
ing applications such as generative adversarial networks
(GANs) (Gemp and Mahadevan, 2018; Gidel et al., 2019)
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and reinforcement learning (Daskalakis et al., 2020; Kotsalis
et al., 2022).

The VI problem has been extensively studied (Facchinei and
Pang, 2003; Tseng, 1995; Beznosikov et al., 2022) under
(strong)-monotonicity and Lipschitz continuity assumptions
on the operator. Two optimal solution approaches for solv-
ing VIs under these assumptions are the well-known extra-
gradient (which we interchangeably refer to as the Korpele-
vich method) (Korpelevich, 1976), and optimistic gradient
(which we refer to as the Popov method here) (Popov, 1980)
methods; both require taking an extra-gradient step in every
iteration though Popov requires only one oracle call to do
so. Despite this progress, machine learning (ML) applica-
tions do not satisfy such assumptions (Diakonikolas et al.,
2021; Zhang et al., 2020). To this end, recent works (Wei
et al., 2021; Diakonikolas et al., 2021; Vankov et al., 2023)
have proposed and investigated new classes of structured
non-monotone operators to address non-monotonicity in
VIs. Furthermore, while the bulk of research on VIs assume
Lipschitz continuity or boundedness of the operator, more
recently, guarantees for non-smooth VIs with only a linear
growth assumption have been considered using Korpelevich
(Vlatakis-Gkaragkounis et al., 2023) and Popov (Vankov
et al., 2023) methods.

For the class of smooth VI operators, (Malitsky, 2020)
propose adaptive golden ratios stepsizes to adapt to a lo-
cal Lipschitz constant. (Böhm, 2023) utilize this adaptive
schedule for the Extragradient method and prove sublinear
convergence under a weak Minty assumption. (Gorbunov
et al., 2022b) use clipping techniques to show convergence
of stochastic Extragradient method under heavy tail noise.
They use the fact that the operator is Lipschitz continuous
to show that iterates of the clipped Korpelevich method
stay within the bounded set. However, the resulting Lips-
chitz constants can be very large, thus leading to extremely
small stepsizes and slow convergence rates. More generally,
for non-smooth VIs, despite the lack of theoretical results,
adaptive and normalized first-order methods are popular and
efficient in practice for training GANs (Brock et al., 2019),
(Karras et al., 2020). Recently, (Jelassi et al., 2022) argues
that the success of the ADAM optimizer (Kingma and Ba,
2015) for GANs is due to normalization.

Non-smoothness assumptions on the operator are of increas-
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Table 1. Summary of results on rates at which the quantities R2
k and D2

k decrease with the number k of iterations. We use “Asym”
as an abbreviation for asymptotic results. Performance measure for Popov method is R2

k = dist2(uk, U
∗) + ∥uk − hk−1∥2, and for

Korpelevich method is D2
k = dist2(hk, U

∗). Constant γ is a lower bound of adaptive stepsizes, i.e. γ ≤ γk for all k ≥ 0. Constant
C = 2−p/2 min{ 1

2
(2R2

1)
−(p−2)/2, 2−p+2µγ}. Constants Bu, Bh are upper bounds of dist(uk, U

∗) and dist(hk, U
∗) respectively.

Methods p ≤ 2 p > 2
Projection Asym (Thm 4.1) Asym (Thm 4.1)

Korpelevich D2
0 exp

(
− µ

B2−p
u

γK
)

( Thm 5.3) D2
0(1 + µγ(D2

0)
(p−2)/2k)−2/(p−2) ( Thm 5.3)

Popov R2
1 exp

(
− µ

B2−p
h

γK
)

(Thm 6.3) R2
1(1 + pC(R2

1)
(p−2)/2k)−2/(p−2) (Thm 6.3)

ing interest across the broader optimization literature in
the context of ML. In the context of deep learning opti-
mization (Zhang et al., 2020) observed a linear dependence
between the norm of the operator and its Jacobian. Based on
this observation, they introduced the (L0, L1)-smoothness
assumption, under which the sublinear convergence rate
for the clipped gradient method is derived. Following this,
(Chen et al., 2023) proposed an α-symmetric class of gen-
eralized smooth operators that allows extending (L0, L1)-
smoothness to non-differentiable operators. For this class,
the sublinear convergence rate for normalized gradient de-
scent was proved.

We introduce the class of structured non-monotone general-
ized smooth VIs with α-symmetric operators. We address
the following two natural questions in this context and an-
swer them both in the affirmative: (i) Can convergence
guarantees be assured for VIs under the assumption of gen-
eralized smoothness of the operator?; and (ii) If so, is the
convergence for generalized smooth VIs the same as that
for smooth VIs?

We focus on the class of structured non-monotone VIs with
p-quasi sharp operators under the weakest known assump-
tion on generalized smoothness called α-symmetricity. The
class of p-quasi sharp operators includes weak sharp and
quasi-strongly monotone operators and coincides with the
Saddle-Point Metric Subregularity (SP-MS) assumption for
p ≥ 2. Analogously, the class of α-symmetric operators
is the weakest class of continuous operators and includes
Lipschitz continuous and (L0, L1)-smooth operators. Our
key contributions are summarized below (see also Table 1)

• We provide the first known analysis of first-order meth-
ods for solving structured non-monotone VIs under
generalized smooth assumption. In particular, we focus
on a class of p-quasi sharp and α-symmetric operators.
The key feature of our analysis is the use of cleverly
chosen adaptive stepsizes for three well-known meth-
ods, namely, projection, Korpelevich, and Popov.

• For the projection method with adaptive stepsizes, we
prove asymptotic convergence to a solution. Moreover,

as a consequence, we show that the method converges
linearly to the 1-neighborhood of the solution.

• For Korpelevich and Popov methods, we prove
asymptotic convergence to a solution. Using the α-
symmetricity assumption, we show that the sequence
of provided adaptive stepsizes are lower bounded for
both methods. Moreover, we show a linear conver-
gence rate for both methods for 2-quasi sharp oper-
ators. For p > 2, we show a rate of O(k−2/(p−2)),
which is faster than the rate O(k−1/(p−1)) provided
in (Wei et al., 2021) under more restrictive assump-
tions on monotonicity and Lipschitz continuity of the
operator.

• When the parameters of the problem such as
p, α, L0, L1 are unknown or overestimated, for the Ko-
rpelevich method, we introduce an easier method to
fine-tune stepsize parameters. We do so by separating
the clipping part from the stepsize parameter sequence.
For these easy-to-tune stepsizes, we prove asymptotic
convergence. In particular, we introduce a descent in-
equality, which is crucial to obtain convergence rates
under different step-size schedules. Additionally, us-
ing backtracking, we obtain convergence rates of the
clipped Korpelevich method without information on
parameters of the problem p, α, L0, L1.

• Finally, we present numerical experiments to com-
pare the performance of the three considered methods
with proposed adaptive stepsizes and Korpelevich with
golden ratio stepsizes (Böhm, 2023) for different α
and p. We observe that our proposed stepsizes outper-
form golden ratio stepsizes, and as predicted by our
theory, the convergence of all methods slows down as
α and p increase. We also highlight an experiment with
decreasing adaptive stepsizes that are independent of
the problem parameters. The key takeaway from this
experiment is the observation that projection appears
to significantly slow down relative to the other two
methods for various parameter settings.
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2. Assumptions on VI
The operator F is said to be Lipschitz continuous if there
exists L > 0 such that:

∥F (u)− F (v)∥ ≤ L∥u− v∥ for all u, v ∈ U. (2)

While being the most common assumption used in the liter-
ature, it is quite restrictive. Recently, a weaker assumption
has been considered in (Zhang et al., 2020), given as follows:

∥∇F (u)∥ ≤ L0 + L1∥F (u)∥ for all u ∈ U. (3)

When the operator F (·) is differentiable and L-Lipshitz
continuous, it satisfies (3) with L0 = L and L1 = 0. In
the experiments reported in (Zhang et al., 2020), it was
observed that the neural network models tend to satisfy the
condition in (3). Later in (Chen et al., 2023), a weaker
smoothness condition than (3) was introduced leading to
a class of operators termed α-symmetric, which includes
operators F (·) satisfying the following relation for some
constants L0, L1 ≥ 0 and for all u, v ∈ U :

∥F (u)− F (v)∥ ≤
(
L0 + L1 max

θ∈[0,1]
∥F (wθ)∥α

)
∥u− v∥,

(4)
where wθ = θu+(1−θ)v and α ∈ (0, 1]. If a differentiable
operator satisfies the condition in (3), then it satisfies the
condition in (4). Moreover, it has been shown in (Chen
et al., 2023) that the class of differentiable and α-symmetric
operators with α = 1 is equivalent to the class of operators
with linear growth of the Jacobian, as in (3). Since the class
of α-symmetric operators is a rather wide class, we focus
on such operators.
Assumption 2.1. Given a set U ⊆ Rm, the operator F (·) :
U → Rm is α-symmetric over U , i.e., for some α ∈ (0, 1]
and L0, L1 ≥ 0, we have for all u, v ∈ U ,

∥F (u)− F (v)∥ ≤
(
L0 + L1 max

θ∈[0,1]
∥F (wθ)∥α

)
∥u− v∥,

(5)
where wθ = θu+ (1− θ)v.

An alternative characterization of an α-symmetric operators
has been proved in (Chen et al., 2023), as given in the
following proposition.
Proposition 2.2 ((Chen et al., 2023), Proposition 1). Let
U ⊆ Rm be a nonempty set and let F (·) : U → Rm be an
operator. Then, we have

(a) F (·) is α-symmetric with α ∈ (0, 1) and constants
L0, L1 ≥ 0 if and only if the following relation holds
for all y, y′ ∈ U ,

∥F (y)− F (y′)∥ ≤ ∥y − y′∥(K0 +K1∥F (y′)∥α

+K2∥y − y′∥α/(1−α)),
(6)

where K0 = L0(2
α2/(1−α) + 1), K1 =

L12
α2/(1−α)3α, and K2 = L

1/(1−α)
1 2α

2/(1−α)3α(1−
α)α/(1−α).

(b) F (·) is α-symmetric with α = 1 and constants
L0, L1 ≥ 0 if and only if the following relation holds
for all y, y′ ∈ U ,

∥F (y)− F (y′)∥
≤ ∥y − y′∥(L0 + L1∥F (y′)∥) exp(L1∥y − y′∥).

(7)

Proposition 2.2 is useful for our analysis, since it describes
α-symmetric operator by using two points y, y′ ∈ U , and
bypasses the evaluation of maxθ∈(0,1) ∥F (wθ)∥α.

A number of structured non-monotonicity assumptions were
proposed to make the assumptions on the operator closer
to real-life problems. Such assumptions include strong co-
herency (Song et al., 2020), weak Minty (Choudhury et al.,
2023), Saddle-Point Metric Subregularity (SP-MS)(Wei
et al., 2021), and p-quasi sharpness (Vankov et al., 2023).
Each of these assumptions imposes a special structured
lower bound for the quantity ⟨F (u), u− u∗⟩, where u∗ is a
solution to the underlying VI problem. In the recent work
(Vankov et al., 2023), it has been shown that the class of
p-quasi sharp operators includes strongly-monotone and
strongly coherent operators, and coincides with the class
of operators satisfying SP-MS condition for p > 2 which
need not be monotone. Due to the generality of the p-quasi
sharpness property, we consider the class of p-quasi sharp
operators. To formally introduce this class, we define the
solution set for the VI(U,F ), which is denoted by U∗, as
follows:

U∗ = {u∗ ∈ U | ⟨F (u∗), u− u∗⟩ ≥ 0 for all u ∈ U}.

Throughout this paper, we make the following assumption
on the constraint set and the solution set.
Assumption 2.3. The set U ⊆ Rm is a nonempty closed
convex set, and the solution set U∗ ⊆ Rm is nonempty and
closed.
Assumption 2.4. The operator F (·) : U → Rm has a p-
quasi sharpness property over U relative to the solution set
U∗, i.e., for some p > 0, µ > 0, and for all u ∈ U and all
u∗ ∈ U∗,

⟨F (u), u− u∗⟩ ≥ µdistp(u, U∗). (8)

Next, motivated by the example provided in (Vankov et al.,
2023), we present an operator that is p-quasi sharp and
α-symmetric.

Proposition 2.5. Let F (u) =

[
sign(u1)|u1|p−1 + u2

sign(u2)|u2|p−1 − u1

]
for u ∈ R2. Then, the operator F (·) is p-quasi sharp
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for p ≥ 1 with µ = 21−p. Moreover, when p > 2,
the operator is α-symmetric with α = p−2

p−1 , and L0 =

1 + (p− 1)21/241/(p−1), L1 = 2(p− 1)21/2(p−1).

Note that for this example, the parameter p of quasi-
sharpness depends on parameter α of α-symmetricity and
vice versa. To illustrate the importance of α-symmetric as-
sumption consider the operator F (u) from Proposition 2.5
with p = 9.0 and α = 0.875 on a ball B(0, 10.0). Opera-
tor F (u) is Lipschitz continuous in the set B(0, 10.0), but
the Lipschitz constant is larger than L = 107 − 1, while
L0 = 1+8×23/4 and L1 = 16×21/16 are relatively small.

3. Methods for Solving VI
Our goal is to develop methods and provide convergence
guarantees for solving non-monotone VI problems with
α-symmetric operators. In this section, we consider three
popular methods for solving VIs. The first method of our
interest is the projection method, given as follows:

uk+1 = PU (uk − γkF (uk)) for all k ≥ 0, (9)

where γk > 0 is the step-size and u0 ∈ U is an arbitrary ini-
tial point. Despite its simplicity and efficiency in optimiza-
tion, the projection method may diverge for monotone VIs
(Daskalakis et al., 2018). The projection method converges
to the solution for strongly monotone VIs but is not opti-
mal. In fact, two methods proposed in (Korpelevich, 1976;
Popov, 1980), named extragradient and optimistic meth-
ods are optimal for strongly monotone VIs. In the recent
works (Diakonikolas et al., 2021; Wei et al., 2021; Loizou
et al., 2021; Vankov et al., 2023) authors considered struc-
tured non-monotone VIs. The convergence rate of Popov
and Korpelevich methods for quasi-strong monotone and
2-quasi sharp operators matches optimal convergence rates
(Beznosikov et al., 2022; Gorbunov et al., 2022a; Choud-
hury et al., 2023; Vankov et al., 2023). Motivated by these
results, we consider these two methods. The Korpelevich
method, is given as follows. For all k ≥ 0,

uk = PU (hk − γkF (hk)),

hk+1 = PU (hk − γkF (uk)),
(10)

where γk is step-size and h0 ∈ U is an arbitrary initial point.
The Popov method, is presented below. For all k ≥ 0,

uk+1 = PU (uk − γkF (hk)),

hk+1 = PU (uk+1 − γk+1F (hk)),
(11)

where γk > 0 is the step-size and u0, h0 ∈ U are arbitrary
initial points.

4. Convergence Analysis for Projection
Method

In this section, we provide convergence results for projec-
tion method (9). To show convergence of projection method
for α-symmetric and p-quasi sharp operators we define adap-
tive1 stepsizes as:

γk = βk min

{
1,

1

∥F (uk)∥

}
. (12)

Theorem 4.1. Let Assumptions 2.1, 2.3, 2.4 hold. Also,
let stepsizes be given by (12) and sequence βk be such
that

∑∞
k=0 βk = ∞,

∑∞
k=0 β

2
k < ∞. Then, the following

statements hold for the iterate sequences {uk} generated by
the projection method (9):

(a) The following inequality holds for any k ≥ 0,

∥uk+1 − u∗∥2 ≤ ∥uk − u∗∥2 − 2γkdist
p(uk, U

∗) + β2
k

(13)
Moreover, for any solution u∗ ∈ U∗ the sequence {∥uk −
u∗∥}∞k=0 is bounded by a constant B(u∗).

(b) The stepsizes sequence {γk} is bounded by

γk ≥ βk min

{
1,

1

C1
,
1

C1

}
for all k ≥ 0,

where C1 and C̄1 are given by

C1 = B(u∗
0)(K0 +K1∥F (u∗

0)∥α

+K2B(u∗
0)

α/(1−α)) + ∥F (u∗
0)∥

C1 = B(u∗
0)(L0 + L1∥F (u∗

0)∥) exp(L1B(u∗
0))

+ ∥F (u∗
0)∥,

and u∗
0 = PU∗(u0).

(c) The sequence {uk} converges to some solution ū ∈ U∗.

Interestingly, to achieve the descent inequality (13) we don’t
use Assumption 2.1. But this assumption plays a crucial
role in showing the upper bound on a sequence {∥F (uk)∥},
and as a result a lower bound on the stepsizes. In order to
get converges from equation (13), it is required to show that
stepsize sequence is square summable, i.e.

∑∞
k=0 γ

2
k ≤ ∞.

Corollary 4.2. The projection method with adaptive step-
sizes as given in (12) and Theorem 4.1 enjoys a linear con-
vergence rate to a 1-neighborhood of the solution set for
p ≥ 2.

Corollary 4.2 follows straight from equation (13) in Theo-
rem 4.1 (a) and stepsizes from (Stich, 2019). In Section 8,

1By adaptive stepsizes we mean stepsizes that depend on the
operator value at the current point and previous points.
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we show that this rate holds in our experiments. More-
over, results of Theorem 4.1 hold for normalized projection
method (4), that can be viewed as deterministic version of
normalized SGD (Jelassi et al., 2022):

uk+1 = PU

(
uk − βk

1

∥F (uk)∥
F (uk)

)
, ∀ k ≥ 0.

5. Convergence Analysis for Korpelevich
Method

In this section, we consider the Korpelevich method with
adaptive stepsizes. We show the asymptotic convergence
of the method and provide its convergence rate. Firstly, we
derive a basic inequality for Korpelevich method (10) with
arbitrary stepsizes without any assumptions on the operator.
This lemma is the basis for all the subsequent results.

Lemma 5.1. Let U be a nonempty closed convex set. Then,
for the iterate sequences {uk} and {hk} generated by the
Korpelevich method (10) we have for all y ∈ U and k ≥ 0,

∥hk+1 − y∥2 ≤∥hk − y∥2 − ∥hk − uk∥2

− 2γk⟨F (uk), uk − y⟩
+ γ2

k ∥F (hk)− F (uk)∥2.
(14)

The proof of Lemma 5.1 can be found in Appendix D. Next
we provide adaptive step-sizes for Korpelevich method em-
ployed with an α-symmetric operator with α ∈ (0, 1]. When
α ∈ (0, 1), the stepsizes are defined as follows: for all
k ≥ 0,

γk = min

{
1

4µ
,

1

3
√
2K0

,
1

∥F (hk)∥
,

1

3
√
2K1∥F (hk)∥α

,
1

3
√
2K2

}
, (15)

while for α = 1, the stepsizes are given by: for all k ≥ 0,

γk = min

{
1

4µ
,

1

2
√
2eL0

,
1

2
√
2eL1∥F (hk)∥

}
. (16)

The constants L0 > 0 and L1 > 0 are related to the α-
smoothness of the operator, while K0,K1,K2 > 0 are
defined in terms of L0 and L1 as given in Proposition 2.2.

We present a theorem on the convergence of the Korpele-
vich method (10) with adaptive stepsizes (15), (16), to the
solution set for p-quasi sharp and α-symmetric operators
with α ∈ (0, 1]. There are two key ideas behind the proof.

Firstly, one need to upper bound γ2
k∥F (hk) − F (uk)∥2

from Lemma 5.1 to get descent inequality. To do that, we
use Proposition 2.2 of α-symmetric operator and carefully
chosen adaptive stepsizes {γk} (15), (16). The stepsizes
utilize the idea of normalization of operator or operator

clipping. Notice that based on Proposition 2.2, ∥F (hk)−
F (hk−1)∥ depends on ∥F (hk)∥ and ∥uk−hk∥, while based
on the structure of the method quantity ∥uk − hk∥ can be
upper bounded by γk∥F (hk)∥. This makes the stepsizes γk
depended only on operator value at point hk and parameters
from Assumption 2.1.

Secondly, to obtain convergence guarantees it is crucial
to find a lower bound for the stepsizes sequence. Such a
lower bound is possible to find when an operator is p-quasi
sharp, or more generally when ⟨F (hk), hk − u∗⟩ is posi-
tive. When this property holds, it is easy to observe that
quantity ∥hk − u∗∥2 is non-increasing for all u∗ ∈ U∗ and
k ≥ 0. Using this fact and assumption on α-symmetric op-
erator we are able to present a lower bound on the adaptive
stepsizes (15), (16). Finally, we apply deterministic ver-
sion of Robbins-Siegmund lemma (Robbins and Siegmund,
1971)(see Lemma B.3 in Appendix) and get the desired con-
vergence results. Formally, the theorem summarizing the
result on convergence and lower bound on stepsizes is given
below.
Theorem 5.2. Let Assumptions 2.1, 2.3, 2.4 hold. Also, let
the stepsizes be given by (15) if α ∈ (0, 1) and by (16) if
α = 1. Then, the following statements hold for the iterate
sequences {uk} and {hk} generated by the Korpelevich
method (10):

(a) The following descent inequality holds for any solution
u∗ ∈ U∗ and any k ≥ 0,

∥hk+1 − u∗∥2 ≤ ∥hk − u∗∥2 − 1

2
∥uk − hk∥2

− 2γkµdist
p(uk, U

∗).
(17)

(b) The stepsizes sequence {γk} is bounded below, i.e.,

γk ≥ γ for all k ≥ 0.

For α ∈ (0, 1), the constant γ is given by

γ = min

{
1

4µ
,

1

3
√
2K0

,
1

C1
,

1

3
√
2K1Cα

1

,
1

3
√
2K2

}
,

and for α = 1, it is given by

γ = min

{
1

4µ
,

1

2
√
2eL0

,
1

2
√
2eL1C1

}
,

where the constants K0,K1,K2 > 0 are as given in Propo-
sition 2.2, while C1 and C̄1 are given by

C1 =D0(K0 +K1∥F (PU∗(h0))∥α +K2(D0)
α

(1−α) )

+ ∥F (PU∗(h0))∥,

C1 =D0(L0 + L1∥F (PU∗(h0))∥) exp(L1D0)

+ ∥F (PU∗(h0))∥,

and D2
0 = dist2(h0, U

∗).

(c) The iterates uk and hk converge to a solution ū ∈ U∗.
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The proof of these results can be found in Appendix D.
The conditions on a stepsize sequence {γk} for Korpelevich
method in Theorem 5.2 are less restrictive than conditions
on {γk} for projection method from Theorem 4.1. In Theo-
rem 4.1, stepsizes should be diminishing, while for Korpele-
vich method, it is possible to have stepsizes with a global
nonzero lower bound γ. Next, we provide convergence rate
for Korpelevich method.
Theorem 5.3. Let Assumptions 2.1, 2.3, 2.4 hold. Consider
the Korpelevich method (10) with the stepsizes γk given
by (15) for α ∈ (0, 1), and by (16) for α = 1, and let

D2
k = dist2(hk, U

∗) for all k ≥ 0.

Then, the following results hold for the quantity D2
k:

Case (a) If the operator F (·) is p-quasi-sharp with p ≤ 2,
then

D2
k+1 ≤ (1− µ

(Bu)2−p
γ)D2

k for all k ≥ 0, (18)

where Bu ∈ R is such that dist(uk, U
∗) ≤ Bu, ∀k ≥ 0.

Case (b) If the operator F (·) is p-quasi-sharp with p > 2,
then

D2
k+1 ≤

D2
0

(1 + µγk(D2
0)

(p−2)/2)2/(p−2)
for all k ≥ 1.

(19)
The constant γ in (18) and (19) is the lower-bound on the
stepsizes provided in Theorem 5.2.

The proof of these results can be found in Appendix D.
Notice that when F is L0-Lipschitz continuous, the constant
L1 = 0, and α = 1, then the stepsizes will be simplified to:

γk = min

{
1

4µ
,

1

2
√
2eL0

}
. (20)

In this case, the rate provided Theorem 5.3(a) recovers the
optimal rate of O(L0

µ exp(− µ
L0

k)) for 2-quasi-sharp oper-
ators. Notice that for p > 2, from equation (17) in Theo-
rem 5.2 (a), it follows that convergence to 1-neighborhood
of a solution is linear.

6. Convergence Analysis for Popov Method
We provide convergence results for Popov method (11) for
solving structured non-monotone non-Lipschitz VIs. We
start with a lemma on the iterates of Popov method which
serve as a base for further convergence results. We collate
all our proofs in Appendix E.
Lemma 6.1. Let Assumption 2.3 hold. Then, for the it-
erate sequences {uk} and {hk} generated by the Popov
method (11) we have for all y ∈ U and k ≥ 1,

∥uk+1 − y∥2 ≤ ∥uk − y∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2

− 2γk⟨F (hk), hk − y⟩
+ 2γ2

k ∥F (hk)− F (hk−1)∥2.

The stepsizes for Popov method for α-symmetric operators
with different α ∈ (0, 1] are given below. When α ∈ (0, 1)
the stepsizes for all k ≥ 1 are:

γk =min

{
1

∥F (hk−1)∥
,

1

6
√
2K0

,
1

6
√
2K1∥F (hk−1)∥α

,

1

6
√
2K2(∥uk − hk−1∥+ 1)α/(1−α)

,
1

4µ

}
.

(21)
For α = 1, the stepsizes for Popov method for all k ≥ 1 are

γk = min

{
1

4µ
,

1

∥F (hk−1)∥
,

1

2
√
2(L0+L1∥F (hk−1)∥) exp(L1∥uk−hk−1∥+1)

}
.(22)

To prove the convergence of Popov method we use the same
two ideas as in the proof of Korpelevich method: (i) provide
an upper bound on γ2

k∥F (hk) − F (hk−1)∥2 utilizing the
adaptive stepsizes (21), and (22); (ii) provide a lower bound
on the stepsizes sequence. Based on Proposition 2.2, the
term 2γ2

k ∥F (hk)− F (hk−1)∥2 from Lemma 6.1 depends
on ∥F (hk−1)∥ and ∥hk − hk−1∥. Unlike the bound in the
analysis of Korpelevich method, in Popov method, the quan-
tity ∥hk − hk−1∥ can’t be upper bounded by ∥F (hk−1)∥.
To address this issue, using the projection inequality and the
method update rule, we provide a bound of ∥hk − hk−1∥
using γk∥F (hk−1)∥ and ∥uk − hk−1∥. Notice that, based
on the method updates, the stepsize γk can’t depend on hk.
Thus, normalization by ∥F (hk)∥, ∥F (hk)− F (hk−1)∥ or
∥hk − hk−1∥ is not possible. Thus, γk uses normalization
by ∥uk−hk−1∥ and ∥F (hk−1)∥. We next prove asymptotic
convergence of Popov method with adaptive stepsizes.
Theorem 6.2. Let Assumptions 2.1, 2.3, 2.4 hold. Also, let
the stepsizes be given by (21) if α ∈ (0, 1) and by (22) if
α = 1. Then, the following statements hold for the iterate
sequences {uk} and {hk} generated by the Popov method:

(a) The descent inequality holds for arbitrary solution u∗ ∈
U∗ and any k ≥ 1

∥uk+1 − u∗∥2 + ∥uk+1 − hk∥2 ≤ ∥uk − u∗∥2

+
1

2
∥uk − hk−1∥2 −

1

2
∥uk − hk∥2

− 2γk⟨F (hk), hk − u∗⟩.
(23)

(b) The stepsizes sequence {γk} is bounded below, i.e.,

γk ≥ γ for all k ≥ 1.

For α ∈ (0, 1), the constant γ is given by

γ = min

{
1

4µ
,
1

C1
,

1

6
√
2K0

,
1

6
√
2K1(C1)α/2

,

1

6
√
2K2(

√
2R1 + 1)α/(1−α)

}
, (24)
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and for α = 1, it is given by

γ = min

{
1

4µ
,
1

C1
,

1

2
√
2(L0 + L1C1) exp(

√
2L1R1 + 1)

}
.

(25)

The constants K0,K1,K2 are as given in Proposition 2.2,
while C1 and C̄1 are given by

C1 =
√
2R1(K0 +K1∥F (PU∗(u1))∥α

+K2(
√
2R1)

1/(1−α)) + ∥F (PU∗(u1))∥,

C̄1 =
√
2R1(L0 + L1∥F (PU∗(u1))∥) exp(

√
2L1R1)

+∥F (PU∗(u1))∥,

and R2
1 = ∥u1 − PU∗(u1)∥2 + ∥u1 − h0∥2.

(c) The iterates uk and hk converge to a solution ū ∈ U∗.

Based on results of Theorem 6.2, we provide convergence
rates of Popov method iterates to the solution set. Formally,
in the next theorem we provide convergence rates for Popov
method (11) with adaptive stepsizes (21) for α-symmpetric
operators with α ∈ (0, 1].

Theorem 6.3. Let Assumptions 2.1, 2.3, 2.4 hold. Consider
the Popov method (11) with srepsizes γk given by (21) for
α ∈ (0, 1) and by (22) for α = 1, and let

R2
k = dist2(uk, U

∗) + ∥uk − hk−1∥2 for all k ≥ 0.

Then, the following results for the quantity R2
k:

Case (a) If operator F (·) is p-quasi-sharp with p ≤ 2, then
the following inequality holds for all k ≥ 1,

R2
k+1 ≤

(
1− µ

(Bh)2−p
γ

)
R2

k, (26)

where Bh ∈ R is such that dist(hk, U
∗) ≤ Bh, ∀k ≥ 0.

Case (b) If operator F (·) is p-quasi-sharp with p > 2, then
the following inequality holds for all k ≥ 1,

R2
k+1 ≤

R2
1

(1 + pC2−p/2(R2
1)

(p−2)/2k)2/(p−2)
, (27)

where C = min{ 12 (2R
2
1)

−(p−2)/2, 2−p+2µγ}. The con-
stant γ in (24) and (25) is the lower-bound on the stepsizes
provided in Theorem 6.2.

7. Korpelevich Method with Clipping
In practice, constants L0, L1 and corresponding K0,K1,K2

are unknown and have to be estimated. The estimation of
such constants can be a difficult problem and lead to large
values of L0, L1. Instead of estimating the parameters of

the problem one can fine-tune stepsizes. Moreover, in the
recent papers on generalized smoothness (Zhang et al., 2020;
Chen et al., 2023), the theoretical stepsizes were not applied
in numerical results but were fine-tuned. To address the
issue of fine-tuning, in this section, we provide analysis for
Korpelevich method with clipping. The clipped stepsizes
are given by:

γk = βk min

{
1,

1

∥F (hk)∥

}
. (28)

The parameter βk can be easily fine-tuned, while normal-
ization in the stepsizes remains independent from α,L0, L1

and corresponding K0,K1,K2. Moreover, in real-life prob-
lems, it is also possible to use different schedule tech-
niques (Defazio et al., 2023) for βk. Next, we show that
Korpelevich method with a simple choice of decreasing
sequence βk converges to the solution and has a better prac-
tical performance.
Theorem 7.1. Let Assumptions 2.1, 2.3, 2.4 hold. Also, let
the stepsizes be given by (28) and parameter {βk} be such
that there exists N > 0 such that βk(K0 +K1 +K2) < 1,
(L0 + L1)βk exp(L1βk) < 1 and βk ≤ 1

4µ for all k ≥ N .
Then, the following statements hold for the iterate sequences
{uk} and {hk} generated by the Korpelevich method (10):

(a) The following descent inequality holds for any solution
u∗ ∈ U∗ and any k ≥ 0,

∥hk+1 − u∗∥2 ≤ ∥hk − u∗∥2 − 2γkµdist
p(uk, U

∗)

− (1− β2
kC2(βk))∥uk − hk∥2,

(29)
where

C2(βk) = max{(K0+K1+K2)
2, (L0+L1) exp(L1βk)}.

(b) The stepsizes sequence {γk} is bounded below, i.e.,

γk ≥ βk min

{
1,

1

C1

}
for all k ≥ 0,

where the constant C1 is given by

C1 = D̄N max {(K0 +K1∥F (PU∗(hN̄ ))∥α

+K2(D̄N )
α

(1−α) ),

(L0 + L1∥F (PU∗(hN̄ ))∥) exp(L1D̄N )
}

+ ∥F (PU∗(hN̄ ))∥.

where (D̄N )2 = maxk∈[0,N ]{dist2(hk, U
∗)}, and N̄ =

argmaxk∈[0,N ]{dist
2(hk, U

∗)}

(c) If
∑∞

k=0 βk =∞, then the iterates uk and hk converge
to a solution ū ∈ U∗.

The proof of these results can be found in Appendix F. While
the quantity D̄N can be large, it does not affect the asymp-
totic convergence of the method. In case, when βk is such

7
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Algorithm 1 Korpelevich Method with Backtracking
Input: h0 ∈ Rn, β0 = β, 0 < q < 1, k ≥ 1
for t = 0, . . . , k do

while True do
γt = βt min{1, 1

∥F (ht)∥}
ūt = PU (ht − γkF (ht))
if γ2

t ∥F (ht)− F (ūt)∥2 ≤ 1
2∥ht − ūt∥2 then

break
else
βt = q × βt

end if
end while,
ut ← ūt

ht+1 = PU (ht − γkF (ut))
βt+1 ← βt

end for

that βk(K0+K1+K2) < 1, (L0+L1)βk exp(L1βk) < 1
and βk ≤ 1

4µ for all k ≥ 0, for all N ≥ 0, the quantity D̄N

is equal to dist(h0, U
∗).

Corollary 7.2. Consider Korpelevich method (10) with
adaptive stepsizes given in (28). Let βk(K0+K1+K2) < 1,
(L0 + L1)βk exp(L1βk) < 1 and βk ≤ 1

4µ for all k ≥ 0.
Then if p = 2 and βk = β, the method has a linear conver-
gence rate. If p > 2 then the method has convergence rate
of O((

∑k
i=0 βi)

−2/(p−2)).

These results are direct consequence from equation (29) in
Theorem 7.1 and Lemma 6 (Section 2 in (Polyak, 1987)).

To avoid parameter estimation and diminishing stepsizes,
we combine the results in Theorem 7.1 with a backtrack-
ing technique for parameter βk. The generality of The-
orem 7.1 allows us to use backtracking technique for βk

and obtain convergence rates O(exp(−k)) for p ≤ 2 and
O(k−2/(p−2)) for p > 2 without any additional informa-
tion on parameters of the problem p, α, L0, L1. We define
Korpelevich method with clipping and backtracing in Algo-
rithm 1.

Theorem 7.3. Let Assumptions 2.1, 2.3, 2.4 hold. Let the
iterate sequences {uk} and {hk} be generated by the Al-
gorithm 1, then the sequences {uk} and {hk} converge to
a solution ū ∈ U∗. Moreover, there exists a lower bound
c ∈ R such that for all k ≥ 0,

min

{
1,

1

∥F (hk)∥

}
≥ c.

Additionally, let β ≤ 1
4µ and let

D2
k = dist2(hk, U

∗) for all k ≥ 0.

Then, the following results hold for the quantity D2
k:

Case (a) If the operator F (·) is p-quasi-sharp with p ≤ 2,

then

D2
k+1 ≤ (1− µ

(Bu)2−p
c βk)D

2
k for all k ≥ 0,

(30)
where Bu ∈ R is such that dist(uk, U

∗) ≤ Bu, ∀k ≥ 0.

Case (b) If the operator F (·) is p-quasi-sharp with p > 2,
then for all k ≥ 0,

D2
k+1 ≤

D2
0

(1 + µ c
∑k−1

i=0 βi(D2
0)

(p−2)/2)2/(p−2)
. (31)

8. Numerical Results
We study the performance of the projection, Korpelevich and
Popov methods, for different values of α and p and under
Assumptions 2.1 and 2.4. We consider an unconstrained
VI(R2, F ), where F (·) is an α-symmetric and p-quasi sharp
operator from Proposition 2.5. We set parameters of the
problem to be {(α ≈ 0.090., p = 2.1), (α ≈ 0.66, p =
4.0), (α ≈ 0.86, p = 8.0)}. We also compare our results to
the Korpelevich method with golden ratio stepsizes (Böhm,
2023).

In Figure 1, we plot the distance to the solution set as a func-
tion of the number of iterations. In particular, the stepsizes
for the Korpelevich and Popov methods are chosen accord-
ing to Theorems 5.3 and 6.3, respectively, while that for the
projection method is chosen according to Theorem 4.1 with
βk = 100

100+k . We observe that all three methods converge
faster than the Korpelevich method with golden-ratio step-
sizes for all three choices for α, p. We also notice that when
p and α increase, all methods slow down as predicted by
the theory; moreover, projection outperforms other methods.
This is due to the fact that stepsizes in Theorems 5.3 and
6.3 depend on the parameters of the problem and decrease
significantly when the values K0,K1,K2 increase; on the
other hand, the stepsizes in Theorem 4.1 for the projection
method are independent of parameters.

In Figure 2, we compare Korpelevich method with clip-
ping and backtracking (Algorithm 1) with β = 1.0 and
q = 0.75 and methods with fully adaptive stepsizes
for both Korpelevich (from Theorem 7.1) and Popov;
for the latter, we use the following schedule: γk =
βk min{1, 1

∥F (hk)∥ ,
1

(∥uk−hk−1∥+1)α/(1−α) }, with the same
βk = a

b+k for all methods, where a = b = 100. We choose
the parameter βk = a

b+k as it is the simplest diminishing
stepsizes one can use in practice. We observe that back-
tracking and diminishing stepsizes accelerate both methods,
and increasing values of the parameters α, p do not affect
performance. Additionally, we conducted an experiment on
GAN training for a 2D ring dataset. The results of the ex-
periments, showing the advantage of the first-order method
with clipping, are included in Appendix G.
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Figure 1. Comparison of projection, Korpelevich and Popov methods with adaptive stepsizes and Korpelevich method with golden ratio
stepsizes for different (α, p).
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(a) (α ≈ 0.09, p = 2.1)
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(b) (α ≈ 0.66, p = 4.0)
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Figure 2. Comparison of projection, Korpelevich and Popov methods with clipping and decreasing stepsizes, Korpelevich method with
golden ratio stepsizes and Korpelevich method with clipping and backtracking for different (α, p).

9. Concluding Remarks
For a class of structured non-monotone VI problems with
α-symmetric and p-quasi sharp operators, we have proved
the first-known convergence results under the weakest as-
sumption on generalized smoothness. Our convergence
rates of O(k−2/(p−2)) for Korpelevich and Popov meth-
ods with adaptive stepsizes improve the existing rate of
O(k−1/(p−1)) provided in (Wei et al., 2021) under more
restrictive assumption on monotonicity and Lipschitz conti-
nuity of the operator. Our numerical experiments suggests
that for α-symmetric operators, our adaptive stepsizes show
more promise than golden ratio stepsizes (Böhm, 2023).

There are a few potential directions for future research:
(i) extending our analysis for weak Minty conditions; (ii)
analyzing adaptive methods for solving generalized smooth
stochastic VIs.
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A. Proof of Proposition 2.5
Proof. Notice that the variational inequality VI(R2, F ) has a unique solution u∗ = (0, 0). To see this that the operator is
p-quasi sharp take an arbitrary u ∈ R2. Then, we have:

⟨F (u), u− u∗⟩ =
〈[

sign(u1)|u1|p−1 + u2

sign(u2)|u2|p−1 − u1

]
,

[
u1

u2

]
−

[
0
0

]〉
= |u1|p + |u2|p

≥ 21−p|u1 + u2|p

≥ 21−p

(√
u2
1 + u2

2

)p

= 21−pdistp(u, U∗),

where the first equality holds due to the Jensen inequality for a convex function | · |p, since p ≥ 1. The second inequality
holds because due to ∥ · ∥1 ≥ ∥ · ∥2 and monotonicity of | · |p. Thus, for p ≥ 1, the operator F (·) is p-quasi sharp with
µ = 21−p.

Next, we show that F (·) is α-symmetric. Consider arbitrary u, v ∈ R2. Then, using the triangle inequality we obtain

∥F (u)− F (v)∥ =
∥∥∥∥[sign(u1)|u1|p−1 + u2

sign(u2)|u2|p−1 − u1

]
−

[
sign(v1)|v1|p−1 + v2
sign(v2)|v2|p−1 − v1

]∥∥∥∥
≤ ∥ϕ(u)− ϕ(v)∥+ ∥u− v∥, (32)

where ϕ(u) =

[
sign(u1)|u1|p−1

sign(u2)|u2|p−1

]
. Notice that, for p > 2, the operator ϕ(u) is differentiable, and its Jacobian is given by

∇ϕ(u) = (p− 1)

[
|u1|p−2 0

0 |u2|p−2

]
.

Then, by the mean value theorem:

∥ϕ(u)− ϕ(v)∥ ≤ ∥u− v∥ max
θ∈[0,1]

∥∇ϕ(wθ)∥, (33)

where wθ = θu+ (1− θ)v. For the norm of∇ϕ(z), we have

∥∇ϕ(z)∥ = (p− 1)max{|z1|p−2, |z2|p−2}
= (p− 1)∥(|z1|p−2, |z2|p−2)′∥∞
≤ (p− 1)∥(|z1|p−2, |z2|p−2)′∥2, (34)

where we used the fact that ∥z∥∞ = max{z1, z2} and ∥z∥∞ ≤ ∥z∥2 for an arbitrary z. Expanding further we obtain:

∥∇ϕ(z)∥ ≤ (p− 1)
√
|z1|2(p−2) + |z2|2(p−2)

= (p− 1)

√(
|z1|2(p−1)

)(p−2)/(p−1)
+

(
|z2|2(p−1)

)(p−2)/(p−1)
. (35)

Since | · |(p−2)/(p−1) is a concave function for p > 1, it follows that

(
|z1|2(p−1)

)(p−2)/(p−1)

+
(
|z2|2(p−1)

)(p−2)/(p−1)

≤ 2

(
|z1|2(p−1) + |z2|2(p−1)

2

)(p−2)/(p−1)

= 21/(p−1)
(
|z1|2(p−1) + |z2|2(p−1)

)(p−2)/(p−1)

. (36)
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Notice that
|z1|2(p−1) + |z2|2(p−1) = ∥(|z1|p−1, |z2|p−1)′∥2 = ∥ϕ(z)∥2.

Combining these facts we obtain for all z ∈ R2,

∥∇ϕ(z)∥ ≤ (p− 1)21/2(p−1)∥ϕ(z)∥(p−2)/(p−1). (37)

Now, we show that
∥ϕ(z)∥ ≤ 2∥F (z)∥+

√
2 41/(p−2). (38)

By triangle inequality and the definitions of F (·) and ϕ(·), it follows that

∥ϕ(z)∥ ≤ ∥F (z)∥+ ∥z∥. (39)

For p = 2,

∥z∥ =
√
z21 + z22

=
1√
2

√
(z1 + z2)2 + (z2 − z1)2

=
1√
2
∥F (z)∥.

(40)

Combining this equality with the preceding inequality we conclude, that equation (38) holds for p = 2. Let p > 2, consider
two cases, (1) ∥z∥ ≤

√
2 41/(p−2), (2) ∥z∥ >

√
2 41/(p−2). For case (1), by inequality (39), we see that equation (38) holds.

Now, let ∥z∥ >
√
2 41/(p−2). Without loss of generality, assume that |z1| ≥ |z2|, then:

|z1| = ∥z∥∞

≥ 1√
2
∥z∥2

> 41/(p−2).

(41)

Now, we estimate ∥z∥, since |z1| ≥ |z2|:

∥z∥2 = |z1|2 + |z2|2

= |z1|2 + |z2|2 + |z1|2(p−1) − |z1|p|z1|p−2

≤ |z1|2 + |z2|2 + |z1|2(p−1) − |z1|p|z1|p−2 + |z2|2(p−1),

(42)

where in equality we add and subtract |z1|2(p−1), and in the inequality we add |z2|2(p−1). Since |z1| > 41/(p−2), then
|z1|p ≥ 4|z1|2 and using this fact we obtain:

∥z∥2 ≤ |z1|2 + |z2|2 + |z1|2(p−1) − |z1|p|z1|p−2 + |z2|2(p−1)

≤ |z1|2 + |z2|2 + |z1|2(p−1) − 4|z1|2|z1|p−2 + |z2|2(p−1)

≤ |z1|2 + |z2|2 + |z1|2(p−1) − 2|z1|2(|z1|p−2 + |z2|p−2) + |z2|2(p−1)

≤ |z1|2 + |z2|2 + |z1|2(p−1) − 2|z1||z2|(|z1|p−2 + |z2|p−2) + |z2|2(p−1),

(43)

where in the last two inequalities we used the fact that |z1| ≥ |z2|. Then:

∥z∥2 ≤ |z1|2 + |z2|2 + |z1|2(p−1) − 2|z1|p−1|z2| − 2|z1||z2|p−1 + |z2|2(p−1)

≤ |z1|2 + |z2|2 + |z1|2(p−1) + 2sign(z1)|z1|p−1|z2| − 2sign(z2)|z1||z2|p−1 + |z2|2(p−1)

= ∥F (z)∥2.
(44)

Therefore, for case (2), ∥z∥ ≤ ∥F (z)∥. Then it holds that

∥ϕ(z)∥ ≤ ∥F (z)∥+ ∥z∥

≤ 2∥F (z)∥+
√
2 41/(p−2). (45)

13
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Using equations (37), (38), and the fact that (p−2)
(p−1) < 1 we obtain:

∥∇ϕ(wθ)∥ ≤ (p− 1)21/2(p−1)(2∥F (wθ)∥+
√
2 41/(p−2))(p−2)/(p−1)

≤ 2(p− 1)21/2(p−1)∥F (wθ)∥(p−2)/(p−1) + (p− 1)21/241/(p−1). (46)

Then by taking maximum over θ ∈ [0, 1] on both sides we obtain

max
θ∈[0,1]

∥∇ϕ(wθ)∥ ≤ (p− 1)21/241/(p−1) + 2(p− 1)21/2(p−1) max
θ∈[0,1]

∥F (wθ)∥(p−2)/(p−1). (47)

Combining equations (32), (33), and (47) we obtain

∥F (u)− F (v)∥ ≤ (1 + (p− 1)21/241/(p−1) + 2(p− 1)21/2(p−1) max
θ∈[0,1]

∥F (wθ)∥(p−2)/(p−1))∥u− v∥. (48)

Thus, the operator is α-symmetric with L0 = 1 + (p− 1)21/241/(p−1), L1 = 2(p− 1)21/2(p−1) and α = p−2
p−1 . ■

B. Technical Lemmas
In our analysis, we use the properties of the projection operator PU (·) given in the following lemma.

Lemma B.1. (Theorem 1.5.5 and Lemma 12.1.13 in (Facchinei and Pang, 2003)) Given a nonempty convex closed set
U ⊂ Rm, the projection operator PU (·) has the following properties:

⟨v − PU (v), u− PU (v)⟩ ≤ 0 for all u ∈ U, v ∈ Rm, (49)

∥u− PU (v)∥2 ≤ ∥u− v∥2 − ∥v − PU (v)∥2 for all u ∈ U, v ∈ Rm, (50)

∥PU (u)− PU (v)∥ ≤ ∥u− v∥ for all u, v ∈ Rm. (51)

In the forthcoming analysis, we use Lemma 11 (Polyak, 1987), which is stated below.

Lemma B.2. [Chapter 2, Lemma 11 (Polyak, 1987)] Let {vk}, {zk}, {ak}, and {bk} be nonnegative random scalar
sequences such that almost surely for all k ≥ 0,

E[vk+1 | Fk] ≤(1 + ak)vk − zk + bk, (52)

where Fk = {v0, . . . , vk, z0, . . . , zk, a0, . . . , ak, b0, . . . , bk}, and a.s.
∑∞

k=0 ak <∞,
∑∞

k=0 bk <∞. Then, almost surely,
limk→∞ vk = v for some nonnegative random variable v and

∑∞
k=0 zk <∞.

As a direct consequence of Lemma B.2, when the sequences {vk}, {zk}, {ak}, {bk} are deterministic, we obtain the
following result.

Lemma B.3. Let {v̄k}, {z̄k}, {āk}, {b̄k} be nonnegative scalar sequences such that for all k ≥ 0,

v̄k+1 ≤(1 + āk)v̄k − z̄k + b̄k, (53)

where
∑∞

k=0 āk <∞ and
∑∞

k=0 b̄k <∞. Then, limk→∞ v̄k = v̄ for some scalar v̄ ≥ 0 and
∑∞

k=0 z̄k <∞.

Lemma B.4. Let a1, a2 be nonnegative scalar and p > 0. Then the following inequality holds:

(a1 + a2)
p ≤ 2p−1(ap1 + ap2).
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Proof. Let a = (a1, a2), b = (1, 1), then by Hölder’s inequality:

a1 + a2 = |⟨a, b⟩|
≤ ∥a∥p∥b∥p/(p−1)

≤ (ap1 + ap2)
1/p(1 + 1)(p−1)/p.

Raising the inequality in the power p we get the desired relation. ■

Lemma B.5. [Chapter 2, Lemma 6 (Polyak, 1987)] Let {xk}, {ak} be nonnegative scalar sequences, and q > 0 such that
for all k ≥ 0,

xk+1 ≤ xk − akx
1+q
k . (54)

Then
xk ≤

x0

(1 + qxq
0

∑k−1
i=0 ai)1/q

. (55)

In particular, when ak = a, then

xk ≤
x0

(1 + aqxq
0k)

1/q
. (56)

C. Projection Method Analysis
Proof of Theorem 4.1.

Proof. Let k ≥ 0 be arbitrary but fixed. From the definition of uk+1 in (9), we have ∥uk+1− y∥2 = ∥PU (uk−γkF (uk))−
y∥2 for all y ∈ U . Using the non-expansiveness property of projection operator (51) we obtain for all y ∈ U and k ≥ 0,

∥uk+1 − y∥2 ≤ ∥uk − γkF (uk)− y∥2

= ∥uk − y∥2 − 2γk⟨F (uk), uk − y⟩+ γ2
k∥F (uk)∥2. (57)

By the definition of the stepsizes (12), γk = βk min{1, 1
∥F (uk)∥}. Thus, we obtain:

∥uk+1 − y∥2 ≤ ∥uk − γkF (uk)− y∥2

= ∥uk − y∥2 − 2γk⟨F (uk), uk − y⟩+ β2
k min{1, 1

∥F (uk)∥2
}∥F (uk)∥2

≤ ∥uk − y∥2 − 2γk⟨F (uk), uk − y⟩+ β2
k. (58)

Plugging in y = u∗ ∈ U∗, where u∗ is an arbitrary solution, and using p-quasi sharpness we get:

∥uk+1 − u∗∥2 ≤ ∥uk − u∗∥2 − 2γk⟨F (uk), uk − u∗⟩+ β2
k

≤ ∥uk − u∗∥2 − 2γkdist
p(uk, U

∗) + β2
k. (59)

The equation (59) satisfies the condition of Lemma B.3 with

v̄k = ∥uk − u∗∥2, āk = 0,

z̄k = 2µγk dist
p(uk, U

∗), b̄k = β2
k. (60)

By Lemma B.2, it follows that the sequence {v̄k} converges to a non-negative scalar for any u∗ ∈ U∗. Therefore, for all
solutions u∗ ∈ U∗ the sequence {∥uk − u∗∥} is bounded by B(u∗).

(b) Now, we want to estimate ∥F (uk)∥, since this term is present in the denominator of the stepsize. We add and subtract
F (u∗

0), where u∗
0 = PU∗(u0) is a projection of u0 onto the solution set U∗, and get ∥F (uk)∥ = ∥F (uk)−F (u∗

0)+F (u∗
0)∥ ≤

∥F (uk)− F (u∗
0)∥+ ∥F (u∗

0)∥. We can estimate the first term using the α-symmetric assumption on the operator.
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Case(I) α ∈ (0, 1)

∥F (uk)− F (u∗)∥ ≤ ∥uk − u∗
0∥(K0 +K1∥F (u∗

0)∥α +K2∥uk − u∗
0∥α/(1−α)). (61)

Earlier, in part (a) we proved that for the solution u∗ the following bound hold for any k ≥ 0

∥uk − u∗
0∥ ≤ B(u∗

0).

Using this fact and equation (61) for we obtain that for all k ≥ 0:

∥F (uk)∥ ≤ B(u∗
0)(K0 +K1∥F (u∗

0)∥α +K2B(u∗
0)

α/(1−α)) + ∥F (u∗
0)∥. (62)

We showed that the sequence {∥F (uk)∥} is upper bounded by some constant C1. Where C1 = B(u∗
0)(K0+K1∥F (u∗

0)∥α+
K2B(u∗

0)
α/(1−α)) + ∥F (u∗

0)∥. Using these facts, we conclude that for all k ≥ 0:

γk = βk min{1, 1

∥F (uk)∥
}

≥ min{1, 1

C1
}. (63)

Case(II) α = 1

For α = 1 by Proposition 2.2 we have

∥F (uk)− F (u∗
0)∥ ≤ ∥uk − u∗

0∥(L0 + L1∥F (u∗
0)∥) exp(L1∥uk − u∗

0∥). (64)

We can get the following bound for ∥F (uk)∥, for all k ≥ 0:

∥F (uk)∥ ≤ ∥F (uk)− F (u∗
0)∥+ ∥F (u∗

0)∥
≤ ∥uk − u∗

0∥(L0 + L1∥F (u∗
0)∥) exp(L1∥uk − u∗

0∥) + ∥F (u∗
0)∥. (65)

Earlier, in part (a) we proved that for the solution u∗ the following bound holds for any k ≥ 0

∥uk − u∗∥ ≤ B(u∗
0).

Using these facts and equation (65) for all k ≥ 0:

∥F (uk)∥ ≤ ∥uk − u∗
0∥(L0 + L1∥F (u∗

0)∥) exp(L1∥uk − u∗
0∥) + ∥F (u∗)∥

≤ ∥uk − u∗∥(L0 + L1∥F (u∗
0)∥) exp(L1B(u∗

0)) + ∥F (u∗
0)∥. (66)

We showed that the sequence {∥F (uk)∥} is upper bounded by some constant C1, where C1 = B(u∗
0)(L0 +

L1∥F (u∗
0)∥) exp(L1B(u∗

0)) + ∥F (u∗
0)∥. Then, we conclude that

γk = βk min{1, 1

∥F (uk)∥
}

≥ βk min{1, 1

C1

}
(67)

For both cases α ∈ (0, 1) and α = 1 in equations (63), (67) we showed that stepsizes sequence {γk} is lower bounded by
βk min{1, 1

C1
, 1
C1
}.

(c) Now we show that {uk} converges to a solution of V I(U,F ). Using the provided bound on the stepsize sequence γk
from part (b) and equation (59) we obtain
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∥uk+1 − u∗∥2 ≤ ∥uk − u∗∥2 − 2γkdist
p(uk, U

∗) + β2
k

≤ ∥uk − u∗∥2 − 2βk min{1, 1

C1
,
1

C1

}distp(uk, U
∗) + β2

k (68)

The equation (68) satisfies the condition of Lemma B.3 with

v̄k = ∥uk − u∗∥2, āk = 0,

z̄k = 2µβk min{1, 1

C1
,
1

C1

} distp(uk, U
∗), b̄k = β2

k. (69)

Then
∞∑
k=0

βkdist
p(uk, U

∗) <∞.

Since,
∑∞

k=0 βk =∞ then it follows that
lim inf
k→∞

distp(uk, U
∗) = 0. (70)

Since v̄k converges for any given u∗ ∈ U∗ we can conclude that ∥uk − u∗∥ converges for all u∗ ∈ U∗. Therefore, the
sequence {uk} is bounded and has accumulation points. Let {ki} be an index sequence, such that

lim
i→∞

distp(uki
, U∗) = lim inf

k→∞
distp(uk, U

∗) = 0. (71)

We assume, that the sequence {uki
} is convergent with a limit point ū, otherwise, we choose a convergent subsequence.

Therefore,
lim
i→∞

∥uki
− ū∥ = 0. (72)

Then by (71), dist(ū, U∗) = 0, thus ū ∈ U∗ since U∗ is closed. And since the sequence {∥u − u∗∥} converges for all
u∗ ∈ U∗ and by (72) we have

lim
k→∞

∥uk − ū∥ = 0. (73)

■

D. Korpelevich Method Analysis
Proof of Lemma 5.1.

Proof. Let k ≥ 0 be arbitrary but fixed. By the definition of uk+1 in (10), we have ∥hk+1−y∥2 = ∥PU (hk−γkF (uk))−y∥
for any y ∈ U . Using the projection inequality (50) of Lemma B.1 we obtain for any y ∈ U ,

∥hk+1 − y∥2 ≤ ∥hk − γkF (uk)− y∥2 − ∥hk+1 − hk + γkF (uk)∥2

≤ ∥hk − y∥2 − ∥hk+1 − hk∥2 + 2γk⟨F (uk), y − hk+1⟩.
(74)

Next, we consider the term ∥hk+1 − hk∥2, where we add and subtract uk, and thus get

∥hk+1 − hk∥2 = ∥hk+1 − uk∥+ ∥hk − uk∥2 − 2⟨hk+1 − uk, hk − uk⟩. (75)

Adding and subtracting 2γk⟨F (hk), uk − hk+1⟩, and combining (74) and (75) we obtain

∥hk+1 − y∥2 ≤ ∥hk − y∥2 − ∥hk+1 − uk∥2 − ∥hk − uk∥2 + 2⟨hk+1 − uk, hk − uk⟩
+ 2γk⟨F (uk), y − uk + uk − hk+1⟩+ 2γk⟨F (hk), uk − hk+1⟩ − 2γk⟨F (hk), uk − hk+1⟩
≤ ∥hk − y∥2 − ∥hk+1 − uk∥2 − ∥hk − uk∥2 + 2⟨hk+1 − uk, hk − γkF (hk)− uk⟩
+ 2γk⟨F (uk), y − uk⟩+ 2γk⟨F (hk)− F (uk), hk+1 − uk⟩.

(76)
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By the projection inequality (49) where u = hk+1, and v = hk − γkF (hk) we obtain that

2⟨hk+1 − uk, hk − γkF (hk)− uk⟩ ≤ 0.

Now using Cauchy-Schwartz inequality and well know relation 2ab ≤ a2 + b2 for a, b ∈ R, we obtain:

2γk⟨F (hk)− F (uk), hk+1 − uk⟩ ≤ 2γk∥F (hk)− F (uk)∥∥hk+1 − uk∥
≤ γ2

k∥F (hk)− F (uk)∥2 + ∥hk+1 − uk∥2. (77)

Combining the preceding two estimates with (76), we obtain the desired result:

∥hk+1 − y∥2 ≤ ∥hk − y∥2 − ∥hk − uk∥2 − 2γk⟨F (uk), uk − y⟩+ γ2
k∥F (hk)− F (uk)∥2. (78)

■

Proof of Theorem 5.2

Proof. (a) By Lemma 5.1, the following inequality holds for any y ∈ U and all k ≥ 0:

∥hk+1 − y∥2 ≤ ∥hk − y∥2 − ∥hk − uk∥2 − 2γk⟨F (uk), uk − y⟩+ γ2
k∥F (hk)− F (uk)∥2. (79)

We want to estimate the last term on the LHS of the inequality using the fact that operator F (·) is an α-symmetric operator.

Case (I) α ∈ (0, 1).

Based on the alternative characterization of α-symmetric operators from Proposition 2.2(a) (as given in (6)), when α ∈ (0, 1),
the next inequality holds for any k ≥ 1:

∥F (hk)− F (uk)∥ ≤ ∥hk − uk∥(K0 +K1∥F (hk)∥α +K2∥hk − uk∥α/(1−α)). (80)

By the projection property (50) and the stepsize choice (15) :

∥hk − uk∥ ≤ γk∥F (hk)∥ ≤ 1.

Then by the well know relation (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i we obtain:

∥F (hk)− F (uk)∥2 ≤ ∥hk − uk∥2(K0 +K1∥F (hk)∥α +K2)
2

≤ 3K2
0∥hk − uk∥2 + 3K2

1∥F (hk)∥2α∥hk − uk∥2 + 3K2
2∥hk − uk∥2.

(81)

Based on the step-size choice: γk ≤ 1
3
√
2K0

, γk ≤ 1
3
√
2K1∥F (hk)∥α

, γk ≤ 1
3
√
2K2

and then:

γ2
k∥F (hk)− F (uk)∥2 ≤

1

6
∥hk − uk∥2 +

1

6
∥hk − uk∥2 +

1

6
∥hk − uk∥2

=
1

2
∥hk − uk∥2.

(82)

Case (II) α = 1.

Based on the alternative characterization of α-symmetric operators from Proposition 2.2(b) (as given in (7)), when α = 1,
the next inequality holds for any k ≥ 0:

∥F (hk)− F (uk)∥ ≤ ∥hk − uk∥(L0 + L1∥F (hk)∥) exp(L1∥hk − uk∥). (83)

By the projection property, triangle inequality and step size choice (16):

∥hk − uk∥ ≤ γk∥F (hk)∥ ≤
1

2
√
2eL1

<
1

L1
.
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Using the well know relation (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i we obtain:

∥F (hk)− F (uk)∥2 ≤ ∥hk − uk∥2(L0 + L1∥F (hk)∥)2e2

≤ 2e2L2
0∥hk − uk∥2 + 2L2

1e
2∥F (hk)∥2∥hk − uk∥2.

(84)

Using the step-size choice: γk ≤ 1
2
√
2eL0

, γk ≤ 1
2
√
2L1e∥F (hk)∥

, it follows that:

γ2
k∥F (hk)− F (uk)∥2 ≤

1

2
∥hk − uk∥2. (85)

For both cases γ2
k∥F (hk)− F (uk)∥2 ≤ 1

2∥hk − uk∥2, then combining this fact with (79) we obtain that for any k ≥ 0:

∥hk+1 − y∥2 ≤ ∥hk − y∥2 − 1

2
∥uk − hk∥2 − 2γk⟨F (uk), uk − y⟩. (86)

Now we plug y = u∗ into equation (86), where u∗ ∈ U∗ is an arbitrary solution. Thus, by using p-quasi sharpness of the
operator, we obtain the following recursive inequality:

∥hk+1 − u∗∥2 ≤ ∥hk − u∗∥2 − 1

2
∥uk − hk∥2 − 2γkµdist

p(uk, U
∗). (87)

From this inequality, we conclude that for any u∗ ∈ U∗, the sequence {∥hk − u∗∥} is bounded.

(b) Now, we want to estimate ∥F (hk)∥, since this term is present in the denominator of the stepsize. Let h∗
0 = PU∗(h0) be a

projection of h0 onto the solution set U∗. We add and subtract F (h∗
0) , and get ∥F (hk)∥ = ∥F (hk)− F (h∗

0) + F (h∗
0)∥ ≤

∥F (hk)− F (h∗
0)∥+ ∥F (h∗

0)∥. We say that ∥F (h∗
0)∥ = D2 where D2 > 0 is some constant. We can estimate the first term

using the α-symmetric assumption on the operator class.

Case(I) α ∈ (0, 1)

Based on the alternative characterization of α-symmetric operators from Proposition 2.2(a) (as given in (6)), when α ∈ (0, 1),
the next inequality holds for any k ≥ 0:

∥F (hk)− F (h∗
0)∥ ≤ ∥hk − h∗

0∥(K0 +K1∥F (h∗
0)∥α +K2∥hk − h∗

0∥α/(1−α)). (88)

Earlier, in equation (87) we proved that for arbitrary solution u∗ the following bound hold for any k ≥ 0

∥hk+1 − u∗∥2 ≤ ∥h0 − u∗∥2.

Let R0 = ∥h0 − h∗
0∥2, then

∥hk − h∗
0∥ ≤

√
R0.

Using this fact and equation (88) for we obtain that for all k ≥ 0:

∥F (hk)∥ ≤
√
R0(K0 +K1D

α
2 +K2

√
R0

α/(1−α)
) +D2. (89)

We showed that the sequence {∥F (hk)∥} is upper bounded by some constant C1. Where C1 =
√
R0(K0 + K1D

α
2 +

K2

√
R0

α/(1−α)
) +D2. Since function xa is monotone for any x > 0, and a > 0 then ∥F (hk)∥α ≤ Cα

1 . Using these facts,
we conclude that

γk = min{ 1

4µ
,

1

3
√
2K0

,
1

∥F (hk)∥
,

1

3
√
2K1∥F (hk)∥α

,
1

3
√
2K2

}

≥ min{ 1

4µ
,

1

3
√
2K0

,
1

C1
,

1

3
√
2K1Cα

1

,
1

3
√
2K2

} (90)
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Case(II) α = 1 Based on the alternative characterization of α-symmetric operators from Proposition 2.2(b) (as given in
(7)), when α = 1, the next inequality holds for any k ≥ 0:

∥F (hk)− F (h∗
0)∥ ≤ ∥hk − h∗

0∥(L0 + L1∥F (h∗
0)∥) exp(L1∥hk − h∗

0∥). (91)

We can get the following bound for ∥F (hk−1)∥, for all k ≥ 1:

∥F (hk)∥ ≤ ∥F (hk)− F (h∗
0)∥+ ∥F (h∗

0)∥
≤ ∥hk − h∗

0∥(L0 + L1∥F (h∗
0)∥) exp(L1∥hk − h∗

0∥) + ∥F (h∗
0)∥

(92)

Earlier, in equation (87) we proved that for arbitrary solution u∗ the following bound hold for any k ≥ 0

∥hk − u∗∥2 ≤ ∥h0 − u∗∥2.

Let R0 = ∥h0 − h∗
0∥2, Then, it follows that for all k ≥ 1:

∥hk − h∗
0∥ ≤

√
R0.

Using these facts and equation (91) for all k ≥ 1:

∥F (hk)∥ ≤ ∥hk − h∗
0∥(L0 + L1∥F (h∗

0)∥) exp(L1∥hk − h∗
0∥) + ∥F (h∗

0)∥

≤
√
R0(L0 + L1D2) exp(L1

√
R0) +D2. (93)

We showed that the sequence {∥F (hk)∥} is upper bounded by some constant C1, where C1 =
√
R1(L0 +

L1D2) exp(L1

√
R0) +D2. Then, we conclude that

γk = min{ 1

4µ
,

1

2
√
2eL0

,
1

2
√
2eL1∥F (hk)∥

}

≥ min{ 1

4µ
,

1

2
√
2eL0

,
1

2
√
2eL1C1

}
(94)

For both cases α ∈ (0, 1) and α = 1 in equations (89), (94) we showed that stepsizes sequence {γk} is lower bounded by
some constant γ. Where

γ = min{ 1

4µ
,

1

3
√
2K0

,
1

C1
,

1

3
√
2K1Cα

1

,
1

3
√
2K2

} for α ∈ (0, 1),

γ = min{ 1

4µ
,
1

C1

,
1

2
√
2eL0

,
1

2
√
2eL1C1

} for α = 1,

i.e. γk ≥ γ for all k ≥ 0.

(c) Based on the results from part (b), for both cases (α ∈ (0, 1) and α = 1) there exists some positive constant γ such that
γ ≤ γk for all k ≥ 0. Using this fact and equation (87), we obtain for any k ≥ 1:

∥hk+1 − u∗∥2 ≤ ∥hk − u∗∥2 − 1

2
∥uk − hk∥2 − 2γµdistp(uk, U

∗). (95)

The equation (95) satisfies the conditions of Lemma B.3 with

v̄k = ∥hk − h∗∥2, āk = 0,

z̄k =
1

2
∥uk − hk∥2 + 2µγ distp(uk, U

∗), b̄k = 0. (96)
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By Lemma B.2, it follows that the sequence {v̄k} converges to a non-negative scalar for any u∗ ∈ U∗, and we have

∞∑
k=0

distp(uk, U
∗) <∞,

∞∑
k=0

∥uk − hk∥2 <∞.

Thus, it follows that
lim
k→∞

distp(uk, U
∗) = 0. (97)

lim
k→∞

∥uk − hk∥ = 0. (98)

Since v̄k converges for any given u∗ ∈ U∗ we can conclude that ∥hk − u∗∥ converges for all u∗ ∈ U∗. Therefore, the
sequence {hk} is bounded and has accumulation points. In view of relation (98), the sequences {uk} and {hk} have the
same accumulation points. Then, there exists a convergent subsequnce {hki

}, such that ū ∈ U is its limit point, i.e.,

lim
i→∞

∥hki
− ū∥ = 0. (99)

By relation (98), it follows that
lim
i→∞

∥uki
− ū∥ = 0.

By the continuity of the distance function dist(·, U∗), from relation (97) we conclude that dist(ū, U∗) = 0 , which implies
that ū ∈ U∗ since the set U∗ is closed. Since the sequence {∥hk − u∗∥2} converges for any u∗ ∈ U∗, it follows that
{∥hk − ū∥2} converges , and by relation (99) we conclude that limk→∞ ∥hk − ū∥2 = 0.

■

Proof of Theorem 5.3

Proof. Since the solution set U∗ is closed, there exists a projection h∗
k of the iterate hk on the set U∗, i.e., there exists a

point h∗
k ∈ U∗ such that ∥hk − h∗

k∥ = dist(hk, U
∗). Thus, by letting in u∗ = h∗

k in (17) (the result of Theorem 5.2(a) ), we
obtain for all k ≥ 0,

∥hk+1 − h∗
k∥2 ≤ ∥hk − h∗

k∥2 −
1

2
∥uk − hk∥2 − 2µγk dist

p(uk, U
∗). (100)

In view of ∥hk − h∗
k∥ = dist(hk, U

∗) and dist(hk+1, U
∗) ≤ ∥hk+1 − h∗

k∥, it follows that for all k ≥ 1,

dist2(hk+1, U
∗) ≤ dist2(hk, U

∗)− 1

2
∥uk − hk∥2 − 2µγk dist

p(uk, U
∗). (101)

Next, we estimate the term distp(uk, U
∗) in (101). By the triangle inequality, we have

∥hk − u∗∥ ≤ ∥uk − hk∥+ ∥uk − u∗∥ for all u∗ ∈ U∗,

and by taking the minimum over u∗ ∈ U∗ on both sides of the preceding relation, we obtain

dist(hk, U
∗) ≤ ∥uk − hk∥+ dist(uk, U

∗). (102)

Case (a) p ≤ 2 Squaring both sides of inequality (102), and using (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i , which is valid for any scalars

ai, i = 1, . . . ,m, and any integer m ≥ 1, we obtain

−2 dist2(uk, U
∗) ≤ 2∥uk − hk∥2 − dist2(hk, U

∗). (103)

In Theorem 5.2 we showed that the sequence {uk} convergence to a solution ū ∈ U∗. Hence, there exists Bu ∈ R such that
the sequence dist(uk, U

∗) is bounded by Bu. Then, since p ≤ 2, it holds that for all k ≥ 0

dist2−p(uk, U
∗) ≤ (Bu)

2−p,
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and consequently,
dist2(uk, U

∗) = distp(uk, U
∗)dist2−p(uk, U

∗) ≤ (Bu)
2−pdistp(uk, U

∗).

Thus,

−distp(uk, U
∗) ≤ − 1

(Bu)2−p
dist2(uk, U

∗)

Using the preceding inequality in equation (103) we obtain the following bound:

−distp(uk, U
∗) ≤ − 1

(Bu)2−p
dist2(uk, U

∗) ≤ 1

(Bu)2−p
∥uk − hk∥2 −

1

2(Bu)2−p
dist2(hk, U

∗) (104)

Combining equation (104) with (101), we get that for any k ≥ 0:

dist2(hk+1, U
∗) ≤ (1− µ

(Bu)2−p
γk)dist

2(hk, U
∗)− 1

2
∥uk − hk∥2 +

2µ

(Bu)2−p
γk ∥uk − hk∥2. (105)

Without loss of generality we consider case when Bu ≥ 1 (otherwise, we can choose Bu = 1), then:

dist2(hk+1, U
∗) ≤ (1− µ

(Bu)2−p
γk)dist

2(hk, U
∗)− 1

2
∥uk − hk∥2 + 2µγk ∥uk − hk∥2. (106)

Based on stepsizes choice γkµ ≤ 1
4 and based on the result of Theorem 5.2 (b) the stepsizes sequence {γk} is lower bounded,

i.e., γk ≥ γ for all k ≥ 0. Then, for all k ≥ 0:

dist2(hk+1, U
∗) ≤ (1− µ

(Bu)2−p
γ)dist2(hk, U

∗). (107)

Thus, by defining D2
k = dist2(hk, U

∗) we obtain that for all k ≥ 0,

D2
k+1 ≤ (1− µ

(Bu)2−p
γ)D2

k. (108)

Case (b) p > 2 By using Lemma B.4, we further obtain

distp(hk, U
∗) ≤ (∥uk − hk∥+ dist(uk, U

∗))p

≤ 2p−1∥uk − hk∥p + 2p−1 distp(uk, U
∗).

(109)

Using projection inequality (50), and stepsizes choice we obtain:

∥uk − hk∥ ≤ ∥γkF (hk)∥ ≤ 1.

Combining this result with equation (109) we get:

distp(hk, U
∗) ≤ 2p−1∥uk − hk∥p + 2p−1distp(uk, U

∗)

≤ 2p−1∥uk − hk∥2 + 2p−1 distp(uk, U
∗).

(110)

And by rearranging terms, we obtain the following:

−distp(uk, U
∗) ≤ ∥uk − hk∥2 − 2−p+1 distp(hk, U

∗). (111)

Combining this inequality with (101), we obtain that for any k ≥ 1:

dist2(uk+1, U
∗) ≤ dist2(uk, U

∗)− (
1

2
− 2µγk)∥uk − hk∥2 − 2−p+2γkµdistp(hk, U

∗). (112)

By the stepsizes choice γk ≤ 1
4µ then ( 12 − 2µγk)∥uk − hk∥2 ≤ 0, and γk ≥ γ for all k ≥ 0. Thus, by defining

D2
k = dist2(hk, U

∗) we obtain that for all k ≥ 0,

D2
k+1 ≤ D2

k − 2−p+2γµ (D2
k)

p/2. (113)

Using Lemma B.5 with xk = D2
k, q = p−2

2 , ak = 2−p+2γ, we obtain, for all k ≥ 0:

D2
k+1 ≤

D2
0

(1 + (p− 2)γ2−p+1(D2
0)

(p−2)/2(k + 1))2/(p−2)
. (114)

■
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E. Popov Method Analysis
Proof of Lemma 6.1

Proof. Let k ≥ 1 be arbitrary but fixed. From the definition of uk+1 in (11), we have ∥uk+1−y∥2 = ∥PU (uk−γkF (hk))−
y∥ for any y ∈ U . Using the projection inequality (50) of Lemma B.1 we obtain for any y ∈ U ,

∥uk+1 − y∥2 ≤ ∥uk − γkF (hk)− y∥2 − ∥uk − γkF (hk)− uk+1∥2

= ∥uk − y∥2 − ∥uk+1 − uk∥2 − 2γk⟨F (hk), uk+1 − y⟩.
(115)

We next consider the term ∥uk+1 − uk∥2, where we add and subtract hk, and thus obtain

∥uk+1 − uk∥2 =∥(uk+1 − hk)− (uk − hk)∥2

=∥uk+1 − hk∥2 + ∥uk − hk∥2 − 2⟨uk − hk, uk+1 − hk⟩
=∥uk+1 − hk∥2 + ∥uk − hk∥2 − 2⟨uk − γkF (hk−1)− hk, uk+1 − hk⟩
− 2γk⟨F (hk−1), uk+1 − hk⟩,

(116)

where the last equality is obtained by adding and subtracting 2γk⟨F (hk−1, ), uk+1 − hk⟩. Next, we use another projection
property (49) with v = uk − γkF (hk−1), u = uk+1 and obtain:

⟨uk − γkF (hk−1)− hk, uk+1 − hk⟩ ≤ 0. (117)

Therefore,
∥uk+1 − uk∥2 ≥ ∥uk+1 − hk∥2 + ∥uk − hk∥2 − 2γk⟨F (hk−1), uk+1 − hk⟩. (118)

Combining (115) and (118) we can see that for any y ∈ U ,

∥uk+1 − y∥2 ≤∥uk − y∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2 − 2γk⟨F (hk), uk+1 − hk⟩
− 2γk⟨F (hk), hk − y⟩+ 2γk⟨F (hk−1), uk+1 − hk⟩

=∥uk − y∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2 − 2γk⟨F (hk), hk − y⟩
+ 2γk⟨F (hk−1)− F (hk), uk+1 − hk⟩.

(119)

To estimate the last inner product in (119), we write

⟨F (hk−1)− F (hk), uk+1 − hk⟩ ≤ ∥F (hk−1)− F (hk)∥ ∥uk+1 − hk∥.

From the definitions of uk+1 and hk+1 in (11), we have uk+1 = PU (uk − γkF (hk)) and hk = PU (uk − γkF (hk−1)).
Thus, by using the Lipschitz continuity of the projection operator (see equation (51) in Lemma 1), we obtain ∥uk+1−hk∥ ≤
γk∥F (hk−1)− F (hk)∥, implying that

⟨F (hk−1)− F (hk), uk+1 − hk⟩ ≤ γk∥F (hk−1)− F (hk)∥2.

Upon substituting the preceding estimate back in relation (119), we obtain the desired relation:

∥uk+1 − y∥2 ≤∥uk − y∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2 − 2γk⟨F (hk), hk − y⟩
+ 2γ2

k∥F (hk)− F (hk−1)∥2.
(120)

■

Proof of Theorem 6.2

Proof. By Lemma 6.1 we have that the following inequality holds for all k ≥ 1 and all y ∈ U ,

∥uk+1 − y∥2 ≤∥uk − y∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2 − 2γk⟨F (hk), hk − y⟩
+ 2γ2

k∥F (hk)− F (hk−1)∥2.
(121)
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We want to estimate the last term on the LHS of the inequality (121) using the fact that the operator F (·) is an α-symmetric
operator.

Case (I) α ∈ (0, 1)

Using the definition of α-symmetric operator (as given in (6)), we obtain that for all k ≥ 1,

∥F (hk)− F (hk−1)∥2 ≤ ∥hk − hk−1∥2(K0 +K1∥F (hk−1)∥α +K2∥hk − hk−1∥α/(1−α))2

≤ 3K2
0∥hk − hk−1∥2 + 3K2

1∥F (hk−1)∥2α∥hk − hk−1∥2

+ 3K2
2∥hk − hk−1∥2α/(1−α)∥hk − hk−1∥2,

(122)

where the last inequality is obtained by using relation (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i .

Using the definition of the iterate updates (11), the projection property (50) for v = hk−1 − γkF (hk−1), u = hk−1 and
triangle inequality we get:

∥hk − hk−1∥ ≤ ∥uk − hk−1 − γkF (hk−1)∥ ≤ ∥uk − hk−1∥+ γk∥F (hk−1)∥.

By the definition of the stepsize γk, we have that γk ≤ 1
∥F (hk−1)∥ . Therefore, it follows that

∥hk − hk−1∥ ≤ ∥uk − hk−1∥+ γk∥F (hk−1)∥ ≤ ∥uk − hk−1∥+ 1. (123)

Combining this inequality with (122) we obtain:

∥F (hk)− F (hk−1)∥2 ≤ 3K2
0∥hk − hk−1∥2 + 3K2

1∥F (hk−1)∥2α∥hk − hk−1∥2

+ 3K2
2 (∥uk − hk−1∥+ 1)2α/(1−α)∥hk − hk−1∥2.

(124)

By stepsize choice, γk ≤ 1
6
√
2K0

, γk ≤ 1
6
√
2K1∥F (hk−1)∥α

, and γk ≤ 1
6
√
2K2

2 (∥uk−hk−1∥+1)α/(1−α)
, then we obtain:

2γ2
k∥F (hk)− F (hk−1)∥2 ≤

1

12
∥hk − hk−1∥2 +

1

12
∥hk − hk−1∥2

+
1

12
∥hk − hk−1∥2

=
1

4
∥hk − hk−1∥2.

(125)

Case (II) α = 1

Using the definition of α-symmetric operator (as given in (7)), we obtain that for all k ≥ 1,

∥F (hk)− F (hk−1)∥ ≤ ∥hk − hk−1∥(L0 + L1∥F (hk)∥) exp(L1∥hk − hk−1∥). (126)

By the projection property and triangle inequality:

∥hk − hk−1∥ ≤ ∥uk − hk−1 − γkF (hk−1)∥ ≤ ∥uk − hk−1∥+ γk∥F (hk−1)∥.

By the definition of the stepsize γk, we have that γk ≤ 1
∥F (hk−1)∥ . Therefore, it follows that

∥hk − hk−1∥ ≤ ∥uk − hk−1∥+ 1.

Then:

∥F (hk)− F (hk−1)∥ ≤ ∥hk − hk−1∥(L0 + L1∥F (hk−1)∥) exp(L1∥uk − hk−1∥+ 1). (127)

Based on the step-size choice, γk ≤ 1
2
√
2(L0+L1∥F (hk−1)∥) exp(L1∥uk−hk−1∥+1)

, we have:

2γ2
k∥F (hk)− F (hk−1)∥2 ≤

1

4
∥hk − hk−1∥2. (128)
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For both cases quantity 2γ2
k∥F (hk) − F (hk−1)∥2 ≤ 1

4∥hk − hk−1∥2 is upperbounded for all k ≥ 1. Then combining
upperbounds in equations (125), and (128) with equation (121) we obtain that for any k ≥ 1 the next inequality holds:

∥uk+1 − y∥2 ≤ ∥uk − y∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2

− 2γk⟨F (hk), hk − y⟩+ 1

4
∥hk − hk−1∥2.

(129)

Now using the triangle inequality and relation (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i we obtain:

∥hk − hk−1∥2 ≤ 2∥uk − hk∥2 + 2∥uk − hk−1∥2.

Using the preceding etimate in equation (129) we get:

∥uk+1 − y∥2 + ∥uk+1 − hk∥2 ≤ ∥uk − y∥2 + 1

2
∥uk − hk−1∥2

− 1

2
∥uk − hk∥2 − 2γk⟨F (hk), hk − y⟩.

(130)

Now we plug y = u∗ where u∗ is an arbitrary solution and use the assumption in the theorem on quasi sharpness of the
operator. Doing so we obtain the following recursive inequality for any u∗ ∈ U∗ and k ≥ 1

∥uk+1 − u∗∥2 + ∥uk+1 − hk∥2 ≤ ∥uk − u∗∥2 + 1

2
∥uk − hk−1∥2

− 1

2
∥uk − hk∥2 − 2γk⟨F (hk), hk − u∗⟩

≤ ∥uk − u∗∥2 + ∥uk − hk−1∥2

− 1

2
∥uk − hk−1∥2 −

1

2
∥uk − hk∥2.

(131)

The first inequality holds because ⟨F (hk), hk − u∗⟩ is positive for all u∗ ∈ U∗ when F (·) is p-quasi sharp. We conclude
that for any u∗ ∈ U∗, the norms ∥uk − u∗∥ and ∥uk+1 − hk∥ are bounded.

(b) Now, we want to estimate ∥F (hk−1)∥, since this term is present in the denominator of the stepsizes. Let u∗
1 = PU∗(u1)

be a projection of u1 onto the solution set U∗. We add and subtract F (u∗
1) , and get ∥F (hk−1)∥ = ∥F (hk−1)− F (u∗

1) +
F (u∗

1)∥ ≤ ∥F (hk−1)− F (u∗
1)∥+ ∥F (u∗

1)∥. Now, we estimate the first term using the assumption on the operator.

Case (I) α ∈ (0, 1) Using the definition of α-symmetric operator (as given in (6)), we obtain that for all k ≥ 1,

∥F (hk−1)− F (u∗
1)∥ ≤ (K0 +K1∥F (u∗

1)∥α)∥hk−1 − u∗
1∥+K2∥hk−1 − u∗

1∥1/(1−α). (132)

we can get the following bound for ∥F (hk−1)∥, for all k ≥ 1:

∥F (hk−1)∥ ≤ ∥F (hk−1)− F (u∗
1)∥+ ∥F (u∗

1)∥
≤ (K0 +K1∥F (u∗

1)∥α)∥hk−1 − u∗
1∥+K2∥hk−1 − u∗

1∥1/(1−α) + ∥F (u∗
1)∥.

(133)

Earlier, in equation (131) we proved that for arbitrary solution u∗ the following bounds hold for any k ≤ 0

∥uk+1 − u∗∥2 + ∥uk+1 − hk∥2 ≤ ∥u1 − u∗∥2 + ∥u1 − h0∥2.

Let R2
1 = ∥u1 − u∗

1∥2 + ∥u1 − h0∥2, then

(∥uk − u∗
1∥+ ∥uk − hk−1∥)2 ≤ 2∥uk − u∗

1∥2 + 2∥uk − hk−1∥2 ≤ 2R2
1.

Therefore, it follows that for all k ≥ 1

∥hk−1 − u∗
1∥ ≤ ∥uk − u∗

1∥+ ∥uk − hk−1∥ ≤
√
2R1,
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∥uk − hk−1∥ ≤
√
2R1.

Then using the facts above and (133) for all k ≥ 1:

∥F (hk−1)∥ ≤ (K0 +K1∥F (u∗
1)∥α)

√
2R1 +K2(

√
2R1)

1/(1−α) + ∥F (u∗
1)∥.

(134)

Now, we define a new constant C1 = (K0+K1∥F (u∗
1)∥α)

√
2R1+K2(

√
2R1)

1/(1−α)+∥F (u∗
1)∥, then ∥F (hk−1)∥ ≤ C1

for all k ≥ 1. Since function (x)s is monotone for any x > 0 and any s > 0, then ∥F (hk−1)∥α/2 ≤ C
α/2
1 and

(∥uk − hk−1∥+ 1)α/(1−α) ≤ (
√
2R1 + 1)α/(1−α). Using these facts, we conclude that

γk = min{ 1

4µ
,

1

∥F (hk−1)∥
,

1

6
√
2K0

,
1

6
√
2K1∥F (hk−1)∥α/2

,
1

6
√
2K2(∥uk − hk−1∥+ 1)α/(1−α)

}

≥ min{ 1

4µ
,
1

C1
,

1

6
√
2K0

,
1

6
√
2K1C

α/2
1

,
1

6
√
2K2(

√
2R1 + 1)α/(1−α)

}.
(135)

Case (II) α = 1 Using the definition of α-symmetric operator (as given in (7)), we obtain that for all k ≥ 1,

∥F (hk)− F (u∗
1)∥ ≤ ∥hk − u∗

1∥(L0 + L1∥F (u∗
1)∥) exp(L1∥hk − u∗

1∥). (136)

Hence, we obtain the following bound for ∥F (hk−1)∥, for all k ≥ 1:

∥F (hk−1)∥ ≤ ∥F (hk−1)− F (u∗
1)∥+ ∥F (u∗

1)∥
≤ ∥hk − u∗

1∥(L0 + L1∥F (u∗
1)∥) exp(L1∥hk − u∗

1∥) + ∥F (u∗
1)∥

(137)

Earlier, in equation (131) we proved that for arbitrary solution u∗ the following bounds hold for any k ≥ 0

∥uk+1 − u∗∥2 + ∥uk+1 − hk∥2 ≤ ∥u1 − u∗∥2 + ∥u1 − h0∥2.

Let R2
1 = ∥u1 − u∗

1∥2 + ∥u1 − h0∥2, then

(∥uk − u∗
1∥+ ∥uk − hk−1∥)2 ≤ 2∥uk − u∗

1∥2 + 2∥uk − hk−1∥2 ≤ 2R2
1.

Therefore, it follows that for all k ≥ 1:

∥hk−1 − u∗
1∥ ≤ ∥uk − u∗

1∥+ ∥hk−1 − uk∥ ≤
√
2R1,

∥uk − hk−1∥ ≤
√
2R1.

Then using the preceding relation and equation (137) for all k ≥ 1:

∥F (hk−1)∥ ≤ ∥hk − u∗
1∥(L0 + L1∥F (u∗

1)∥) exp(L1∥hk − u∗
1∥) + ∥F (u∗

1)∥

≤
√
2R1(L0 + L1∥F (u∗

1)∥) exp(L1

√
2R1) + ∥F (u∗

1)∥.
(138)

Now, we define a new constant C1 =
√
2R1(L0 + L1∥F (u∗

1)∥) exp(L1

√
2R1) + ∥F (u∗

1)∥, then ∥F (hk−1)∥ ≤ C1 for all
k ≥ 1. And since function exp(x) is monotone for any x > 0, then exp(L1∥uk − hk−1∥+1) ≤ exp(L1

√
2R1 +1). Using

these facts, we conclude that

γk = min{ 1

4µ
,

1

∥F (hk−1)∥
,

1

4(L0 + L1∥F (hk−1)∥) exp(L1∥uk − hk−1∥+ 1)
}

≥ min{ 1

4µ
,
1

C1

,
1

4(L0 + L1C1) exp(L1

√
2R1 + 1)

}
(139)
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For both cases α ∈ (0, 1) and α = 1 in equations (135), (139) we showed that stepsizes sequence {γk} is lower bounded by
constant γ, where

γ = min{ 1

4µ
,
1

C1
,

1

6
√
2K0

,
1

6
√
2K1(C1)α/2

,
1

6
√
2K2(

√
2R1 + 1)α/(1−α)

} for α ∈ (0, 1)

γ = min{ 1

4µ
,
1

C1

,
1

4(L0 + L1C1) exp(L1

√
2R1 + 1)

} for α = 1

(140)

(c) Based on the results from part (b) γ ≤ γk for all k ≥ 1. Then using p-quasi-sharpness of the operator and equation (130)
with y = u∗, where u∗ is an arbitrary solution, we obtain for any k ≥ 1:

∥uk+1 − u∗∥2 + ∥uk+1 − hk∥2 ≤ ∥uk − u∗∥2 + 1

2
∥uk − hk−1∥2.

− 1

2
∥uk − hk∥2 − 2γk⟨F (hk), hk − u∗⟩

≤ ∥uk − u∗∥2 + ∥uk − hk−1∥2

− 1

2
∥uk − hk∥2 −

1

2
∥uk − hk−1∥2 − 2γkµdistp(hk, U

∗)

≤ ∥uk − u∗∥2 + ∥uk − hk−1∥2

− 1

2
∥uk − hk∥2 −

1

2
∥uk − hk−1∥2 − 2γµdistp(hk, U

∗).

(141)

The equation (141) satisfies the condition of Lemma B.3 with

v̄k = ∥uk − u∗∥2 + ∥uk − hk−1∥2, āk = 0,

z̄k =
1

2
∥uk − hk−1∥2 +

1

2
∥uk − hk∥2 + 2µγ distp(hk, U

∗), b̄k = 0 (142)

By Lemma B.2, it follows that the sequence {v̄k} converges to a non-negative scalar for any u∗ ∈ U∗, and surely we have

∞∑
k=N

distp(hk, U
∗) <∞,

∞∑
k=N

(∥uk − hk∥2 + ∥uk − hk−1∥2) <∞.

Thus, it follows that
lim
k→∞

distp(hk, U
∗) = 0 (143)

lim
k→∞

∥uk − hk∥ = 0 (144)

lim
k→∞

∥uk − hk−1∥ = 0 (145)

Since v̄k converges for any given u∗ ∈ U∗ and based on equation (145) we can conclude that ∥uk − u∗∥ converges for all
u∗ ∈ U∗. Therefore, the sequence {uk} is bounded and has accumulation points. In view of relation (144), the sequences
{uk} and {hk} have the same accumulation points. Then, there exists a convergent subsequnce {uki}, such that ū ∈ U its
limit point, i.e.,

lim
i→∞

∥uki
− ū∥ = 0 (146)

By relation (144), it follows that
lim
i→∞

∥hki
− ū∥ = 0

By continuity of the distance function dist(·, U∗), from relation (143) we conclude that dist(ū, U∗) = 0 , which implies
that ū ∈ U∗ since the set U∗ is closed. Since the sequence {∥uk − u∗∥2} converges for any u∗ ∈ U∗, it follows that
{∥uk − ū∥2} converges , and by relation (146) we conclude that limk→∞ ∥uk − ū∥2 = 0. ■
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Proof of Theorem 6.3

Proof. Since the solution set U∗ is closed, there exists a projection u∗
k of the iterate uk on the set U∗, i.e., there exists a

point u∗
k ∈ U∗ such that ∥uk − u∗

k∥ = dist(uk, U
∗). Thus, by letting u∗ = u∗

k in (141), we obtain for all k ≥ 1,

∥uk+1 − u∗
k∥2 + ∥uk+1 − hk∥2 ≤ ∥uk − u∗

k∥2 + ∥uk − hk−1∥2

− 1

2
∥uk − hk∥2 −

1

2
∥uk − hk−1∥2 − 2µγk dist

p(hk, U
∗).

(147)

In view of ∥uk − u∗
k∥ = dist(uk, U

∗) and dist(uk+1, U
∗) ≤ ∥uk+1 − u∗

k∥, it follows that for all k ≥ 1,

dist2(uk+1, U
∗) + ∥uk+1 − hk∥2 ≤ dist2(uk, U

∗) + ∥uk − hk−1∥2

− 1

2
∥uk − hk∥2 −

1

2
∥uk − hk−1∥2 − 2µγk dist

p(hk, U
∗).

(148)

Based on the result of Theorem 6.2 (b) the stepsizes are lower bounded, i.e. γk ≥ γ, then for all k ≥ 1 we have:

dist2(uk+1, U
∗) + ∥uk+1 − hk∥2 ≤ dist2(uk, U

∗) + ∥uk − hk−1∥2

− 1

2
∥uk − hk∥2 −

1

2
∥uk − hk−1∥2 − 2µγ distp(hk, U

∗).
(149)

Next, we estimate the term distp(hk, U
∗) in (149). By the triangle inequality, we have

∥uk − u∗∥ ≤ ∥uk − hk∥+ ∥hk − u∗∥ for all u∗ ∈ U∗,

and by taking the minimum over u∗ ∈ U∗ on both sides of the preceding relation, we obtain

dist(uk, U
∗) ≤ ∥uk − hk∥+ dist(hk, U

∗). (150)

Case (a) p ≤ 2

Squaring both sides of inequality (150), and using (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i , which is valid for any scalars ai, i = 1, . . . ,m,

and any integer m ≥ 1, we obtain

−2 dist2(hk, U
∗) ≤ 2∥uk − hk∥2 − dist2(uk, U

∗). (151)

In Theorem 6.2 we showed that the sequence {hk} convergence to a solution ū ∈ U∗. Hence, there exists Bh ∈ R such that
the sequence dist(hk, U

∗) is bounded by Bh. Then, since p ≤ 2, it holds that for all k ≥ 0

dist2−p(hk, U
∗) ≤ (Bh)

2−p,

and consequently,
dist2(hk, U

∗) = distp(hk, U
∗)dist2−p(hk, U

∗) ≤ (Bh)
2−pdistp(hk, U

∗).

Thus,

−distp(hk, U
∗) ≤ − 1

(Bh)2−p
dist2(hk, U

∗)

Using the preceding inequality in equation (151) we obtain the following bound:

−distp(hk, U
∗) ≤ − 1

(Bh)2−p
dist2(hk, U

∗) ≤ 1

(Bh)2−p
∥uk − hk∥2 −

1

2(Bh)2−p
dist2(uk, U

∗) (152)

Combining equation (152) with (149), and adding and subtracting µγ∥uk − hk−1∥2 we obtain that for any k ≥ 1:

dist2(uk+1, U
∗) + ∥uk+1 − hk∥2 ≤ dist2(uk, U

∗) + (1− µ

(Bh)2−p
γ)∥uk − hk−1∥2

− (
1

2
− 2µ

(Bh)2−p
γ)∥uk − hk∥2 − (

1

2
− µ

(Bh)2−p
γ)∥uk − hk−1∥2

− µ

(Bh)2−p
γ dist2(uk, U

∗).

(153)
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Without loss of generality we consider case when Bh ≥ 1 (otherwise, we can choose Bh = 1), then:

dist2(uk+1, U
∗) + ∥uk+1 − hk∥2 ≤

(
1− µ

(Bh)2−p
γ

)(
dist2(uk, U

∗) + ∥uk − hk−1∥2
)

− (
1

2
− 2µγ)∥uk − hk∥2 − (

1

2
− µγ)∥uk − hk−1∥2.

(154)

By the stepsize choice, γ ≤ 1
4µ then −( 12 − 2µγ)∥uk − hk∥2 ≤ 0 and −( 12 − µγ)∥uk − hk−1∥2 ≤ 0. Thus, by defining

R2
k = dist2(uk, U

∗) + ∥uk − hk−1∥2 we obtain that for all k ≥ 1,

R2
k+1 ≤

(
1− µ

(Bh)2−p
γ

)
R2

k. (155)

Case (b) p > 2 By using Lemma B.4, we further obtain

distp(uk, U
∗) ≤ (∥uk − hk∥+ dist(hk, U

∗))p

≤ 2p−1∥uk − hk∥p + 2p−1 distp(hk, U
∗).

(156)

Using projection inequality (50), and stepsizes choice we obtain:

∥uk − hk∥ ≤ ∥γkF (hk−1)∥ ≤ 1,

∥uk − hk∥p−2 ≤ 1.

Combining this result with (156)

distp(uk, U
∗) ≤ 2p−1∥uk − hk∥2 + 2p−1 distp(hk, U

∗). (157)

And by rearranging terms we obtain:

−distp(hk, U
∗) ≤ ∥uk − hk∥2 − 2−p+1 distp(uk, U

∗) (158)

Combining this inequality with (149), we obtain that for any k ≥ 1:

dist2(uk+1, U
∗) + ∥uk+1 − hk∥2 ≤ dist2(uk, U

∗) + ∥uk − hk−1∥2 − (
1

2
− 2µγ)∥uk − hk∥2

− 1

2
∥uk − hk−1∥2 − 2−p+2µγ distp(uk, U

∗).

(159)

By the stepsizes choice γk ≤ 1
4µ for all k ≥ 1, then ( 12 − 2µγ)∥uk − hk∥2 ≤ 0, and for all k ≥ 1

dist2(uk+1, U
∗) + ∥uk+1 − hk∥2 ≤ dist2(uk, U

∗) + ∥uk − hk−1∥2

− 1

2
∥uk − hk−1∥2 − 2−p+2µγ distp(uk, U

∗).
(160)

To get convergence rate results we define R2
k = dist2(uk+1, U

∗) + ∥uk+1 − hk∥2. Now we estimate − 1
2∥uk − hk−1∥2.

From the result of Theorem 6.2 (a) we get that for all k ≥ 1, ∥uk − hk−1∥ ≤
√
2R1. Then for all k ≥ 1

∥uk − hk−1∥p−2∥uk − hk−1∥2 ≤ (2R2
1)

(p−2)/2∥uk − hk−1∥2 (161)

Then by multiplying both sides by − 1
2∥uk − hk−1∥p−2 we obtain:

−1

2
∥uk − hk−1∥2 ≤ −

1

2
(2R2

1)
−(p−2)/2∥uk − hk−1∥p (162)

Using this bound and equation (160) we get:

dist2(uk+1, U
∗) + ∥uk+1 − hk∥2 ≤ dist2(uk, U

∗) + ∥uk − hk−1∥2

− 1

2
(2R2

1)
−(p−2)/2∥uk − hk−1∥p − 2−p+2µγ distp(uk, U

∗).
(163)
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Let C4 = min{ 12 (2R
2
1)

−(p−2)/2, 2−p+2µγ}, note that C4 ≤ 2−p+2µγ ≤ 4µγ ≤ 1 when p > 2. Then we obtain for all
k ≥ 1

dist2(uk+1, U
∗) + ∥uk+1 − hk∥2 ≤ dist2(uk, U

∗) + ∥uk − hk−1∥2

− C4(∥uk − hk−1∥p + distp(uk, U
∗)).

(164)

Finally, using ineqaulity (B.4) with a1 = ∥uk − hk−1∥p, a2 = dist2(uk, U
∗) we obtain

−((∥uk − hk−1∥2)p/2 + (dist2(uk, U
∗))p/2) ≤ 2−p/2+1(∥uk − hk−1∥2 + dist2(uk, U

∗))p/2 (165)

Letting R2
k = ∥uk − hk−1∥2 + dist2(uk, U

∗), and using the fact that C42
−p/2+1 ≤ 1 for p > 2, we obtain that for all

k ≥ 1:

R2
k+1 ≤ R2

k − C42
−p/2+1(R2

k)
p/2. (166)

Using Lemma B.5 with xk = R2
k, q = p−2

2 , a = C42
1−p/2 we obtain, for all k ≥ 1:

R2
k+1 ≤

R2
1

(1 + (p− 2)C42−(p+2)/2(R2
1)

(p−2)/2k)2/(p−2)
. (167)

■

F. Analysis of Korpelevich Method with Clipping 7
Proof of Theorem 7.1

Proof. (a) By Lemma 5.1, the following inequality holds for any y ∈ U and all k ≥ 0:

∥hk+1 − y∥2 ≤ ∥hk − y∥2 − ∥hk − uk∥2 − 2γk⟨F (uk), uk − y⟩+ γ2
k∥F (hk)− F (uk)∥2. (168)

We want to estimate the last term on the LHS of the inequality using the fact that operator F (·) is an α-symmetric operator.

Case (I) α ∈ (0, 1).

Using the alternative characterization of α-symmetric operators from Proposition 2.2(a) (as given in (6)), when α ∈ (0, 1),
the next inequality holds for any k ≥ 1:

∥F (hk)− F (uk)∥ ≤ ∥hk − uk∥(K0 +K1∥F (hk)∥α +K2∥hk − uk∥α/(1−α)). (169)

By the projection property (50) and the stepsize choice (15) :

∥hk − uk∥ ≤ γk∥F (hk)∥ = βk min{1, 1

∥F (hk)∥
}∥F (hk)∥ ≤ βk ≤ 1.

Then by the relation (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i we obtain:

γk∥F (hk)− F (uk)∥ ≤ γk(K0 +K1∥F (hk)∥α +K2)∥hk − uk∥

≤ βk(K0 min{1, 1

∥F (hk)∥
}+K1 min{1, 1

∥F (hk)∥
}∥F (hk)∥α +K2 min{1, 1

∥F (hk)∥
})∥hk − uk∥

≤ βk(K0 +K1 +K2)∥hk − uk∥.
(170)

Case (II) α = 1.

Based on the alternative characterization of α-symmetric operators from Proposition 2.2(b) (as given in (7)), when α = 1,
the next inequality holds for any k ≥ 0:

∥F (hk)− F (uk)∥ ≤ ∥hk − uk∥(L0 + L1∥F (hk)∥) exp(L1∥hk − uk∥). (171)
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By the projection property, triangle inequality and step size choice (28):

∥hk − uk∥ ≤ γk∥F (hk)∥ = βk min{1, 1

∥F (hk)∥
}∥F (hk)∥ ≤ βk.

Then, we obtain:

γk∥F (hk)− F (uk)∥ ≤ γk(L0 + L1∥F (hk)∥) exp(L1βk)∥hk − uk∥

= exp(L1βk)(L0βk min{1, 1

∥F (hk)∥
}+ L1βk min{1, 1

∥F (hk)∥
}∥F (hk)∥)∥hk − uk∥

≤ exp(L1βk)βk(L0 + L1)∥hk − uk∥.

(172)

Now let Ca(βk) = K0 +K1 +K2 when α ∈ (0, 1), and Ca(βk) = exp(L1βk)(L0 + L1) when α = 1. Then for both
casesγ2

k∥F (hk)− F (uk)∥2 ≤ β2
kC

2
a(βk)∥hk − uk∥2, then combining this fact with (168) we obtain that for any k ≥ 0:

∥hk+1 − y∥2 ≤ ∥hk − y∥2 − (1− C2
a(βk))∥uk − hk∥2 − 2γk⟨F (uk), uk − y⟩. (173)

Now we plug y = u∗ into equation (173), where u∗ ∈ U∗ is an arbitrary solution. Thus, by using p-quasi sharpness of the
operator, we obtain the following recursive inequality:

∥hk+1 − u∗∥2 ≤ ∥hk − u∗∥2 − (1− C2
a(βk))∥uk − hk∥2 − 2γkµdist

p(uk, U
∗). (174)

Now, if there exists N > 0 such that C2
a(βk) < 1 for all k ≥ N , then we conclude that for any u∗ ∈ U∗, the sequence

{∥hk − u∗∥} is bounded D̄N by where D̄N = maxk∈[0,N ]{dist(hk, U
∗)} for all k ≥ 0.

(b) Now, we want to estimate ∥F (hk)∥, since this term is present in the denominator of the stepsize. Let h∗
0 = PU∗(h0) be a

projection of h0 onto the solution set U∗. We add and subtract F (h∗
0) , and get ∥F (hk)∥ = ∥F (hk)− F (h∗

0) + F (h∗
0)∥ ≤

∥F (hk)− F (h∗
0)∥+ ∥F (h∗

0)∥. We can estimate the first term using the α-symmetric assumption on the operator class.

Case(I) α ∈ (0, 1)

Based on the alternative characterization of α-symmetric operators from Proposition 2.2(a) (as given in (6)),

∥F (hk)− F (h∗
0)∥ ≤ ∥hk − h∗

0∥(K0 +K1∥F (h∗
0)∥α +K2∥hk − h∗

0∥α/(1−α)). (175)

Earlier, in part (a) we proved that for arbitrary solution u∗ the following bound holds for any k ≥ 0

∥hk − u∗∥ ≤ D̄N .

Therefore it holds for u∗ = h∗
0,

∥hk − h∗
0∥ ≤ D̄N .

Using this fact and equation (175) for we obtain that for all k ≥ 0:

∥F (hk)∥ ≤ D̄N (K0 +K1∥F (h∗
0)∥α +K2D̄

α/(1−α)
N ) + ∥F (h∗

0)∥. (176)

We showed that the sequence {∥F (hk)∥} is upper bounded by some constant C1. Where C1 = D̄N (K0 +K1∥F (h∗
0)∥α +

K2D̄
α/(1−α)
N ) + ∥F (h∗

0)∥. Using this fact, we conclude that for all k ≥ 0

γk = βk min{1, 1

∥F (hk)∥
}

≥ βk min{1, 1

C1
} (177)

Case(II) α = 1
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Based on the alternative characterization of α-symmetric operators from Proposition 2.2(b) (as given in (7)),

∥F (hk)− F (h∗
0)∥ ≤ ∥hk − h∗

0∥(L0 + L1∥F (h∗
0)∥) exp(L1∥hk − h∗

0∥). (178)

Using the preceding relation we get the following bound for ∥F (hk−1)∥, for all k ≥ 1:

∥F (hk)∥ ≤ ∥F (hk)− F (h∗
0)∥+ ∥F (h∗

0)∥
≤ ∥hk − h∗

0∥(L0 + L1∥F (h∗
0)∥) exp(L1∥hk − h∗

0∥) + ∥F (h∗
0)∥

(179)

Earlier, in part(a) we proved that, for arbitrary solution u∗ ∈ U∗, the following bound hold for any k ≥ 0

∥hk − u∗∥ ≤ D̄N .

Then, it holds for u∗ = h∗
0, and for all k ≥ 0 it holds that

∥hk − h∗
0∥ ≤ D̄N .

Using this fact and equation (179) for all k ≥ 0:

∥F (hk)∥ ≤ ∥hk − h∗
0∥(L0 + L1∥F (h∗

0)∥) exp(L1∥hk − h∗
0∥) + ∥F (h∗

0)∥
≤ D̄N (L0 + L1∥F (h∗

0)∥) exp(L1D̄N ) + ∥F (h∗
0)∥. (180)

We showed that the sequence {∥F (hk)∥} is upper bounded by some constant C1. Where C1 = D̄N (L0 +
L1∥F (h∗

0)∥) exp(L1D̄N ) + ∥F (h∗
0)∥. Then, we conclude that

γk = βk min{1, 1

∥F (hk)∥
}

≥ βk min{1, 1

C1

}.
(181)

For both cases α ∈ (0, 1) and α = 1 in equations (176), (181) we showed that stepsizes sequence {γk} is lower bounded
by some constant βk min{1, 1

C1
, 1
C1
}.

(c) Using the results from part (b) and equation (174), we obtain for any k ≥ 0:

∥hk+1 − u∗∥2 ≤ ∥hk − u∗∥2 − 1

2
∥uk − hk∥2 − 2βkµmin{1, 1

C1
,
1

C1

} distp(uk, U
∗). (182)

The equation (182) satisfies the condition of Lemma B.3 with

v̄k = ∥hk − h∗∥2, āk = 0,

z̄k =
1

2
∥uk − hk∥2 + 2µβk min{1, 1

C1
,
1

C1

} distp(uk, U
∗), b̄k = 0. (183)

By Lemma B.2, it follows that the sequence {v̄k} converges to a non-negative scalar for any u∗ ∈ U∗, we have

∞∑
k=0

βkdist
p(uk, U

∗) <∞,

∞∑
k=0

∥uk − hk∥2 <∞.

Thus, it follows that
lim
k→∞

βkdist
p(uk, U

∗) = 0, (184)
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and since
∑∞

k=0 βk =∞,
lim inf
k→∞

distp(uk, U
∗) = 0, (185)

lim
k→∞

∥uk − hk∥ = 0. (186)

Since v̄k converges for any given u∗ ∈ U∗ we can conclude that ∥hk − u∗∥ converges for all u∗ ∈ U∗. Therefore, the
sequence {hk} is bounded and has accumulation points. In view of relation (186), the sequences {uk} and {hk} have the
same accumulation points. Let {ki} be an index sequence, such that

lim
i→∞

distp(uki , U
∗) = lim inf

k→∞
distp(uk, U

∗) = 0, (187)

We assume that the sequence {uki} is convergent with a limit point ū, otherwise, we choose a convergent subsequence:

lim
i→∞

∥uki
− ū∥ = 0 (188)

By relation (186), it follows that
lim
i→∞

∥hki − ū∥ = 0 (189)

By continuity of the distance function dist(·, U∗), from relation (184) we conclude that dist(ū, U∗) = 0 , which implies
that ū ∈ U∗ since the set U∗ is closed. Since the sequence {∥hk − u∗∥2} converges for any u∗ ∈ U∗, it follows that
{∥hk − ū∥2} converges , and by relation (189) we conclude that limk→∞ ∥hk − ū∥2 = 0.

■

Proof of Theorem 7.3

Proof. By Lemma 5.1, the following inequality holds for any y ∈ U and all k ≥ 0:

∥hk+1 − y∥2 ≤ ∥hk − y∥2 − ∥hk − uk∥2 − 2γk⟨F (uk), uk − y⟩+ γ2
k∥F (hk)− F (uk)∥2. (190)

By Algorithm 1, γ2
k∥F (hk)− F (uk)∥2 ≤ 1

2∥uk − hk∥, then:

∥hk+1 − y∥2 ≤ ∥hk − y∥2 − 1

2
∥hk − uk∥2 − 2γk⟨F (uk), uk − y⟩. (191)

Now we plug y = u∗ into equation (191), where u∗ ∈ U∗ is an arbitrary solution. Thus, by using p-quasi sharpness of the
operator, we obtain the following recursive inequality:

∥hk+1 − y∥2 ≤ ∥hk − y∥2 − 1

2
∥hk − uk∥2 − 2µγkdist

p(uk, U
∗). (192)

Equation (192) is similar to equation (174) in the proof of Theorem 7.1 with Ca(βk) = 1
2 . By following the proof of

Theorem 7.1, we obtain (i) there exist a lower bound c ∈ R on min{1, 1
∥F (hk)∥}, i.e. min{1, 1

∥F (hk)∥} ≥ c for all k ≥ 0 (ii)
iterates {hk} and {uk} converge to a solution ū ∈ U∗.

Moreover, equation (192) is equivalent to equation (100) of the proof of Theorem 5.3 on convergence rates. Since
γk = βk min{1, 1

∥F (hk)∥} ≥ βkc and βk ≤ 1
4µ , by following the proof of Theorem 5.3 we obtain:

Case (a) p ≤ 2

For all k ≥ 0,
D2

k+1 ≤ (1− µ

(Bu)2−p
βkc)D

2
k, (193)

where D2
k = dist2(hk, U

∗).

Case (b) p > 2
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For all k ≥ 0:

D2
k+1 ≤

D2
0

(1 + (D2
0)

(p−2)/2c
∑k

i=0 βi)2/(p−2)
. (194)

■

G. Additional Experiments
We present the experiments on training GAN for the 2D Ring dataset, a mixture of 8 equal-prior Gaussian distributions, with
mean cos(2πi/8), sin(2πi/8) for i ∈ {1, . . . , 8} and variance 10−4. Both the generator and discriminator networks have 4
fully-connected layers with hidden sizes 200 and 400, respectively. We use LSGAN objective functions and run methods for
100 epochs with a batch size of 128, with γk = 10−3 for methods without clipping, and γk = 10−3 min{1, 1

∥F (hk)∥} for
methods with clipping. Based on our experiments, all three considered methods with clipping outperform the same methods
without clipping. The results of this experiment are shown in Figure 3 and Table 2

(a) KL Divergence between real distribu-
tion and fake

(b) Mode coverage (c) High quality samples

Figure 3. Comparison of projection, Korpelevich and Popov methods with and without clipping.

Table 2. Comparison of projection, Korpelevich and Popov methods with and without clipping after 100 epochs.
Method KL(preal, pfake) Ratio of High Quality Samples Mode Coverage
Projection w/o clipping 2.286 0.055 5
Projection with clipping 0.053 0.348 8
Popov w/o clipping 2.142 0.0593 5
Popov with clipping 0.036 0.306 8
Korpelevich w/o clipping 2.286 0.055 5
Korpelevich with clipping 0.002 0.538 8
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