An Optical Controlling Environment
and Reinforcement Learning Benchmarks

Abulikemu Abuduweili! Changliu Liu !

Abstract

Deep reinforcement learning has the potential to
address various scientific problems. In this pa-
per, we implement an optics simulation environ-
ment for reinforcement learning based controllers.
The environment incorporates nonconvex and non-
linear optical phenomena as well as more realis-
tic time-dependent noise. Then we provide the
benchmark results of several state-of-the-art re-
inforcement learning algorithms on the proposed
simulation environment. In the end, we discuss
the difficulty of controlling the real-world optical
environment with reinforcement learning algo-
rithms.

1. Introduction

In recent years, deep reinforcement learning (RL) has been
used to solve challenging problems in various fields (Sutton
& Barto, 2018), including self-driving car (Bansal et al.,
2018) and robot control (Zhang et al., 2015). Among all of
the applications, deep RL made significant progress in play
games on a superhuman level (Mnih et al., 2013; Silver et al.,
2014; 2016; Vinyals et al., 2017). Beyond playing games,
deep RL has the potential to strongly impact the traditional
control and automation tasks in the natural science, such
as control problems in chemistry (Dressler et al., 2018),
biology (Izawa et al., 2004), quantum physics (Bukov et al.,
2018), optics and photonics (Genty et al., 2020).

In optics and photonics, there is particular potential for RL
methods to drive the next generation of optical laser tech-
nologies (Genty et al., 2020). This is not only because
there is increasing demand for adaptive control and automa-
tion (of tuning and control) for optical systems (Baumeister
et al., 2018), but also because many phenomena in optics are
nonlinear and multidimensional (Shen, 1984), with noise-
sensitive dynamics that are extremely challenging to model

'"Robotics Institute, Carnegie Mellon University. Correspon-
dence to: Abulikemu Abuduweili <abulikea@andrew.cmu.edu>.

2nd Al4Science Workshop at the 29" International Conference on
Machine Learning (ICML), 2022. Copyright 2022 by the author(s).

using conventional methods. RL methods are able to con-
trol multidimensional environment with nonlinear function
approximation (Dai et al., 2018). Thus, study the RL con-
troller in optics becomes increasingly promising in optics
and photonics as well as its applications in scientific re-
search, medicine, and other industries (Genty et al., 2020;
Fermann & Hartl, 2013).

Traditionally, many of the control problems in optics and
photonics were implemented by stochastic parallel gradient
descent (SPGD) algorithm with PID controller (Cauwen-
berghs, 1993; Zhou et al., 2009; Abuduweili et al., 2020a).
The target is to maximize the reward (e.g. optical pulse
energy) by adjusting and controlling the system parameters.
The SPGD algorithm is one of the special cases of stochas-
tic error descent method (Cauwenberghs, 1993; Dembo &
Kailath, 1990). Stochastic error descent is based on the
model-free distributed learning mechanism. A parameter
update rule is proposed by which each individual parameter
vector perturbation contributes to a decrease in error (or
increase in reward). However, SPGD is typically a convex
optimization solver, and many control problems in optics
are non-convex. SPGD may be failed to search the global
optimum of the optics control system unless the initial state
of the system is near a global optimum. Conventionally, the
initial state of the optical system was adjusted by experi-
enced experts, then utilizing SPGD to control the manually
adjusted system, which becomes extremely hard with the
increasing system complexity. In order to achieve efficient
control and automation, deep RL was introduced to con-
trol optical systems (Tiinnermann & Shirakawa, 2019; Sun
et al., 2020; Abuduweili et al., 2020b; 2021). Most of the
previous works implemented Deep-Q Network (Mnih et al.,
2013) and Deep Deterministic Policy Gradient (Lillicrap
et al., 2015), in optical control systems to achieve the com-
parable performance with traditional SPGD-PID control
(Tiinnermann & Shirakawa, 2019; Valensise et al., 2021).
But there is a lack of works on the evaluation of more RL al-
gorithms in the more complex optical control environment.

Studying and validating RL algorithms in the real-world
optical system is a challenging process because its cost is
expensive and requires experienced experts to implement
the optical system. Instrumenting and operating RL algo-

RL for Optics Controlling Environmen

rithms in a simple optical system require significant funds
and manpower. An effective alternative to validate RL al-
gorithms in optics is simulation. Simulation has been used
for robotics and autonomous driving since the early days
of research (Pomerleau, 1998; Bellemare et al., 2013). As
learning-based robotics expands in both interest and applica-
tion, the role of simulation may become ever more critical in
driving research progress. But there is not any open sourced
RL environment for optics control simulation by now.

In this paper, we introduce OPS (Optical Pulse Stacking en-
vironment) - a scalable open simulator for controlling a typ-
ical optical system. The physics behind our OPS system is
the same as many other optical problems, including coherent
optical inference (Wetzstein et al., 2020) and linear optical
sampling (Dorrer et al., 2003), which can be used for pre-
cise measurement, industrial manufacturing, and scientific
research. A typical optical pulse stacking system directly
and symmetrically stacks up the input pulses to multiply
the pulse energy for output stacked pulses (Tiinnermann
& Shirakawa, 2017; Stark et al., 2017; Astrauskas et al.,
2017; Yang et al., 2020). By providing an optical control
simulation environment, we aim to encourage exploration
of the application of RL on optical control tasks and fur-
therly explore the RL controllers in natural science. We use
OPS to evaluate some important RL algorithms including
twin delayed deep deterministic policy gradient (TD3, (Fu-
jimoto et al., 2018)), soft actor-critic (SAC, (Haarnoja et al.,
2018a)), and proximal policy optimization (PPO, (Schul-
man et al., 2017)). After reporting the results of these RL
algorithms, we discuss the difficulty of RL algorithms in
the real-world optical system. With the provided simulating
environment OPS and the experiments of RL algorithms,
we believe that this work can promote the research on RL
applications in optics as well as benefit both the machine
learning and the optics community. The code of the paper is
available at https://github.com/Walleclipse/
Reinforcement-Learning-Pulse-Stacking.

2. Simulation environment
2.1. Physics of the simulation

The optical pulse stacking (OPS, or also called pulse com-
bination) system recursively stacks up the optical pulses
in the time domain. The dynamics of the OPS are similar
to the recurrent neural networks (RNN) or Wavenet archi-
tecture (Oord et al., 2016). We illustrate the dynamics of
the OPS in RNN style as shown in Figure 1. The input
of the OPS is a periodic pulse train' with a repetition pe-
riod of T'. Assume the basic function of the first pulse at

!"The periodic pulse train generally emitted by lasers. The wave
function of each laser pulse is almost the same except for the time
delay of a period.

time step ¢ is 1 = E(t), then the consecutive pulses can
be described as Ey = E(t +T),E3 = E(t + 2T)... The
OPS system recursively imposes the time delay on earlier
pulses for every two consecutive pulse pairs. As an example,
the 1st stage time-delay controller imposes the time delay
71 on pulse 1 to shift the pulse 1. With the proper time
delay, pulse 1 could be stacked with the next pulse F to
create the stacked pulses £y o = E(t + 7))+ E(t + T).
Similarly, pulse 3 could be stacked with pulse 4 to create
Es,=E@{t+2T+mn)+ E(t+3T),and so on. In 2nd
stage OPS, the time delay 7o was further imposed to F1 o to
make it to stack up with Fs3 4 to create E 3 3 4. This kind
of stacking is repeated in each stage OPS controller, which
stacks up the pulses in geometrical progression (recursion).
An N-stage OPS system simply multiplies pulse energy by
2V times by stacking up 2%V pulses, in which N time delays
(71,72, ..., 7n) are needed to control and stabilize. Please
check the more detailed illustration and configuration of the
real-world OPS experiment in Appendix A.

2.2. Control objective and noise

The objective of the controlling OPS system is to maximize
the final stacked (output) pulse energy by adjusting the time
delays. For N-stage OPS system, let Py denotes the final
energy of N times stacked pulse, and 7 = [y, 72, , TN]
denote the time delays. Then the objective function for
controlling N-stage OPS system is:

arg max Py(r) =argmax, ., - Pn(T1,72,..,7N)

1
If any noise were ignored, we would analyze the exact
function of the final pulse energy Py w.r.t. the time delays
7. Figure 2(a) shows the function of the pulse energy P; (1)
w.r.t. the first time delay 7 in 1-stage OPS system. And
Figure 2(b) shows the function surface of Py (71, 72) W.r.t.
the first and second stages time delay (71, 72) in 2-stage
OPS system. As can be seen, the control function of the
OPS system is non-linear and non-convex even ignoring any
noises”. This is a challenging problem for any controlling
algorithms to achieve the global optimum (or better local
optimum) from a random initial state.

In general, noise can not be ignored and the system is quite
noise-sensitive. That is because the wavelength of the pulse
is in pum level (1um = 10~%m). The noise in the environ-
ment, including vibration of optical devices and temperature
drift of the atmosphere, could easily bring the shift of the
time delay then change the output pulses. So the objec-
tive function in real-world practice is more complex than
Figure 2, especially for higher stage (high-dimensional)
OPS. Therefore, under (unpredictable) noise and the noise-

2Part of the reasons are the optical periodicity and nonlinearity
of the coherent interference.

https://github.com/Walleclipse/Reinforcement-Learning-Pulse-Stacking
https://github.com/Walleclipse/Reinforcement-Learning-Pulse-Stacking

RL for Optics Controlling Environmen

3rd stage stacking

2" stage stacking

El,Z

1
|

Ty T2
[Buz][Bs4] Es | ————{ Eyq]

1

[

1st stage stacking ’ E; ‘A’ Lj"z ‘

(& &

[]5] [&]->[&]

\

J |

Figure 1. Ilustration of the principle of optical pulse stacking. Only 3-stage pulse stacking was plotted for simplicity.

combined pulse energy

-20 -16 -12 -8 -4 o a4 8 12 16 20
time delay

(a) One stage OPS (1-d)

= a5 5
combined pulse energy

[N}

-4
-2
st 0
Sta,
9e ¢ 2
time deyy
y

(b) Two stage OPS (2-d)

4 4

Figure 2. Function plot of the (a) 1-stage OPS: pulse energy P; (71)

w.r.t. delay line 1. (b) 2-stage OPS: pulse energy P> (71, 72) W.I.t.

delay lines (71, 72).

sensitive complex system, the model of the system is hard to
be achieved (Genty et al., 2020). So it is hard to implement
model-based controllers. In this paper, we mainly consider
model-free reinforcement learning approaches.

In this simulation, we mainly consider two kinds of noise.
The first one is fast noise which comes from the vibration
of devices. The noise could be formulated as a zero-mean
Gaussian random noise A/ (0, 2) by following the simula-
tion noise of (Tiinnermann & Shirakawa, 2019). The second
is slow noise 1, which comes from slow temperature drift.
The influence of the temperature drift can be formulated
as a piecewise linear function (Ivanova et al., 2021). By
incorporating these two kinds of noise, overall noise e; can
be formulated as a random process, where:

E [Ct] = U, VAR [61?] = 0'2 (2)

2.3. Reinforcement learning environment

Interactions with RL agent. An RL agent interacts with
the OPS environment in discrete time steps, as shown in
Figure 3. At each time step t, the RL agent receives the
current state of the OPS environment s;. Then the RL agent
chooses an action a; to send the OPS environment. The
environment conduct the action and moves to new state
S¢+1- Then the reward r;, which measured by the state s, 1,
feedback to the RL agent. The RL agent trained with the
experience (¢, at, S¢4+1,7¢) to learn a policy 7(a, s) which
maximizes the expected cumulative reward.

State space. State space of OPS is a continual and mul-
tidimensional vector space. The state value s; could be
described as the pulse amplitude measurement of the final

RL for Optics Controlling Environmen

Ei234 OPS Environment
% E3q
RL agent photo N e | s _E E, E3 E,
detection
Cy Pl ﬁllll
2nd stacked 1 i 1ststacked | 1 Initial pul
reward r suliise : ! pulses e
2’“j stage i st stage
. time delay ' A time delay 7,/
1z, 5t T

action a

Figure 3. Illustration of the interaction between RL agent and OPS environment. Only 2-stage pulse stacking was plotted in OPS for

simplicity.

stacked pulse s; = Amplitude(Eqyt(t)). So s is the time-
domain "picture” of the final stacked pulse, which directly
reflects the performance of the control. In a real-world
system, pulse amplitude was detected by a photo-detector
then converted to digital time-series signals. In our simu-
lation, we also implement real-time rendering of the pulse
amplitude to monitor the controlling process.

Action space. Action space of N-stage OPS environment
is a continual and /N-dimensional vector space. At time
step t, the action a; is an additive time delay value A7 (t)
for N-stage OPS environment: a; = A7(t) = (r(t +
1) - Tl(t),TQ(t + 1) - Tg(t), e TN (E + 1) — TN(t)) or
7(t+ 1) = a; + 7(t) . The additive time delay value a(t)
was conducted by OPS environment to lead the next state.

Reward. As mentioned in Section 2.2, the objective of the
OPS controller is maximizing the final stacked pulse energy
Pn (7). We used the reward value as normalized final pulse
energy:

P - P, max 2
o (Px(0) = Puac)® .

(PmML - Pmaac)Q
where P, is the maximum pulse energy achieved at the
global optimum, and P,,;, is the minimum pulse energy.
The maximum reward 0 achieved when P(7) = P,,q. (peak

position of Figure 2(b)) .

State transition function. The environmental noise poses
direct impacts to the delay lines (including the vibration and
temperature shift noise of the delay line devices). So in the
state transition, real conducted delay line Tyea1(t + 1) is a
combination of the action a; and noise e;:

Treal(t+1) =7+ 1) + e = 7(t) + ar + €. 4

Then the real time delay 7yc.1(¢) imposed to some selected
pulses by delay line devices (the device impose additional
time delay for pulses) as conduct the action. The state tran-
sition is governed by state, action and noise. The exact form
of the state transition follow the principle of the coherent
pulse interference. Let f is a observation function (which

observe final output pulse by time delay value). Then the
state transition can be written as:

st41 = [(Treat(t+1)) = f(Trear(t)+as+er) = f(f~

&)
Please note that E [e;] = i, is a slow-changed piecewise
linear function, which changes very slowly with time. For
episodic training for RL agents, the p; could be consid-
ered as a constant value for iterations within an episode.
But the value of p; might differ from one episode to the
next episode. In this case, we can assume p; changes very
slowly, then approximate the OPS control process as a
Markov decision process (MDP). If the higher accuracy
is needed, one can include the noise in the state definition,
st = [Amplitude(Eqyut(t)); et], then the control process
can be formulated as a partially observable Markov decision
process (POMDP).

Different control difficulty of the environment. We
implemented the OPS environment for arbitrary (N €
{1,2,3,...}) stage of pulse stacking. With the increase
of the number of stages, the control would become more
and more difficult. In addition to the customized number of
stages, we also provided three modes (easy, medium, and
hard) for each stage OPS, as shown in Figure 4. The mode
was determined by the initial state of the system and noise
distribution:

» Easy mode. The initial state of the OPS system is near
the global optimum for easy mode. Figure 6(a) shows
the example initial state of the easy mode of the 3-stage
OPS environment. This is a case for many traditional
optics control problems: the initial state of the system
is tuned by “experts” to make it easy to control for
convex controllers.

e Medium mode. The initial state of the system is ran-
dom, as shown in Figure 6(b), which makes the control
problem becomes nonconvex. But in medium mode,
the noise is time-independent and we simply set the
noise distribution as ¢; ~ A(0,0). This is the case
for many classical reinforcement learning and typical

! (s¢)+as+er)

RL for Optics Controlling Environmen

MDP settings. The noise distribution of each episode
is the same.

¢ Hard mode. Similar to medium mode and Figure 6(b),
the initial state of the system is random. Different from
the medium mode, the noise behavior is more compli-
cated. The mean value of the noise distribution i is a
time-dependent variable, which slowly changes during
time. This case is not a typical MDP. The hard mode
is closer to real-world settings. Because in real-world
applications, we always deploy the testing environment
and algorithms after training, so the noise distribution
of the testing environment is different from the training

environment.
Mode | Initial state Noise
near the time independent;
easy . _
optimum u=0
medium | random time mde_pendent;
pe =0
time dependent;
hard d ’
ar random du/dt % 0

Figure 4. Comparison of the different game modes.

from optics_env import OPS_env

env = OPS_env(stage=5, mode= "medium")

env.reset()

done = False

while not done:
action = env.action_space.sample()
observation, reward, done, info = env.step(action)
env.render()

Figure 5. Example code of the OPS environment.

API & sample usage. The optical and physical principle of
the simulation is based on the Nonlinear-Optics-Modeling
package (Hult, 2007). The OPS environment is out of the
box compatible with the widely used OpenAl Gym API
(Brockman et al., 2016). We show an example code of
running random agent on OPS environment as Figure 5.

Features of the OPS environment. We summarize the key
features of the OPS environment as follows:

* Open source optical control environment. To the best
of our knowledge, this is the first open-sourced RL
environment for optics control problems. The open-
source licenses enable researchers to inspect the under-
lying code and to modify environments if required to
test new research ideas.

* Scalable and difficulty-adjustable scientific environ-
ment. Many of the recent RL environments (e.g. Atari)
are easy to solve. In our OPS environment, the diffi-
culty of the environment is flexible. And the dimension
of the action space is easy to scalable with stage num-
ber N. If we choose quite larger N with hard mode,
controlling the environment could become quite hard.

If the hard scientific control problem could be solved
effectively, which would have a broader impact on
many scientific control problems (Genty et al., 2020;
Fermann & Hartl, 2013).

¢ Realistic noise. In the hard mode of the OPS environ-
ment, we module the noise distribution as the time-
dependent function. It made the noise distribution of
the testing environment different from the noise distri-
bution of the training environment. This is more realis-
tic for noise-sensitive systems (Ivanova et al., 2021). It
also increases the stochasticity of the environment.

» Extendable state and structural information. When
¢ changes very slowly, we can formulate the OPS
control process as a MDP. If the higher accuracy is
needed, we can include the noise in the state definition,
then formulate the OPS control process as a POMDP.
In addition, we can explore the structural information
(or physical constrain) from the function of the OPS
(Figure 2) and incorporate it with RL controllers.

3. Experiments
3.1. Experimental setup

As a reference, we provide benchmark results for four state-
of-the-art reinforcement learning algorithms: PPO (Schul-
man et al., 2017), TD3 (Fujimoto et al., 2018), and SAC
(Haarnoja et al., 2018b). We implement the algorithms using
stable-baseline-3 (Raffin et al., 2019). The training proce-
dure for an RL agent is divided into several episodes, each
episode lasts for 200 steps. Other hyperparameters of each
algorithm and training setting can be found in Appendix B.1.
For each of the experimental settings, we run ten random
seeds and average the results.

3.2. Results on controlling 5-stage OPS environment

In this section, we mainly report the results for the 5-stage
OPS system, that stacked 2° = 32 pulses. For the results of
the different stage OPS system, the readers are referred to
Appendix B.3. In a 5-stage OPS system, we evaluate all of
the four algorithms in 3 difficulty modes of the environment:
easy, medium, and hard.

Training curve (plot for training reward per step w.r.t. itera-
tions) of PPO, TD3, and SAC algorithms has been shown in
Figure 7(a) for easy mode, Figure 7(b) for medium mode,
and Figure 7(c) for hard mode. As can be seen, the perfor-
mance of TD3 and SAC is similar and higher than PPO for
all three modes. For the difficulty mode of the environment,
the convergence speed slows down and the final convergent
value decreases with the increase of difficulty of the envi-
ronment. As an example, in easy mode, SAC converges to
the reward value of —0.04 within 100,000 steps, but it takes

RL for Optics Controlling Environmen

=
o

-
o

o
@
o
@

o
o
o
o

o
IS
o
IS

Intensity (normalized)

°
N

Intensity (normalized)

°
N

-

o o ol
> o ®

Intensity (normalized)

°
N

o
o
o
o

|

0 -60 -40 =20 0
Time

20 40 60 80

|

0 -60 -40 -20

(a) Initial state: easy mode

0
Time

(b) Initial state: medium/hard mode

o

E

20 40 60 80 0 -60 -40 -20 0

Time

20 40 60 80

(c) Target optimal state

Figure 6. Rendering examples of the state of (a) initial state for easy mode, (b) initial state for medium or hard mode, (c) global optimal
target state in a 2-stage OPS environment. The initial state of the easy mode has almost sacked some parts of pulses, which is more closer
to the target state. The initial state of medium or hard mode is almost random and might be trapped into local optimum.

200,000 to converges to the reward value of —0.1 for hard
mode.

After training the RL agents, we evaluated the performance
in the testing environment. The final return (stacked pulse
power Py) under different iterations on easy mode, medium
mode, and hard mode as shown in Figure 8(a), Figure 8(b),
and Figure 8(c). As can be seen, although the training
curve of the medium mode (Figure 7(b)) and hard mode
Figure 7(c) is a bit of similar, the evaluation curve on testing
environment of medium mode (Figure 8(b)) and hard mode
Figure 8(c) is different. That is because the hard mode
has a different noise distribution for the training and test
environment. That makes the evaluation control on the
testing environment for hard mode is slow to converge and
achieved the lower final return. Please see the detailed
results of the evaluation in Appendix B.

We reported the final return (combined pulse power Py) of
the training and testing environment on the trained policy
in Table 1. Please note that the training environment and
testing environment for easy and medium mode is similar,
just like the classical Atari environment. The performance
differences are mainly caused by randomness. We showed
that the performance difference between the training and
testing environment is much higher for hard mode. That is
because of the different noise behavior of the training and
testing environment, which makes the control complicated.

3.3. Results on different stage experiments

We evaluated all of the four algorithms of the different
N-stage OPS environments with hard modes. Figure 9(a)
shows the training curve, and Figure 9(b) shows the testing
curve of TD3 on different N-stage OPS system. As can
be seen, with the increase of stage number, the training
convergence became slower, and the final return Py became
smaller.

We also evaluated the trained TD3 and SAC on the different
N stage testing environment, as shown in Figure 10(a) and

Figure 10(b). Figure 10(a) illustrated the final return Py
under different stages OPS and different difficulty modes.
For 1-stage OPS, the final return Py could reach 1. That
means TD3 and SAC are able to search the global opti-
mum for 1-stage OPS. But for 5-stage OPS with hard mode,
the SAC and TD3 only could achieve the 0.8 final return.
That means the controlling algorithms were trapped into
a local optimum. In the real-world experiments, this case
means the 20% energy loss. Figure 10(a) illustrated the
training-convergence step for different stages OPS. As the
stage number increase, the number of steps to training con-
vergence increases significantly, which will slow down the
training for higher stage OPS.

4. Discussion

As far as we know, the previous real-world experiments of
RL algorithms on complicated OPS systems are not very
successful (Tiinnermann & Shirakawa, 2019). One reason
is slow training in a real environment. To deploy the RL
algorithm in an optics system, we need to convert optical
signal to analog signal using photo-detector, then convert
the analog signal to digital signal using an analog-to-digital
converter. These two conversions not only cost some ad-
ditional time to process the signal but also introduce some
noises. Another reason is that it is hard to find satisfactory
RL algorithms to handle such a complex and noise-sensitive
system with non-stationary noise (or non-stationary state).
So one of the promising approaches is sim2real: exploring
RL algorithms in the simulation environment then deploying
them to the real-world control system. Note that sim2real is
not easy for optical control systems. Because of the coherent
interference (which is a root for many optical control prob-
lems), there are many states with zero observation signal
(coherent cancellation of the pulses with opposite phases).
More of the controller failed when encountering many zero
observations®. Compared to directly training on physical

3Under the zero observations, the system controlled by experts
conventionally.

RL for Optics Controlling Environmen

0.0 0.0 0.0
§-01 §-01 §-01
2 2 2
% 5 5
@ —-0.2 @ —-0.2 @ —-0.2
= = =
3 -0.3 3 -0.3 3 -0.3
= = &
T-04 T-04 T-04
5 5 5
3 -05 3 -05 3 -05
o o o
2-06 — D3 2-06 — D3 2-06
= c =
T-07 — SAC T-07 — SAC T-07
= —— PPO I —— PPO =

-08 0 50000 100000 150000 200000 250000 300000 -08 0 50000 100000 150000 200000 250000 300000 -08 0 50000 100000 150000 200000 250000 300000
Iterations Iterations Iterations
(a) Training curve: easy mode (b) Training curve: medium mode (c) Training curve: hard mode

Figure 7. Training curve for SAC, TD3, and PPO on 5-stage OPS environment for (a) easy mode, (b) medium mode, and (c) hard mode.
The dashed region shows the area within the standard deviation.

1 1.0 1.0
5.0.9 5.0.9 5.0.9
g 2 3
@ 0.8 @ 0.8 @ 0.8
& & &
0 0.7 2 0.7 2 0.7
a a a
2 0.6 g 0.6 g 0.6
Tos Tos Tos
3 3 3
£0.4 £0.4 £0.4
%] %] %]
0.3 w— TD3 0.3 w— TD3 0.3 w— TD3
"%02 e SAC EDZ e SAC EDZ e SAC
; = PPO ; = PPO ; = PPO
0.1 0.1 0.1
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Iterations Iterations Iterations
(a) Testing curve: easy mode (b) Testing curve: medium mode (c) Testing curve: hard mode

Figure 8. Evaluation of the stacked pulse power Py (normalized) of testing environment for (a) easy mode, (b) medium mode, and (c)
hard mode.

0.0 1.0
§-01 0.9
® 2
5 -0.2 g 0.8
= w
0.7
2—0.3 &
S J06
T -04 <
] @ 0.5
H I
o —-0.5 o]
”c‘n — 2-stage g 0.4 — 2-stage
< -0.6 ——— 3-stage 0.3 = 3-stage
[=
T -0.7 —— 4-stage £ o2 —— 4-stage
F —— 5-stage —— 5-stage
—087 50000 100000 150000 200000 017575 50 75 100 135 150 175 200
Iterations Iterations
(a) Training curve: TD3 with hard mode (b) Testing curve: TD3 with hard mode

Figure 9. Comparison of the results on hard mode N-stage OPS environment with TD3 algorithms. (a) shows the training curve; (b)
shows the evaluation of final return Py of the testing environment.

1.00 200000 == TD3@hard
=0 TD3@medium
20.95 1750001 o TD3@easy
g "150000{ Y= SAC@hard
[} V= SAC@medium
§0.90 125000 W= SAC@easy
3 —e— TD3@hard 1100000
E‘O.SS =o= TD3@medium 75000
z =& TD3@easy
i Y= sAC@hard 50000
0.80 = SAC@medium 25000
W= SAC@easy
1 2 3 4 5 o 2 3 4 5
Stage number in OPS Stage number in OPS
(a) Testing curve (final return Py) (b) Training convergence step

Figure 10. (a) Final return Py of different stage OPS on testing environment controlled with TD3 or SAC. (b) Convergence steps for the
training of TD3 and SAC on different stage OPS environments.

RL for Optics Controlling Environmen

Mode | Dvaluationon PPO TD3 SAC
which environment

easy training 0.7684 + 0.0884 | 0.9580 4 0.0189 | 0.9637 4+ 0.0172
testing 0.7439 + 0.0463 | 0.9541 +£0.0177 | 0.9514 4+ 0.0231
medium training 0.6210 £ 0.0828 | 0.9204 £ 0.0351 | 0.8945 + 0.0501
testing 0.6182 £ 0.0229 | 0.9106 £ 0.0217 | 0.8833 4 0.0838
hard training 0.5473 £+ 0.0680 | 0.8524 4+ 0.0380 | 0.8515 + 0.0375
testing 0.4461 £ 0.0300 | 0.8130 £ 0.0215 | 0.8071 4+ 0.0164

Table 1. Evaluation performance of PPO, TD3, and SAC on three (easy, medium, hard) modes. Final return Py on both the training

environment and testing environment was evaluated.

OPS system, sim2real relief the problem, but it still exists.
So the fast training and noise-robust RL algorithms, that are
able to handle non-stationary noise and non-convex control
objectives, are critical to controlling tasks in optics. Which
is our main concern about implementing OPS simulation
environments. Please check the further discussion about
real-world system in Appendix C.

5. Conclusion

In this paper, we introduce OPS — an open-sourced simulator
for controlling the pulse stacking system. To the best of our
knowledge, this is the first open-sourced RL environment
for optics control problems. Then we evaluated the SAC,
TD3, and PPO on our proposed simulation environment.
By providing an optical control simulation environment
and RL benchmarks, we aim to encourage exploration of
the application of RL on optical control tasks and furtherly
explore the RL controllers in natural science.

In the future, we will explore the sim2real experiments:
training RL algorithms in the simulation environment then
deploying them to the real-world control system. Another
important topic is that optical systems (or other scientific
control problems) typically provide us with much richer
structural information. So it is promising to incorporate
additional structural information behind the OPS into the
RL controllers.

References

Abuduweili, A., Yang, B., and Zhang, Z. Modified stochas-
tic gradient algorithms for controlling coherent pulse
stacking. In Conference on Lasers and Electro-Optics,
pp- STh4P.1, 2020a.

Abuduweili, A., Yang, B., and Zhang, Z. Control of de-
lay lines with reinforcement learning for coherent pulse
stacking. In Conference on Lasers and Electro-Optics,
pp- JW2E.33, 2020b.

Abuduweili, A., Wang, J., Yang, B., Wang, A., and Zhang, Z.
Reinforcement learning based robust control algorithms

for coherent pulse stacking. Opt. Express, 29(16):26068—
26081, Aug 2021.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G.
On the theory of policy gradient methods: Optimality,
approximation, and distribution shift. Journal of Machine
Learning Research, 22(98):1-76, 2021.

Astrauskas, 1., Kaksis, E., Flory, T., Andriukaitis, G.,
PugZlys, A., BaltuSka, A., Ruppe, J., Chen, S., Gal-
vanauskas, A., and BalCitunas, T. High-energy pulse

stacking via regenerative pulse-burst amplification. Op-
tics letters, 42(11):2201-2204, 2017.

Bansal, M., Krizhevsky, A., and Ogale, A. Chauffeurnet:
Learning to drive by imitating the best and synthesizing
the worst. arXiv preprint arXiv:1812.03079, 2018.

Baumeister, T., Brunton, S. L., and Kutz, J. N. Deep learning
and model predictive control for self-tuning mode-locked
lasers. JOSA B, 35(3):617-626, 2018.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253-279, 2013.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Bukov, M., Day, A. G., Sels, D., Weinberg, P., Polkovnikov,
A., and Mehta, P. Reinforcement learning in different
phases of quantum control. Physical Review X, 8(3):
031086, 2018.

Cauwenberghs, G. A fast stochastic error-descent algorithm
for supervised learning and optimization. Advances in
neural information processing systems, 5:244-251, 1993.

Chen, Y. and Chi, Y. Harnessing structures in big data via
guaranteed low-rank matrix estimation: Recent theory
and fast algorithms via convex and nonconvex optimiza-
tion. IEEE Signal Processing Magazine, 35(4):14-31,
2018. doi: 10.1109/MSP.2018.2821706.

RL for Optics Controlling Environmen

Chi, Y., Chen, Y., and Lu, M. Y. Recent advances in noncon-
vex methods for high-dimensional estimation. /CASSP
tutorial, 2018.

Dai, B., Shaw, A., Li, L., Xiao, L., He, N., Liu, Z., Chen,
J., and Song, L. Sbeed: Convergent reinforcement learn-
ing with nonlinear function approximation. In Interna-
tional Conference on Machine Learning, pp. 1125-1134.
PMLR, 2018.

Dembo, A. and Kailath, T. Model-free distributed learn-
ing. IEEE Transactions on Neural Networks, 1(1):58-70,
1990.

Dorrer, C., Kilper, D., Stuart, H., Raybon, G., and Raymer,
M. Linear optical sampling. IEEE Photonics Technology
Letters, 15(12):1746-1748, 2003.

Dressler, O. J., Howes, P. D., Choo, J., and deMello, A. J.
Reinforcement learning for dynamic microfluidic control.
ACS omega, 3(8):10084-10091, 2018.

Du, Q., Zhou, T., Doolittle, L. R., Huang, G., Li, D., and
Wilcox, R. Deterministic stabilization of eight-way 2d
diffractive beam combining using pattern recognition.
Optics letters, 44(18):4554-4557, 2019a.

Du, S. S., Luo, Y., Wang, R., and Zhang, H. Provably ef-
ficient g-learning with function approximation via dis-
tribution shift error checking oracle. arXiv preprint
arXiv:1906.06321, 2019b.

Dulac-Arnold, G., Mankowitz, D., and Hester, T. Chal-
lenges of real-world reinforcement learning. arXiv
preprint arXiv:1904.12901, 2019.

Fermann, M. E. and Hartl, I. Ultrafast fibre lasers. Nature
photonics, 7(11):868-874, 2013.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing func-
tion approximation error in actor-critic methods. In Dy,
J. and Krause, A. (eds.), Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80, pp.
1587-1596. PMLR, 2018.

Genty, G., Salmela, L., Dudley, J. M., Brunner, D.,
Kokhanovskiy, A., Kobtsev, S., and Turitsyn, S. K. Ma-
chine learning and applications in ultrafast photonics.
Nature Photonics, pp. 1-11, 2020.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In Dy, J. and Krause, A.
(eds.), Proceedings of the 35th International Conference
on Machine Learning, volume 80, pp. 1861-1870. PMLR,
10-15 Jul 2018a.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018b.

Hult, J. A fourth-order runge—kutta in the interaction pic-
ture method for simulating supercontinuum generation in
optical fibers. J. Lightwave Technol., 25(12):3770-3775,
Dec 2007.

Ivanova, Y. M., Pallubinsky, H., Kramer, R., and van
Marken Lichtenbelt, W. The influence of a moderate
temperature drift on thermal physiology and perception.
Physiology & Behavior, 229:113257, 2021.

Izawa, J., Kondo, T., and Ito, K. Biological arm motion
through reinforcement learning. Biological cybernetics,
91(1):10-22, 2004.

Lillicrap, T. P, Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Miryoosefi, S., Brantley, K., Daumé III, H., Dudik, M.,
and Schapire, R. Reinforcement learning with convex
constraints. arXiv preprint arXiv:1906.09323, 2019.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K.,
Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.,
and Kavukcuoglu, K. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

Pomerleau, D. An autonomous land vehicle in a neural
network. Advances in Neural Information Processing
Systems; Morgan Kaufmann Publishers Inc.: Burlington,
MA, USA, 1998.

Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto,
A., and Dormann, N. Stable baselines3. https:
//github.com/DLR-RM/stable-baselines3,
2019.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shen, Y.-R. The principles of nonlinear optics. New York,
1984.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D.,
and Riedmiller, M. Deterministic policy gradient algo-
rithms. In Xing, E. P. and Jebara, T. (eds.), Proceed-
ings of the 31st International Conference on Machine

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3

RL for Optics Controlling Environmen

Learning, volume 32 of Proceedings of Machine Learn-
ing Research, pp. 387-395, Bejing, China, 22-24 Jun

2014. PMLR. URL http://proceedings.mlr.

press/v32/silverld.html.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, 1.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
Nature, 529(7587):484-489, 2016.

Stark, H., Miiller, M., Kienel, M., Klenke, A., Limpert, J.,
and Tiinnermann, A. Electro-optically controlled divided-
pulse amplification. Optics express, 25(12):13494-13503,
2017.

Sun, C., Kaiser, E., Brunton, S. L., and Kutz, J. N. Deep
reinforcement learning for optical systems: A case study
of mode-locked lasers. Machine Learning: Science and
Technology, 1(4):045013, 2020.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tiinnermann, H. and Shirakawa, A. Delay line coherent
pulse stacking. Opt. Lett., 42(23):4829-4832, Dec 2017.

Tiinnermann, H. and Shirakawa, A. Deep reinforcement
learning for coherent beam combining applications. Opt.
Express, 27(17):24223-24230, Aug 2019.

Valensise, C. M., Giuseppi, A., Cerullo, G., and Polli, D.
Deep reinforcement learning control of white-light con-
tinuum generation. Optica, 8(2):239-242, 2021.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhn-
evets, A. S., Yeo, M., Makhzani, A., Kiittler, H., Agapiou,
J., Schrittwieser, J., et al. Starcraft ii: A new challenge for
reinforcement learning. arXiv preprint arXiv:1708.04782,
2017.

Wetzstein, G., Ozcan, A., Gigan, S., Fan, S., Englund, D.,
Soljaci¢, M., Denz, C., Miller, D. A., and Psaltis, D.
Inference in artificial intelligence with deep optics and
photonics. Nature, 588(7836):39-47, 2020.

Yang, B., Liu, G., Abulikemu, A., Wang, Y., Wang, A., and
Zhang, Z. Coherent stacking of 128 pulses from a ghz
repetition rate femtosecond yb:fiber laser. In Conference
on Lasers and Electro-Optics, pp. IW2F.28, 2020.

Zhang, F., Leitner, J., Milford, M., Upcroft, B., and Corke,
P. Towards vision-based deep reinforcement learning for
robotic motion control. arXiv preprint arXiv:1511.03791,
2015.

Zhou, P, Liu, Z., Wang, X., Ma, Y., Ma, H., Xu, X,, and
Guo, S. Coherent beam combining of fiber amplifiers us-
ing stochastic parallel gradient descent algorithm and its

application. IEEE Journal of Selected Topics in Quantum
Electronics, 15(2):248-256, 2009.

http://proceedings.mlr.press/v32/silver14.html
http://proceedings.mlr.press/v32/silver14.html

RL for Optics Controlling Environmen

A. Additional Information of Optical Pulse Stacking

A.1. System configuration

E1,2,3,4
Ei, E3 4
E, E E E
2nd stage 1st stage Y
final stacked mirror — —
pulses] —
2nd stacked = 1st stacked - Initial pulses Laser
pulses

Yoeqpaa)

@ RL Controller

Photo
detection

Figure 11. Configuration of optical pulse stacking (OPS) system. Only a 2-stage OPS system was plotted for simplicity.

The configuration of the optical pulse stacking (OPS) system is shown in Figure 11. The source laser delivers a train of
periodic optical pulses. Given the base wave function of the laser pulse F(t) and period T, each laser pulse in Figure 11 can
be described as:

Ey=FE(t),By=E(t+T),E3 = E(t+2T), E; = E(t + 3T). (6)

Then the laser pulses were sent to the n-stage OPS system. In each OPS time delay stacking module, a time delay should be
given to former pulses for every two consecutive pulse pairs.

The demonstration of each OPS time delay stacking module is shown in Figure 12. Figure 12(a) shows the initial state
of the two pulses before processing by this stage OPS time delay. Figure 12(b) ~ Figure 12(e) show the (chronological)
procedures of stacking two pulses by imposing additional time delay. The former pulse E; was refracted by the splitter to
undergo additional delay lines (vertical path between “mirror” and ’time delay controller and mirror” in Figure 12(a)). The
latter pulse directly transmitted the splitter. If the displacement of the additional delay line is d;, then the additional time
delay imposed to E is 71 = d; /¢, where c is the light speed. Thus, in experimental implementation, the time delay of the
pulse was imposed by additional delay line displacement. The value of the delay line displacement is controlled by the RL
controller.

In OPS system, the 1st stage time-delay controller imposes the time delay 7; on pulse E; to stack with pulse Es to create
the stacked pulses E; o = E(t + 1) + E(t + T'). Similarly, After imposing time delay, pulse E5 could be stacked with
pulse Ey to create F3 4 = E(t + 2T + 1) + E(t + 3T). In the 2nd stage OPS, the time delay 7, was further imposed to
E; o to make it stacking up with F5 4 to create Iy o 3 4:

Fiosa=E{t+n+mn)+Et+T+mn)+EE+2T+m)+ E(t+3T). @)

If noise was ignored, when 71 = T', 75 = 2T, E 2 3 4 achieved the maximum value 4F (t + 3T). Furtherly, for N-stage
OPS system, 1st, 2nd, ..., N-th time delay 71, 72, ..., 7y matches to 20 21 ... , 2V=1 times of the pulse period T', the oN
pulses will be perfectly stacked, and the power of the output pulse reaches the global maximum. In practice, noise can not
be ignored, so the exact value of time delay 7y, 7», ..., 7 could be adjusted according to the feedback.

A.2. Real physical system

The real physical OPS system is shown in Figure 13. RL algorithm computes the value of each time delay 7y, 79, ..., 75 and
sends the values to each stage delay line controller. (RL controller connected with the electric signal line of 1st, 2nd, 3rd
delay line located at the bottom of the Figure 13.) Real-world OPS control experiments are quite costly and slow.

RL for Optics Controlling Environmen

mirror £ E, ; = E,
‘ —] «—
""s’p’n’&é’r ””””””””””””””””””””””””””””””””””” k ””””””””””””””””””””””””””””

time delayicontroller

and mirror;
(a) initial step (b) step 1
5 5 E, Eﬂ =
--------------- 1 1
» = - /]J
— L —
(c) step 2 (d) step 3 (e) step 4

Figure 12. Demonstration of stacking two pulses with additional time delay. (a) shows the initial state of the 2 pulses before stacking.
(b)-(e) show the (chronological) procedure of the stacking 2 pulses with imposing additional time delay. The former (latter) pulse was
plotted with purple (red). The solid (transparent) plotted pulse shows the pulse position at the current (last) step. The arrow denotes the
shifting value of a pulse.

B. Additional Experiments
B.1. Experimental setting

We evaluated the performance of PPO, TD3, and SAC in our OPS environment. For each of PPO, TD3, and SAC, we
performed hyperparameter search to achieve better performance. For the search, we trained on 5-stage OPS environment
with medium difficulty. Each of the hyperparameter sets was repeated with 3 random seeds. For each algorithm, the best
hyperparameter set was decided based on the final performance in the testing environment. After the search, each of the
best hyperparameter sets was used to run experiments with 10 different random seeds on all scenarios. The hyperparameter
range and selected value of TD3 can be found in Table 2, hyperparameter range and selected value of SAC can be found in
Table 3, and hyperparameter range and selected value of PPO can be found in Table 4.

Hyperparameter Range Best-selected
Size of the replay buffer {1000,10000,100000} 10000
Step of collect transition before training {100, 1000, 10000} 1000
Unroll Length/n-step {1,10, 100} 100
Training epochs per update {1,10, 100} 100
Discount factor () {0.98, 0.99, 0.999} 0.98
Noise type {’normal’, ’ornstein-uhlenbeck’, None} ’normal’
Noise standard value {0.1,0.3,0.5,0.7,0.9} 0.7
Learning rate {0.0001, 0.0003, 0.001,0.003,0.01} 0.001
Policy network hidden layer {1,2,3} 2

Policy network hidden dimension {64, 128, 256} 256
Optimizer Adam Adam

Table 2. TD3: ranges used during the hyperparameter search and the final selected values.

B.2. Transfer trained policy

It is possible to transfer the trained policy between different OPS environments. The major difference between the simulation
and real-world environments is the different noise levels. We conduct an simulated experiment to show the transferability
between different noise levels.

RL for Optics Controlling Environmen

Figure 13. Real world optical pulse stacking system.

Hyperparameter Range Best-selected
Size of the replay buffer {1000,10000,100000} 10000
Step of collect transition before training {100, 1000, 10000} 1000
Unroll Length/n-step {1,10, 100} 1
Training epochs per update {1,10, 100} 1
Discount factor () {0.98, 0.99, 0.999} 0.98
Generalized State Dependent Exploration (gSDE) {True, False} True
Soft update coefficient for ”Polyak update” (7) {0.002,0.005, 0.01, 0.02} 0.005
Learning rate {0.0001, 0.0003, 0.001,0.003,0.01} 0.001
Policy network hidden layer {1,2,3} 2
Policy network hidden dimension {64, 128, 256} 256
Optimizer Adam Adam

Table 3. SAC: ranges used during the hyperparameter search and the final selected values.

Hyperparameter Range Best-selected
Unroll Length/n-step {128,256,512,1024,2048} 1024
Training epochs per update {1,5,10} 10
Clipping range {0.1,0.2,04} 0.2
Discount factor (7y) {0.98, 0.99, 0.999} 0.98
Entropy Coefficient {0,0.001,0.01, 0.1} 0.01
GAE (\) {0.90, 0.95, 0.98, 0.99} 0.95
Value function coefficient {0.1,0.3,0.5,0.7,0.9} 0.5
Learning rate {0.0001, 0.0003, 0.001,0.003,0.01} 0.001
Gradient norm clipping {0.1,0.5, 1.0, 5.0} 0.5
Policy network hidden layer {1,2,3} 2
Policy network hidden dimension {64, 128, 256} 256
Optimizer Adam Adam

Table 4. PPO: ranges used during the hyperparameter search and the final selected values.

RL for Optics Controlling Environmen

In our simulation environment, the noise level is dependent on the difficulty mode. Then we explore the transferability of
the trained policy between “easy”, “medium”, and "hard” modes. After trained the policy on ’hard” mode environment,
we tested the trained policy on hard”, “medium”, and “easy” environment, as shown in Figure 14 (a). Transfer results of
“medium” trained policy and “easy” trained policy are shown in Figure 14 (b) and Figure 14 (c) respectively. As can be
seen, We can perfectly transfer the harder mode trained policy to easier mode environments. When the easier mode training
strategy is transferring to a harder mode environment, the performance may drop, and there is a jitter in pulse energy. Please

see the discussion about the real-world and simulated experiments in Appendix C.

i

-
o
-
o
-
o

o
)
bl
o
o
o

o
Y
g
o
o
o

o
'S
e
IS
o
'S

= medium -> hard
medium -> medium
w—— medium -> easy /

—— easy -> hard
easy -> medium
= easy -> easy

== hard -> hard
hard -> medium
= hard -> easy -

Final Stacked Pulse Energy
o
o

Final Stacked Pulse Energy

Final Stacked Pulse Energy
o
N

°
N

=3
o
=3
o
o
o

25 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 200
Iterations Iterations Iterations

(a) hard trained (b) medium trained (c) easy trained

Figure 14. Demonstration of the transfer performance of the trained policy on (a) hard mode training env; (b) medium mode training env;
(c) easy mode training env.

Figure 14 shows that it is possible to transfer the trained policy between different noise levels, but it is more useful to train
the policy in a harder environment than tested on the easier environment. Thus, we could explore fast and robust controlling
algorithms in more harder simulation environment (with introducing more noise and more uncertainty in the simulation)
then deploy the trained policy to real-world physical systems.

B.3. Results on controlling OPS environment

We reported the training curve (training reward w.r.t. iterations) and testing curve (return (stacked pulse power Py) w.r.t.
testing iterations) on the 4-stage OPS environment in Figure 15, and on the 6-stage OPS environment in Figure 16. As can
be seen, the performance of TD3 and SAC is higher than PPO. Compared with Figure 15 (4-stage), and Figure 7 (5-stage) to
Figure 16 (6-stage), with the increase of stage number, the training convergence became slower, and the final return Py
became smaller, especially for medium mode and hard mode difficulty.

B.4. Demonstration of the controlling OPS environment

Figure 17 shows the pulse trains on a 5-stage hard mode OPS system controlled by TD3 from the random initial state. It is
seen that TD3 algorithm could achieve (local) maximum power within 40 iterations.

C. Discussion
C.1. Real-world environment and simulation environment

Deploying the RL algorithm in the real-world optics system requires converting optical signal to electrical analog signal using
photo-detector (PD), then converting the analog signal to digital signal using an analog-to-digital converter (ADC). These
two conversions cost some additional time to process the signal and cause feedback delay. At a conservative estimate, the
regular PD and ADC processing takes 0.01s per step. Then it would be possible to implement deep reinforcement algorithms
on FPGAs to create control output by the feed of digital observation signal. In a proper implementation, FPGA computing
time would be less than 0.01s per step. Including signal converting, neural-network inference time, and time-delay of the
optical-mirror driver (controller), the time cost per control step is in the magnitude of 0.1s *. But in our simulation system,
we could speed up the control step by at least 10 times (with GPUs). More importantly, for RL training on real-world OPS
systems, it needs to manually tune the optical devices when the optical beams are totally misaligned caused by the exploring
process of RL. The initial alignment of the complex OPS system is usually tuned by experts to take several hours even

*With expensive high-speed PD, AD/DA cards, and optical mirror driver, as well as efficient FPGA implementation, the control-speed
time would be reduced to 0.01s. But it will increase the budget of the devices.

RL for Optics Controlling Environmen

Training Reward (per iteration)

0 50000 100000 150000 200000 250000 300000
Iterations

o
o

-

N

w

n

o

Training Reward (per iteration)
S 666684
IS

» N

|
o ¢

0 50000 100000 150000 200000 250000 300000
Iterations

(b) Medium mode: train curve

|
o
o

-

N

| | |
w

Training Reward (per iteration)
o T Y
&

0 50000 100000 150000 200000 250000 300000
Iterations

(c) Hard mode: train curve

(a) Easy mode: train curve

1.0 1.0 1.
3 30.9 309
gos gos g08
fir fi &
° 0.7 0.7
206 o @
I 206 o6
o o o
Soa 3 0.5 g 0.5
8 £0.4 804
" wn "
T 0.2 —— TD3 0.3 = TD3 0.3 = TD3
£ = SAC £) —— SAC £) = SAC
= PPO 0 = PPO 0 = PPO
0.0 0.1 0.1
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Iterations Iterations Iterations

(d) Easy mode: testing curve (e) Medium mode: testing curve (f) Hard mode: testing curve
Figure 15. 4-stage OPS experiments. Training reward was plotted for (a) easy mode, (b) medium mode, and (c) hard mode. Evaluation of

the stacked pulse power P4 (normalized) of testing environment was plotted for (d) easy mode, (e¢) medium mode, and (f) hard mode.

several days, that the time-cost is depending on the system complexity®. But in our simulation system, the initial alignment
could be done by simply “reset” the environment. So the value of the simulation environment can be summarized as:

* Faster control process than a real-world experiment.

* Easy to “reset” (and initial align) the environment, while it takes a lot of works to reset or initial align a real-world
experiment.

* It is safer and cheaper. In real-world experiments, it has potential risk when the optical beams are totally misaligned,
because refracted light is non-predictable and may shed on experimenters.

C.2. Real-world Evaluation

The impact of the simulation must be valued by the real measurement. Part of the correctness of our simulation has been
evaluated by the simplified beam combining experiments (Tiinnermann & Shirakawa, 2019; Yang et al., 2020). Specifically,
(Tiinnermann & Shirakawa, 2019) implemented an simple real experiment and the same simulation, the authors found
the simulation is valuable. Our simulation and experimental settings are complicated than (Tiinnermann & Shirakawa,
2019), but the physics behind them is the same. Actually, if we set stage number =1, our simulation is almost the same as
(Ttinnermann & Shirakawa, 2019). We will do detailed real experiments and justification in the near future.

C.3. Potential Impact and additional Related works

Machine learning community. High-dimensional real-world reinforcement learning problems are extremely challeng-
ing(Dulac-Arnold et al., 2019). In our simulation environment, if we choose a quite large N-stage number with hard mode,
controlling the environment could become high-dimensional and difficult. Few recent works studied the distribution shift in
RL(Agarwal et al., 2021; Du et al., 2019b). In the hard mode of the OPS environment, the noise distribution of the testing
environment is different from the noise distribution of the training environment. Therefore our simulation environment

SWe cannot detect any stacking signal when the optical beams are totally misaligned. So the RL algorithms would fail. It needs to
align manually in this scenario.

RL for Optics Controlling Environmen

Training Reward (per iteration)

— TD3
—— SAC
—— PPO

0 50000 100000 150000 200000 250000 300000

Iterations

o
o

Training Reward (per iteration)
S & & S
© o > N

|
=
=)

0 50000 100000 150000 200000 250000 300000
Iterations

(b) Medium mode: train curve

Training Reward (per iteration)

0 50000 100000 150000 200000 250000 300000
Iterations

(c) Hard mode: train curve

(a) Easy mode: train curve

-
)
=
o
-

o
@
o
@
4
@

o
o
1
o
o
o

o
>
o
>
o
IS

— TD3
—— SAC
—— PPO

e
N
o
N

o
N
Final Stacked Pulse Energy

Final Stacked Pulse Energy
Final Stacked Pulse Energy

o
o
=)
=)
o

100 125 150 175 200) 25 50 75 100 125 150 175 200
Iterations Iterations

100 125 150 175 200) 25 50 75
Iterations

0 25 50 75

(d) Easy mode: testing curve (e) Medium mode: testing curve (f) Hard mode: testing curve
Figure 16. 6-stage OPS experiments. Training reward was plotted for (a) easy mode, (b) medium mode, and (c) hard mode. Evaluation of

the stacked pulse power Ps (normalized) of testing environment was plotted for (d) easy mode, (e¢) medium mode, and (f) hard mode.

is beneficial to solve the hard and realistic reinforcement learning problems. In recent years, statistical procedures have
been developed to promote low-dimensional structures using convex relaxations, rather than directly solving the nonconvex
problems (Chen & Chi, 2018; Chi et al., 2018). As shown in Figure 2, we know the function of the OPS objective (if ignoring
noise). The function typically provides us with much richer structural information and physical constraints. So it is possible
to explore the additional information about the function of the OPS and incorporating it with RL algorithms. In many of the
real-world cases, we are not interested in ”generic”’ nonconvex problems, but rather, we focus on more specific nonconvex
control with physical constrain or some known objective function (Miryoosefi et al., 2019). Exploring the nonconvex and
periodic objective of OPS would benefit the real-world RL problems that including some structural information.

Optics community. High pulse energy lasers can be used in laser accelerators, large-scale material processing, and medicine
(Fermann & Hartl, 2013). Optical (coherent) pulse stacking is one of the easiest and promising ways to scale the pulse
energy (Tlinnermann & Shirakawa, 2017). However, the conventional control algorithms for OPS are not very effective (Du
et al., 2019a). RL methods are able to control this kind of multi-dimensional and nonlinear environment. Similar to our OPS
control system, all of the optical control problems are affected by the nonlinearity and periodicity of the light inference
(as shown in Figure 2), including coherent optical inference (Wetzstein et al., 2020) and linear optical sampling (Dorrer
et al., 2003), which can be used for precise measurement, industrial manufacturing, and scientific research. We believe our
simulation is one of the important and typical optical control environments. Beyond OPS, RL methods have the potential to
drive the next generation of optical laser technologies even the next generation of scientific control technologies(Genty et al.,
2020). This is because many phenomena in optics are nonlinear and multidimensional, with noise-sensitive dynamics that
are extremely challenging to model using conventional methods.

RL for Optics Controlling Environmen

1 iteration=0 1.0 iteration=10 10 iteration=20
08 038 _08
3 3 3
& K 2
£0.6 £0.6 206
204 204 204
G G 3
g g g
£ € £
02 l l 0.2 02
0.0 ‘ Al A A A 0.0 l ‘ A A A l A 0.0 A A A A A
=300 -200 -100 0 100 200 300 <300 -—200 -100 0 100 200 300 300 200 -100 0 100 200 300
Time Time Time
(a) Initial state (b) After 10 iterations (c) After 20 iterations
10 iteration=30 10 iteration=40 1 iteration=50
08 _o08 08
3 K] 3
£0.6 £06 £0.6
20.4 204 204
i 5 g
3 g 8
2 2 2
02 =02 =02
0.0 A s 0.0, 0. - -
2500 -200 -100 0 100 200 300 500 —200 -100 0 100 200 300 500 -200 -100 0 100 200 300
Time Time Time
(d) After 30 iterations (e) After 40 iterations (f) After 50 iterations

Figure 17. Demonstration of the controlling 5-stage OPS hard mode testing environment by TD3 algorithm after training. (a): initial state
of pulses; (b) pulse state after 10 control iterations; (c) pulse state after 20 control iterations; (d) pulse state after 30 control iterations; (e)
pulse state after 40 control iterations; (e) pulse state after 50 control iterations.

