
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BEYOND MEMORIZATION:
EXTENDING REASONING DEPTH WITH RECURRENCE,
MEMORY AND TEST-TIME COMPUTE SCALING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning is a core capability of large language models, yet how multi-step rea-
soning is learned and executed remains unclear. We study this in a controlled
cellular-automata (1dCA) framework that excludes memorisation by using disjoint
train/test rules. Models are trained on short state sequences, required to infer the
hidden local rule, and then chain it for multiple future steps. We find that most neu-
ral architectures learn the rule and achieve high next-step accuracy, but performance
drops sharply as the required number of steps increases. Increasing model depth is
crucial, and extending effective depth via recurrence, memory, or test-time compute
improves results but remains bounded. Complementing these controlled experi-
ments, a natural-language proxy game shows that contemporary LLMs largely fail
on the complex setting. Together, these results separate genuine rule induction from
memorisation, quantify how difficulty scales with reasoning depth, and highlight
the joint roles of architecture and training/inference procedures.

1 INTRODUCTION

Large Language Models (LLMs) demonstrate impressive capabilities in problem-solving and reason-
ing tasks, e.g., OpenAI’s o1 (OpenAI, 2024) and DeepSeek R1 (Guo et al., 2025) models achieved
a top-500 ranking in a qualifier for the USA Math Olympiad (AIME). OpenAI system achieved
an outstanding result, ranked 6 in the International Olympiad in Informatics (IOI 2025) (OpenAI,
2025). Both Google DeepMind and OpenAI systems achieve gold-medal scores in the International
Olympiad in Mathematics (IMO 2025) (Luong & Lockhart, 2025). On the other hand, extensive
evidence from ongoing research shows that LLMs still face challenges in multi-step reasoning Dziri
et al. (2024); Wan et al. (2024); Holliday & Mandelkern (2024); Gandarela et al. (2024); Mondorf &
Plank (2024); Shojaee et al. (2025) and planning Valmeekam et al. (2024), particularly when required
to infer and apply underlying rules from data.

These observations raise the following questions:
1. Is the reasoning exhibited by LLMs the result of genuine generalization, or merely memorization?
2. How does task difficulty scale as the required number of reasoning steps increases?
3. To what extent do a model’s architectural inductive biases, training objectives, and inference
procedures limit its reasoning capabilities?

Transformers (Vaswani et al., 2017) are universal function approximators and, with unbounded depth
and precision, are Turing-complete (Cybenko, 1989; Hornik et al., 1989; Dehghani et al., 2019; Yun
et al., 2019; Bhattamishra et al., 2020; Pérez et al., 2021; Sanford et al., 2024b). Yet, finite-depth,
fixed-width models used in practice cannot process arbitrarily long inputs in a single forward pass,
and they provably fail on tasks such as graph connectivity, Boolean formula evaluation, and exact
arithmetic beyond a bounded length (Merrill et al., 2022; Merrill & Sabharwal, 2023b; Strobl et al.,
2023; Feng et al., 2024).

One way to sidestep this depth barrier is to let the model write its own scratch-pad of intermediate
tokens. Chain-of-Thought (CoT) prompting, process supervision, and reinforcement learning (RL)
encourage models to emit multi-step rationales before producing the final answer (Wei et al., 2022;
Uesato et al., 2022; Wang et al., 2024; Yao et al., 2024; Kumar et al., 2024). Generating and
consuming these extra tokens effectively increases the computational depth in proportion to the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

rationale length, enabling transformers to solve dynamic-programming benchmarks (Feng et al.,
2024) and to recognize regular languages with linear decoding depth (Merrill & Sabharwal, 2023a).
Yet, the main drawback is the need for supervision over intermediate steps, which is expensive or
might be unavailable.

A complementary avenue is to recycle hidden states. Segment-level recurrence in memory-augmented
transformers (Weston et al., 2015; Graves et al., 2014) enables the re-feeding of hidden states across
segments (Dai et al., 2019; Rae et al., 2019; Bulatov et al., 2022; Chevalier et al., 2023; Rodkin et al.,
2024), whereas state-space models achieve long-range interactions by leveraging linear dynamical
systems (Gu et al., 2021; Gu & Dao, 2023). Recurrence deepens the network without emitting extra
tokens, but the maximum number of recurrent steps is still limited by the input length. Adaptive
Computation Time (ACT) (Graves, 2016) removes this upper bound entirely: the model learns
to allocate a variable number of layer updates to each token, halting once further computation is
predicted to be unhelpful. In principle, ACT grants transformers unbounded effective depth while
preserving parameter efficiency, which is an appealing property for reasoning tasks that require
widely varying amounts of computation.

In this paper, we study rule abstraction and multi-step reasoning in neural models using a controlled
1D Cellular Automata (1dCA) setting that prevents memorisation by holding out disjoint rule
sets between training and test. We cast reasoning as variable-horizon prediction and quantify
how architectures and depth-extension strategies cope as the look-ahead k increases. Our main
contributions are:

1DCA-REASONING benchmark. A variable-length dataset with four task variants (O–S, O–O,
O–RS, RO–S) that disentangle rule induction from state propagation; train/test rule sets are disjoint
to preclude memorisation.
LLM evaluation in natural language. A new Handsup task—a worded proxy equivalent to the
1dCA update—used to assess LLMs under varying look-ahead and rule complexity, showing that
many LLMs (except Gemini 2.5 Pro) fail on the simplest radius-1 setting.
Comprehensive architectural comparison. Side-by-side evaluation of Transformers (GPT-NeoX),
LSTMs, state-space models (Mamba), and a memory-augmented Transformer (ARMT) under iden-
tical conditions. Fixed-depth (4-layer) models solve k=1 but collapse for k≥2; ARMT extends to
k=2. We corroborate these trends on a group-multiplication benchmark (Merrill et al., 2024).
Depth-extension analysis. With 4-layer backbones: (i) Adaptive Computation Time (ACT) reliably
adds ∼ +1 effective step with modest compute; (ii) GRPO (RL) reaches k=3 without intermediate
supervision; and (iii) token-level Chain-of-Thought attains near-perfect accuracy up to k=4.

2 METHODS

Modeling Reasoning with 1d Cellular Automata. Reason is the capacity of consciously applying
logic by drawing valid conclusions from new or existing information.1 Reasoning about an unfamiliar
process naturally splits into two parts: (i) inferring the hidden law that drives state transitions and
(ii) chaining that law to predict multiple future steps. One-dimensional cellular automata (1dCA)
provide a minimal, fully observable sandbox for this: a local Boolean rule—the toy universe’s
“micro-physics”—updates each binary state from its neighborhood. In our benchmark the rule is
withheld and the train/test rule sets are disjoint, so rote lookup cannot succeed. To solve a task the
model must first induce the rule from observed orbits and then apply it repeatedly to roll out future
states, cleanly separating genuine rule-based reasoning from mere memorization.

Background. An One-dimensional Cellular Automaton (1dCA) is a one-dimensional, dynamical sys-
tem in which space and time are discrete. Let r ∈ N : r ≥ 1 be the neighborhood radius in the space
represented by a regular lattice of W ∈ N : W ≥ 2r + 1 identical, locally-interconnected cells with
binary state spaces, S = {0, 1}. The 1dCA’s global state, x ∈ SW , is a lattice configuration specified
by the values of all states of all cells in the lattice at a given time. This state evolves deterministically
in synchronous, discrete time steps according to a global map gρ : SW → SW defined by a local
rule ρ : S2r+1 → S, so [gρ(x)]w = ρ(xw−r, . . . , xw, . . . , xw+r) (Fig.1a). The sequence of states an
1dCA passes through during its space–time evolution, OT (x) = [x, gρ(x), gρ(gρ(x)), . . . , g

oT−1
ρ (x)],

1https://en.wikipedia.org/wiki/Reason

2

https://en.wikipedia.org/wiki/Reason


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Learning One-dimensional Cellular Automata. (a) Update of state with local rule.
(b) Orbit of 1dCA is a sequence of binary strings of size W = 20. The first k = 10 states marked by
the red rectangle encode transformer input. (c) Given a part of the orbit a model learns to predict the
next state (O-S).

defines its trajectory or orbit from an initial condition (configuration) x for T ∈ N : T ≥ 1. Examples
of 1dCA orbits are visualized in Figure 1(b).

Benchmark for reasoning. Our benchmark instantiates multi-step reasoning with 1dCA trajectories:
each example provides a short orbit (e.g., 10 states) generated by a hidden rule; training and test
use disjoint rule sets. The model must infer the rule from the observed states and predict future
configurations, forcing it to learn a general rule-inference procedure rather than memorize instance-
specific mappings. We vary difficulty via look-ahead prediction: to give goT+k

ρ (x) for k ∈ {1, 2, 3, 4}
steps ahead (without intermediate states), the model must internally roll out the dynamics, effectively
chaining the inferred rule. We call k the depth of reasoning and study which architectures can achieve
greater depth under this setting.

Task variants. The benchmark could emulate the situations when we have supervision on intermedi-
ate steps (i.e. the thinking process of the LLM) and when we only have a final look-ahead state. We
consider four variations of learning tasks designed to assess different aspects of predictive modeling
and rule inference:

Orbit-State (O-S): given an orbit OT (x) = [x(1), x(2), . . . , x(T )] where x(1) ∈ SW , the objective
is to predict the state x(T+k) at look-ahead k ∈ N : k ≥ 1. For k = 1 (see Fig.1c) this is a
single-step prediction simulating an elementary act of reasoning or a part of a curriculum to learn
longer reasoning chain. For k > 1 multiple intermediate inference steps are required for the answer.

Orbit-Orbit (O-O): given an orbit OT (x) for some k > 1 predict the subsequent states up to time
T + k, generating OT+k

T+1 (x) = [x(T+1), . . . , x(T+k)]. This task simulates step-by-step multi-step
reasoning as a learning objective.

Orbit-State and Rule (O-RS): given an orbit OT (x) predict the state x(T+k) and the local rule ρ. By
explicitly optimizing rule prediction, the model receives direct supervision.

Rule and Orbit-State (RO-S): given an orbit OT (x) and the local rule ρ predict the state x(T+k) at
time T + k. Since the rule is explicitly provided, the model can bypass inference of rule structure
and focus solely on learning to apply the update.

The rule in our 1dCA setup is based on a neighborhood radius r = 2, meaning each bit of the next
state depends on a 5-bit window (2 left + current cell + 2 right) from the current state. Since there
are 25 possible 5-bit strings, the rule mapping can be represented by a 32-bit string. Each bit in this
string corresponds to the output of the rule for a specific input. The position of this output bit within
the rule string is determined by the binary value of the 5-bit input (see Fig.1a). For our evaluation we
use the exact match metric for state prediction (1 if the state is predicted correctly, 0 if at least one bit
is predicted wrong) and bit accuracy (ratio of the correctly predicted bits) for the rule. You can find
the examples of training/validation samples in the subsection F.2.

Neural Models. In our study, we consider LLMs and small models belonging to several widely-
applied architectural families. Long Short-Term Memory (LSTM) networks Hochreiter & Schmidhu-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ber (1997), a class of recurrent neural network (RNN), have proven effective in capturing sequential
dependencies in NLP tasks. However, their inherent sequential processing limits efficiency and
scalability. Transformers Vaswani et al. (2017) address these limitations by processing entire input
sequences simultaneously through self-attention, enabling parallel computation and better handling
of long-range dependencies compared to RNN-based models. State space models (SSMs) Gu et al.
(2021) offer an alternative approach to sequence modeling by leveraging structured state representa-
tions and computationally efficient recurrence mechanisms. We consider the Associative Recurrent
Memory Transformer (ARMT) Rodkin et al. (2024), an extension of the transformer designed to
enhance memory capabilities. ARMT builds on the Recurrent Memory Transformer Bulatov et al.
(2022) by incorporating quasi-linear attention mechanisms that improve information transfer across
input blocks, mitigating limitations in long-context processing. We discuss the properties of these
models in Appendix C.

We also explore several approaches for enhancing reasoning in neural networks, such as Chain-of-
Thought, RL-methods (GRPO), and Adaptive Computations Time.

Chain-of-Thought (CoT). prompting Wei et al. (2022) is a technique for enhancing the reasoning
capabilities of LLMs. Unlike standard prompting techniques, which attempt to directly infer an
answer from the input, CoT forces the model to explicitly generate intermediate reasoning steps while
solving a problem, allowing it to reference these tokens as a form of recurrent state. This mechanism
effectively increases the formal computational power of the model Merrill & Sabharwal (2023a) and
extends its effective depth enabling LLMs to perform multi-step reasoning, particularly in tasks such
as mathematical problem-solving, logical inference, and commonsense reasoning Wei et al. (2022).

Learning to reason with RL. Another common practice involves training LLMs with reinforcement
learning methods such as proximal policy optimization (PPO) Schulman et al. (2017) and group
relative policy optimization (GRPO) Shao et al. (2024) after supervised finetuning in order to
improve the generation of reasoning traces. RL post-training has been shown to improve instruction
following Ouyang et al. (2022) as well as mathematical Wang et al. (2024) and general reasoning
performance in LLMs Havrilla et al. (2024); Kumar et al. (2024); Guo et al. (2025). Compared to
supervised methods, training to reason with GRPO requires no supervision on intermediate reasoning
steps. It only relies on rewards from correct final answers and maintaining the desired format.

Adaptive Computation Time (ACT). (Graves, 2016) is the mechanism proposed to allow recurrent
and self-attentive models to perform a variable number of computation steps within each time-step
dynamically. The core idea is to enable different parts of the sequence to have different computational
complexities, which is particularly useful for tasks with non-uniform requirements for computation.
In this class of models a halting unit dynamically decides how much “thinking time” should take place
at each step, thus adaptively scaling the effective reasoning depth of the model. For mathematical
formulation check the Appendix E.

Recurrent Memory Transformers. As a trade-off between expressive recurrent models and ef-
ficiently trainable transformers, the Recurrent Memory Transformer was proposed (Bulatov et al.,
2022). It leverages recurrent steps between the fixed-sized segments, while the tokens inside these
segments are processed in parallel with the transformer model, which RMT augments. In the original
RMT (Bulatov et al., 2022), the recurrent steps are performed by passing the output of special
memory tokens from one segment to the input of the next segment. In the enhanced version of
RMT: Associative Recurrent Memory Transformer (Rodkin et al., 2024), the recurrent steps are
performed with quasi-linear attention in each transformer layer. In this work, we use the ARMT as a
representative of recurrent memory transformers.

3 EXPERIMENTS

We start our study with testing contemporary LLMs on a commonsense, natural-language task that is
formally equivalent to our 1D cellular automata (1dCA) setup. The goal is to assess how well current
models can (i) infer a simple logic rule from observations and (ii) chain that rule for multiple steps.

LLMs performance on the Handsup game. A group of friends sits around a table. In each round
n, every friend i has a binary state: up (hand raised) or down. The hidden rule has radius r ∈ {1, 2}:
the state of friend i at round n depends only on the (2r+1)-tuple {i− r, . . . , i, . . . , i+ r} from round

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(A) (B) (C)

Figure 2: Large Language Models struggle to solve reasoning 1dCA style tasks in natural
language game. (a) Only Gemini-2.5-pro sustainably achieves high scores in predicting the next
state in Handsup game with r=1 and w=7 players given history of T=5 rounds. (b) None of models
achieve reasonable performance (above 10%) for harder game with more distant dependencies (r=2),
more friends (20) and longer history (10). Only Gemini models achieve scores higher then the
baseline score, where the round is predicted the same as the last known round. (c) shows performance
on the simple handsup game accross different subsets of the dataset, split with respect to the Stephen
Wolfram’s rule classification of ECA. We observe the performance degradation on the tasks with
rules of higher complexity (Class 3 and 4). All values are mean exact match with 95% CIs. The final
game state was extracted from the models’ answers with Gemma3-12B-IT model with ≈ 80% EM
extraction accuracy so we scale the baseline accordingly.

n−1. This is exactly an 1dCA-style local update ρ : {0, 1}2r+1 →{0, 1}. We describe in natural
language the first N ∈ {5, 10} rounds and ask the model to predict the behaviour of players at round
N+s with s ∈ {1, 2, 3, 4}. We evaluate exact-match accuracy on the target round. To probe difficulty,
we consider families of rules at r=1 and r=2, and for r=1 also group rules by Wolfram complexity
class. We compare Gemini 2.5 Pro and Gemini 2.5 Flash with different “thinking budgets” (20k, 10k,
and 0), Llama-3.3-70B, and Nemotron-32B/7B.

Figure 2 reports LLMs performance on Handsup game. In the simple game (fig. 2a) equivalent to
elementary CA (r=1, w=7, T=5, 256 possible rules) only Gemini 2.5 Pro shows solid performance
with a mild decline as look-ahead increases (about 0.72→0.69 from s=1 to s=4). Gemini 2.5 Flash
performs lower with a thinking budget helps slightly over zero budget. Llama-3.3-70B and Nemotron
7B models hover around the trivial baseline across s. The hard game (r=2, w=20, T=10,≈ 4.3B
possible rules) represents a strong challenge to existing LLMs (see fig. 2b) as no model cross 10%
EM with only Gemini models marginally over trivial baseline. As Fig. 2c shows accuracy decreases
with dynamical complexity of the rule according to Wolfram’s complexity classes. Gemini 2.5 Pro
is consistently best (roughly 0.75 in Class 1 down to ≈ 0.63 in Class 4), Flash trails Pro, and
open-weight baselines lag below ≈ 0.4 in Classes 2–4. None of the models are uniformly robust
across classes.

The Handsup results directly inform our research questions. The failure of most LLMs—even with
“thinking” budgets—to solve the simplest radius-1 setting challenges the view that current successes
reflect robust generalization rather than pattern recall (RQ1). Performance degrades systematically
with more complex dependencies (r=2) and higher Wolfram classes, quantifying how difficulty
scales with required reasoning steps (RQ2). Finally, to disentangle whether these failures stem
from architectural limits versus training/inference procedures, we proceed to controlled small-model
studies that test architectural capacity under matched supervision; success would implicate training
as the bottleneck, while failure would argue for architectural changes (RQ3).

Single-step performance across neural architectures. We generated an 1dCA dataset with the
CellPyLib Antunes (2021) for the fixed lattice size W = 20 and neighborhood radius r = 2. This
configuration results in a total of 22

2r+1 ≈ 4.3× 109 possible Boolean functions defining local rules.
For each sample in the dataset, both the initial state and the local rule ρ were generated randomly. We
then computed the orbit for T = 20 time steps using these parameters. The training dataset consists
of 9.5×105 instances and the test of 105 instances. Importantly, the local rules included in the test set

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

GPTNeox
ARMT

Mamba
LSTM

0

20

40

60

80

100

Ex
ac

t m
at

ch

(a) State prediction

GPTNeox
ARMT

Mamba
LSTM

0

20

40

60

80

100

Ru
le

 b
it 

ac
cu

ra
cy

(b) Rule prediction

1 2 3 4
Look-ahead steps

0

20

40

60

80

100

Ex
ac

t m
at

ch

O-S
O-O
O-RS
RO-S

(c) GPTNeox on O-S, O-O, O-RS, RO-S tasks

Figure 3: Single-step accuracy is near-perfect across models, but multi-step performance
collapses. (a) Exact-match accuracy for single-step state prediction (O-S): all models except LSTM
achieve >95 %. (b) Bit-wise accuracy for rule inference (O-RS): most architectures recover the
hidden Boolean rule, yet ARMT trails the rest. (c) GPTNeox accuracy on variable-horizon prediction
across the four task variants (O-S, O-O, O-RS, RO-S): accuracy falls steeply with look-ahead k.

are exclusive and not present in the training set. This separation ensures that the model’s performance
reflects its ability to generalize to unseen rules, rather than simply memorizing the training data.

As shown in Figure 3(a), models with different architectures can predict one step forward with nearly
perfect accuracy. LSTM performs slightly worse than other architectures, likely due to challenges
in effectively encoding the binary state representation. Successful learning demonstrate that the
Transformer model is capable of generalizing not only over initial conditions for a particular function
— commonly the focus in studies of transformer trainability in CA domain — but also across different
Boolean functions of fixed arity (5 in our case).

When tasked with predicting both future states and the underlying rules (O-SR setting), Figure 3(b)
shows that models generally achieve high accuracy on rule prediction, though with interesting
variations. ARMT notably struggles with accurate rule inference compared to other architectures,
despite handling next-state prediction well.

Limitations in the Reasoning Depth of Transformers. We selected a 4-layer architecture with
dmodel=128 as a baseline configuration for our experiments. Using this configuration, we separately
trained from scratch for each look-ahead step k ∈ {2, 3, 4} of the O-S task the GPTNeox (Black et al.,
2022) model to predict the state at time x(T+k) given an orbit OT (x) = [x(1), x(2), . . . , x(T )]. As
presented in Figure 3(c), this task proved to be challenging. While the average accuracy for next-state
prediction (O-S task with k = 1) was 0.95, it dropped to 0.40 for k = 2 and fell below 0.25 for k = 3
and k = 4. Despite having four layers, which in principle could capture up to two or three sequential
transformations if effectively utilized, the model still struggles to learn look-ahead tasks for k ≥ 2.
Specifically, the same model’s depth that suffices for the single-step O-S task is no longer adequate
for maintaining accurate multi-step predictions, suggesting that the capacity is being taxed by the
need to encode and apply repeated rule updates in a fixed number of transformations.

To determine whether this decline was due to the GPTNeox’s architecture or the training objective,
we explored whether accuracy could be improved by training the model to predict intermediate steps.
This approach is analogous to multi-token prediction (Gloeckle et al., 2024). We employed the
Orbit-Orbit (O-O) task, training the model to predict the next four states in parallel. The results, also
shown in Figure 3(c), indicate that the model’s predictive abilities degrade in this training scenario,
as even prediction of the next state (k = 1) is less than 0.80 accuracy. However, the higher standard
deviation suggests that it happens because of the instability of such training: some runs could simply
fail, while others could work well (as shown by the exact match of k = 2, 3, 4 being relatively close
to the O-S scenario).

These results suggest that learning to store a hidden representation of intermediate states (as in the
O-S, O-RS and RO-S with k > 1) is hard for the model. Surprisingly, a direct supervision for
a hidden representation of the underlying rule (O-RS) is more challenging initially and does not
facilitate better generalization to longer planning horizons. This implies that explicitly encouraging

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2 4 6 8 10 12 14 16
Number of layers

0

20

40

60

80

100

Ex
ac

t m
at

ch

(A)

100 200 300 400 500
Hidden Size

0

20

40

60

80

100

Ex
ac

t m
at

ch

(B)

Look-ahead=1 Look-ahead=2 Look-ahead=3 Look-ahead=4

Figure 4: Depth — not width — drives multi-step accuracy. Exact-match accuracy for look-ahead
horizons k ∈ {1, 2, 3, 4} as a function of (a) transformer layer count and (b) embedding dimension
dmodel. Deeper networks boost performance sharply for k≥2 and plateau beyond six layers, whereas
widening the model yields only marginal gains across all horizons.

the model to infer the generating rule cannot enhance its ability to make longer-term predictions by
reinforcing the internalization of the system’s dynamics.

Finally, we explored the scenario where the local rule ρ is explicitly provided to the model, corre-
sponding to the Rule and Orbit-State (RO-S) task. Intuitively, this should be the easiest task for the
model, as it eliminates the need to infer the rule from the orbit. As shown in Figure 3(c), GPTNeox
indeed learns to apply the given rule for next-state prediction with near-perfect accuracy for k = 1.
Surprisingly, however, the performance for look-ahead steps k = 2, 3 and 4 drops to the level of
original O-S predictions. The poor performance on look-ahead steps k > 1 raises the question of
whether this limitation stems from the neural network’s parameter count, layer width, or width of its
embeddings. To answer this question, we performed the experiments, while varying the number of
transformer layers and the embedding dimension dmodel.

Figure 4 (a) shows that accuracy for one- and two-step prediction saturates after 4–6 layers. Three-step
prediction, however, continues to improve up to about 12 layers, whereas four-step prediction remains
poor regardless of depth. Figure 4 (b) examines width. Increasing dmodel provides only marginal gains
across all horizons, with the most noticeable bump occurring between 64 and 128 dimensions; further
widening yields diminishing returns. These results illustrate the importance of increasing the model’s
depth rather than the width of its embeddings for better multi-step reasoning performance.

Extending the depth of reasoning with Adaptive Computation Time. The previous subsection
confirmed that simply adding layers offers a clear performance boost, yet even a 12-layer transformer
still falters for k ≥ 4 (Fig. 4a). Here, we set the depth to 4 layers and study if it’s possible to improve
performance by techniques that expand a model’s effective depth at inference time—segment-level
recurrence and Adaptive Computation Time (ACT). Hyperparameters for all models can be found in
Table 1. Both approaches inject extra computational steps without further increasing the static layer
count, potentially enabling deeper reasoning while preserving parameter efficiency.

Figure 5 (A) shows that the auto-regressive models – GPTNeox, LSTM, and Mamba 2 – handle
next-state prediction but fail to solve the multi-step task. Only ARMT manages to extend its capacity
up to two look-ahead steps, likely because it processes sequences segment by segment and is thus
forced to separate rule and state representations. This separation may enable the generation of a
hidden representation for the intermediate state, followed by the application of the rule, effectively
enhancing the depth of the model reasoning.

Augmenting models with ACT has little effect on all architectures except GPTNeox, which sees
improved performance at k = 2 but not at k = 3, 4. Overall, ARMT makes effective use of

2We use the architecture from the previous section: 4 layer GPTNeox with dmodel = 128 and 4 attention
heads. For Mamba, we use a state size of 16. For ARMT, dmem = 32. As ARMT is a segment-level model, we
segment our state sequence in the way that each segment contains a pair of consecutive states in the orbit, and
the prediction is performed in the last segment with the last CA state from the input in it. We report average
results of 3 models trained with different seeds.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 2 3 4
Look-ahead, steps

0

20

40

60

80

100

Ex
ac

t m
at

ch

(A)
GPTNeox
GPTNeox + ACT

ARMT
ARMT + ACT

Mamba
Mamba + ACT

LSTM
LSTM + ACT

1 2 3 4
Look-ahead, steps

(B)
GPTNeox_s1 + SFT
GPTNeox_s1 + LACT

GPTNeox_s1 + MACT
GPTNeox_s1 + GRPO

1 2 3 4
Look-ahead, steps

(C)
GPTNeox + O-O
GPTNeox + O-O + ACT

GPTNeox + CoT
ARMT + O-O

ARMT + O-O + ACT
ARMT + CoT

Figure 5: Extensions of computation depth enhance the reasoning abilities of transformer-based
models. Values are exact match of the x(T+k) state prediction for look-ahead steps k ∈ {1, 2, 3, 4}.
(a) ACT significantly improves computational abilities of transformer-based models in multi-step
prediction. (b) Without supervision on intermediate reasoning steps RL training with GRPO allows
the model to extrapolate reasoning on 3 steps forward. (c) With step-by-step supervision, the CoT
approach significantly outperforms the in-depth approach of ACT. GPTNeox and ARMT with both
ACT and O-O supervision perform the best.

the transformer’s four-layer depth but cannot extend beyond it. Likewise, while ACT helps the
transformer make use of its existing layers more efficiently, it fails to enable any architecture to solve
three- or four-step predictions. Moreover, LSTM and Mamba are unable to master multi-step tasks
with or without ACT, likely due to representation bottlenecks in their hidden states.

We subsequently chose to train GPTNeox model that is already capable of performing one-step
reasoning with the SFT, LACT, MACT, and GRPO methods, with the goal of enabling it to reason
over multiple steps without access to supervision for the intermediate reasoning stages. As illustrated
in Figure 5 (B), standard supervised fine-tuning (SFT) fails to address the problem effectively.
Although the model is primarily trained on a one-step prediction task, it struggles to apply the rule
iteratively. Consistent with previous results (Fig. 5 (A)), applying ACT both at the layer level (LACT)
and across the entire model (MACT) improves performance on the two-step prediction task but does
not generalize beyond that. Interestingly, when trained using RL (GRPO) and granted the capability to
autoregressively generate intermediate “thinking” tokens before producing the final output, the model
succeeds on the three-step prediction task. The reward signal is defined as the average token-level
accuracy of the model’s prediction following the end-of-thinking token.

Reasoning Supervision. We examine the impact of reasoning supervision on GPTNeox and ARMT,
along with their corresponding ACT-augmented variants. To this end, we replicate the O-O training
setup by incorporating mask tokens into the autoregressive models within a causal masking framework.
Figure 5 (C) shows that contrary to our expectations, the O-O training objective alone does not yield
performance improvements for either GPTNeox or ARMT. However, the integration of O-O training
with ACT results in superior performance, surpassing both the baseline and ACT-only variants.

As a final step, we combined GPTNeox and ARMT with a token-by-token CoT-like next-token
prediction training. Under this regime, both models succeed at multi-step prediction up to k = 4,
with GPTNeox slightly outperforming ARMT across each look-ahead distance (Fig.5 (C)). These
results suggest that, when explicit reasoning supervision is available, a chain-of-thought-inspired
approach to training offers a particularly effective strategy for enabling multi-step reasoning.

In addition to the cellular automata experiments, in Appendix H we show the significance of our
findings on group multiplication benchmark (Merrill et al., 2024).

4 DISCUSSION AND CONCLUSIONS

Our study examines how architecture, training signal, and depth-extension strategy jointly determine
a model’s ability to learn multi-step reasoning in 1dCA—without memorization, since train/test rules
are disjoint. The headline results (aggregated in Appendix A, Figure 6) speak directly to our research
questions RQ1–RQ3.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

• Models can infer unseen rules, but LLMs falter on the simplest case (RQ1). Both
Transformers and recurrent/SSM variants (GPT-NeoX, LSTM, Mamba, ARMT) succeed
on rule induction from orbits—evidence of genuine generalization because evaluation uses
unseen rules. However, evaluated LLMs (except Gemini 2.5 Pro) fail to reliably solve even
the radius-1 Handsup setting, indicating that scale and generic “think more” prompting are
insufficient.

• Reasoning difficulty grows sharply with look-ahead depth (RQ2). Fixed-depth (4-layer)
models k=1 but collapse for k≥2, revealing a clear depth barrier.

• Adaptive halting adds ≈ +1 effective step at low compute cost (RQ3). Adding Adaptive
Computation Time (ACT) to a Transformer consistently shifts the depth frontier (roughly
k:1→2 or 2→3) without increasing parameters, with diminishing returns past k≈3.

• GRPO reaches three-step rollouts without intermediate supervision (RQ3). RL reward-
ing final correctness only matches CoT@k=2 performance at k=3.

• Token-level CoT saturates the current benchmark up to four steps (RQ3). With stepwise
targets, GPT-NeoX attains > 99% accuracy for k≤4 (Figure 5C), showing that explicit
supervision can elicit deeper computation given availability of intermediate labels.

• Depth limits align with capacity constraints and can be partially mitigated (RQ2/RQ3).
Models with shallow effective depth (e.g., TC0-like limitations) require more layers to
track longer computations; ACT partially alleviates this on harder state-tracking (e.g.,
group-multiplication) tasks but does not fully resolve the gap.

Broader implications for LLM reasoning—and beyond. Our results align with a growing body of
evidence that reasoning failures often stem from insufficient depth allocation and sparse optimisation
signals. For LLMs, this suggests that (i) prompt engineering alone is unlikely to improve multi-
step reasoning: unless intermediate steps are reinforced—via CoT, search-augmented decoding, or
RL-style self-critique—models tend to default to shallow heuristics; (ii) adaptive-depth mechanisms
are a promising scaling direction: ACT-style halting, deployed token-wise or layer-wise, can
allocate computation on demand to match the variable complexity of real queries; and (iii) explicit
intermediate representations remain the most reliable route to multi-step generalisation via CoT.

Beyond language, the same principles apply to neural algorithmic reasoning, robotic planning, and
scientific simulation: whenever the target task contains latent iterative structure, giving the network
room—via dynamic recurrence, learned halting, or supervised scratch-pads—to run the hidden
algorithm is more data-efficient than brute-force depth. We therefore advocate future benchmarks
that (a) separate rule induction from state propagation, (b) report effective depth alongside accuracy,
and (c) evaluate adaptive-computation policies explicitly. Progress along these axes will benefit
not only next-generation LLMs but also neural systems tasked with symbolic manipulation, formal
verification, and open-ended planning.

Conclusions. We introduced 1dCA reasoning benchmark that isolates multi-step reasoning without
memorisation by using disjoint train/test rule sets. Success therefore reflects genuine rule inference
followed by iterative application, not lookup.

Empirically, fixed-depth (4-layer) models—Transformers, LSTMs, and state-space models—show
a sharp depth cutoff: they solve k=1 but collapse for k≥2. Segment-recurrent attention (ARMT)
extends this to k=2 yet remains bounded. Adding Adaptive Computation Time (ACT) provides
a compute-efficient ∼ +1 effective step (with diminishing returns beyond k≈3). Reinforcement
learning via GRPO achieves reliable k=3 without intermediate labels, while token-level Chain-of-
Thought attains near-perfect accuracy up to k=4. Complementing these small-model results, most
contemporary LLMs—except Gemini 2.5 Pro—struggle even on the simplest natural-language proxy
(radius-1 Handsup), underscoring that scale and generic “think more” prompting are insufficient.

Together, these findings support our contributions: (1) a benchmark that cleanly separates rule
induction from state propagation; (2) a systematic architectural comparison; (3) an analysis of
depth-extension mechanisms (recurrence, halting, RL, and explicit stepwise supervision); and (4)
practical guidance on eliciting deeper computation. More broadly, they show that how we train and
allocate compute can matter as much as what we train: objectives that force multi-step prediction and
mechanisms that adaptively allocate depth are decisive, while explicit intermediate representations
remain the most reliable route to deeper generalisation.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

LIMITATIONS

While our findings offer valuable insights into methods for enhancing reasoning, we acknowledge
that the study is limited to small-scale models, and certain conclusions may not generalize directly to
large language models. Our LLM evaluation covers only selected models over the main classes and
sizes.

REPRODUCIBILITY STATEMENT

Metrics are reported with 95% confidence intervals for handsup game with language models. In all
small models finetuning experiments we report standard deviation estimates (square root of unbiased
variance estimation) for confidence intervals. All hyperparameters are specified in Table 1, and we
describe training details and used hardware in Section D. We also release the full codebase to ensure
reproducibility of results: https://anonymous.4open.science/r/beyond_memorization.

REFERENCES

Luis M. Antunes. Cellpylib: A python library for working with cellular automata. Journal of Open
Source Software, 6(67):3608, 2021. doi: 10.21105/joss.03608. URL https://doi.org/10.
21105/joss.03608.

Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of transformers and
its implications in sequence modeling. arXiv preprint arXiv:2006.09286, 2020.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu
Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. Gpt-neox-20b: An
open-source autoregressive language model, 2022. URL https://arxiv.org/abs/2204.
06745.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. Recurrent memory transformer. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances
in Neural Information Processing Systems, volume 35, pp. 11079–11091. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/47e288629a6996a17ce50b90a056a0e1-Paper-Conference.pdf.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to
compress contexts. arXiv preprint arXiv:2305.14788, 2023.

George Cybenko. Approximations by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2:183–192, 1989.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988, 2019.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HyzdRiR9Y7.

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural networks and the chomsky
hierarchy. In The Eleventh International Conference on Learning Representations, 2023.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. Advances in Neural Information
Processing Systems, 36, 2024.

10

https://doi.org/10.21105/joss.03608
https://doi.org/10.21105/joss.03608
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://proceedings.neurips.cc/paper_files/paper/2022/file/47e288629a6996a17ce50b90a056a0e1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/47e288629a6996a17ce50b90a056a0e1-Paper-Conference.pdf
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

João Pedro Gandarela, Danilo S Carvalho, and André Freitas. Inductive learning of logical theories
with llms: A complexity-graded analysis. arXiv preprint arXiv:2408.16779, 2024.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction. arXiv preprint arXiv:2404.19737,
2024.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens. In The Twelfth
International Conference on Learning Representations, 2024.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2021.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024a.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space, 2024b. URL
https://arxiv.org/abs/2412.06769.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large
language models to reason with reinforcement learning. arXiv preprint arXiv:2403.04642, 2024.

David Herel and Tomas Mikolov. Thinking tokens for language modeling. arXiv preprint
arXiv:2405.08644, 2024.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Wesley H Holliday and Matthew Mandelkern. Conditional and modal reasoning in large language
models. arXiv preprint arXiv:2401.17169, 2024.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for mapreduce.
In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pp.
938–948. SIAM, 2010.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Thang Luong and Edward Lockhart. Advanced version of gemini with
deep think officially achieves gold-medal standard at the international math-
ematical olympiad. https://deepmind.google/discover/blog/
advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/,
jul 2025. Google DeepMind Blog.

11

https://arxiv.org/abs/2412.06769
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

William Merrill and Ashish Sabharwal. The expresssive power of transformers with chain of thought.
arXiv preprint arXiv:2310.07923, 2023a.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023b.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning Representations, 2024.

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2022.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models. In
Proceedings of the 41st International Conference on Machine Learning, pp. 35492–35506, 2024.

Philipp Mondorf and Barbara Plank. Liar, liar, logical mire: A benchmark for suppositional reasoning
in large language models. arXiv preprint arXiv:2406.12546, 2024.

Franz Nowak, Anej Svete, Alexandra Butoi, and Ryan Cotterell. On the representational capacity
of neural language models with chain-of-thought reasoning. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 12510–12548, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. URL https://aclanthology.
org/2024.acl-long.676.

OpenAI. Learning to reason with llms. https://openai.com/index/
learning-to-reason-with-llms/, 2024. Accessed: 2024-09-23.

OpenAI. We’ve scored highly enough to achieve gold at this year’s ioi online competition with a
reasoning system — placing #6 when ranked with humans and #1 when ranked with other ais.
in just a few weeks: 2nd at atcoder; gold medal-level at imo; gold medal-level at ioi. https:
//x.com/OpenAI/status/1954969035713687975, aug 2025. Post on X (formerly
Twitter).

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing-complete. Journal of Machine
Learning Research, 22(75):1–35, 2021.

Jacob Pfau, William Merrill, and Samuel R. Bowman. Let’s think dot by dot: Hidden computation in
transformer language models. In First Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=NikbrdtYvG.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap.
Compressive transformers for long-range sequence modelling. arXiv preprint, 2019. URL
https://arxiv.org/abs/1911.05507.

Ivan Rodkin, Yurii Kuratov, Aydar Bulatov, and Mikhail Burtsev. Associative recurrent memory
transformer, 2024. URL https://arxiv.org/abs/2407.04841.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computation, and logarith-
mic depth. In Forty-first International Conference on Machine Learning, 2024a.

Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of
transformers. Advances in Neural Information Processing Systems, 36, 2024b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

12

https://aclanthology.org/2024.acl-long.676
https://aclanthology.org/2024.acl-long.676
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://x.com/OpenAI/status/1954969035713687975
https://x.com/OpenAI/status/1954969035713687975
https://openreview.net/forum?id=NikbrdtYvG
https://openreview.net/forum?id=NikbrdtYvG
https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/2407.04841


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity, 2025. URL https://arxiv.org/abs/2506.
06941.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. Transformers as
recognizers of formal languages: A survey on expressivity. arXiv preprint arXiv:2311.00208,
2023.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages
can transformers express? a survey. Transactions of the Association for Computational Linguistics,
12:543–561, 2024.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t plan; can lrms? a
preliminary evaluation of openai’s o1 on planbench. arXiv preprint arXiv:2409.13373, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in neural informa-
tion processing systems, pp. 5998–6008, 2017. URL http://papers.nips.cc/paper/
7181-attention-is-all-you-need.

Yuxuan Wan, Wenxuan Wang, Yiliu Yang, Youliang Yuan, Jen-tse Huang, Pinjia He, Wenxiang Jiao,
and Michael Lyu. LogicAsker: Evaluating and improving the logical reasoning ability of large
language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of
the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 2124–2155, Mi-
ami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.emnlp-main.128. URL https://aclanthology.org/2024.emnlp-main.128/.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9426–9439,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.510. URL https://aclanthology.org/2024.acl-long.510/.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In Yoshua Bengio and Yann
LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/
abs/1410.3916.

Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. Looped transformers
are better at learning learning algorithms, 2024. URL https://arxiv.org/abs/2311.
12424.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Qifan Yu, Zhenyu He, Sijie Li, Xun Zhou, Jun Zhang, Jingjing Xu, and Di He. Enhancing auto-
regressive chain-of-thought through loop-aligned reasoning, 2025. URL https://arxiv.
org/abs/2502.08482.

13

https://arxiv.org/abs/2506.06941
https://arxiv.org/abs/2506.06941
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://aclanthology.org/2024.emnlp-main.128/
https://aclanthology.org/2024.acl-long.510/
http://arxiv.org/abs/1410.3916
http://arxiv.org/abs/1410.3916
https://arxiv.org/abs/2311.12424
https://arxiv.org/abs/2311.12424
https://arxiv.org/abs/2502.08482
https://arxiv.org/abs/2502.08482


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.
Are transformers universal approximators of sequence-to-sequence functions? arXiv preprint
arXiv:1912.10077, 2019.

Xiang Zhang, Muhammad Abdul-Mageed, and Laks VS Lakshmanan. Autoregressive+ chain of
thought= recurrent: Recurrence’s role in language models’ computability and a revisit of recurrent
transformer. arXiv preprint arXiv:2409.09239, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A SUMMARY OF MODELS’ PERFORMANCE

LST
M

LST
M + AC

T

Mam
ba

Mam
ba

 + AC
T

GPT
Neox

 + O-O

GPT
Neox

ARMT +
 O-O

ARMT +
 FC

T +
 O-O

ARMT +
 FC

T
ARMT

ARMT +
 AC

T

GPT
Neox

 + AC
T

GPT
Neox

 + FC
T +

 O-O

GPT
Neox

 + FC
T

GPT
Neox

 + AC
T +

 O-O

ARMT +
 AC

T +
 O-O

GPT
Neox

_s1
 + GRPO

GPT
Neox

 x3
 la

ye
rs

ARMT +
 CoT

GPT
Neox

 + CoT
1.0

1.5

2.0

2.5

3.0

3.5

De
pt

h 
of

 R
ea

so
ni

ng
 S

co
re

Figure 6: With GRPO as well as with ACT and Orbit-Orbit training depth of reasoning can be
significantly extended. Average DepthScore = 1 +

∑4
i=2 acc(i), where acc(i) is the accuracy of

predicting the (10 + i)th state based on the first 10 states.

B RELATED WORK

Computational Expressivity. Sanford et al. (2024b) show that in setups where the input context
length grows but the model depth remains constant, transformers achieve logarithmic complexity
scaling in input size for sparse averaging tasks and linear scaling for triple detection. They further use
the simulation of transformers in a constant number of MPC (Karloff et al., 2010) communication
rounds to demonstrate their expressive power, showing that logarithmic-depth transformers can
efficiently solve tasks that are intractable for graph neural networks and recurrent models Sanford
et al. (2024a). Merrill & Sabharwal (2023b) prove that transformers with logarithmic precision
can be simulated by constant-depth logspace-uniform threshold circuits, implying fundamental
computational limitations. Zhang et al. (2024) employ circuit complexity theory to show that
bounded-depth transformers cannot directly solve certain arithmetic or equation tasks, unless the
model size increases exponentially.

Formal Language Recognition. The Chomsky hierarchy has been used to classify the computational
capabilities of transformers and their expressivity limits. Deletang et al. (2023) show that transformers
struggle with non-regular languages. Strobl et al. (2024) provide a comprehensive survey on how
transformers relate to formal language classes, identifying the architectural constraints that limit their
ability to process hierarchical structures. They show that while transformers with softmax attention
can count, they remain within TC0 and struggle with evaluating Boolean formulas or solving complex
hierarchical tasks. Zhang et al. (2024) discuss transformers’ limitations due to their lack of recurrence,
arguing that they are computationally weaker than recurrent models in formal language tasks.

Several studies explore how CoT enhances transformer reasoning capabilities. Feng et al. (2024) show
that transformers can solve arithmetic and dynamic programming tasks via CoT, which they fail to do
directly. Merrill & Sabharwal (2024) demonstrate that CoT increases computational power, enabling
the recognition of regular languages. Nowak et al. (2024) formalize CoT reasoning probabilistically,
showing equivalence to probabilistic Turing machines. Zhang et al. (2024) argue that CoT can
approximate recurrent computation, mitigating transformers’ lack of explicit recurrence.

There are generalizations of CoT that relax the human-like word-by-word out-loud reasoning. The
reasoning process has been moved to special pause (Goyal et al., 2024), think (Herel & Mikolov,
2024), or filler (Pfau et al., 2024) tokens to allow the model to think internally before generating
a response. Coconut (Chain of Continuous Thought) Hao et al. (2024a) further extends this by

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

replacing explicit word decoding with the model’s last hidden state as input to the next step, effec-
tively shifting reasoning into the latent space. Moreover, since real-world datasets rarely include
supervision for long, multi-step reasoning, approaches that incorporate verifiers or intermediate
feedback have become increasingly important (Pfau et al., 2024). At the same time, reinforcement
learning methods (Schulman et al., 2017), such as GRPO (Shao et al., 2024), which rely solely on
rewards for correct final answers, show great promise.

Overall, these studies highlight the limitations of transformers in reasoning depth and computational
power, showing that CoT-like approaches and recurrence can help mitigate these constraints. Our
work explores the use of One-dimensional Cellular Automata (1dCA) as a framework to evaluate
models’ reasoning abilities. 1dCA provides a flexible and controlled setting where the number of
sequential steps required to solve a task can be precisely defined. Adjusting the complexity of state
transition rules allows for varying task difficulty.

Looped Transformers Another paper (Yang et al., 2024) investigates whether looped transformers
(Yang et al., 2024) can emulate iterative learning algorithms, such as gradient descent, for data-fitting
problems like linear regression. Their core finding is that looped transformers can achieve comparable
performance to standard transformers with significantly fewer parameters by effectively replicating
these iterative optimization steps. Our paper investigates how different architectures and training
methods affect a model’s ability to learn and perform multi-step reasoning and rule abstraction. The
"iterations" in our study are interpreted as steps for applying a discovered rule or propagating a state,
which is distinct from emulating optimization algorithms.

RELAY (Yu et al., 2025) is a framework that aligns CoT steps with loop iterations and uses interme-
diate supervision during looped transformer training to generate high-quality reasoning chains for
auto-regressive models. Their aim is to leverage the length generalization of looped transformers to
improve auto-regressive models’ handling of longer reasoning chains. In our paper, we study CoT as
a training objective that provides direct reasoning supervision on intermediate states for multi-step
state prediction on 1dCA. While both studies involve recurrence and CoT-like supervision, Yu et
al.’s work focuses on a specific methodology for generating CoT for other models by aligning CoT
steps with loops, whereas our work directly evaluates how training with or without intermediate
supervision, as in O-O or GRPO, respectively, influences a model’s core reasoning capabilities in a
disentangled environment.

In the "Illusion of Thinking" research (Shojaee et al., 2025) authors show that the models’ performance
decreases with the increased complexity of puzzle environments. For thinking models, however, this
degradation is less dramatic. Which is consistent with our findings on Figure 5 (A).

C MODELS DISCUSSION

LSTM By integrating a gating mechanism into recurrent neural networks, LSTMs alleviated
the vanishing gradient problem, allowing the model to retain information from up to 10–15 prior
time steps. However, LSTMs still face several limitations. First, despite the gating mechanism,
they often struggle with very long-range dependencies, as information can decay over extended
sequences. Second, their sequential nature hinders parallelization, which slows training and increases
computational cost compared to more modern architectures such as transformers. As a result, while
LSTMs represented a major breakthrough in sequence modeling and in theory can process contexts
of infinite length, they have been largely superseded by more scalable and efficient models.

Transformers Attention mechanism allows transformers to dynamically focus on relevant parts
of the input, facilitating effective information integration across long distances. As a result, they
maintain and reuse context more effectively than LSTMs, making them a powerful backbone for
modern large language models. This design has enabled state-of-the-art performance on complex
reasoning tasks, cementing the transformer’s role at the forefront of natural language processing.

While this flexibility is powerful, it also introduces drawbacks. Transformers must compute and
store a large attention matrix, often scaling to O(n2) in both memory and computation. This creates
challenges when handling very long inputs or generating lengthy outputs, as hardware and software
limitations cap the practical context window. Another limitation of transformers is their difficulty
in processing information “in-depth.” Each generation step requires a fixed amount of computation,

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Model Depth dmodel dmem / state_size nheads max ACT iterations
GPTNeox 4 128 - 4 4

ARMT 4 128 32 4 4
Mamba 4 128 16 - 4
LSTM 4 128 - - 4

Table 1: Hyperparameters for the base models. We used these hyperparameters in the O-S, O-O,
O-RS and RO-S experiments, as well as CoT and GRPO experiments.

constrained by the number of transformer layers. Consequently, transformers face challenges with
multi-hop reasoning. To enable more efficient in-depth reasoning, various test-time compute strategies
have been introduced, including chain-of-thought prompting, Monte Carlo Tree Search, and others.
While these techniques partially mitigate the issue, they remain bottlenecks: longer generations
demand substantial computational resources and may exceed the effective context window. These
techniques also require supervision for intermediate steps to train the model. This is a huge limitation
as strong AGI systems should automatically learn to recursively apply rules to data.

State Space Models While less prevalent compared to RNNs and transformers, SSMs are widely
used in control theory and signal processing. In the context of neural networks, SSMs aim to combine
the strengths of recurrent models, such as handling infinitely large contexts, with the efficiency of
convolutional models for fast prompt processing and training. This positions SSMs as a middle
ground between classical LSTMs and transformers.

In our experiments, we utilize Mamba, an SSM variant improved with a selective mechanism (Gu &
Dao, 2023; Gu et al., 2021). The Mamba Selective State Model extends this framework by making A,
B, and C dynamic, adjusting them based on the input x(t). This adaptive mechanism allows Mamba
to selectively focus on relevant input features, filtering out irrelevant details (Gu & Dao, 2023). By
dynamically adapting its parameters, Mamba is able to capture long-range dependencies in sequences
while remaining computationally efficient.

While SSMs excel in efficiently modeling long-range dependencies and processing sequential data
with reduced computational overhead compared to transformers, they typically lack the expressiveness
and flexibility required for advanced reasoning tasks. These models may face challenges in capturing
complex, hierarchical relationships, compounding the limitations already present in transformers
when it comes to in-depth reasoning.

Associative Recurrent Memory Transformer As shown in Rodkin et al. (2024), ARMT can
leverage information from the distant past of up to 50 million tokens. Compared to SSMs, ARMT is
more expressive due to its grounding in the classical transformer architecture, while it also introduces
the ability to recurrently process contexts of infinite length.

Theoretical Depth Estimates Theoretical estimates predict that for GPTNeox and Mamba depth
of computation is limited by the number of layers Depth = O(L), where L is the number of model
layers. For LSTM computational depth not only grows with the number of layers, but also with the
sequence length, making Depth = O(L+N), here N is the sequence length. ARMT is a trade-off
between parallelization and recurrence. It utilizes the forward transformer for local processing of
the segment, but passes its recurrent state between segments in RNN-like format, which allows its
computational depth to grow with the sequence length, making Depth = O(L+ N

S ), here S is the
segment size.

D TRAINING DETAILS

We train all our models for 40k steps with Adam optimizer with learning rate 3e-4 with linear warmup
for 1000 steps and linear decay. We use total batch size of 256 samples. The vast majority of
experiments we ran on single NVIDIA RTX 6000 Ada GPU. Models hyperparameters can be found
in Table 1.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E ADAPTIVE COMPUTATION TIME FORMULATION

The module calculates a halting weight pt at each computation step t, which represents the percentage
of the task completed by the module f :

pt = HALT(ht); ht+1 = f(ht), HALT(ht) = σ(Whht + bh) (1)

where ht is the layer input. This weight is accumulated into Pt until the halting condition is met:

Pt =
∑t

i=0 pi; T = argmint(Pt ≥ 1− ϵ) + 1. (2)

Finally, the prediction is done in the following way: y =
∑T−1

t=0 ptht+1 with pT−1 = R =

1−
∑T−2

t=0 pt. For training, we add an auxiliary component to the loss function L̂ = L+ τR. This
component serves as a time penalty.

F SAMPLES EXAMPLES

F.1 HANDSUP GAME

You peek through a doorway into a cosy room.
7 friends sit around a round table in this order: Alice, Bob, Carol,
Dave, Erin, Frank, and Grace - and then back to Alice again.
They don’t talk. At the end of each round they all decide, at the very
same moment, either to raise a hand or to keep both hands on the table.

You watch and jot down what happens:
- Round 1. Alice, Bob, Dave, Erin, Frank, and Grace raise their hands.

The others keep their hands on the table.- Round 2. Alice, Carol,
Erin, Frank, and Grace raise their hands. The others keep their hands
on the table.- Round 3. Bob, Dave, Frank, and Grace raise their

hands. The others keep their hands on the table.- Round 4. Alice,
Carol, and Erin raise their hands. The others keep their hands on the
table.- Round 5. Bob and Dave raise their hands. The others keep

their hands on the table.
Now it’s your turn to be the clever observer.
Puzzle: What will each friend do in Round 6?
Please answer in plain words, going in order around the table, starting

from the first name above. Answer with the list of people with hands
up, not mentioning the ones with hands down. For example: Alice, Bob,
and Dave raise their hands.

F.2 ECA - R2S20T10

The samples from our open dataset.

The input vocabulary of the tested models consists of the following tokens: [0], [1], and [SEP].
The states and the local rule ρ are encoded as binary strings. The model receives the orbit as a
sequence of bits, representing consecutive states separated by the [SEP] tokens.

We train the model to predict the blue tokens.

In all these examples rule is 01011111100100000101111011111100 and the initial state is
10110111001000110100.

O-S

10110111001000110100<sep>11101001101111101100<sep>10111011010000111011<sep>
11001110111011101100<sep>10111011001100111011<sep>11001110111011101100<sep>
10111011001100111011<sep>11001110111011101100<sep>10111011001100111011<sep>
11001110111011101100<gen>10111011001100111011

O-O

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1 2 3 4
Look-ahead, steps

0

20

40

60

80

100

Ex
ac

t m
at

ch

GPTNeox GPTNeox + ACT ARMT ARMT + ACT

Figure 7: ACT outperforms the base model on multiple prediction horizons task. Exact match
accuracy (mean ± std) for cellular automata state prediction across different look-ahead horizons.
Models receive initial 10 states followed by a special shift token (1-4) indicating prediction horizon.

10110111001000110100<sep>11101001101111101100<sep>10111011010000111011<sep>
11001110111011101100<sep>10111011001100111011<sep>11001110111011101100<sep>
10111011001100111011<sep>11001110111011101100<sep>10111011001100111011<sep>
11001110111011101100<gen>10111011001100111011<sep>11001110111011101100<sep>
10111011001100111011<sep>11001110111011101100

O-RS

10110111001000110100<sep>11101001101111101100<sep>10111011010000111011<sep>
11001110111011101100<sep>10111011001100111011<sep>11001110111011101100<sep>
10111011001100111011<sep>11001110111011101100<sep>10111011001100111011<sep>
11001110111011101100<gen>01011111100100000101111011111100<sep>
10111011001100111011

RO-S

01011111100100000101111011111100<sep>10110111001000110100<sep>
11101001101111101100<sep>10111011010000111011<sep>11001110111011101100<sep>
10111011001100111011<sep>11001110111011101100<sep>10111011001100111011<sep>
11001110111011101100<sep>10111011001100111011<sep>11001110111011101100<gen>
10111011001100111011

G MULTIPLE PREDICTION HORIZONS TRAINING

Given an orbit OT (x) and the random shift token si ∈ {s1, s2, s3, s4} the objective is to predict the
state x(T+i−1). In this setup, we train the model to reason more for some inputs than others.

We conducted experiments where a single model was trained to handle multiple pre-
diction horizons (1-4 steps ahead) using special shift tokens in the input format:
[x_0][SEP]...[x_9][shift_k][gen][MASK] where k ∈ {1, 2, 3, 4} indicates the re-
quired look-ahead. As shown in Figure 7, baseline GPTNeox performs 32% shift=2 and 19% for
shift=4. Introducing ACT substantially mitigates these drops.

The ARMT architecture shows comparable characteristics – while baseline performance at shift=2
is stronger than GPTNeox (43% vs 32%), ACT provides similar absolute improvements (85% at
shift=2). However, both architectures exhibit similar limitations at the longest horizons (shift=4),
with all variants scoring 21%-25%, indicating challenges in extreme-depth reasoning.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

H GROUP MULTIPLICATION TASK

The task is, given the sequence of elements of some group, label each element with the product of
all previous elements of the sequence, including the current one. This task is relevant to reasoning
because it provides a controlled setup with tasks of different computational complexity.

We evaluated our models in 3 groups of different difficulty: Z60, A4 × Z5, and A5; and different
sequence lengths: 5, 10, 15, 20, and 40. For each model, we report the minimal number of layers
to achieve 70% exact match accuracy. For the sake of consistency with previous works, we slightly
changed the hyperparameters of our models. We use dmodel = 512 and nheads = 8. For the ARMT
model, we use the segments of size 2.

As shown in Figure 8, the required depth for solving longer tasks grows for GPTNeox and Mamba
models, while staying constant (1-2 layers) for the models with recurrence (ARMT and LSTM). More-
over, depth requirements can be significantly reduced by adding Adaptive Computation Time (ACT)
or Associative Memory (ARMT), which is consistent with our findings on the 1dCA benchmark.
LSTM, however, performs much better, being able to solve the problem with just one layer.

Figure 8: ACT significantly reduces the required models’ depth for the majority of group
multiplication tasks. Each chart contains the information about the minimal required number of
layers for solving task of given length with 70% exact match accuracy. GPTNeox and Mamba being
TC0-limited models require more layers for solving deeper (longer in this case) tasks, while ARMT
and LSTM solve them with constant number of layers.

I ABLATION STUDIES

Originally, ACT was applied to single-layer NNs (Dehghani et al., 2019; Graves, 2016). When it
comes to deep models, we can apply ACT to each layer of the model, averaging the remainders
over the layers to add as the time penalty to the loss (layer-wise ACT or LACT). Another option is
to apply ACT to the whole backbone model (MACT), which maps the RN×d → RN×d (therefore
without embedding and unembedding layer). In our ablation studies, we compare layer-wise ACT
and model ACT but find that they perform similarly. See I.2 for more details. Therefore, in the main
experiments, we use only layer-wise ACT and always refer to this version.

To determine whether performance gains stem from the adaptive nature of computation time or merely
from increased computation, we include a fixed computation time (FCT) baseline in our ablation
study (I.1). Specifically, we examine the case of three fixed iterations, chosen to match the upper
bound of the average number of ACT operations observed in our experiments.

Here, we present several auxiliary studies of various ACT variants.

I.1 FIXED NUMBER OF STEPS IN ACT VS DYNAMIC NUMBER OF STEPS

We conduct experiments with a fixed number of steps to assess the need for adaptivity in computation
time. A constant depth of 3 was selected based on experiments with ACT, which demonstrated that
this represents the upper limit of the number of steps reached for any hidden state. The results with
Fixed Computation Time (FCT) and ACT as the baseline are presented in Figure 9 and Figure 10 for
O-S and O-O settings respectively.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

In O-S setting, FCT improved the exact match in look-ahead 2, 3 for GPTNeox, but performed worse
in look-ahead 2 for ARMT. In contrast, in the O-O setting, FCT showed reduced performance for
both GPTNeox and ARMT in look-ahead 2, 3, 4.

Therefore, adaptivity in computation time might find the optimal amount of steps leading to enhanced
exact match, or perform equivalently with fewer steps.

1 2 3 4
Look-ahead, steps

0

20

40

60

80

100

Ex
ac

t m
at

ch
GPTNeox + ACT GPTNeox + FCT ARMT + ACT ARMT + FCT

Figure 9: Fixed Computation Time (FCT) with 3 iteration steps performs on par with Adaptive
Computation Time (ACT) in Orbit-State task. Exact match accuracy (mean ± std) for cellular
automata state prediction across different look-ahead horizons.

1 2 3 4
Look-ahead, steps

0

20

40

60

80

100

Ex
ac

t m
at

ch

GPTNeox + ACT + O-O GPTNeox + FCT + O-O ARMT + ACT + O-O ARMT + FCT + O-O

Figure 10: Fixed Computation Time (FCT) with 3 iteration steps underperforms Adaptive
Computation Time (ACT) in Orbit-Orbit task. Exact match accuracy (mean ± std) for cellular
automata state prediction across different look-ahead horizons.

I.2 MODEL-ACT VS LAYER-ACT

Figure 11 shows that Layer-ACT performs similarly or better compared to Model-ACT. In particular,
Model-ACT has a similar processing pattern to the COCONUT model (Hao et al., 2024b), passing
the hidden states from the model output to the input. Therefore, a similar reasoning behavior is
expected. A notable difference is observed when these types of ACT are applied to ARMT. However,
it is important to note that training was stopped after 30,000 steps, and the model with MACT
augmentation did not have sufficient time to fully converge. All models in this experiment adhered to
these training restrictions to ensure a fair comparison.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

2
Look-ahead, steps

0

20

40

60

80

100

Ex
ac

t m
at

ch

GPTNeox + LACT
GPTNeox + MACT

ARMT + LACT
ARMT + MACT

Mamba + LACT
Mamba + MACT

LSTM + LACT
LSTM + MACT

Figure 11: Layer-ACT performs similar or better compared to Model-ACT. Exact match on cellular
automata state prediction task with look ahead 2.

22


	Introduction
	Methods
	Experiments
	Discussion and Conclusions
	Summary of models' performance
	Related Work
	Models Discussion
	Training Details
	Adaptive Computation Time formulation
	Samples examples
	Handsup game
	ECA - r2s20T10

	Multiple Prediction Horizons Training
	Group Multiplication Task
	Ablation Studies
	Fixed Number of Steps in ACT vs Dynamic Number of Steps
	Model-ACT vs Layer-ACT


