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Abstract

We derive the closed-form expression of the max-
imum mutual information - the maximum value
of I(X; Z) obtainable via training - for a broad
family of neural network architectures. The quan-
tity is essential to several branches of machine
learning theory and practice. Quantitatively, we
show that the maximum mutual information for
these families all stem from generalizations of a
single catch-all formula. Qualitatively, we show
that the maximum mutual information of an archi-
tecture is most strongly influenced by the width of
the smallest layer of the network - the “informa-
tion bottleneck” in a different sense of the phrase,
and by any statistical invariances captured by the
architecture.

1. Introduction

Information Theory is a powerful supplement to statisti-
cal machine learning theory. It provides bounds that are
agnostic to parameter size, and yields interpretable results
through its relation to physical fields of study. Yet rigorous
inspections of information-theoretic properties relating to
the architecture of neural networks remain undeveloped. In
this paper, we will study the maximum mutual information
(MMI) that the network’s hidden representation can hold
from the feature space.

That is, we are studying the supremum supy I(X; Zp)
where 6 is the parameter space of our architecture, Z is
the random variable denoting the output of our final hid-
den layer (our representation), and I(X; Z) is the mutual
information between the representation and the input. The
reason for studying this quantity is due to the prevalence
of the following concept in Information-Theoretic Machine
Learning Theory (ITMLT): I(X; Z) acts as a data-sensitive
measure of complexity for the representation. Indeed, we
can often obtain bounds on machine learning performance
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in a way that is highly dependent on I(X; Z). In this sense,
supy I(X; Zp) is a data-sensitive measure of complexity for
the network itself. Thus its study can shed light on why
certain architectures perform well on certain datasets and be
useful in finding architectures for new datasets.

In a much more practical sense, Information Theoretic Ma-
chine Learning Theory establishes the existence of a “best”
value of I(X; Z), which maximizes the potential of obtain-
ing a good representation. While this target always exists, it
typically will not be known entirely. A sub-branch of this
field argues that neural networks will attempt to find this
target naturally through training (Shwartz-Ziv & Tishby,
2017; Tishby & Zaslavsky, 2015; Achille & Soatto, 2018),
but this hypothesis is still disputed. Even if this hypothesis
is true, there is no guarantee that the training process will
find it. However, it should be possible to approximate this
target with bounds. We can then choose our architecture to
enforce the upper component of these bound via its maxi-
mum mutual information - significantly reducing the search
space for the target I(X; Z) in the training process.

While the capacity of neural networks has been analyti-
cally studied in a different sense (via storage of ‘patterns’)
(MacKay & Mac Kay, 2003) (chapter 5), (Prados & Kak,
1989), and numerical methods of estimation of mutual infor-
mation in deep networks exist (Gabrié et al., 2018; Paninski,
2003; Belghazi et al., 2018; Hjelm et al., 2018; Gao et al.,
2017), no analytical studies of this type exist in literature.

2. Notation, Background, and Motivation

Our primary motivation for studying maximum mutual in-
formation comes from some modern theoretical work in
ITMLT, which studies the classification of a discrete vari-
able Y € Y from an input X € X, jointly distributed
as p(z,y). The theory studies the potential losses in the
quality of a learning machine’s representation of its in-
put, Z, when trained from just a sample of data S =
((le Yl)a T (Xm; Ym))

A quality measure for a representational variable is its mu-
tual information with the classification variable, I(Y; Z)
(Cover & Thomas, 2012). This is a measure of how well
Z predicts the class variable Y, and is a component in
the objective functions of several deep learning methods
(Chen et al., 2016; Foggo & Yu, 2019b; Alemi et al., 2016;
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Kolchinsky et al., 2019; Bang et al., 2019). We can then con-
ceive of a “best possible” representation being that which
maximizes I(Y; Z) when the true distribution p(z,y) is
known perfectly. This “best possible” representation is
denoted Z*. Of course, we typically don’t know p(z,y)
perfectly, but we can still obtain a representation Z (S)
from our samples. If we constrain both variables, Z*
and Z , to have a fixed mutual information with X (i.e.
I(X;Z*) = I(X; Z) 2 I(X; Z)), then we then have the
following bound on the quality loss of Z(S) against Z*
(Foggo et al., 2019):

I(Y;2(8) - 1(Y;27)| < 2\5%(5)1()(;2)

data architecture

+2h2(6:0(S)) (1)

quality loss

Note that the constraint I(X; Z*) = I(X; Z) £ I(X; Z)
is a traditional choice first made in the early literature on the
Information Bottleneck method (Tishby et al., 2000; Slonim
& Tishby, 2000; Friedman et al., 2013) - a method which
helped spark the existence of ITMLT. The constraint just
exists to normalize the two representations to a fixed level
of “forgetfullness” from the input. The under-braces on
the right hand side of this inequality - implying that dy,, is
data dependent and I(X; Z) is architecture dependent in a
decoupled way - is justified by the work introducing that
bound (Foggo et al., 2019). In that work, &;, was upper
bounded in a way that did not depend on the architecture’s

y|m'zog<2>)

complexity by terms on the order of O ( 5

where m’ is a small integer, and m is the size of the training
sample. Further research has verified similar data dependent
bounds (Foggo & Yu, 2019a). Since these bound did not
depend on architectural complexity, all of the dependence on
architecture must be contained in the other term: I(X; Z).

On the other side of the coin, we have strong data processing
inequalities (Polyanskiy & Wu, 2017; 2015; Anantharam
etal., 2013) such as I(Y; Z*) < s*(X,Y)I(X; Z) where
5" (XY) = SUD, () p(a) DL

A qualitative combination of these two contrasting inequali-
ties is summarized as follows: I(Y'; Z*) increases quickly
with I(X; Z) up to its maximum of I(Y’; X) [Strong Data
Processing Inequality], and I(Y'; Z) follows this trend due
to the low information losses at low I(X; Z). But even-
tually the risk of information loss by inequality (1) forces
our best estimate of (Y Z ) to decrease linearly from this
maximum value. The location of this behavioral change is
problem-specific. But since 7x,y can be estimated via a
small sample of data, these equations can be used to approx-
imate a target I(X; Z) - yielding an interval in which it is
likely to be contained. Setting our architecture to have a
maximum mutual information near the supremum of this

estimated interval is desirable.

3. The MMI Bottleneck & Parallel Structures

We begin with a key takeaway in terms of series and parallel
components. The MMI over channels in series is the small-
est MMI of the series, and the MMI over channels in parallel
is the sum of the parallel MMI values. One consequence of
this takeaway is that the information theoretic properties of
fully connected architectures are strongly dominated by the
dimension of the smallest layer. We will often be able to
identify a dominant structural parameter that limits the MMI
of a series calculation. When we identify the parameter, we
will call it the MMI bottleneck. In a fully connected network,
this will be given by the dimension of the smallest hidden
layer. Special focus should be given to the MMI bottleneck
when attempting to control I(X; Z).

4. Single Layer Linear Networks

We will first study networks consisting of a single layer,
and with no activation function. While this is a highly
specialized case, the results and methods of obtaining those
results generalize quite well to other cases. This section will
consider fully connected architectures.

4.1. Fully Connected Case

We begin by deriving the MMI of a linear network with a
standardized Gaussian input. This is a highly specialized
case, but we will see that it generalizes quite nicely to a
large family of architectures including architectures with
relu activation functions. We consider the constrained prob-
lem in which the weight matrices W are constrained by
Frobenius norm. We will see that the Maximum Mutual
Information of this family of architectures is discontinu-
ous in the Frobenius norm constraint with at most dim(X)
points of discontinuity. We will thus first specialize to the
case where our Frobenius norm constraint is larger than
the largest discontinuity point before moving to the more
general scenarios. This is expressed in the following lemma.
The proof of this lemma is very similar to the argument
of (Cover, 1999) (page 253, section 10.5) for the mutual
information of gaussian channels with colored noise, and
so we will not repeat it here. However, we will provide this
proof in the appendix of this paper.

Theorem 1. Let X, be a positive definite matrix and
let 62 > 0. Let Ny and N, be natural numbers repre-
senting the input and hidden dimensions. Let N (u; A)
denote the Gaussian distribution with mean | and co-
variance matrix A. Let X ~ N(0;%;), X € RN,
ZIX,W,b ~ NWX +b; 02ldy,), Z € R, where
W e RN1xNo, Idy, is the identity matrix in N1 dimensions,
and b € RN is the bias vector. Let N = min(Ny, N1). Let
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Y denote N x N diagonal matrix containing the N
largest eigenvalues of X,.. Let )\fv denote the smallest eigen-

value of ¥, 5, and let py £ 52 (% - T’I“(E;}[)) Let
z|x,W,b
F > pg, Twy(X: 2) 2 By ziwy [log PS50 and

z|W,b)
define MMI(X; Z) = sup  Iwp(X;2Z). Then:

Tr(WTW)<F
N F+a’Tr(S70)\ 1
MMI(X;Z) = Elog ( gy 2l +§log 1%, &

@

Some takeaways from Theorem 1 are in order. First, there
is an MMI bottleneck given by min{Ny, N7} - the min-
imum of the input dimension and the hidden dimension.
Secondly, if N1 < Ny, then N7 controls the number of prin-
cipal components used to maximize the mutual informa-
tion. Thirdly, the largest discontinuity point of MMI(F’)
is dominated by the difference between the largest recip-
rocal eigenvalue and the average reciprocal eigenvalue of
those principal components that are used. We also see that
smaller principal components are removed first. Further-
more, if N is large, then we have the following approxi-
mation MMI(X; Z) ~ 1 va:l log(A? - A7) where A=t is
the average reciprocal eigenvalue of the components used.
‘We now move on to defining the rest of the discontinuity
points. They are defined in the following Lemma.

Lemma 1. Take all of the assumptions from Theorem
1 except for the assumption that F > p. Let the k"
largest eigenvalue of ¥, be denoted by Xi. Let K
be a natural number, K < N, and let Zrﬁ_K denote
the (N — K) x (N — K) diagonal matrix containing the

N — K largest eigenvalues of Y. Now, let pg_ =

2 [ N-K -1 i
o (Ava —Tr (Zm,N—K>>' Then.

O=p1 < <Py x <Py_x1 <" <Py_1 S PR
(3)

Note that each discontinuity point is calculated in the same
way as the largest one, but with successive removals of the
smallest principal components from our dataset. With all of
the discontinuities defined, we can calculate the maximum
mutual information for the case when our Frobenius norm
constraint is contained in any of the corresponding intervals
of continuity.

Theorem 2. Take all of the assumptions from Theorem
1 except for the assumption that F' > pg and take all
definitions from lemma 1. Let PN_K41 = F > pg_ k-
Then MMI(X; Z) is given by:

N K, F+0®Tr(S]5 )
O, =
2 N\ VK

1
) + 5109 ‘Ez,N7K|

“

MMI(F)
\

Figure 1. MMI(F) for a fully connected single layer architecture
with 50 hidden units and 2 = 1 on a 100 dimensional input
dataset whose eigenvalues are modeled via [with indices starting
at 1] (Left) A; = e~ %2071 (Right) \; = 1.

Theorem 2 is a straightforward generalization of Theorem
1. The only additional insight is that the Frobenius norm
constraint F' acts to remove the smallest principal compo-
nents from our maximum mutual information calculation.
This role is similar to that of the hidden dimension. The
MMI calculations in Theorems 1 and 2 will be seen to be
very important - nearly every other case is a generalization
of these two theorems. We’ve plotted some sample MMI
curves as a function of the Frobenius norm £’ for this family
of architectures in Figure 1.

5. Single Layer Relu Networks

We will now move on to studying what happens to the MMI
values when we place relu activations on the hidden layers.
The answer is quite nice: nothing changes at all. Thus we
can take all of the insight from the previous sections and
apply them to relu networks. Unfortunately, it takes quite a
bit of setup and rigor to prove this fact.

We can provide some insight into the rigor that follows be-
fore diving into the proofs. Essentially, we will show that
the mutual information between X and Z in a relu network
is always bounded above by that of a corresponding linear
network. However, we will be able to construct a sequence
of relu networks whose marginal distributions on Z con-
verge (weakly) to that of the maximum mutual information
solution of the linear architectures. All we will need to do
then is have some notion of continuity of maximum mutual
information with respect to these marginals and we will have
our proof. This penultimate step is taken care of primarily
in Lemma 3.

Lemma 2. Take all of the assumptions of either Theorem 1
or Theorem 2. Let W, b be fixed and define Z,¢;,, through
a new model given by Zo1,|X,W,b ~ N(relu( WX +
b); 02Idy,) for the fully connected case. Let ¥z denote
the covariance matrix of Z as defined in Theorem 1 and let
Yy denote the covariance matrix of Zcjy,.

Then:

relu

H(Zyew) < H(Z) &)

The next lemma relies heavily on the concept of a proba-
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bilistic coupling. Thus we will first review this concept.

Definition 1. Given two probability models Pz and Qg
on a list of variables S, a coupling of these models is a
pair of random variables (S, S) with joint distribution V5.5
such that the marginal distributions satisfy vz = Pz and
7g = Qs.

In particular, we will rely on the concept of a maximal
coupling, which is defined as follows:

Definition 2. Given two probability measures P and Pona
Euclidean space X with probability density functions p and
D, the maximal coupling on this pair is defined as follows:

First, define the function m : X — [0, 1] through m(a) :=
J min{py|x (bla), py|x (bla) }db. Next, define a real num-
ber p as p := [ mdP and define J as a Bernoulli random
variable with success probability p. Then define variables
U,V and W with the following distributions:

m p—m
pu = —, pv i= ;
p I-p

p—m
pw =t (6)
—p
Next define (f( , X ) as functions of the above random vari-
ables as follows:

{

The pair ( X , X ), and its distribution ~y form the maximal
coupling. One can show that 1 — p is the total variation
distance between p and p.

X=U ifJ=1
V. @)

X=W, ifJ=0

St S

Lemma 3. Take all of the assumptions of either Theorem
1 or Theorem 2 and all definitions from lemma 2. Denote
the marginal probability laws of Z and Z,, as P and
P with densities denoted p(z) and p(z). Let B(Z) be the
set of Borel measurable sets on Z, and let § denote the
total variation distance between P and P. That is, § =
SUp ac(z) [P(A) —P(A)| = 5 [ p(2) — p(2)|dz. Finally,
let ho(-) denote the binary entropy function. Let € > 0. Then
Sfor all W, b such that § < % there exists a non-negative
Sunction g(6(W, b)) which is continuous in 6 from the right
até =0, has g(0) = 0, and

|IW,b(X; Z) - IWJ?(X; Zrelu)‘ S 9(6(W b)) (8)

Theorem 3. Take all of the assumptions of either Theorem
1 or Theorem 2, and take all definitions from lemmas 2 and
3. Then the results of Theorem 1 and Theorem 2 hold for
MMI(X; Zye1y,)- That is:

MMI(X; Zyep) = MMI(X; Z) 9)

We see that all of the insights that we obtained for linear
activated networks hold for relu activated networks as well.

6. Single Layer Fully Connected Networks
with Bijective Activation Functions

We will now move on to deriving the MMI for one final
family of architectures - single layer networks with bijective
activation functions. This family includes sigmoidal acti-
vations, tanh activations, selu activations, and much more.
Conveniently, we once again find ourselves looking back to
the linear case for its calculation.

Theorem 4. Let A denote the pre-activated representation
variable of a single layer neural network. Let ¢ be a bijec-
tive activation whose log-derivative has finite expectation,
and let the representation Z be given by Z = ¢(A). Then:

I(X;2) = I(X; A) (10)

From this theorem, we can immediately see that, if we take
the linear case and place our noise injection on the pre-
activated variable, and then use Z = ¢(A), we will have the
same MMI as we did in the linearly activated case.

7. Multilayer Fully Connected Linear, Relu,
and Bijective Networks

We finally move on to the multi-layer case for linear and
relu fully connected networks.

Theorem S. Take all assumptions and definitions from the
previous theorems corresponding to a fully connected net-
work (linear or relu), but assume that we are using a K
layer neural network instead of a single layer network, with
the noise placed on the K*" layer. Let No,Ny,--- , Nk
denote the number of hidden units in each layer. Redefine N
to N £ min(Ny, Ny, - -+, Ng). Then the results of those
previous theorems hold.

We see that all of our previous insights for these families
of fully connected networks hold. However, a new MMI
bottleneck can be identified: min{ Ny, N1,--- , Ng} - the
dimension of the smallest layer of the network.

8. Conclusion

We have rigorously derived the Maximum Mutual Infor-
mation for a large number of neural network architectures,
and provided several insights along the way. Nearly every
case generalizes from Theorems 1 and 2. All of the studied
fully connected single layer architectures have the exact
same MMI expressions as those studied in Theorems 1 and
2. Multi-layer networks generalize from these as well, but
with the primary architectural parameter being given by the
smallest hidden dimension in the network. Thus great care
should be given to the design of this layer when attempting
to control the network’s mutual information.
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A. Proof of Theorem 1

Let X, be a positive definite matrix and let o> > 0. Let Ny and N; be natural numbers representing the input and hidden
dimensions. Let V' (u; A) denote the Gaussian distribution with mean p and covariance matrix A. Let X ~ N (0;X,),
X € RN, ZIX,W,b ~ N(WX +b; 0%Idy,), Z € RN, where W € RV >*No, Idy, is the identity matrix in Ny
dimensions, and b € R™ is the bias vector. Let N = mln(No, Ni). Let X 5 denote N x N diagonal matrix containing

the N largest eigenvalues of X,.. Let )\””~ denote the smallest eigenvalue of Zz’ - and let pg 2 52 (ﬁ - Tr(Zm, 1\7)) Let

F > pg Iws(X; 2) 2 Epiosway [logw] and define MMI(X; Z) 2 sup  Iy(X; Z). Then:

(z[W)b) Tr(WT
r(WITW)<F
- 2 -1

N F+o*Tr(E ) 1
MMI(X; Z) = —1 — —log |2 % 11
(7) 209< 02N +209‘m,N| (1D
Proof. Since X is Gaussian and the network is linear, Z is Gaussian for all W, b. Thus, we can express Iy,,(X; Z) as
tlog ||E || = 1log % $log |Idn, + 2 W, WT|. Now, by the matrix determinant lemma, we have that

[Idn, + ZWEWT| = o287+ WIW| - | 55, and so we can condense the dependence of the MMI optimization
problem on W to obtain:

1
MMI(X; Z) = log | Yol + sup —log |Q(W)| (12)
Tr(WTW)<F2

where Q(W) = 0?31 + WTW. Due to the positive definiteness of () and Hadamard’s inequality, we can cast this
constrained maximization problem into the realm of eigenvalues since the optimal () matrix will be diagonal, so W1 W will
have the same eigenvectors as ¥ 1:

o2
) sup Zlog ()\ +)\ )
A1 )\N(,z 1

No
st Y N <F A >0i=1,2-,No
i=1
and \; = 0, for at least max (0, No — N7) values of (13)

where \? is the i largest eigenvalue of 3, and \; is the i*" un-ordered eigenvalue of WX W. The final constraint
comes from the fact that W'W is only rank min(Ng, Ny ). Furthermore, it must be the case that the mandatory 0-valued
eigenvalues of W7 TV, when they exist (Ny > N7), must be placed on the indices i = N; + 1, --- , Ny, as these correspond
to the largest values of "—i Indeed, suppose that we have placed a nonzero eigenvalue on one of these indices (without loss
of generality, say index 11), and that we set this eigenvalue to /) in such a way that all of the constraints are met. Then we
must have placed a zero-valued eigenvalue on another index (which we will denote as ¢ without loss of generality, ¢ < p).
Then the objective function can be increased without violating any constraints by taking [ units of eigenvalue off of index p
and placing it on index ¢, and so this cannot be a solution to our optimization problem. To see this, observe that:

2 o2 lo2 ot
ha -1 ha
log<l+)\I>+log()\m> og()\g +)\$)\§>

lo? ot o2 o2
<l — =1 — l I+ — 14
- "g(Al “5) ~1oo (5) o (1) W

p

X11 '75\1§7 =1 i
I

stY MNSF A >0,i=1,2- N (15)
=1
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This is a classic ‘water-filling’ problem with heights given by scaled versions of the inverses of the first N eigenvalues
of 3. Thus, for a given ‘water level’, 11*(F'), a solution is readily available, being given by \; = max (O, w*(F) — K—i)
[optimality]. However, finding the relationship between p*(F') and F' requires additional work, as p*(F') must sati;fy
>, max (07 w*(F) — K—j) = I [consistency]. We will show that our assumption, F' > p g, yields a consistent solution in
which all maximums of the optimality equation are obtained in the second argument. To see this, note that under such a

2 -1
F+o TT(Z””’N)

solution, the consistency equation yields p*(F) = , which coincides with the optimality equation because,

Fta?Tr(s” L
for each 7, # — i\’—j > % (F'— pg) > 0. Thus this solution holds and, in all, we have an MMI of:
1 %, N F+0°Tr(2 %)
ilo | =1+ Elog _
No 2
+ 5 Z 109(7)
i=N+1 '
N o Y F+o?Tr(27%)
1 N
== log(—%) + =1 =
2; 09(02)+209< <
- -1
1 N F+ O’QTT(Ex 1\7)
= §ZOQ‘EI,N| + Elog ( Y (16)
completing the proof. O
B. Proof of Lemma 1
Proof. First, p; is zero since:
1 1
2
_ - = 17
pr=0 (Xf )\gf> (17)
Next, we note that the difference p;_ x| — py_ ¢ 18 given by:
o(N-K+1 N-K 1
7\ B
N-K+1 N-K N-K+1
) ( N-K N- K)
=0 —_
)‘N—K+1 AN—K
,(N-K N-K
>0 = - =0 (18)
N-K N-K
completing the proof. [

C. Proof of Theorem 2

Proof. We can follow the proof of Theorem 1 up until the water-filling optimization problem, whose solution will now

be different because F' has changed. Again, we need to find a solution consistent with 5\1 = max (0, w*(F) — K—i)

[optimality] and ), max (O7 w(F) — ;—f) = I’ [consistency]. We claim that our assumption, pg_ 1 > F > py_ g

yields a consistent solution in which the ); are zero for i > N — K and nonzero otherwise. Under such a solution, the
Fto®Tr(=2% )

consistency equation yields p* (F') = e =K~ We will show that this coincides with the optimality equation. First,

7
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2 -1
F4o TT(Zx,N

define I(i) £ i) _ - Then,if i < N — K, we have:

N-K
F+a2Tr(S7 ) 2
l(Z) > _ T, N-K’ o
NoK Nk
1
— - (F = py_y) 20 (19)
On the other hand, if 7 > N-K , then:
F+ao?Tr(=7% ) 2
i) S —— 2"
N-K N—-K+1
F+o?Tr(x} s
_ +0°Tr( o N— K+1) oo o2
N-K )‘f\/ K+1
1
(P pken) <0 0)

And so optimality is achieved. Under this solution, the objective function value is given by:

N 2 . F+ UQTT(E;%FK)
> log (Ar> +(NK)log< % ) (21)

i=N—K+1

Thus, in all, we have that MMI(X; Z) is given by:

N_K F+o®Tr(S 5 )
lo = ’
2 9 o?(N — K)
1 1%, |
+5log | —— al (22)
= N—K1 N

Where the factors of  and the term log (-5 |¥, &) have come from equation (12). Finally, the only factors remaining in

post-cancellation of the second term are the eigenvalues of 3 5 with indices smaller than or equal to N - K, transforming
that term into what is presented in equation (4). This completes the proof. O

D. Proof of Lemma 2

Take all of the assumptions of either Theorem 1, Theorem 2, or Theorem ??. Let W, b be fixed and define Z,;,, through
a new model given by Z,..;, | X, W,b ~ N (relu(WX + b); 0?Idy,) for the fully connected case, or Z,.c1,| X, W, b ~
N (relu(X ® W +b); o%1dy, ) for the convolutional case. Let 7 denote the covariance matrix of Z as defined in Theorem
landlet X4 denote the covariance matrix of Z,cjy,.

Then:

relu

H(Zrer) < H(Z) (23)
Proof. Let ) denote a multivariate Gaussian with covariance 02Idy, . We denote S = WX + b. Then:
Z =841, Zrew =relu(S)+1n (24)
We can trivially write Z as:

Z =1g550Z + 1s<0Z
= 15502 + 1s<on + 1s<0S (25)
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But the sum of the first two terms in this decomposition is nothing but Z,..;,,, SO we have:

Z = Zyretu + 15<05 (26)
Furthermore:
H(Z, Zrern) = H(Z) + H(Zre1u| Z)
= H(Zretu) + H(Z| Zretu) (27)
It follows that:
H(Z) = H(Zyewu) + H(Z|Zreru) — H(Zreru| Z) (28)

We claim that H(Z|Zye1) > H(Zre1w| Z)- To see this, note that:

H(Z|Zrelu) = H(Zrelu + 1S§0‘Zrelu) = H(]-Sgo‘Zrelu)
= H(1ls<o|relu(S) +n) = H(1s<o[n)
= H(1s<o) 29)

where the fourth equality holds because the integral in the entropy calculation only occurs over the region .S < 0, in which
relu(S) = 0. Meanwhile:

( <
= H(-1s<05|%2)
= H(15<05|2)
< H(1s<0S) = H(Z|Z,) (30)
Completing the proof. O

E. Proof of Lemma 3

Take all of the assumptions of either Theorem 1 or Theorem 2 and all definitions from lemma 2. Denote the marginal
probability laws of Z and Z,..;,, as P and P with densities denoted p(z) and p(z). Let B(Z) be the set of Borel measurable
sets on Z, and let § denote the total variation distance between P and P. That is, § = supaep(z) [P(A) — P(4)[ =

1 [ Ip(2) — p(z)|dz. Finally, let hy(-) denote the binary entropy function. Let € > 0. Then for all W, b such that § < 1,
there exists a non-negative function g(d(W, b)) which is continuous in ¢ from the right at 6 = 0, has ¢g(0) = 0, and

Hwp (X5 Z) — Twp (X5 Zrerw)| < g(6(W, 1)) (31)

Proof. Let (Z, Z, ~) denote the maximal coupling between PP and P on (Z, Z). Then, as H(Z|X) = H(Z|X) (all of the
uncertainty under these conditionals comes from the noise variable 1), we have:

1(X:2) - 1(X; 2)| = |H(Z) — H(Z)| (32)

We can decompose these terms as:

= H(Z|J)+ H(J) - H(J|Z) (33)

The H(J) terms cancel in the subtraction. Furthermore, both H(.J|Z) and H(J|Z) are bounded by H(.J) = ho(§). Thus,
by an application of the triangle inequality, we have:

I(X;2Z) —1(X;2)| < |H(Z|J) — H(Z|J)| + 2ha(6) (34)

9
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We can further decompose the remaining terms as:
H(Z|J) = (1-8)H(U) + H(V),
H(Z|J)=(1—38)H(U) + 6H(W) (35)

leaving us with: .
[(X;2) - 1(X;2)| <0|H(V)— HW)| + 2h2(9) (36)

Now, observe that the absolute entropy difference, |[H (V) — H(W)|, expands to  multiplied by the absolute value of the

following expression:
[t = mtepreg (U2 o

_/(p(z) —m(z))log (W) =

Let A denote the set of points in Range(Z) such that p(z) > p(z). Then the second term in the expression becomes zero
over A and the first term becomes zero over A°. We are then left with % multiplied by the absolute value of the next
expression:

which can equivalently be written as:

\ J0z) = pe1tog (z) ~ o)l

<z / (=) = 8(2)lllog [p(2) — (=) |z a7

Now, split the domain of this last integral into three disjoint subregions 01, @2, and ()3 where ()1 is defined by the condition
that |p(z) — p(2)| < 24, Q5 is given by the condition that 20 < |p(z) — p(2)| < 1, and Q3 is given by the condition that
Ip(z) — p(2)| > 1. We then have by the definition of total variation that 1 [ [p(z) — p(z)| = 4, so it must be the case that:

/ Ip(=) — p(2)] < 26 /Q ERCEIEE: (38)

Futhermore, in Qs, |log|p(z) — p(z)|| is decreasing in |p(z) — p(z)|, so we can bound it above by |log(25)|. We then have
that:

| B = 5(E)log (=) ~ 5]
< liog 26| / )z < 26]i0g(26)| (39)
Also, in @1, if § < 1, as was assumed in this Lemma’s hypothesis, [p(z) — p(z)|/log |p(z) — p(2)|| is decreasing in

|p(2) — p(2)|. It can thus be bounded above by 26|log(26)|. Finally, the addition of the noise term 7 in both models
guarantees a uniform upper bound via Young’s Convolution Inequality given by |p(z) — p(z)| < m (independent

of both z and §). A derivation of this bound is provided at the end of this proof. Given that we are in (J3, we then have an
upper bound given by M = maz{1, m} Thus the @3 integral can be bounded as:

/ Ip(2) — (=)l log [p(=) — p(=)ld=

< llog(M)| / 2)| < 23[log (M) (40)

10
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Thus the full entropy difference expression can be bounded above by 221207 (25)‘225”"9 D Plugging this back into equation
(36) gives us: R
(X Z) — I(X; 2)| < 45]log(20)] + 28|log(M)] + 2hs(5) (41)

The term on the right hand side is the desired continuous function g(J).

The bound on |p(z) — p(z)] is derived from Young’s Convolution Inequality. Letting p, be the density function of
the random variable Relu(W X + b) and p,, that of 7. Then p is the convolution of p, and p,. We then have that
6lls < [pr(2)dz - ||Ipyllc (@ = 1,q =7 = oo in Young’s inequality). The integral evaluates to one, and we are left with
a bound of the supremum of p,,, which is given by its multivariate normal pdf evaluated at its mean. Since p is bounded in
exactly the same way, we have the desired result. O

F. Proof of Theorem 3

Proof. First, we note that, for all W, b, we have:

IW,b(X; Zrelu) = HW,b(Zrelu) - H(Zrelu|X)
= HW,b(Zrelu) - H(Z‘X)
< Hwu(Z) — H(Z|X) = Iws(X, Z) (42)

where the inequality follows from lemma 2. It follows immediately that MMI(X; Z,.c;.,) < MMI(X; Z). We now show that
MMI(X; Z) is an achievable value for Iy, (X; Z,e1,,) given the constraint Tr(WTW) < F. Fix % > ¢ > 0. Then given

any value of F, we can set b large enough in each dimension such that P(UN?, {z|z; < 0}) is less than e for all W satisfying

TT(WTW) < F'. When this is the case, the total variation between P and PP is also bounded above by €. Then by lemma 3,
there exists b* € RN such that:
[ Tw,p (X5 Z) — Iwp (X5 Zretw)| < g(e) 43)

for all W satisfying this constraint, and where the right hand side of this inequality is a continuous function of € and satisfies
lim. o+ g(€) = ¢g(0) = 0. Thus we can achieve Iy p= (X; Zrern) > Iwp- (X3 Z) — g(e€) for all W satisfying the constraint.
Since g > 0 can be made arbitrary small via continuity, we can achieve:

Tw e (X Zretw) > Twae (X; Z) VW st Tr(WTW) < F (44)

Inputting the MMI achieving matrix from Theorem 1 and Theorem 2 into (44) yields the result. O

G. Proof of Theorem 4

Proof. This follows immediately from the following set of equalities:

I(X;2) = H(Z) - H(Z|X),

H(Z)=H(A) +Ep, _log % }
H(Z|X)=H(AIX)+Epy , [log jﬁ” , Epy o [log 3(5”
=Ep, [109 % }
I(X;A)=H(A) — H(A|X) (45)
where ‘ %‘ is the determinant of the Jacobian matrix of ¢. O
H. Proof of Theorem 5

Proof. In the linear case, we can take the proof of theorem 1 by replacing W with Wk --- WyW; (the biases
have no effect on the mutual information). We will only need to note that the corresponding inner-product matrix,

11
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WIWTE ... WEWp - - WoWy has rank N (as redefined in this theorem’s hypothesis). In the relu case we can follow the
exact sequence of steps that were performed in the single layer case, noting that we can get the marginal total variation § < €
(for any fixed € > 0) by fixing each bias to be large enough such that sufficiently small amounts of marginal probability are
contained in the saturated regions of each layer. O
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