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ABSTRACT

Min cut is an important graph partitioning method. However, current solutions
to the min cut problem suffer from slow speeds, difficulty in solving, and often
converge to simple solutions. To address these issues, we relax the min cut problem
into a double-bounded constraint and, for the first time, treat the min cut problem
as a double-bounded nonlinear optimal transport problem. Additionally, we de-
velop a method for solving d-bounded nonlinear optimal transport based on the
Frank-Wolfe method (abbreviated as DNF). Notably, DNF not only solves the size
constrained min cut problem but is also applicable to all double-bounded nonlinear
optimal transport problems. We prove that for convex problems satisfying Lipschitz
smoothness, the DNF method can achieve a convergence rate of O( 1t ). We apply
the DNF method to the min cut problem and find that it achieves state-of-the-art
performance in terms of both the loss function and clustering accuracy at the fastest
speed, with a convergence rate of O( 1√

t
). Moreover, the DNF method for the size

constrained min cut problem requires no parameters and exhibits better stability.
Our Code in Appendix B.3.

1 INTRODUCTION

Graph clustering is a fundamental issue in machine learning, widely applied in diverse fields such as
computer vision (Yan et al., 2024), gene analysis (Liu et al., 2024), social network analysis (Singh
et al., 2024) and many others. Among the numerous graph clustering approaches, Min Cut clustering
(MC) stands out as a classical method (Henzinger et al., 2024). Despite its effectiveness, the MC
problem has trivial solution that all the objects are clustered into one cluster, where the cut of G
reaches it minimal value zero. Thus, it is known that the clustering result of MC tends to produce
unbalanced clusters, often resulting in small, fragmented groups due to its tendency to prioritize cuts
with minimal edge weights (Nie et al., 2010).

To address this limitation, various refinements to MC have been proposed (Hagen & Kahng, 1992;
Zhong & Pun, 2021; Tsitsulin et al., 2023). Recently, (Nie et al., 2024) propose the parameter-
insensitive min cut clustering with flexible size constraints. In fact, the most direct approach to
balance clustering results in MC is to add size constraints for each cluster. That is, in MC problem,
the lower bound bl and upper bound bu are added in column sums of discrete indicator matrix Y ,
which guarantees each clusters contains reasonable number of objects. Nevertheless, the optimization
for the size constrained problem is not easy since the coupling of constraints. For each row of Y , it is
required that only one element is one and others are zeros. The sum of column needs in the range of
[bl, bu]. In this paper, we relax the discrete indicator matrix into probabilistic constraints and resolve
this problem from the perspective of nonlinear optimal transport.

Optimal transport (OT) theory (Ge et al., 2021; Fatras et al., 2021; Flamary et al., 2021) has become
a fundamental tool in various fields, including machine learning (Montesuma et al., 2024; Wang
et al., 2024; Yuan et al., 2024) and computer vision (Shi et al., 2024b; 2023). It provides a principled
approach for aligning probability distributions and optimizing resource allocation. The OT problem is
to minimize the inner product of cost matrix and transport matrix, which is a linear problem. Besides,
it is assumed the source and target distributions are fixed. This means OT can not be applied in the
size constrained MC problem directly. To address these challenges, we propose the Doubly Bounded
Nonlinear Optimal Transport (DB-NOT) problem, which introduces both upper and lower bounds
on the transport plan while accommodating non-linear objective functions. This novel formulation
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extends the classical OT framework, enabling the modeling of problems with bounded feasibility
regions and non-linear optimization goals.

The DB-NOT problem poses significant computational challenges due to the interaction of double-
bounded constraints and the complexity of non-linear objective functions. Traditional methods for
solving OT problems, such as Sinkhorn iterations (Nguyen et al., 2024) or linear programming (Peyré
et al., 2019a), are inadequate in this setting because they are designed for linear or unconstrained
formulations. Therefore, there is a pressing need for an optimization algorithm that can efficiently
handle DB-NOT problem.

To tackle this problem, we propose the Double-bounded Nonlinear Frank-Wolfe (DNF) method,
inspired by the classical Frank-Wolfe algorithm (Jaggi, 2013). The DNF method is specifically
tailored to address the challenges of the DB-NOT framework by iteratively optimizing within the
feasible region defined by the double-bounded constraints. The core idea of the DNF method is to
compute a feasible gradient within the constraint set that best approximates the negative gradient
matrix. By searching along this feasible gradient, the DNF method efficiently minimizes the non-
linear function while maintaining complicance with the double-bounded constraints. Through iterative
updates and convex combinations of feasible gradients, the method ensures that the descent direction
remains computationally efficient and effective. To demonstrate the practical utility of our approach,
we apply the DNF to size constrained MC clustering. In summary, our contributions are fourfold.

• For the first time, We formulate the Double-bounded Nonlinear Optimal Transport (DB-
NOT) problem, which introduces both upper and lower bounds on the transport plan,
extending the classical optimal transport framework. This problem seeks to find a transport
plan that minimizes a given cost function while satisfying double-bounded constraints,
ensuring that the transport plan remains within the prescribed bounds. The DB-NOT problem
has applications in diverse fields such as machine learning, economics, and logistics, where
practical constraints often require bounded and nonlinear adjustments to classical transport
formulations.

• Inspired by the Frank-Wolfe method, we propose the DNF (Double-bounded Nonlinear
Frank-Wolfe) method for solving the DB-NOT problem. The DNF method is specifically
designed to handle the unique challenges in DB-NOT framework. This approach extends
the utility of the Frank-Wolfe method to a broader class of constrained non-linear problems.

• We prove that the DNF method can achieve global optimality regardless of whether the non-
linear function is convex or Lipschitz-continuous non-convex. Specifically, the convergence
rate is O(1/t) for convex functions and O(1/

√
t) for Lipschitz-continuous non-convex

functions. These theoretical results highlight the robustness and versatility of the DNF
method across a wide range of problem settings.

• The size constrained min cut clustering framework benefits from the ability of DNF method
to handle non-linear constraints effectively, ensuring clusters of appropriate sizes while
minimizing the cut value. Experiments on diverse datasets, including image, text, and graph-
based data, demonstrate that the DNF-based approach outperforms traditional methods in
terms of clustering quality. The results underline the practical applicability and advantages
of the proposed method in real-world scenarios.

2 PRELIMINARIES

2.1 NOTATIONS

The matrices is denoted by tilted capital letters and vectors are presented by lowercase letter. Z =
{z1, z2, . . . , zn} ∈ Rd×n is the data matrix, in which d is the dimensionality and n is the number
of samples. Y ∈ Ind ∈ Rn×c is the indicator matrix, in which each row has only one element
of one and the rest elements are zeros. c is the number of clusters. The affinity graph S could
be constructed on Z in a number of ways, such as by using Euclidean distance, cosine similarity,
or kernel-based methods like the Gaussian kernel function. The Laplacian matrix is L = D − S
where D = diag{d11, d22, . . . , dnn} and dii =

∑n
j=1 sij . bl and bu are the minimum and maximum

number of samples in each cluster. The elements in 1c ∈ Rc are all ones.
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2.2 SIZE CONSTRAINTED MIN CUT

Min cut clustering aims to minimize inter-cluster similarities and its objective function is

min
F∈Ind

Tr(FTLF ) (1)

If all samples are assigned to a single cluster, the objective value of problem (1) achieves its minimum
of 0. However, such skewed clustering results are typically undesirable. To address this issue, Nie
et al. (2024) added doubly bounded constraints to the indicator matrix to prevent the formation of
excessively large or overly small clusters. Problem (1) becomes

min
F∈Ind,bl1c≤FT 1n≤bu1c

Tr(FTLF ) ⇐⇒ min
F∈Ind,bl1c≤FT 1n≤bu1c

Tr(FT (D − S)F )

⇐⇒ min
F∈Ind,bl1c≤FT 1n≤bu1c

1TnS1n − Tr(FTSF ) ⇐⇒ max
F∈Ind,bl1c≤FT 1n≤bu1c

Tr(FTSF )

(2)

Nie et al. (2024) solved problem (2) by augmented Lagrangian multiplier method and decoupled the
constraints into different variables. However, this introduces additional parameters and variables.

3 OUR PROPOSED METHOD

In this section, we will respectively present the double-bounded nonlinear optimal transport perspec-
tive of the min cut, the steps of the DNF method, and the basic steps for solving the size constrained
min cut using the DNF method.

3.1 SIZE CONSTRAINED MIN CUT FROM THE PERSPECTIVE OF DOUBLE-BOUNDED
NONLINEAR OPTIMAL TRANSPORT.

we solve the double-bounded problem (2) from the perspective of non-linear optimal transport, which
is parameter-free. Since this is an NP-hard problem, F can be relaxed such that the row constraints
sum to 1, while the column sums lie within a fixed range. This means that the number of elements in
each cluster should fall within an appropriate range, and each element is greater than 0. Specifically,
the optimization problem to be solved is given by Eq.(3).{

min
F

JMC = −tr(FTSF )

s.t. F1c = 1n, bl1c ≤ FT 1n ≤ bu1c, F ≥ 0
(3)

If we assume the set Ω = {X | X1c = 1n, bl1c ≤ XT 1n ≤ bu1c, X ≥ 0}, then according to the
definition, Ω is called the double-bounded constraint set. The optimization problem can then be
simply stated as maxF∈Ω JMC, which is a double-bounded nonlinear optimal transport problem.

Similarly, we can provide an example of a general nonlinear double-bounded optimal transport, which
satisfies the following definition.
Definition 3.1. LetH(F ) be an arbitrary nonlinear function, and let Ω = {X | X1c = 1n, bl1c ≤
XT 1n ≤ bu1c, X ≥ 0} be called the double-bounded constraint set. Then, the double-bounded
nonlinear optimal transport problem is

min
F∈Ω
H(F ) (4)

Specifically, if H(F ) is L-smooth and convex, then minF∈ΩH(F ) is called the L-smooth convex
double-bounded nonlinear optimal transport problem, abbreviated as PL,C

DB . If H(F ) is L-smooth,
then minF∈ΩH(F ) ∈ PL

DB .
Theorem 3.2. The size constrained MC problem is a 2∥S∥F -smooth double-bounded nonlinear
optimal transport problem, i.e., maxF∈Ω JMC ∈ P

2∥S∥F

DB . Proof in A.1.

For the double-bounded nonlinear optimal transport problem, no existing methods have been able to
solve it so far. To address this, we designed a method called Double-bounded Nonlinear Frank-Wolfe
(DNF) that can efficiently solve general double-bounded nonlinear optimal transport problems and
proved its convergence and convergence rate.
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3.2 INTRODUCTION TO THE DNF METHOD.

The core idea of the DNF method is to find a feasible gradient ∂H within the double-bounded
constraint set Ω that best approximates the negative gradient matrix −∇H of a general nonlinear
functionH, and to search along the feasible gradient for the optimal value ofH within Ω.

To ensure that the feasible negative gradient ∂H closely approximates −∇H, it is necessary to
define a measure E(−∇H, ∂H) to quantify the degree of approximation. This means solving
min∂H∈Ω E(−∇H, ∂H). There can be multiple measures for approximation, but not all of them
guarantee convergence. Here, we identify two approximation measures: En(−∇H, ∂H) = ∥∇H+
∂H∥2F and Ei(−∇H, ∂H) = ⟨∇H, ∂H⟩.

3.2.1 THE NORM-BASED MEASURE.

Under the norm-based measure, the problem to be solved is min∂H∈Ω En(−∇H, ∂H) = ∥∇H +
∂H∥2F . In practice, Ω can be viewed as Ω = Ω1 ∪ Ω2 ∪ Ω3, where Ω1 = {X | X ≥ 0, X1c = 1n},
Ω2 = {X | XT 1n ≥ bl1c}, Ω3 = {X | XT 1n ≤ bu1c}.
Theorem 3.3. For min∂H∈Ω1 ∥∇H+ ∂H∥2F , let ∂Hi denotes the i-th row of ∂H, and ∂Hij repre-
sents the ij-th element of ∂H. The optimal solution of min∂H∈Ω1

∥∇H+ ∂H∥2F , i.e., the projection
onto Ω1, is given by:

ProjΩ1
(−∇H)ij = ∂H∗

ij =
(
(−∇H)ij + ηi

)
+

(5)

where (·)+ denotes the positive part, and η is determined by
∑c

j=1 ∂H∗
ij = 1. Proof in A.2.

For min∂H∈Ω2
∥∇H + ∂H∥2F or min∂H∈Ω3

∥∇H + ∂H∥2F , the solution can be obtained using a
similar projection method.

Theorem 3.4. Assuming∇Hj represents the j-th column of∇H, the projection of min∂H∈Ω2 ∥∇H+
∂H∥2F onto Ω2 satisfies Eq.(6). Proof in A.3.

ProjΩ2
(−∇Hj) = ∂Hj∗ =

{
−∇Hj , if (−∇Hj)T 1n ≥ bl
1
n
(bl + 1Tn∇Hj)1n −∇Hj , if (−∇Hj)T 1n < bl

(6)

The case of Ω3 is completely analogous to that of Ω2. Under the measure En(−∇H, ∂H) =
∥∇H+ ∂H∥2F , the feasible negative gradient can be found through continuous iterative projection.
Specifically, this involves cyclically performing ProjΩ1

(−∇H), ProjΩ2
(−∇H), and ProjΩ3

(−∇H).
Since the subsets Ω1, Ω2, and Ω3 are simple sets, by the Dykstra’s projection theorem, it can be
proven that this iterative procedure will find the optimal projection result (Yuan et al., 2025).

3.2.2 THE INNER PRODUCT-BASED MEASURE

Another option for evaluating the feasible negative gradient ∂H and the negative gradient -
∇H is the inner product measure, which involves solving the problem min∂H∈Ω⟨∇H, ∂H⟩. In
fact, the approximation problem under the inner product measure can be viewed as a form of
double-bounded linear optimal transport. Let G represent the entropy function, where G(∂H) =∑

i,j ∂Hij log(∂Hij)−
∑

i,j ∂Hij .

By introducing entropy regularization, the original problem can be approximated as
min∂H∈Ω⟨∇H, ∂H⟩ − δG(∂H), where δ > 0 is the regularization parameter. The approxi-
mate gradient obtained by solving the regularized problem is denoted as ∂δH∗. It holds that
limδ→0 ∂δH∗ = ∂H∗, indicating that the solution to the regularized problem converges to the
solution of the original problem as δ approaches zero.
Theorem 3.5. The optimal solution of the problem min∂H∈Ω⟨∇H, ∂H⟩ − δG(∂H) is given by
∂δH∗ = diag(u∗)e−∇H/δ diag(v∗ ⊙ w∗), where u∗, v∗, and w∗ are vectors, diag() represents the
operation of creating a diagonal matrix, and ⊙ denotes the Hadamard (element-wise) product. The
vectors u∗, v∗, and w∗ can be computed iteratively to convergence using the following update rules:

u(k+1) = 1n./(e
−∇H/δ(v(k) ⊙ w(k)))

v(k+1) = max(bl1c./
(
((e−∇H/δ)

T
u(k+1))⊙ w(k)

)
, 1c)

w(k+1) = min(bu1c./
(
((e−∇H/δ)

T
u(k+1))⊙ v(k+1)

)
, 1c)

(7)
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where 1./ denotes element-wise division, bl and bu are lower and upper bounds, and 1n and 1c are
vectors of ones with appropriate dimensions. Proof in A.4.

This theorem provides a method for approximating the true negative gradient -∇H using the feasible
δ-gradient ∂δH∗ under the inner product measure. The approximation relationship is given by
(Bonneel & Digne, 2023):

lim
δ→0

∂δH∗ = ∂H∗ = argmin
∂H∈Ω

(Ei(−∇H, ∂H)) (8)

By deriving feasible gradient methods under different approximation measures, the update mechanism
for DNF can be further obtained.

3.2.3 PERFORMING OPTIMAL VALUE SEARCH.

In the previous section, we addressed feasible gradient approximation methods under different
measures, i.e., min∂H∈Ω E(−∇H, ∂H). The next step is to perform the search. We choose the t-th
step size µ(t) ∈ (0, 1) and update F (t) as follows:

F (t+1) ← (1− µ(t))F (t) + µ(t)∂H∗(t) (9)

Theorem 3.6. By arbitrarily choosing µ(t) ∈ (0, 1), if F (t) satisfies F (t) ∈ Ω, the updated F (t+1)

obtained from the search will also satisfy F (t+1) ∈ Ω. Proof in A.5.

Here, we provide three different choices for the search step size and offer convergence proofs for
each of these step sizes. To introduce the specific significance of the three step sizes, we introduce
the concept of the dual gap. Moreover, we will later demonstrate that the dual gap is an important
metric for measuring convergence. Specifically, when the dual gap equals 0, the algorithm reaches
either the global optimum or a critical point.
Definition 3.7. Define the function g(F ) = min∂H∈Ω E(∂H − F,∇H) with respect to F . Then,
g(F ) is called the dual gap function ofH. For the inner product measure, the corresponding formula
is g(t) = g(F (t)) =< F (t) − ∂H∗(t),∇H(t) >.
Definition 3.8. We define three types of step size: the easy step size µe, the line search step size µl,
and the dual step size µg . The expressions for the three step sizes are as follows:

µ(t)
e =

2

t+ 2

µ
(t)
l = argmin

µ∈(0,1)

H
(
(1− µ)F (t) + µ∂H∗(t)

)
µ(t)
g = min

(
g(F (t))

L||∂H∗(t) − F (t)||F
, 1

) (10)

In general, we assume that µ(t) is a step size chosen arbitrarily from the three types mentioned above.
Using the inner product measure Ei(∂H,−∇H) = ⟨∇H, ∂H⟩ as an example, we provide proofs for
two convergence theorems. For convex and Lipschitz-smooth functions, the global optimum can be
achieved with a convergence rate of O(1/t). For non-convex and Lipschitz-smooth functions, in the
best-case scenario, the convergence to a critical point occurs at a rate of O(1/

√
t). We

Theorem 3.9. Assume that minF∈ΩH ∈ PL,C
DB and thatH has a global minimum F ∗. Then, for any

of the step sizes in {µ(t)
e , µ

(t)
l , µ

(t)
g }, the following inequality holds:

H(F (t))−H(F ∗) ≤ 4L

t+ 1
(11)

Proof in A.6
Theorem 3.10. Assume that minF∈ΩH ∈ PL

DB and thatH has a local minimum F ∗. g̃(t) represents
the smallest dual gap g(t) obtained during the first t iterations of the DNF algorithm, i.e., g̃(t) =
min1≤k≤t g

(k). By using µ
(t)
g as step. Then g̃(t) satisfies the following inequality:

g̃(t) ≤ max{2(H(F (0))−H(F ∗)), 2nL}√
t+ 1

(12)

Proof in A.7.
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g̃(F ) or g(F ) can be used as a criterion for the convergence of the algorithm, due to the following
theorem, which states that when g(F ) approaches 0,H(F (t))→ H(F ∗).

Theorem 3.11. For F (t) ∈ Ω and convex function H, g(F (t)) ≥ H(F (t)) − minF∈ΩH(F ) =
H(F (t))−H(F ∗), and when g(t) converges to 0 atO( 1t ), it means thatH(F (t))−minF∈ΩH(F ) =

H(F (t))−H(F ∗)→ 0 at O( 1t ). More generally, ifH is not a convex function, then g(F (t)) = 0 if
and only if F (t) is a stable critical point ofH. Proof in A.8.

It is worth noting that Eq.(11) and Eq.(12) provide two completely different conclusions. Eq.(11)
applies under the condition of convexity and L-smoothness, indicating that when t is sufficiently
large, H(F (t)) will converge to H(F ∗) with a convergence rate of O(1/t). In contrast, Eq.(12)
requires only L-smoothness, which shows that after enough iterations of the DNF algorithm, the best
step will converge to a stable critical point O(1/

√
t).

3.3 DNF METHOD FOR SIZE CONSTRAINED MIN CUT.

For size constrained min cut, it is also modeled as a double-bounded nonlinear optimal transport
problem, and is applicable to the DNF method. Specifically, size constrained min cut belongs to
P

2||S||F
DB . For size constrained min cut, where H = −tr(FTSF ), we have ∇H = −2SF . By

selecting a search step size µ(t) and updating according to Eq.(9), we can obtain ∂H∗(t) under a
certain measure. Based on the previous theorems, it is easy to derive the following corollary:

Theorem 3.12. By solving the minimum cut problem using the DNF algorithm, after t steps, the best
step within t steps always converges to the optimal solution, which satisfies:

g̃(t) = min
1≤k≤t

g(k) ≤ max{2(H(F (0))−H(F ∗)), 4n∥S∥F }√
t+ 1

. (13)

For the choose of step size about size constrained min cut problem, we have:

Theorem 3.13. For size constrained min cut, its line search step size µ
(t)
l has an analytical solution

µ
∗(t)
l . The specific proof and selection method can be found in A.9.

Further, we provide the algorithmic process for solving general bilateral nonlinear optimal transport
problems using the DNF method, as well as the process for solving the size constrained min cut
problem.

Algorithm 1: Solution for problem (4).
InputH
Initialize the variable
repeat

Compute∇H(t)

Compute ∂H∗(t) = argmin E(∂H,−∇H(t)) by Eq.(7) or Theorem3.3 and Theorem3.4
Updating F (t+1) ← (1− µ(t))F (t) + µ(t)∂H∗(t)

Updating the step size µ(t+1)

until convergence
Output the optimal solution

The DNF algorithm can be applied to the min cut problem very easily. We simply need to compute the
gradient∇H(t) and plug it in. The gradient is −2SF (t). For the calculation of the feasible gradient
∂H∗(t) = min∂H∈Ω E(−∇H(t), ∂H), both the norm measure and the inner product measure can be
used. In the following proof, we will use the inner product measure for the demonstration. Specifically,

6
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the computation of the size constrained min cut problem with the DNF algorithm is as follows:

Algorithm 2: DNF for size constrained min cut problem (3).
Input S
Initialize indicator matrix F .
repeat

Compute∇H(t) = −2SF (t)

Compute ∂H∗(t) = argmin E(∂H,−∇H(t)) by Eq.(7) or Theorem3.3 and Theorem3.4
Updating the µ(t) by Theorem3.13 or Eq.(10)
Updating F (t+1) ← (1− µ(t))F (t) + µ(t)∂H∗(t)

until convergence
Output the optimal indicator matrix F ∗

In addition, the idea of DNF can be applied not only to double-bounded Nonlinear Optimal
Transport(DB-NOT) but also as a method for other types of nonlinear optimal transport problems.

4 TIME COMPLEXITY ANALYSIS

Typically, the similarity matrix S is relatively sparse. Assume that for size constrained min cut,
S ∈ Rn×n, and each row of S contains only m non-zero elements. Then, the time complexity for
computing∇H = −2SF is O(nmc), where c is the number of categories.

In solving the feasible gradient problem, i.e., min∂H∈Ω E(−∇H, ∂H), whether solving the norm-
based measure problem min∂H∈Ω E(−∇H, ∂H) = ∥∇H + ∂H∥F or the inner-product-based
measure problem min∂H∈Ω⟨∂H,∇H⟩, the core lies in computing the matrix-vector multiplication
or element-wise division for inner products. Thus, the time complexity remains O(nmc). Similarly,
the time complexity for updating F is O(nc), while the minimal update cost for µ is only O(1).
In summary, the overall time complexity of our algorithm is O(n(m+ 1)c).
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Figure 1: Comparison of inner product and norm-based measure in gradient approximation.

5 EXPERIMENTS

We evaluated our algorithm on eight real-world datasets, comparing it with twelve comparative
methods. All experiments are implemented on a machine with a 3.59GHz R7-3700X processor and
64GB main memory. The analysis covers clustering performance, solution distribution, parameter
sensitivity, and convergence, highlighting the robustness and stability of the algorithm. Additional
results are shown in Appendix C.

5.1 CLUSTERING RESULTS

Datasets & Baseline We conducted experiments on eight diverse benchmark datasets (COIL20, Digit,
JAFFE, MSRA25, PalmData25, USPS20, Waveform21, MnistData05), covering images, handwriting,
and waveforms, with all features normalized to zero mean and unit variance. We compared classic
partition-based methods (K-Means, Coordinate Descent K-Means, BKNC (Chen et al., 2022)), graph-
based min-cut approaches with normalization and balance regularization (ratio-cut, normalized-cut,
FCFC (Liu et al., 2018), Scut (Nie et al., 2024)), and acceleration techniques for spectral clustering
(Nystrom (Chen et al., 2011), FSC (Zhu et al., 2017), LSCR (Chen & Cai, 2011), LSCK).
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Table 1: Mean clustering performance (%) of compared methods on real-world datasets.
Metric Method COIL20 Digit JAFFE MSRA25 PalmData25 USPS20 Waveform21 MnistData05

ACC

KM 53.44 58.33 72.16 49.33 70.32 55.51 50.38 53.86
CDKM 52.47 65.82 80.85 59.63 76.05 57.68 50.36 54.24

Rcut 78.14 74.62 84.51 56.84 87.03 57.83 51.93 62.80
Ncut 78.88 76.71 83.76 56.23 86.76 59.20 51.93 61.14

Nystrom 51.56 72.08 75.77 52.85 76.81 62.55 51.49 55.91
BKNC 57.11 60.92 93.76 65.47 86.74 62.76 51.51 52.00
FCFC 59.34 43.94 71.60 54.27 69.38 58.23 56.98 54.41
FSC 82.76 79.77 81.69 56.25 82.27 67.63 50.42 57.76

LSCR 65.67 78.14 91.97 53.82 58.25 63.07 56.19 57.15
LSCK 62.28 78.04 84.98 54.41 58.31 61.86 54.95 58.57
Scut 80.35 81.96 96.71 57.09 93.02 73.11 57.63 66.13
DNF 81.22 85.09 96.71 57.20 93.18 73.35 57.63 66.52

NMI

KM 71.43 58.20 80.93 60.10 89.40 54.57 36.77 49.57
CDKM 71.16 63.64 87.48 63.83 91.94 55.92 36.77 49.23

Rcut 86.18 75.28 90.11 71.64 95.41 63.84 37.06 63.11
Ncut 86.32 76.78 89.87 71.50 95.26 64.46 37.06 63.22

Nystrom 66.11 70.13 82.53 57.77 93.09 59.00 36.95 48.53
BKNC 69.80 59.37 92.40 69.30 95.83 57.10 36.94 44.56
FCFC 74.05 38.33 80.30 63.34 89.47 55.71 22.89 48.75
FSC 91.45 80.98 90.43 70.60 94.62 74.75 36.76 58.33

LSCR 74.67 75.07 93.13 68.06 81.84 62.36 33.37 52.82
LSCK 74.02 76.53 87.89 67.97 81.70 65.23 36.92 59.14
Scut 86.23 80.63 96.24 72.61 97.47 70.89 37.65 59.84
DNF 86.75 83.45 96.24 73.08 97.70 71.50 37.70 60.69

ARI

KM 50.81 45.80 66.83 34.66 65.06 43.57 25.56 37.18
CDKM 48.11 52.74 76.36 37.70 71.73 45.59 25.56 36.79

Rcut 73.73 65.81 81.70 46.35 84.76 51.99 25.31 51.32
Ncut 74.30 68.21 81.30 45.90 84.25 52.72 25.31 50.51

Nystrom 45.96 59.50 69.85 38.07 76.23 50.01 25.03 38.21
BKNC 49.96 48.98 87.96 54.78 85.56 48.43 25.02 32.89
FCFC 54.41 25.50 65.73 40.42 66.03 46.32 22.89 36.86
FSC 79.46 73.03 80.26 43.99 79.67 61.71 25.10 44.78

LSCR 57.68 67.21 86.76 43.31 48.70 52.64 25.12 41.46
LSCK 54.59 68.70 77.37 42.18 48.58 52.54 26.47 46.48
Scut 75.48 73.38 93.32 48.99 91.75 60.94 27.10 50.41
DNF 76.21 77.87 93.32 49.33 92.13 61.46 27.10 51.11
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Figure 2: The clustering distribution with lower and upper bounds. (a) PalmData25. (b) USPS20. (c)
Waveform21. (d) MnistData05.
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Figure 3: Change of distribution of element values in indicator matrix during the iteration process for
MnistData05 dataset.

Metric & Configuration Three metrics are applied to comprehensively measure the performance of
compared algorithms and proposed method, which are clustering accuracy (ACC), normalized mutual
information (NMI) and adjusted rand index (ARI). Larger values of these metrics indicate better
clustering performance. In size constrained MC, the affinity graph is constructed by k-nn Gaussian
kernel function and we adopt the inner product measure to approximate gradient. For simplicity, the
bandwidth in Gaussian kernel function is set as the mean Euclidean distances in each dataset and we
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Figure 4: Variation of objective function values. (a) PalmData25. (b) MnistData05.

only search the best k in range of [6, 8, . . . , 16]. The number of clusters is set as the true value. Since
DNF is gradient-based method, a better initialization is beneficial for the final results. We apply the
method in (Nie et al., 2024) to initialize the label matrix. The learning rate is set as easy step size.
Ten independent runs are conducted to avoid randomness and the average results are recorded.

Comparison Results Table 1 summarizes the clustering performing of various methods across eight
real-world datasets. DNF achieves the highest ACC scores on most datasets, particularly excelling
on JAFFE, MSRA25 and PalmData25. Our proposed method demonstrates consistent superiority or
parity with the top-performing methods on most datasets. Overall, DNF showcases its versatility and
effectiveness across diverse datasets, making it a robust choice.

5.2 DISCUSSION OF DBNOT

Approximation of Gradient In Section 4.2, two measurements are proposed to approximate the
gradient within the feasible set: norm-based and inner product-based methods. We compare the
running time and number of iterations of these two measures under different matrix sizes, where both
methods had the same convergence condition: the change in the optimization variables was less than
10−6. The experimental results show that when the matrix size is smaller than 4000, the inner product
measure consumes less time than the norm-based method. However, as the matrix size increases, the
norm-based method outperforms the inner product measure in terms of running time. Additionally,
the number of iterations shows that the norm-based method converges in one step, while the inner
product method requires progressively more iterations as the matrix size increases, which is also the
main factor contributing to the increase in running time. Therefore, it is recommended to use the
norm-based measure when dealing with large-scale datasets.

Clustering Distribution Two analyses of the resulting indicator matrix are conducted to evaluate
the obtained clustering distribution. The first examines whether the column sums of the matrix fall
within the feasible region. We visualize the column sums of label matrix in Figure 2, where the black
dashed lines represent the lower and upper bounds. It can be observed that all column sums of F
lie within the specified range, ensuring that each cluster in the clustering result is meaningful. The
second analysis focuses on whether the values of the indicator matrix approach solutions with a clear
structure. Figure 3 illustrates how the element values of F evolve over iterations. It is evident that
these values gradually shift from being relatively close to approaching 0 or 1, reflecting an distinct
clustering structure. This shows our algorithm effectively approximates results similar to those under
discrete constraints. Converge Analysis Figure 4 presents the convergence curve of the algorithm
over 500 iterations. The objective function value is gradually decreasing as the number of iterations
increases. It is noted that the objective function does not necessarily decrease monotonically with
iterations. Instead, at some iterative point, it will get closest to the critical point.

6 CONCLUSION

This paper introduced the Double-bounded Nonlinear Optimal Transport (DB-NOT) framework,
which extends classical optimal transport by incorporating upper and lower bounds on the transport
plan. To solve this, we proposed the Double-bounded Nonlinear Frank-Wolfe (DNF) method,
achieving global optimality for both convex and Lipschitz-smoothness non-convex functions with
proven convergence rates. The effectiveness of the DNF method was further demonstrated in a size
constrained min cut clustering framework, where it achieved superior performance on diverse datasets.
In the future, further work could focus on improving the computational efficiency of the DNF method
for large-scale problems and exploring its applications in more tasks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

7 STATEMENT

For the reproducibility of this paper, we have submitted the complete anonymized code with fixed
random seeds, as detailed in Appendix B.3. In addition, large language models (LLMs) were only
used for language polishing.
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APPENDIX

The appendix is organized in three sections.

A PROOFS

A.1 PROOF FOR THEOREM 4.2.

The size constrained min cut problem is a 2∥S∥F -smooth double-bounded nonlinear optimal transport
problem, i.e., minF∈Ω JMC ∈ P

2∥S∥F

DB .

Lemma A.1. For a differentiable function f , we say it is L-smooth if f satisfies ∥∇2f(x)∥ ≤ L.
Furthermore, ∥∇2f(x)∥ ≤ L is equivalent to ∀x, y ∈ dom(f), ∥∇f(y) − ∇f(x)∥ ≤ L∥x −
y∥.(Beliakov, 2007)

Lemma A.2. For any A ∈ Rn×n ∈, B ∈ Rn×c, we have ∥AB∥F ≤ ∥A∥F ∥B∥F .

Proof. Now, we prove Lemma A.2. For any A ∈ Rn×n ∈, B ∈ Rn×c, we have:

∥A∥F =

√∑
i,j

a2ij , ∥B∥F =

√∑
i,j

b2ij , ∥AB∥F =

√√√√∑
i,j

(∑
s

aisbsj

)2

(14)

Expanding the ∥AB∥F norm gives the following expression.

||AB||F =

√∑
i,j

(∑
s

aisbsj
)2 ≤√∑

i,j

((
∑
s

a2is)(
∑
s

b2sj)) =

√
(
∑
i

∑
s

a2is)(
∑
j

∑
s

b2sj) = ||A||F ||B||F

(15)
The first inequality is obtained by the Cauchy-Schwarz inequality, and the second equality is obtained
by the rearrangement theorem.

Theorem A.3. The size constrained min cut problem is a 2∥S∥F -smooth double-bounded nonlinear
optimal transport problem, i.e., minF∈Ω JMC ∈ P

2∥S∥F

DB

Proof. For minF∈Ω JMC = −tr(FTSF ), the gradient is∇H = ∇JMC = −2SF . For any F1, F2 ∈
Ω, we have

||∇H(F1)−∇H(F2)||F = ||2S(F1 − F2)|| ≤ 2||S||F ||F1 − F2||F (16)

According to the definition of L-smoothness, JMC is L-smooth. This means that minF∈Ω JMC ∈
P

2∥S∥F

DB .

A.2 PROOF FOR THEOREM 4.3.

For min∂H∈Ω1 ∥∇H + ∂H∥F , let ∂Hi denote the i-th row of ∂H, and ∂Hij represent the ij-th
element of ∂H. The optimal solution of min∂H∈Ω1 ∥∇H + ∂H∥F , i.e., the projection onto Ω1, is
given by:

ProjΩ1
(−∇H)ij = ∂H∗

ij =
(
(−∇H)ij + ηi

)
+

(17)

where (·)+ denotes the positive part, and η is determined by the condition
∑c

j=1 ∂H∗
ij = 1.

Proof. Now, we are solving the problem min∂H∈Ω1
∥ − ∇H − ∂H∥F = ∥∇H + ∂H∥F , where

Ω1 = {X | X ≥ 0, X1c = 1n}. First, write out the Lagrangian function L. Since for Ω1, the rows
are decoupled, we can separately write the Lagrangian function for the i-th row.

L(∂Hi, η, θ) =
1

2
∥∇Hi + ∂Hi∥2F − η(∂Hi1c − 1)−

∑
j

θj(∂Hij) (18)
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The necessary conditions for the KKT points can be derived by setting the derivative of the Lagrangian
function to zero. Specifically, for the variables ∂Hi, η, and θ, we have:

∇(∂Hi)L = ∇Hi + ∂Hi − η1c − θ = 0 (19)

This condition ensures that the solution satisfies the KKT conditions (Dutta et al., 2013) for the
optimization problem.Further, we obtain:

∂Hi = −∇Hi + η1c + θ (20)

Since the constraint is θ ≥ 0, we can rearrange and obtain the solution as:

∂H∗
ij =

(
(−∇H)ij + ηi

)
+

(21)

Here, since we are solving for each row i, the multiplier ηi will be different for each row. To solve for
ηi, we use the constraint

∑
j ∂Hij = 1, i.e., solving the equation l(η) =

(∑
j (−∇H)ij + ηi

)
+
− 1

for its root.

A.3 PROOF FOR THEOREM 4.4.

Assuming ∇Hj represents the j-th column of ∇H, the projection of min∂H∈Ω2 ∥∇H+ ∂H∥F onto
Ω2 satisfies Eq.(22).

ProjΩ2
(−∇Hj) = ∂Hj∗ =

{
−∇Hj , if (−∇Hj)T 1n ≥ bl
1
n (bl + 1Tn∇Hj)1n −∇Hj , if (−∇Hj)T 1n < bl

(22)

Proof. First, consider the simple case for the problem, min∂H∈Ω2
∥∇H+ ∂H∥F where Ω2 = {X |

XT 1n ≥ bl1c}. If ∇H itself satisfies ∇H ∈ Ω2, then no projection is required. In this case, we
have:

ProjΩ2
(−∇Hj) = ∂Hj∗ = −∇Hj (23)

This means that the first row clearly holds.

For the second row, For the second case, the Lagrangian function L is written as:

L(∂Hj , λ) =
1

2
∥∇Hj + ∂Hj∥2F − λ

(
(∂Hj)T 1n − bl

)
(24)

where λ ≥ 0 is the Lagrange multiplier. Considering the gradient of L:

∇(∂Hj)L = (∂Hj +∇Hj)− λ1n (25)

and based on the complementary slackness condition: λ
(
bl − (∂Hj)T 1n

)
= 0. When λ > 0, it

follows that bl = (∂Hj)T 1n. At this point, ∂Hj = λ1n−∇Hj . Using the condition bl = (∂Hj)T 1n,
we have

(
λ1n−∇Hj

)T
1n = bl. Thus, λ = 1

n

(
bl+(∇Hj)T 1n

)
. Substituting this into the expression

for ∂Hj , we get:

∂Hj =
1

n

(
bl + (∇Hj)T 1n

)
1n −∇Hj (26)

Using Dykstra’s algorithm, we iteratively compute the projections while maintaining correction terms
to ensure convergence to the feasible intersection. Specifically, starting with an initial point, we
iteratively update:

∂H̃1 = −∇H+ z1, ∂H ← ProjΩ1
(∂H̃1), z1 ← ∂H̃1 − ∂H,

∂H̃2 = ∂H+ z2, ∂H ← ProjΩ2
(∂H̃2), z2 ← ∂H̃2 − ∂H,

∂H̃3 = ∂H+ z3, ∂H ← ProjΩ3
(∂H̃3), z3 ← ∂H̃3 − ∂H.

(27)

These steps are repeated iteratively until convergence, ensuring that ∂H satisfies all constraints in Ω1∩
Ω2∩Ω3. We can solve the feasible gradient computation problem under the norm measure3.(Størmer,
1972; Tibshirani, 2017)
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Algorithm 3: Dykstra’s Algorithm for Feasible Gradient Computation
1: Input: ∇H, constraints Ω1, Ω2, Ω3

2: Output: ∂H∗

3: Initialize ∂H = −∇H, dual variables z1 = z2 = z3 = 0
4: while not converged do
5: ∂H̃ ← ∂H+ z1, ∂H ← ProjΩ1

(∂H̃), z1 ← ∂H̃ − ∂H
6: ∂H̃ ← ∂H+ z2, ∂H ← ProjΩ2

(∂H̃), z2 ← ∂H̃ − ∂H
7: ∂H̃ ← ∂H+ z3, ∂H ← ProjΩ3

(∂H̃), z3 ← ∂H̃ − ∂H
8: end while
9: Return: ∂H∗

A.4 PROOF FOR THEOREM 4.5.

The optimal solution of the problem min∂H∈Ω⟨∂H,∇H⟩ − δG(∂H) is given by ∂δH∗ =
diag(u∗)e−∇H/δ diag(v∗ ⊙ w∗), where u∗, v∗, and w∗ are vectors, diag(·) represents the oper-
ation of creating a diagonal matrix, and⊙ denotes the Hadamard (element-wise) product. The vectors
u∗, v∗, and w∗ can be computed iteratively to convergence using the following update rules:

u(k+1) = 1n./(e
−∇H/δ(v(k) ⊙ w(k)))

v(k+1) = max(bl1c./
(
((e−∇H/δ)

T
u(k+1))⊙ w(k)

)
, 1c)

w(k+1) = min(bu1c./
(
((e−∇H/δ)

T
u(k+1))⊙ v(k+1)

)
, 1c)

(28)

where 1n./ denotes element-wise division, bl and bu are lower and upper bounds, and 1n and 1c are
vectors of ones with appropriate dimensions.

Proof. The Lagrangian function for solving the feasible gradient problem based on the inner product
measure, defined as min∂H∈Ω⟨∂H,∇H⟩ − δG(∂H), where Ω = {X | X1c = 1n, bl1c ≤ XT 1n ≤
bu1c, X ≥ 0}, is written as:

L(∂H, η, λ, ν) = ⟨∂H,∇H⟩−δG(∂H)+ηT (∂H1c−1n)+λT (bl1c−∂HT 1n)+νT (∂HT 1n−bu1c)
(29)

where η ∈ Rn, λ, ν ∈ Rc
≥0 are Lagrange multipliers corresponding to the equality and inequality

constraints. Let L be differentiated with respect to ∂H and set to zero, i.e.,

∇(∂H)L = ∇H− δ∇G(∂H) + η1Tc − 1nλ
T + 1nν

T = 0 (30)

Since G(∂H) =
∑

ij ∂Hij log(∂Hij) −
∑

ij ∂Hij , consider the ij-th element of ∇(∂H)L and
substitute G(∂H), which gives:

∇(∂H)Lij = ∇Hij + δ log(∂Hij) + ηi − λj + νj = 0 (31)

This implies: −∇Hij − ηi + (λj − νj) = δ log(∂Hij), which leads to:

(∂δH∗)ij = e−
ηi
δ e−

∇Hij
δ e

λj−νj
δ (32)

Since λ ≥ 0 and ν ≥ 0, we set 
u = eη

v = eλ, eλ ≥ 1n
w = e−ν , e−ν ≤ 1n

(33)

Further, we can derive the following formula:

(∂δH∗) = diag(e−
η
δ )e−

∇H
δ diag(e

λ−ν
δ ) = diag(u)e−

∇H
δ diag(v ⊙ w) (34)

Since we aim to compute ∂H∗ and limδ→0 ∂δH∗ = ∂H∗, it suggests that δ should not be taken too
large. Thus, the conclusion is:

(∂δH∗) = diag(u)e−
∇H
δ diag(v ⊙ w) (35)
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The next step is to derive the iteration formula.
u(k+1) = 1n./(e

−∇H/δ(v(k) ⊙ w(k)))

v(k+1) = max(bl1c./
(
((e−∇H/δ)

T
u(k+1))⊙ w(k)

)
, 1c)

w(k+1) = min(bu1c./
(
((e−∇H/δ)

T
u(k+1))⊙ v(k+1)

)
, 1c)

(36)

Since ∂δH∗1c = 1n, we can derive that:

diag(u)e−
∇H
δ diag(v ⊙ w)1c = diag(u)e−

∇H
δ (v ⊙ w) = u⊙

(
e−

∇H
δ (v ⊙ w)

)
= 1n (37)

Based on this, we can derive:

u = 1n./
(
e−

∇H
δ (v ⊙ w)

)
⇒ u(k+1) = 1n./

(
e−

∇H
δ (v(k) ⊙ w(k))

)
(38)

Here, the 1n./ represents element-wise division. At the same time, there is the constraint: bl1c ≤
(∂δH∗)T 1n ≤ bu1c, which can be expressed as:

bl1c ≤
(
diag(u)e−

∇H
δ diag(v ⊙ w)

)T
1n = v ⊙ w ⊙

(
(e−

∇H
δ )Tu

)
≤ bu1c (39)

First, we separately consider the constraint: bl1c ≤ v ⊙ w ⊙
(
(e−

∇H
δ )Tu

)
and based on the

complementary slackness condition:

λT
(
bl1c − v ⊙ w ⊙

(
(e−

∇H
δ )Tu

))
= 0 (40)

This leads to the following cases for discussion:{
v ⊙ w ⊙

(
(e−

∇H
δ )Tu

)
≤ bl1c ⇒ v ≤ bl1c./((e

−∇H
δ )Tu⊙ w), λ = 0

v ⊙ w ⊙
(
(e−

∇H
δ )Tu

)
= bl1c ⇒ v = bl1c./((e

−∇H
δ )Tu⊙ w), λ > 0

(41)

Given v = eλ, based on the definition, when λ = 0, we have v = 1c. Therefore, the above equation
should be updated as: {

v = 1c, λ = 0

v = bl1c./((e
−∇H

δ )Tu⊙ w), λ > 0
(42)

In summary, the update iteration formula for v can be expressed as:

v(k+1) = max(bl./
(
((e−∇H/δ)

T
u(k+1))⊙ w(k)

)
, 1c) (43)

Similarly, based on the complementary slackness condition for w, its two cases can be derived as:{
w = 1c, ν = 0,

w = bu1c./
(
(e−∇H/δ)

T
u⊙ v

)
, ν > 0.

(44)

Based on the definition of w, w = e−ν . When ν > 0, w ≤ 1c. This implies that the update formula
for w should be as follows:

w(k+1) = min(bu1c./
(
((e−∇H/δ)

T
u(k+1))⊙ v(k+1)

)
, 1c) (45)

Thus, the update formulas for u, v, and w can be obtained as follows. Using these formulas, the
feasible gradient problem under the inner product measure min∂H∈Ω⟨∂H,∇H⟩ − δG(∂H) can be
effectively solved.

That is, we have derived ∂δH∗, and by selecting a sufficiently small δ, we can obtain a good
approximation of the feasible gradient ∂H∗.
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A.5 PROOF FOR THEOREM 4.6.

By arbitrarily choosing µ(t) ∈ (0, 1), if the initial F (t) satisfies F (t) ∈ Ω, the updated F (t+1)

obtained from the search will also satisfy F (t+1) ∈ Ω, where

F (t) ← (1− µ(t))F (t) + µ(t)∂H(t) (46)

Proof. The proof of this theorem is straightforward. Since Ω = {X | X1c = 1n, bl1c ≤ XT 1n ≤
bu1c, X ≥ 0}, we first prove that Ω is a convex set. For all X1, X2 ∈ Ω and α ∈ (0, 1), we have:

(αX1 + (1− α)X2)1c = α(X11c) + (1− α)(X21c) = α1n + (1− α)1n = 1n
bl1c ≤ α(XT

1 1n) + (1− α)(XT
2 1n) ≤ bu1c

(αX1 + (1− α)X2) ≥ 0

(47)

Thus, αX1+(1−α)X2 ∈ Ω. Since µ(t) ∈ (0, 1), the updated F (t+1) is a convex combination of F (t)

and ∂H∗(t).(Marcucci et al., 2024) Specifically, ∂H∗(t) = argmin∂H∈Ω E(−∇H(t), ∂H), meaning
∂H∗(t) ∈ Ω. As long as we choose F (1) ∈ Ω, by induction, we can conclude that F (t+1) ∈ Ω.

Although the proof is simple, its significance is important because this theorem shows that all our
search steps involve convex combinations, and they remain within Ω. This allows us to perform a
more daring search, which can help in proposing various methods for selecting learning rates.

A.6 PROOF FOR THEOREM 4.9.

Assume that minF∈ΩH ∈ PL,C
DB and thatH has a local minimum F ∗. Then, for any of the step sizes

in {µ(t)
e , µ

(t)
l , µ

(t)
g }, the following inequality holds:

H(F (t))−H(F ∗) ≤ 4L

t+ 1
(48)

Lemma A.4. The first-order necessary and sufficient condition for a differentiable convex function
H(F ) is

H(F (1))−H(F (2)) ≥ ⟨F (1) − F (2),∇H(F (2))⟩ (49)

(Rotaru et al., 2024)
Lemma A.5. For a differentiable function H(F ), we say it is L-smooth if H(F ) satisfies
∥∇2H(F )∥ ≤ L. Furthermore, L-smooth is equivalent to

H(F (1)) ≤ H(F (2)) + ⟨∇H(F (2)), (F (1) − F (2))⟩+ L

2
∥F (1) − F (2)∥2F (50)

for all F (1) and F (2). (Liu et al., 2022)
Lemma A.6. The dual gap is defined as g(t)(F ) = g(F (t)) = ⟨F (t)−∂H∗(t),∇H(t)⟩. For a convex
functionH(F ), let the global optimum be F ∗. Then, we have the inequality:

g(F (t)) ≥ H(F (t))−H(F ∗) (51)

Proof. Based on the dual gap, we can obtain the following equation:

g(F (t)) = ⟨F (t) − ∂H∗(t),∇H(t)⟩ = ⟨F (t),∇H(t)⟩ − ⟨∂H∗(t),∇H(t)⟩ (52)

= ⟨F (t),∇H(t)⟩ −min∂H∈Ω⟨∂H,∇H(t)⟩ (53)

≥ ⟨F (t),∇H(t)⟩ − ⟨F ∗,∇H(t)⟩ (54)

= ⟨F (t) − F ∗,∇H(t)⟩ (55)

SinceH(F ) is a convex function, by the first-order condition of convex functions, we have:

⟨F (t) − F ∗,∇H(t)⟩ ≥ H(F (t))−H(F ∗) (56)

In conclusion, we have proven that:

g(F (t)) ≥ H(F (t))−H(F ∗) (57)
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Lemma A.7. For a convex functionH(F ), at any optimal point F ∗, the dual gap satisfies g(F ∗) = 0.

Proof. For a convex function at the optimal point F ∗, by definition, the dual gap g(F ∗) =
⟨∇H∗, F ∗ − F ⟩. Since the first-order condition holds, we have:

g(F ∗) = ⟨∇H∗, F ∗ − ∂H∗⟩ ≤ H(F ∗)−H(∂H∗) ≤ 0 (58)

By Lemma A.6, we also know that:

g(F ∗) ≥ H(F ∗)−H(F ∗) ≥ 0 (59)

Therefore, we conclude that g(F ∗) = 0.

Theorem A.8. Assume that minF∈ΩH ∈ PL,C
DB and that H has a global minimum F ∗. Then, for

any of the step sizes in {µ(t)
e , µ

(t)
l , µ

(t)
g }, the following inequality holds:

H(F (t))−H(F ∗) ≤ 4L

t+ 1
(60)

Proof. First, since we assumed thatH(F ) is L-smooth, by Lemma A.5, we have:

H(F (t+1)) ≤ H(F (t)) + ⟨∇H(F (t)), (F (t+1) − F (t))⟩+ L

2
∥F (t+1) − F (t)∥2F (61)

This inequality expresses that the value ofH(F ) at the next step is bounded by its current value plus
a linear term and a quadratic term involving the smoothness constant L. The update strategy is given
by:

F (t+1) = (1− µ(t))F (t) + µ(t)∂H∗(t) (62)

According to the definition of the dual gap,

g(t)(F ) = g(F (t)) = ⟨∂H∗(t) − F (t),∇H(t)⟩ (63)

this implies that

H(F (t+1)) ≤ H(F (t)) + ⟨∇H(F (t)), (F (t+1) − F (t))⟩+ L

2
∥F (t+1) − F (t)∥2F (64)

= H(F (t)) + µ(t)⟨∇H(F (t)), (∂H∗(t) − F (t))⟩+ L

2
(µ(t))2∥∂H∗(t) − F (t)∥2F (65)

= H(F (t))− µ(t)g(F (t)) +
L

2
(µ(t))2∥∂H∗(t) − F (t)∥2F (66)

At this point, we have provided a bound forH(F (t+1)) andH(F (t)). Assuming thatH(F ∗) is the
global optimal point within Ω, for the inequality

H(F (t+1)) ≤ H(F (t))− µ(t)g(F (t)) +
L

2
(µ(t))2∥∂H∗(t) − F (t)∥2F (67)

subtractingH(F ∗) from both sides gives the following expression:

H(F (t+1))−H(F ∗) ≤ H(F (t))−H(F ∗)− µ(t)g(F (t)) +
L

2
(µ(t))2∥∂H∗(t) − F (t)∥2F (68)

AssumeM(F (t)) = H(F (t))−H(F ∗), we have:

M(F (t+1)) ≤M(F (t))− µ(t)g(F (t)) +
L

2
(µ(t))2∥∂H∗(t) − F (t)∥2F (69)

This expression shows how the difference between the objective function H(F (t)) and the global
optimumH(F ∗) evolves after the update step, depending on the gradient g(F (t)) and the step size
µ(t). Based on the inequality

g(F (t)) ≥ H(F (t))−H(F ∗) (70)
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the following equation holds:

M(F (t+1)) ≤M(F (t))− µ(t)g(F (t)) +
L

2
(µ(t))2∥∂H∗(t) − F (t)∥2F (71)

≤M(F (t))− µ(t)M(F (t)) +
L

2
(µ(t))2∥∂H∗(t) − F (t)∥2F (72)

= (1− µ(t))M(F (t)) +
L

2
(µ(t))2∥∂H∗(t) − F (t)∥2F (73)

≤ (1− µ(t))M(F (t)) + sup
∂H∈Ω

(L
2
(µ(t))2∥∂H− F (t)∥2F

)
(74)

= (1− µ(t))M(F (t)) +
L

2
(µ(t))2 sup

∂H∈Ω

(
∥∂H− F (t)∥2F

)
(75)

≤ (1− µ(t))M(F (t)) +
L

2
(µ(t))2 sup

∀∂H,F∈Ω

(
∥∂H− F∥2F

)
(76)

The next step is to discuss the value of sup
∀∂H,F∈Ω

(
∥∂H− F∥2F

)
. sup
∂H∈Ω

(
∥∂H− F∥2F

)
represents the

maximum value of the Frobenius norm difference between ∂H and F . To achieve the maximum,
∂H − F must follow a discrete distribution, ensuring that the positions where ∂H equals 1 differ
from the positions where F equals 1. Consequently, this leads to:

sup
∂H∈Ω

(
∥∂H− F∥2F

)
≤
∑
i

(12 + 12)n = 2n (77)

Substituting the above result, we obtain the following formula:

M(F (t+1)) ≤ (1− µ(t))M(F (t)) + (µ(t))2Ln (78)

Next, we will separately prove that choosing any of the three learning rates satisfies the following
inequality:

H(F (t))−H(F ∗) =M(F (t)) ≤ 4L

t+ 1
(79)

⋆ Choose a simple step size µ(t) = µ
(t)
e = 2

t+2 . Consider the first iteration:

M(F (1)) ≤ (1− µ(0))M(F (0)) + (µ(0))2Ln (80)

where µ(0) = 2
t+2

∣∣
t=1

= 2
3 . That is,

M(F (1)) ≤ 1

3
M(F (0)) +

4

9
Ln (81)

AssumeM(F (0)) ≤ 14
3 nL, which is an assumption that can be easily satisfied. Substituting this into

the inequality, we have:

M(F (1)) ≤ 1

3
M(F (0)) +

4

9
Ln =

14

9
Ln+

4

9
Ln = 2Ln =

4nL

t+ 1

∣∣
t=1

(82)

Using induction, we assume thatM(F (t)) ≤ 4nL
t+1 . For the next iteration, we analyzeM(F (t+1))

as follows: Using induction, we assume thatM(F (t)) ≤ 4nL
t+1 . For the next iteration, we analyze

M(F (t+1)) as follows:

M(F (t+1)) ≤
(
1− 2

t+ 2

)
M(F (t)) +

(
2

t+ 2

)2

nL (83)

Substitute the inductive hypothesisM(F (t)) ≤ 4nL
t+1 :

M(F (t+1)) ≤ t

t+ 2

4nL

t+ 1
+

(
2

t+ 2

)2

nL (84)

Simplify the first term:
t

t+ 2

4nL

t+ 1
=

4nL

t+ 2

t

t+ 1
(85)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Combine the two terms:

M(F (t+1)) ≤ 4nL

t+ 2

t

t+ 1
+

(
2

t+ 2

)2

nL (86)

Approximate t
t+1 ≤

t+1
t+2 :

M(F (t+1)) ≤ 4nL

t+ 2

t+ 1

t+ 2
+

(
2

t+ 2

)2

nL (87)

Factorize t+1
t+2 in the first term:

M(F (t+1)) ≤ 4(t+ 2)nL

(t+ 2)2
=

4nL

t+ 2
(88)

Thus, by induction:

M(F (t+1)) ≤ 4nL

t+ 2
=

4nL

(t+ 1) + 1
(89)

Thus, we have proven that by choosing the simple step size µ(t) = µ
(t)
e = 2

t+2 , the termM(F (t)) =

H(F (t))−H(F ∗) converges at a rate of 4nL
t+1 .

⋆ Choose the line search step size µ(t)
l = argmin

µ∈(0,1)

H(F (t))
(
(1− µ)F (t) + µ∂H(F (t))∗(t)

)
Assume

that at the t+ 1-th update step, we obtain F (t+1), where F (t+1) is derived using a line search step
size, while F̃ (t+1) is derived using the aforementioned simple step size. According to the definition,
M(F (t+1)) ≤M(F̃ (t+1)). Furthermore, we can similarly derive the following:

M(F (t+1)) ≤M(F̃ (t+1)) ≤ (1− 2

t+ 2
)M(F (t)) + (

2

t+ 2
)2nL ≤ t

t+ 2

4nL

t+ 1
+ (

2

t+ 2
)2nL

(90)

=
4nL

t+ 2

t

t+ 1
+ (

2

t+ 2
)2nL ≤ 4nL

t+ 2

t+ 1

t+ 2
+ (

2

t+ 2
)2nL (91)

=
4(t+ 2)nL

(t+ 2)2
=

4nL

t+ 2
=

4nL

(t+ 1) + 1
(92)

⋆ Choose the line search step size µ
(t)
g = min

(
g(F (t))

L||∂H∗(t)−F (t)||F
, 1
)

. Consider Q(F (t)) where

Q(F (t)) =M(F (t))− µ(t)g(F (t)) + (µ(t))2
L

2
∥∂H∗(t) − F (t)∥2F (93)

Taking the derivative of Q(F (t)) with respect to µ(t) and setting it equal to zero, we obtain:

∇µ(t)Q(F (t)) =
∂

∂µ(t)

(
M(F (t))− µ(t)g(F (t)) + (µ(t))2

L

2
∥∂H∗(t) − F (t)∥2F

)
(94)

= −g(F (t)) + µ(t)L∥∂H∗(t) − F (t)∥2F = 0 (95)

We can obtain that:

µ(t) =
g(F (t))

L∥∂H∗(t) − F (t)∥2F
(96)

Since µ(t) is defined as the convex combination coefficient between F (t) and ∂H∗(t), we have
µ(t) ≤ 1, specifically:

µ(t) = min

(
g(F (t))

L∥∂H∗(t) − F (t)∥F
, 1

)
(97)

This is the definition of µ(t)
g . This means that choosing µ

(t)
g always minimizes Q as much as possible.

Given that F (t+1) is updated using the step size µ
(t)
g , and F̃ (t+1) is updated using the simple step
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size, we have:

M(F (t+1)) ≤M(F (t))− µ(t)
g g(F (t)) + (µ(t)

g )2
L

2
∥∂H∗(t) − F (t)∥2F (98)

≤M(F (t))− µ(t)
e g(F (t)) + (µ(t)

e )2
L

2
∥∂H∗(t) − F (t)∥2F (99)

≤ (1− µ(t)
e )M(F (t)) + (µ(t)

e )2nL ≤ 4nL

t+ 1
(100)

Thus, we have fully proved that for any of the three step sizes {µe, µl, µg}, the algorithm will
converge to the global optimum F ∗, with a convergence rate of 4nL

t+1 .

A.7 PROOF FOR THEOREM 4.10.

Assume that minF∈ΩH ∈ PL
DB and thatH has a global minimum F ∗. g̃(t) represents the smallest

dual gap g(t) obtained during the first t iterations of the DNF algorithm, i.e., g̃(t) = min1≤k≤t g
(k).

By using µ
(t)
g as step. Then g̃(t) satisfies the following inequality:

g̃(t) ≤ max{2(H(F (0))−H(F ∗)), 2nL}√
t+ 1

(101)

Proof. In this theory, we assume the problem to be solved is minF∈ΩH ∈ PL
DB , meaning that H

only needs to satisfy L-smoothness without requiring full differentiability. This implies the following
conditions:

H(F (t+1)) ≤ H(F (t)) + ⟨∇H(F (t)), (F (t+1) − F (t))⟩+ L

2
∥F (t+1) − F (t)∥2F (102)

By definition, let F (µ) = F (t) + µ(t)d(t), where d(t) = ∂H(t) − F (t).

H(F (µ)) ≤ H(F (t)) + µ⟨∇H(F (t)), d(t)⟩+ L

2
(µ)2∥F (µ) − F (t)∥2F (103)

≤ H(F (t)) + µ⟨∇H(F (t)), d(t)⟩+ L

2
sup

∀F (µ),F (t)∈Ω

∥F (µ) − F (t)∥2F (104)

≤ H(F (t))− µg(t) + (µ)2Ln. (105)

At this point, assume the upper bound function B = −µg(t) + (µ)2Ln. Consider taking the partial
derivative of B with respect to µ:

∂B
∂µ

= −g(t) + 2µLn = 0⇒ µ =
g(t)

2Ln
(106)

To choose the step size that minimizes B, we set µ(t) = min
{

g(t)

2Ln , 1
}

. Let I[.] denote an indicator
function. Specifically, I[g(t)>2Ln] is defined as:

I[g(t)>2Ln] =

{
1, if g(t) > 2Ln,

0, otherwise.
(107)

Thus, we have:

H(F (t+1)) ≤
(
H(F (t))− µg(t) + (µ)2Ln

)∣∣
µ=µ(t)H(F (t))− B

(
min

{
g(t)

2Ln
, 1

})
(108)

= H(F (t))−
(
(g(t))2

4nL
I[g(t)≤2Ln] + (g(t) − nL)I[g(t)>2Ln]

)
(109)

= H(F (t))−min

(
(g(t))2

4nL
, (g(t) − nL)I[g(t)>2Ln]

)
(110)
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Summing both sides of the inequality from t = 0 to t = T , we obtain:
T∑

t=0

H(F (t+1)) ≤
T∑

t=0

H(F (t))−
T∑

t=0

min

(
(g(t))2

4nL
, (g(t) − nL)I[g(t)>2Ln]

)
(111)

Rearranging terms and simplifying:

H(F (T+1))−H(F (0)) ≤ −
T∑

t=0

min

(
(g(t))2

4nL
, (g(t) − nL)I[g(t)>2Ln]

)
(112)

It is easy to verify that the following equation obviously holds:
T∑

t=0

min

(
(g(t))2

4nL
, (g(t) − nL)I[g(t)>2Ln]

)
≤ (T + 1)min

(
(g(t))2

4nL
, (g(t) − nL)I[g(t)>2Ln]

)
(113)

we have the following:

H(F (T+1))−H(F (0)) ≤ −(T + 1)min

(
(g(t))2

4nL
, (g(t) − nL)I[g(t)>2Ln]

)
(114)

≤ −(T + 1)min

(
g̃2

4nL
, (g̃ − nL)I[g̃>2Ln]

)
(115)

Where g̃(t) represents min1≤k≤T g(k), which is the smallest dual gap within T steps. At this point,

we need to discuss which case g̃ falls into within min

(
g̃2

4nL , (g̃ − nL)I[g̃>2Ln]

)
.

⋆ If g̃ ≤ 2nL, we haveH(F (T+1))−H(F (0)) ≤ −(T + 1) g̃2

4nL , By simplifying, we can obtain an
upper bound for g̃ as:

g̃ ≤

√
4nL(H(F (0))−H(F (T+1)))

T + 1
≤

√
4nL(H(F (0))−H(F ∗))

T + 1
(116)

Where F ∗ is the global optimal point ofH, andH(F ∗) is the global minimum ofH(F ).

⋆ If g̃ ≥ 2nL, we haveH(F (T+1))−H(F (0)) ≤ −(T + 1)(g̃ − nL). By simplifying, we can obtain

an upper bound for g̃ as g̃ ≤ nL+ H(F (0))−H(F∗)
T+1 , at that time, we have:

2Ln ≤ g̃ ≤ nL+
H(F (0))−H(F ∗)

T + 1
⇒ T + 1 ≤ H(F

(0))−H(F ∗)

nL
(117)

In summary, we obtain:

g̃ ≤


√

4nL(H(F (0))−H(F∗))
T+1 , ifg̃ ≤ 2nL,

nL+ H(F (0))−H(F∗)
T+1 , otherwise.

(118)

and we have (Lacoste-Julien, 2016):

nL+
H(F (0))−H(F ∗)

T + 1
=
H(F (0))−H(F ∗)√

T + 1

(
nL

H(F (0))−H(F ∗)

√
T + 1 +

1√
T + 1

)
(119)

≤ H(F
(0))−H(F ∗)√
T + 1

(
1√

T + 1
+

√
nL

H(F (0))−H(F ∗)

)
(120)

≤ H(F
(0))−H(F ∗)√
T + 1

(
1√

T + 1
+ 1

)
(121)

≤ 2(H(F (0))−H(F ∗))√
T + 1

(122)
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The first inequality holds because H(F (0))−H(F∗)
nL > T + 1, and the second inequality holds because

H(F (0))−H(F ∗) ≤ nL. So we have:

g̃ ≤


√

4nL(H(F (0))−H(F∗))
T+1 , ifg̃ ≤ 2nL,

2H(F (0))−H(F∗)√
T+1

, otherwise.
(123)

Since
√
4nL

(
H(F (0))−H(F ∗)

)
≤ max{2

(
H(F (0))−H(F ∗)

)
, 2nL}, it follows that:

g̃ ≤
max{2

(
H(F (0))−H(F ∗)

)
, 2nL}

√
T + 1

(124)

Proof completed.

A.8 PROOF FOR THEOREM 4.11.

For F (t) ∈ Ω and convex functionH, g(F (t)) ≥ H(F (t))−minF∈ΩH(F ) = H(F (t))−H(F ∗), and
when g(t) converges to 0 atO( 1

T ), it means thatH(F (t))−minF∈ΩH(F ) = H(F (t))−H(F ∗)→ 0

at O( 1
T ). More generally, if H is not a convex function, then g(F (t)) = 0 if and only if F (t) is a

stable critical point ofH.

Proof. For F (t) ∈ Ω and convex functionH, we have:

g(F (t)) ≥ H(F (t))− min
F∈Ω
H(F ) = H(F (t))−H(F ∗) (125)

where F ∗ is the global minimizer ofH. When g(t) converges to 0 at the rate O( 1
T ), it implies:

H(F (t))− min
F∈Ω
H(F ) = H(F (t))−H(F ∗)→ 0 (126)

at the rate O( 1
T ). This proof is identical to the previous one.

For the second part, which states: IfH is not a convex function, then g(F (t)) = 0 if and only if F (t)

is a stable critical point of H, we have the following: If g(F (t)) = 0, this means that the gradient
∇H(F (t)) has a non-positive inner product with the feasible domain Ω, implying that the direction
within the feasible domain is always an ascent direction. Thus, F ∗ must be a stable point. The reverse
proof is similar.

A.9 PROOF FOR THEOREM 4.13.

For size constrained min cut, its line search step size µ
(t)
l has an analytical solution µ

∗(t)
l .

Proof. Since this analysis holds for each iteration of running the DNF algorithm, we abbreviate
µ
(t)
l as µl, and the update rule is written as F ← (1 − µl)F + µl∂H, where µl is obtained by

µl = argmin
µ∈(0,1)

H ((1− µ)F + µ∂H) Substituting into the loss function of Min-Cut, we have:

µ∗
l = argmin

µ∈(0,1)

− tr
(
((1− µ)F + µ∂H)T S ((1− µ)F + µ∂H)

)
(127)

Now, expanding the expression inside the trace:

tr
(
((1− µ)F + µ∂H)T S ((1− µ)F + µ∂H)

)
= tr

(
(1− µ)2FTSF + 2µ(1− µ)FTS∂H+ µ2(∂H)TS∂H

)
(128)

Thus, the formula becomes:

µ∗
l = argmin

µ∈(0,1)

(
−tr
(
(1− µ)2FTSF

)
− 2µ(1− µ)tr

(
FTS∂H

)
− µ2tr

(
(∂H)TS∂H

))
(129)
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For the expression(
−tr
(
(1− µ)2FTSF

)
− 2µ(1− µ)tr

(
FTS∂H

)
− µ2tr

(
(∂H)TS∂H

))
(130)

simplifying this expression leads to the standard quadratic form:

µ∗
l = argmax

µ∈(0,1)

α2(x+ y − 2z) + 2α(z − y) + y (131)

where α = 1− µ, x = tr
(
FTSF

)
, y = tr

(
(∂H)TS∂H

)
, z = tr

(
(∂H)TSF

) )
.

Consider α2(x+ y − 2z) + 2α(z − y)

⋆ If x+ y − 2z ≤ 0, the parabola opens downward, and we have:

µ∗
l =


1− y−z

x+y−2z , if y−z
x+y−2z ∈ (0, 1),

0, if y−z
x+y−2z ≥ 1,

1, if y−z
x+y−2z ≤ 0.

(132)

⋆ If x+ y − 2z ≥ 0, the parabola opens upward, and we have:

µ∗
l =

{
1, if|1− y−z

x+y−2z | ≥ |
y−z

x+y−2z |,
0, if|1− y−z

x+y−2z | ≤ |
y−z

x+y−2z |.
(133)

In conclusion, we can directly obtain the line search result for the DNF method for the min-cut
problem without actually performing the search.
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B RELATED WORKS AND TECHNICAL DETAILS

B.1 GRAPH CLUSTERING

To resolve the imbalance clustering results in MC, several normalization criteria have been introduced,
such ratio cut (Rcut) (Chan et al., 1993), normalized cut (Ncut) (Wan et al., 2024) and min-max cut
(Ding et al., 2001). Each method employs a unique normalization approach to balance the partition
sizes and improve clustering quality. In Ruct, the normalization involves dividing by the size of the
sub-clusters, while in Ncut, the normalization factor is the sum of degrees of the nodes within the
respective clusters. The min-max cut further enhances the approach by simulataneously minimizing
inter-cluster similarity and maximizing intra-cluster compactness. By incorporating normalization
terms, these methods reformulate the optimization problem into the spectral clustering framework,
which include eigenvalue decomposition on the graph Laplacian and subsequent K-Means (KM)
discretization. KM also suffers from imbalanced clustering results due to the optimization. Some
balanced regularization terms could be added in KM or MC to aviod skewed results, ensuring
clusters are well-distributed and meaningful (Chen et al., 2019). For instance, the fast clustering with
flexible balance constraints (FCFC) and balanced KM with novel constraint (BKNC) are proposed
for balanced clustering results (Liu et al., 2018; Chen et al., 2022). The fast adaptively balanced MC
clustering method is presented by adding balanced factors (Nie et al., 2025). To more intuitively
avoid trivial solutions, (Nie et al., 2024) propose size constrained MC, which adds size constrains
on each cluster to avoid small-sized clusters. However, the optimization problem is difficult to
solve effectively. In this paper, we relaxed the indicator matrix and resolved the problem from the
perspective of non-linear optimal transport.

B.2 OPTIMAL TRANSPORT

Optimal transport (OT) theory has recently received significant interest because of its versatility
and wide-ranging applications across numerous fields. (Villani, 2003) established the mathematical
foundation of OT, offering a powerful framework for measuring distances between target and source
distributions. (Kantorovich, 2006) relaxed the original problem of Monge. The convex linear program
optimization determines an optimal matching, minimizing the cost of transferring mass between two
distributions. (Cuturi, 2013) revolutionize the field by introducing the Sinkhorn algorithm (Sinkhorn
& Knopp, 1967), which employs entropy regularization to make the computation of optimal transport
more efficient and scalable to high-dimensional data. (Peyré et al., 2019b) further develop algorithms
for computational optimal transport, enhancing its practicality for large-scale problems. The Gromov-
Wasserstein (GW) distances (Mémoli, 2011) generalizes OT to scenarios where the ground spaces are
not pre-aligned, resulting in a non-convex quadratic optimization problem for transport computation.
(Peyré et al., 2016) extends GW distances and derive a fast entropically-regularized iterative algorithm
to access the stationary point. However, the bound is generally fixed. (Shi et al., 2024a) relaxed the
bound into flexible ones and propose doubly bonded OT problem and applied it into partition-based
clustering. Nontheless, they merely solves the linear convex problem. In this paper, we concentrate
on double-bounded nonlinear OT problem and apply it in size constrained MC clustering.

B.3 IMPLEMENTATION NOTES

During the iteration process, the selected stopping condition for the iteration is 500 iterations. In
practical applications, one can calculate the value of the gap function and then choose the point
closest to 0 as the final optimized point. In the visualization of F , the values of the elements in F are
recombined, with samples from the same cluster arranged together. The visualizations of indicator
matrices in this paper follow similar operations. The implementation of DNF is publicly accessible at
https://anonymous.4open.science/r/DNF_code-3FD0.
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Figure 5: The clustering distribution with lower and upper bounds. (a) COIL20. (b) Digit. (c) JAFFE.
(d) MSRA25.
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Figure 6: The visualization of obtained indicator matrix of size constrained MC problem solved by
DNF on real datasets. (a) COIL20. (b) Digit. (c) JAFFE. (d) MSRA25. (e) PalmData25. (f) USPS20.
(g) Waveform21. (h) MnistData05.

C ADDITIONAL RESULTS

C.1 ADDITIONAL CLUSTERING DISTRIBUTION

The final clustering distributions and indicator matrices for each dataset are visualized in Figures
5 and 6, respectively. By comparing Figure 2 and 5, it can be seen that after applying DNF to the
size-constrained method, the number of samples in each cluster of the final clustering result satisfies
the constraint, which also indicates the validity of the solution obtained by DNF. Since the indicator
matrix is arranged in order, Figure 6 shows that the clustering result exhibits a clear diagonal structure.

C.2 TOY EXAMPLE

We visualized the comparison results of the proposed algorithm and the KM method on four toy
datasets, including the Flame dataset, the Two ring dataset, and two custom-made datasets. The
results are shown in Figure 7. It can be observed that, compared to KM, the proposed method is
able to capture the local structure information of the data and achieves completely correct results on
multiple datasets, demonstrating better clustering performance.

C.3 DNF FOR CONVEX PROBLEM

In the theoretical analysis, we proved that DNF converges to the global optimal solution at a rate of
1/t when solving convex problems. Therefore, in this section, we use DNF to solve the following
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Figure 7: Visualization of KM and DNF applied in toy datasets. (a)-(b) Flame dataset. (c)-(d) Two
ring dataset.

size constrained min cut problem.
min
F

Tr(FTLF )

s.t.F1c = 1n, F ≥ 0
(134)

The solution to problem 134 is that all elements in the indicator matrix are equal to 1/c. Figure 8
visualizes the changes in the indicator matrix and the objective function value with respect to the
number of iterations on real datasets. The results in the figure show that the final indicator matrix
does not clearly indicate the clustering structure of the samples. This also suggests that when the
objective function is a convex problem in clustering, the solution will result in equal probabilities for
a sample belonging to each cluster, which is invalid. In other words, clustering models with convex
objective functions are problematic. Additionally, as seen from the number of iterations, when the
optimization problem is convex, the objective function converges within 20 steps, which is consistent
with the theoretical analysis and demonstrates that the DNF method has good convergence when
solving convex problems.

C.4 GAP FUNCTION VALUES

In the convergence analysis of Section 6.2, we plotted the changes in the objective function over
iterations, and also recorded the changes in the objective function value of the gap function over
iterations. The results of these changes are shown in Figure 9. It can be observed that during the
iteration process, the value of the gap function continuously changes. The value of the gap function
approaching 0 indicates that this point is the closest to the critical point. Therefore, in practice, the
value of the gap function can be used to locate the optimal point.

C.5 SENSITIVITY ABOUT k

Here, we analyze the effect of the number of neighbors k on the clustering metrics ACC, NMI,
and ARI. The results are shown in Figure 10. k is a key parameter in constructing the nearest
neighbor graph, with its value ranging from {6, 8, ..., 16}. As seen in Figure 10, the clustering
results fluctuate on some datasets as k changes. However, the fluctuation does not exceed 20%.
Additionally, the fluctuation range is very small on datasets like COIL20 and PalmData25. In practice,
it is recommended to set k to 10 as an empirical value when using the algorithm.
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Figure 8: The visualization of obtained indicator matrix and variation of objective function values
of min cut problems solved by DNF on real datasets. (a)-(b) COIL20. (c)-(d) Digit. (e)-(f) JAFFE.
(g)-(h) MSRA25. (i)-(j) PalmData25. (k)-(l) USPS20. (m)-(n) Waveform21. (o)-(p) MnistData05.
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Figure 9: Variation of gap function values with the number of iterations. (a) PalmData25. (b)
MnistData05.
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Figure 10: The sensitivity of the number of nearest neighbors k. (a) COIL20. (b) Digit. (c) JAFFE.
(d) MSRA25. (e) PalmData25. (f) USPS20. (g) Waveform21. (h) MnistData05.
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