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ABSTRACT

We introduce the concept of scalable neural network kernels (SNNKs), the re-
placements of regular feedforward layers (FFLs), capable of approximating the
latter, but with favorable computational properties. SNNKs effectively disentangle
the inputs from the parameters of the neural network in the FFL, only to connect
them in the final computation via the dot-product kernel. They are also strictly
more expressive, as allowing to model complicated relationships beyond the func-
tions of the dot-products of parameter-input vectors. We also introduce the neural
network bundling process that applies SNNKs to compactify deep neural network
architectures, resulting in additional compression gains. In its extreme version,
it leads to the fully bundled network whose optimal parameters can be expressed
via explicit formulae for several loss functions (e.g. mean squared error), open-
ing a possibility to bypass backpropagation. As a by-product of our analysis, we
introduce the mechanism of the universal random features (or URFs), applied to
instantiate several SNNK variants, and interesting on its own in the context of
scalable kernel methods. We provide rigorous theoretical analysis of all these
concepts as well as an extensive empirical evaluation, ranging from point-wise
kernel estimation to Transformers’ fine-tuning with novel adapter layers inspired
by SNNKs. Our mechanism provides up to 5x reduction in the number of trainable
parameters, while maintaining competitive accuracy.

1 INTRODUCTION

Consider a kernel function: K : Rd × Rd → R, taking as input two feature vectors encoding latent
embeddings of their corresponding objects and returning their similarity. Kernel methods are among
the most theoretically principled approaches to statistical machine learning (ML) and have proven
effective in numerous real-world problems (Schölkopf & Smola, 2002; Kontorovich et al., 2008).
Despite their theoretical guarantees and applicability in a rich spectrum of ML settings, the main
drawback of these techniques is a high computational complexity, at least quadratic in the size N of
the training dataset. For example, the kernel regression has time complexity O(N3).

To address this issue, Rahimi & Recht (2007) proposed to construct a random feature (RF) map
Φ : Rd → Rm that transforms an input point z to a finite-dimensional feature vector Φ(z) ∈ Rm

such that: K(x,y) = E[Φ(x)⊤Φ(y)] (effectively approximately linearizing kernel function). Ap-
proximating general kernels K(x,y) via linear (dot-product) kernels K(x,y) ≈ x̂⊤ŷ for ẑ = Φ(z)
drastically changes computational complexity landscape, which is now dominated by the number m
of random features, thus providing computational gains if m≪ N . Since their seminal work, there
has been a variety of works proposing random features for a broad range of kernels like Gaussian,
Matern (Choromanski et al., 2018) and polynomial (Kar & Karnick, 2012; Wacker et al., 2022a;b).

In the meantime, with the advances in: the optimization algorithms for deep ML architectures and
the accelerators’ hardware, neural network (NN) models (Goodfellow et al., 2016; Schmidhuber,
2014; LeCun et al., 2015) have become predominant in machine learning.
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Figure 1: Pictorial representation of different NN layers discussed
in the paper. Pink arrays represent NN weight matrices and grey
ones, Gaussian projections matrices applied in SNNKs. Nonlin-
ear transformations applied in mappings � and 	 are symbolically
represented as functions g and h respectively. Upper left: Regular
FFL with activation f . Upper right: SNNK applied to a single
FFL. Bottom: Bundling process using SNNKs and applied to a
deep neural network.

The feedforward layer (FFL) is the
core computational module of NNs
and is of the following form:

x! f(Wx + b) (1)

for x ∈ Rd,W ∈ Rl×d,b ∈
Rl (bias) and an activation function
f : R → R (applied element-wise).
The expressiveness of deep NNs, far
surpassing standard kernel methods,
comes from stacking together sev-
eral FFLs, each encoding non-linear
mapping with learnable W,b.

In this work, we draw a deep connec-
tion between scalable kernel methods
and neural networks. We reinterpret
the FFL as outputting the expected
vector of dot-products of: (1) the la-
tent embeddings of the input x and
(2) the parameters: W,b of the FFL,
effectively disentangling input from
model’s parameters in the computational graph, only to connect them in the final computation via
the dot-product kernel. To be more specific, we think about the FFL as the following transformation:(

Kf (x; (W;b))
def
=
�
Kf (x; (w0; b0)); :::;Kf (x; (wl−1; bl−1))

�⊤
;

Kf (x; (w; b))
def
= E[�f (x)⊤	f (w; b)];

(2)

where mappings: Φf : Rd → Rm, Ψf : Rd×R → Rm satisfy: f(w⊤x+b) = E[Φf (x)
⊤Ψf (w, b)]

and w0, ...wl−1 are the transposed rows of W. Then, in the instantiation of the layer the expecta-
tions are dropped out. Rewriting an FFL in terms of two towers: one corresponding to the input and
one to its learnable parameters has several advantages:

1. network compression: in the above formulation, instead of transforming layer parameters with
Ψf , one can directly learn vectors Ψf (w

i, bi) for i = 0, ..., l − 1. Then the number of trainable
parameters becomes O(lm) rather than O(ld) and for m≪ d the layer effectively has a reduced
number of parameters.

2. computational savings: if RFs can be constructed in time o(dl) per point and m ≪ d, the
overall time complexity o(dl) of the FFL (given pre-computed embeddings Ψf (w

i, bi)) is sub-
quadratic in layers’ dimensionalities,

3. deep NN bundling process: a two-tower representation can be used iteratively to compactify
multiple FFLs of NNs, the process we refer to as neural network bundling (Sec. 3.3); this also
leads to the computational gains.

4. deep NNs as scalable kernels: the extreme version of the bundling procedure, involving all the
layers, provides a two-tower factorization of the entire deep NN with several potential practical
and theoretical implications (Sec. 3.3). In particular, it leads to an explicit formula for the optimal
parameters of the fully-bundled network under several loss objectives (e.g. mean squared loss),
opening a possibility to bypass backpropagation.

In order to find mappings: Φf , Ψf from Eq. 2, we develop a new bounded random feature map
mechanism, called universal random features (or URFs) that leads to the unbiased estimation of
f(w⊤x+ b) as long as f has a well-defined Fourier Transform (FT), either in the classical Rieman-
nian or distributional sense. To derive URFs, we combine Fourier analysis techniques with recent
methods for softmax-kernel estimation from Likhosherstov et al. (2022).

Note: We do not put any additional assumptions regarding f , in particular f is not required to be
differentiable. Furthermore, function Kf does not need to be positive semi-definite. This is critical
for applications in neural networks, where the activation function f usually does not correspond to
a positive semi-definite kernel.

To summarize, our main contributions in this paper are as follows:
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• We introduce thescalable neural network kernelmodule (SNNK) as a replacement of a traditional
FFL (Sec. 3), providing the disentanglement of the network's input and its parameter-set before
�nal dot-product computation, as given in Eq. 2 (see also: Fig. 1).

• We accompany SNNKs with our universal random features mechanism (URFs) to ef�ciently: (1)
construct mappings� f and	 f from Eq. 2 and consequently: (2) implement SNNKs (Sec. 3.1).
We provide explicit formulae for URFs for trigonometric maps. Those produce SNNK-based
replacements of the SIREN networks from Sitzmann et al. (2020).

• We propose new NN-layers corresponding to the speci�c SNNK instantiation, calledReLU-
SNNK (Sec. 3.2), that we found particularly effective in downstream applications (see: Sec.
4.3.2). We show that they are related to the class of thearc-cosine kernels(Cho & Saul, 2011).
We also demonstrate using them that SNNKs arestrictly more expressivethan regular FFLs, as
allowing to compute the functions of the inputs and parameters that cannot be de�ned as point-
wise transformed vectors of their dot-products.

• We introduce the neural network compacti�cation process, that we refer to asneural network
bundling, leveraging SNNKs (see: Sec. 3.3 and Fig. 1).

• We provide an exhaustive empirical evaluation of SNNKs, from point-wise kernel estimation to
the adapter-based Transformers' �ne-tuning, providing about 5x reduction of the number of train-
able parameters (Sec. 4).

Commonly used methods for compressing neural networks are pruning (Liang et al., 2021), distil-
lation (Gou et al., 2021) and quantization (Gholami et al., 2021). Compressing neural networks via
SNNKs is novel and completely orthogonal to these methods and can be combined with such.

2 RELATED WORK

The literature on random features is vast, yet most of the works focus on approximating positive
de�nite kernels. The results on dimensionality reduction and the so-calledJohnson-Lindenstrauss
Transform(or JLT) (Dasgupta & Gupta, 2003; Dasgupta et al., 2010; Ailon & Liberty, 2013) for
the dot-product kernel marked the birth of the subject as as an archetype mechanism that Rahimi
& Recht (2007) extended from linear to non-linear shift-invariant kernels. A substantial effort was
made to further improve the accuracy of RF-methods by entangling projections used to construct
RFs (Choromanski et al., 2017; Yu et al., 2016; Choromanski et al., 2018; Rowland et al., 2018).

For certain classes of functionsf , RF-mechanisms leading to the linearization ofK f have been
already developed. In addition to the rich recent literature on the approximation techniques for the
softmax-kernelKexp (x ; y ) = exp( x> y) (Likhosherstov et al., 2022; 2023; Choromanski et al.,
2021), algorithms for analyticf with positive coef�cients of their Taylor series expansion were
given (Kar & Karnick, 2012). Other RF-methods assume that kernel inputs are taken from the
unit-sphere (Scetbon & Harchaoui, 2021; Han et al., 2022). Both assumptions are unrealistic for
the neural network applications as far as inputsx are concerned (interestingly, the latter one would
be however more justi�able for the parameter-tower as long as bounded-norm weight matrices are
considered, e.g.orthogonal neural networks(Helfrich et al., 2018). We would like to emphasize
that our two-tower mechanism, effectively leading to the linearization of the FFLs from Eq. 2, can
in principle work with various RF-algorithms, and not only our proposed URFs.

The kernels applied in connection to neural networks have been widely studied (Bengio & Lecun,
2007). Such kernels are generally constructed using dot-products of outputs of the shallow neural
networks with various non-linearities like ReLU (Cho & Saul, 2009; Bresler & Nagaraj, 2020) and
tanh (Williams, 1996) or the gradients of the network like the NTK kernel (Jacot et al., 2020). Most
of the work in linearizing NNs via kernels have been done in the case of a2-layer network where

J (x ; � ) =
NX

i =1

ai f (x > w i ); � = ( a1 ; :::; aN ; w 1 ; :::; w N ) 2 RN ( d+1) (3)

It is assumed thatw i andf (non-linear activation) are �xed and scalars andai are trainable. Under
various assumptions, one can write a compact linearized form of this neural network (Cho & Saul,
2009; 2011; Ghorbani et al., 2020). Moreover, in the above setting,J (x; � ) corresponds to the
�rst-order Taylor expansion ofJ with respect to the top-layer weightsai which was �rst explored
by (Neal, 1996). Even though our setting is fundamentally different, as our goal is to linearize
single layers to disentangle the weights and the inputs, we build on the above intuition to create our
SNNK-layers (see also: discussion in Appendix C). Note that NTK-based analysis, as leveraging
Taylor-based linearization of the NN, is valid only for the mature stage of training/�netuning when
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weights do not change much and thus such a linearization is accurate (Malladi et al., 2022). SNNKs
do not rely on this assumption. Furthermore, SNNKs can be used also in the context of non-positive
de�nite (Ong et al., 2004) and asymmetric (He et al., 2023) kernels since mappings� and 	 in
principle are different (on expectation they can produce both symmetric and asymmetric functions).

Arc-cosine kernels were studied in the context of deep NNs before (Cho & Saul, 2009). However,
in (Cho & Saul, 2009), the weights are still entangled with the FFL-input, as the initial latent repre-
sentations of the inputs (for random parameters) are interpreted as RFs for the arc-cosine kernel.

3 SCALABLE NEURAL NETWORK KERNELS (SNNKS)
The scalable neural network kernel (SNNK) computational module is de�ned as follows:

(
SNNK f (x ; (W ; b)) def=

�
SNNK f (x ; (w 0 ; b0)) ; :::; SNNK f (x ; (w l � 1 ; bl � 1))

� >
;

SNNK f (x ; (w ; b)) def= � f (x )> 	 f (w ; b);
(4)

for, x 2 Rd, some mappings:� f : Rd ! Rm , 	 f : Rd � R ! Rm and transposed rows of
W 2 Rl � d: w 0; :::w l � 1. As we show in Sec. 3.1, functions� f ; 	 f can be constructed in such a
way that the SSNK module approximates a particular FFL, i.e.:SNNKf (x ; (W ; b)) � f (Wx + b),
but mechanisms that do not imitate known FFLs are also of interest (see: Sec. 3.2).
Time complexity: If we denote bytm (d) time complexity for constructing an embedding:� f (x),
then time complexity for constructingSNNKf (x ; (W ; b)) (given the pre-computed	 f (w i ; bi ) for
i = 0 ; :::; l � 1) is: Tm;l (d) = ml + tm (d). In Sec. 3.1 we show an algorithms for constructing URFs
in time tm (d) = O(md) and thus computational gains are provided as compared to the regular FFL
(with time complexityO(ld)) as long asm � min( l; d).
FFL compression: As already mentioned in Sec. 1, the key observation is that in the setting,
where the layer is learned (and thusw 0; :::; w l � 1 are learnable), mapping	 f does not even need

to be applied, since vectors! j def= 	 f (w j ; b) for j = 0 ; :::; l � 1 can be interpreted as unstructured
learnable vectors. Thus the number of trainable parameters of the SNNK layer isO(ml ), instead of
O(dl) and consequently, the FFL is effectively compressed ifm � d.

3.1 UNIVERSAL RANDOM FEATURES (URFS)
In this section, we show how to construct embeddings� f (x) and	 f (w ; b) (additional intuition is
provided in Sec. A). We denote byFT f theFourier Transformof f , wherei 2 C satis�es: i 2 = � 1:

FT f (� ) =
Z

R
f (z) exp(� 2�i�z )dz (5)

If the integral does not exist in the classical Riemannian sense, we use its distributional in-
terpretation. We rewriteFT f as: FT f = FT re;+

f � FT re;�
f + iFT im ;+

f � iFT im ;�
f , where:

FT re;+
f ; FT re;�

f ; FT im ;+
f ; FT im ;�

f : R ! R� 0. Without loss of generality, we will assume that
all four functions are not identically zero.

Let us denote byP0; P1; P2; P3 some probabilistic distribution onR (e.g. Gaussian) and by
p0; p1; p2; p3 : R ! R� 0 their corresponding density functions. Furthermore, denote by
P0; P1; P2; P3 probabilistic distributions of densities:p0; p1; p2; p3 : R ! R� 0 proportional to:
FT re;+

f ; FT re;�
f ; FT im ;+

f ; FT im ;�
f respectively. We can then write:

f (z) =
Z

R
FT f (� ) exp(2�i�z )d� =

3X

j =0

cj

Z

R

pj (� )
pj (� )

exp(2�i�z )pj (� )d� =
3X

j =0

cj E� � �P j

�
pj (� )
pj (� )

exp(2�i�z )
�

;

(6)

where:c0 =
R

R FT re;+
f (� )d�; c1 = �

R
R FT re;�

f (� )d�; c2 = i
R

R FT im ;+
f (� )d� , and furthermore

c3 = � i
R

R FT im ;�
f (� )d� . Forx; w 2 Rd; b 2 R, let us denote:

bf j (x ; w ; b) = cj E� � P j

�
pj (� )
pj (� )

exp
�

2�i� (x > w + b)
� �

= cj E� � P j
[Sj (�; b) exp(bx > (� ) bw (� ))] (7)

for Sj (�; b) = pj ( � )
pj ( � ) exp(2�i�b ), bx(� ) = � (� )x , bw(� ) = � (� )w , where� (� ); � (� ) 2 C sat-

isfy: � (� )� (� ) = 2 �i� . Inside the expectation in Eq. 7, we recognize the softmax-kernel value
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Kexp (bx(� ); bw(� )) = exp( bx> (� ) bw(� )) . We thus disentanglebx(� ) from bw there, by applying
softmax-kernel linearization mechanism from Likhosherstov et al. (2022):exp(bx> (� ) bw(� )) =
Eg�N (0 ;I d ) [� g (bx)� g ( bw)], where� g : Rd ! R is de�ned as follows forA � 0:

� g (z) = (1 � 4A)
d
4 exp(Akgk2

2 +
p

1 � 4Ag> z �
kzk2

2

2
) (8)

Thus bf j (x ; w ; b) = E( �; g) � P j 
N (0 ;I d ) [�
1
g;� (x)� 2

g;� (w ; b)] for � 1
g;� (x); � 2

g;� (w ; b) given as:

� 1
g ;� (x ) = � g (� (� )x ); � 2

g ;� (w ; b) = cj Sj (�; b)� g (� (� )w ) (9)

That observation directly leads to the RF mechanism for the estimation ofbf j (x ; w ; b). We can
rewrite: bf j (x ; w ; b) = E[� j (x)> 	 j (w ; b)] for (� 1; g1); :::; (� m ; gm ) � P j 
 N (0; I d) and:

� j (x ) =
1

p
m

(� 1
g 1 ;� 1 (x ); :::; � 1

g m ;� m (x )) > ; 	 j (w ; b) =
1

p
m

(� 2
g 1 ;� 1 (w ; b); :::; � 2

g m ;� m (w ; b)) > (10)

Several strategies can be used to construct samples(� 1; g1); :::; (� m ; gm ), e.g. iid sampling or
block-iid sampling with a �xed� used within a block, but constructed independently for different
blocks. In the experiments, we also choose:� (� ) = 2 �i� and� (� )=1.

The case of discreteP j with �nite number of atoms: Assume that(� 1; :::; � K ) is a sequence of
atoms with the corresponding positive probabilities:(p1; :::; pK ). Then one can also constructK
pairs of RF-vectors(� j (x ; k); 	 j (w ; b; k))K

k=1 , each obtained by replacingP j with a distribution
corresponding to a deterministic constantpk and get� j (x); 	 j (w ; b) by concatenating vectors from
(� j (x ; k))K

k=1 and(	 j (w ; b; k))K
k=1 respectively. This strategy is effective ifK is small.

Note that:f (x> w + b) =
P 3

j =0
bf j (x ; w ; b) and thus� f (x) and	 f (w ; b) can be de�ned as:

� f (x) = concat
�
(� j (x))3

j =0

�
; 	 f (w ; b) = concat

�
(	 j (w ; b))3

j =0

�
(11)

for the vector concatenation operationconcat, completing the description of the URF mechanism.

Remark 3.1 (boundedness)We observe that for upper-boundedkxk2; kwk2; jbj, the entries of
� f (x) and 	 f (w ; b) are also upper-bounded as long asA < 0. This follows directly from the
formula for� g (z) in Eq. 8.

Trigonometric activation functions: Let us assume now thatf (z) = sin( z) or f (z) = cos(z).
Note that even though none of them has a Fourier Transform in the classical Riemannian sense, both
have trivial Fourier Transforms in the broader distributional sense. To see that, we can rewrite both
activations as:sin(z) = exp ( iz ) � exp( � iz )

2i andcos(z) = exp ( iz )+exp( � iz )
2 . Therefore the correspond-

ing distributions used in the URF derivations above become binary distributions overf� 1
2� ; 1

2� g.
This observation has interesting practical consequences, since it leads to the conceptually simple
linearization of the FFLs applied in SIREN networks (see: Sec. 4.2).

3.2 BEYOND REGULAR FFLS: THE CURIOUS CASE OF THERELU-SNNK LAYER

We also propose another SNNK layer which is not directly inspired by any known FFL, but turns
out to work very well in practice (see: Sec. 4.3.2). In this case, the mappings� and	 are de�ned
as: �( x) = ReLU( 1p

l
Gx ), 	( w ; b) = ReLU( 1p

l
Gw ) for the Gaussian matrix:G 2 Rl � d with

entries sampled independently at random fromN (0; 1). One can ask a question what kernel does
this pair of maps correspond to. It turns out that the answer is particularly elegant.

Theorem 3.2 (arc-cosine kernels; Cho & Saul (2011))The nth-order arc-cosine kernelKn :
Rd � Rd ! R is de�ned as:Kn (x ; y ) = 1

� kxkn
2 kykn

2 Jn (� x ;y ), where� x ;y 2 [0; � ] stands for an

angle betweenx andy andJ (� ) def= ( � 1)n (sin(� ))n +1 @n

@�n

�
� � �

sin( � )

�
. Then,Kn can be linearized

as: Kn (x ; y ) = 2 E[� n (x)> � n (y )] for � n (v ) def= ReLU(( v > ! )n ) and! � N (0; I d).

We conclude that our proposedReLU-SNNK layer is a scalable version of the FFL de�ned as:
x; W 2 Rl � d; b ! ( 1

2 K1(w 1; x); :::; 1
2 K1(w l ; x))> .
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Remark 3.3 TheReLU-SNNK layer is not a regular FFL since the values of its output dimen-
sions cannot be re-written asf (x> w i + bi ) for somef : R ! R (interestingly, after� -base pre-
processing, it can be still interpreted as a dot-product kernel). This shows that the SSNK mechanism
is capable of modeling relationships beyond those of regular FFLs.

3.3 BUNDLING NEURAL NETWORKS WITH SNNKS

We are ready to propose the neural networkbundling process, relying on the SSNK-primitives.
Consider the following deep NN module with inputx = x0 2 Rd0 and outputy = xL 2 RdL :

(
x i +1 = f i +1 (W i x i + b i ); i = 0 ; :::; L � 1;
x 0 = x

(12)

for: (1) matricesW i 2 Rdi +1 � di , (2) bias vectors:b i 2 Rdi +1 , and (3) activations:f i : R ! R.

To understand how the bundling process works, we start by replacing �rst FFL in Eq. 12 with its
SNNK analogoue. We obtain the following computational block:

8
>>><

>>>:

bx i +1 = bf i +1 ( cW i bx i + bb i ) for i = 0 ; :::; L � 2;
bx 0 = � f 1 (x 0);
dW 0 = W 1 	 f 1 (W 0 ; b0); cW i = W i +1 for i = 1 ; :::; L � 2;
bf i +1 = f i +2 ; bb i = bi +1 for i = 0 ; :::; L � 2

(13)

In the system of equations above,	 f (W 0; b0) is a matrix with transposed rows of the form:
	 f (W j

0; b j
0), where W j

0 for j = 0 ; :::; d1 � 1 are the transposed rows ofW 0 and b0 =
(b0

0; :::; bd1 � 1
0 )> . We have thus successfully replaced a module ofL feedforward layers with a

module of(L � 1) feedforward layers. By continuing this procedure, we can ultimately get rid of
all the FFLs and obtain an estimatory of y , given as:y = W x, where

(
x = � f L

�
� f L � 1 (:::� f 1 (x 0):::)

�

W = 	 f L

�
W L � 1 	 f L � 1 (:::W 2 	 f 2 (W 1 	 f 1 (W 0 ; b0); b1):::; ); bL )

�
2 RdL � m (14)

This has several important consequences. In inference, replacing matricesW 0; :::; W L � 1 with one
matrix W is a effectively a compression scheme (that does not necessarily need to be applied to all
the layers, but a particular consecutive set of layers of interest). If we apply bundling process to
the entire deep neural network, we effectively provide its two-tower factorization with input disen-
tangled from the parameters. In training, we can treatW as an unstructured parameter matrix and
directly learn it (see results in Appendix J.3, table 5). Since the outputy is now modeled as an action
of the unstructured learnable matrixW on thepre-processedinputx, for several loss functions there
exists an explicit formula for the optimalW . This is the case in particular for the standard regression
loss (see discussion in Appendix J.3). If bundling is applied to a particular module, backpropagation
through it is not necessary since there exists an explicit formula for the corresponding Jacobian.

4 EXPERIMENTS

We present an extensive empirical evaluation on SNNK on a wide range of experiments. More
details on each of the experiments can be found in the Appendix G.

4.1 POINTWISE KERNEL ESTIMATION

As a warm-up, we test the accuracy of the applied RF-mechanisms on synthetic data. We take
d = 2000 andl = 1 . We consider:(a) a SIREN-FFL with the activation functionf (u) = sin( u)
and biasb = 0 :5, (b) an arc-cosine-FFL from Sec. 3.2. The entries of the weight vectorsw and the
inputs to the layers are taken independently from1p

d
Unif(0; 1). We report the mean relative error

of the NN output (by averaging overs = 500 instantiations of the RF-mechanism) made by the RF-
based estimator as well as the empirical standard deviation as a function of the number of random
projections. This setup corresponds to quantifying the accuracy of the kernel estimator pointwise.
The results are presented in Fig. 2 (g and h). Our SNNK provided an accurate approximation with a
much smaller number of random projections than the dimensionalityd of the input vectors.

4.2 TOY EXPERIMENTS
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Figure 2:Architecture for(a) SNNK layer (see Section C),(b) SNNK-Adpt layer(c) image �tting (SIREN),
MNIST and UCI experiments,(d) SNNK-QPNN model,(e) SNNK-inspired Adapter-ViT layer,(f) SNNK-
inspired Adapter-BERT layer.(g,h): The relative error (obtained by averaging overs = 500 instantiations of
the RF-mechanism) made by the RF-based estimator on the particular entry of the output of the:(g)SIREN-FFL
and(h) arc-cosine-FFL as a function of the number of random projectionsp (see: Sec. 4.1). The maximump
for (g) is larger than for (h), as (g) in theory produces larger variance per random projection. The corresponding
standard deviations are negligible:(g) 5 � 10� 8 ,10� 12 , 5 � 10� 8 , 10� 8 ,10� 12 , 2:5 � 10� 9 , 10� 12 , 5 � 10� 9 ,
10� 12 , 10� 12 , 10� 10 , 10� 12 , (h) 10� 12 , 3 � 10� 8 ,3 � 10� 8 , 2 � 10� 8 , 10� 12 , 5 � 10� 9 .

Figure 3:(1) Left column : Injecting SNNK in a PINN network
to approximate the potential energy of the 2-body sytem. Top to
bottom : Ground truth potential, Learned potential by QPNN (Se-
hanobish et al., 2021) and QPNN-SNNK. QPNN-SNNK can learn
the potential function perfectly even using less trainable parame-
ters than the baseline QPNN. (2)Rightmost three column: Siren
network on the �rst row, �tting not only the image, but also the
gradients. SNNK on the bottom row produces an accurate approx-
imation of the above.

SNNKs are versatile and can be
used as a drop-in replacement for
FFLs in a wide variety of NNs
like the SIREN network Sitzmann
et al. (2020), QPNN - a Physics-
inspired Neural Network (PINN) to
solve the Hamiltonian for quantum
physical systems (Sehanobish et al.,
2021) and a simple multi-layer per-
ceptron (MLP) for classi�cation on
MNIST (LeCun & Cortes, 2010). We
use the sine activation variant for the
�rst two experiments and the ReLU
variant for MNIST. 32 random fea-
tures are used for the solution of the
2-body problem and MNIST and 64
random features for the image �tting
problem. We match the performance
of the baseline NNs on the 2-body
and the image �tting problem (see �gure 3) and outperform the baseline on MNIST (Figure 9),
while incurring lower training costs. For additional details regarding these experiments, see Ap-
pendix G.1.

4.3 FINETUNING EXPERIMENTS

In this subsection, we show how SNNKs can be used for parameter ef�cient �netuning. For NLP
experiments, we use the GLUE benchmark consisting of 8 different natural language understanding
tasks (Wang et al., 2018). For vision tasks, we use CiFAR-10, CiFAR-100 (Krizhevsky et al., 2009)
and ImageNet-1k (Deng et al., 2009). BERT-base (Devlin et al., 2019) is used as a backbone for
text experiments and ViT (Kolesnikov et al., 2021) for image experiments. Our code is built on top
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Figure 4: Comparison of trainable parameters between various layers/modules and the drop in replacement
NNK layers. Results for CiFar-10, CiFar-100 and ImageNet are for SNNK-Adapter models.

of Transformers (Wolf et al., 2020) and adapter Transformer library (Pfeiffer et al., 2020). Detailed
comparisons with various baselines can be found in Appendix K and additional experiments in
Appendix J.

4.3.1 LINEARIZING THE POOLER LAYER IN TRANSFORMERS

For text classi�cation tasks, a SNNK layer can be used as a drop-in replacement for the pooler layer
which is a linear layer with a tanh activation. For these set of experiments, the base model is frozen
and only the pooler and the classi�er weights are tuned. We get computational gains as the number
of random features employed by SNNK is smaller than that of the hidden size of the Transformers.
More details are presented in Appendix G.2.

On GLUE dev set, our SNNK-linearized pooler models outperform the baselines on 5 out of 8 tasks
(Table 1 (top half)). Additional results can be found in Appendix J.

In this setting, the linearized pooler weights can be merged with the classi�er weights to create a
weight matrix of size (# number of random features� number of classes) and then one can simply
store the newly merged layer instead of separately storing the trained classi�er and pooler layers.
This dramaticallyreducesthe storage from 18.92 Megabit to only:02 Megabit leading to a compres-
sion factor of1=1000. More details are presented in Appendix E. Ablation studies on the number
of random parameters for this experimental setting are presented in Appendix I.

Table 1:SNNK experiments on GLUE benchmarks. MCC score is reported for CoLA, F1 score is reported for
MRPC and QQP, Spearman correlation is reported for STSB. Accuracy scores are reported for the other tasks.
All results are obtained by averaging over 5 seeds.
Dataset RTE MRPC QNLI QQP SST-2 MNLI STSB COLA

Bert-baseline (Lee et al., 2019) 57:5 81:5 74:5 72:0 84:9 56:4 78:1 29:4
Cosine-SNNK-pooler (ours) 61:36 � 1:15 82:07 � 1:07 73:5 � 0:22 70:43� 0:17 85:21 � 0:34 52:69� 0:32 78:93 � 0:37 35:81 � 0:96
Adapter-baseline (Moosavi et al., 2022)63:83� 1:4 84:8 � 1:07 90:63 � 0:26 88:12 � 0:14 91:74� 0:36 83:53 � 0:19 88:48� 0:14 56:51� 0:84
AA (Moosavi et al., 2022) 64:25� 1:72 85:09� 1:06 89:96� 0:25 88:09� 0:16 91:31� 0:51 82:89� 0:43 88:25� 0:17 51:44� 1:82
ReLU-SNNK-Adapter (ours) 69:68 � 1:24 91:26 � 1:39 90:44� 0:16 85:82� 0:23 92:31 � 0:27 82:06� 0:17 88:81 � 0:14 58:21 � 0:63

4.3.2 SNNK-INSPIREDADAPTER LAYERS

Adapters in Transformers were �rst introduced in (Houlsby et al., 2019) and there has been a
lot of work designing different architectures (Pfeiffer et al., 2020; Karimi Mahabadi et al., 2021;
Moosavi et al., 2022) and unifying various paradigms (Moosavi et al., 2022; He et al., 2022a).
Adapters are bottleneck MLPs which are (generally) added twice to each Transformer layer. In our
work, we replace each adapter block by a single SNNK layer (Figure 2 (e) and (f)) using only16
random features resulting in a big drop of training parameters (see Figure 4). Figure 4 (b) shows the
architecture of SNNK-inspired adapter layers. Additional details are presented in Appendix D.

As is customary for adapter experiments, base model is frozen and only the adapters and classi�er
are tuned. Table 1 (bottom half) shows our results on using SNNK layers in place of adapters on
the GLUE dev set. We outperform the baseline on5 out of 8 datasets while employing only1=3 of
the training parameters. On MNLI, it is noted in (Houlsby et al., 2019), that using smaller adapter
size causes worse performance and performance boost can be achieved by increasing the size of the
adapter (256 is used in their case). Similar to this observation, we note that we can improve per-
formance and match the baselines on large datasets (ex. MNLI, QNLI) as we increase the number
of random features (see Figure 5). Our method also produces competitive performance on image
datasets including Cifar-10, Cifar-100 and ImageNet.(see Figure 4 (right 3 �gures)). Detailed com-
parisons with SOTA parameter ef�cient �netuning methods can be found in Table 7 (vision tasks)
and in Table 8 (GLUE tasks).
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Figure 5:Ablation with different number of random features for the ReLU-SNNK-adapter experiments on the
GLUE dev set.AA is the reported adaptable adapter numbers in Moosavi et al. (2022).

Figure 6:Comparison of CE loss for SNNK vs different sizes of MLP on UCI datasets.

Moreover, we note that our methods are completely orthogonal to techniques such as gating mecha-
nism in (Mao et al., 2022) or algorithms relying on dropping suitable adapter layers (Moosavi et al.,
2022; R̈ucklé et al., 2021). Thus it can be easily combined with them.

4.4 UPTRAINING TRANSFORMERS

In this section, we report results of replacing part of the Feed-Forward Network (FFN) block in
Transformers with SNNKs. Details are in the Appendix J.4 for brevity, here we summarize our
�ndings. We observe from Table 6 that replacing FFL blocks with SNNK layers reduces the number
of parameters and FLOPS for both training and inference. This followed by our bundling process
leads to a large reduction in size and inference time of the bundle. For example, for BERT and ViT
models, replacing top-6 Transformer layer's MLP block with SNNK reduces the size of the model
from 440 Mb to 226.71, and 346 Mb to 176.42 Mb respectively. Figures 12 and 13 demonstrate that
reducing the model size and inference speed by 40-50% has minimal impact on accuracy for both
NLP and Image classi�cation tasks.

4.5 EXPERIMENTS ONUCI DATASETS

We have conducted experiments with a variety of real-world datasets found in the UCI Machine
Learning Repository (UCI MLR).1. We trained a three-layer MLP model as baseline (see Appendix
Sec. H.5 for details). We varied the output of the middle-layer to train MLPs with different sizes. For
our method, we replace the middle-layer with SNNK (Figure 2 (c)). SNNK matches or outperforms
the baseline while using only a fraction of the training parameters (Figure 6).

5 CONCLUSION

We present scalable neural network kernels (SNNK), a novel ef�cient NN computational model
that can be used to replace regular feedforwards layers in MLPs, where inputs and parameters are
disentangled and connected only in the �nal computation via a dot-product kernel. We introduce
a general mechanism of the universal random features (URFs) to instantiate SNNKs, show that
SNNKs are capable of encoding subtle relationships between parameter- and input-vector beyond
functions of their dot-products and �nally, explain how they lead to the compacti�cation of the NN
stack via the so-called bundling process. We complement our theoretical �ndings with the exhaustive
empirical analysis, from pointwise kernel estimation to training Transformers with adapters.

1https://archive.ics.uci.edu/ml/index.html
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A TOWARDS URFS: ADDITIONAL INTUITION

In this section, we provide an additional intuition that led us to the mechanism of URFs. Our �rst
observation is that if one has a mechanism for the linearization of the softmax kernelK( x; y ) =
exp(x> y), i.e. a randomized mapping� : Rd ! Rm such that:K( x; y ) = E[� (x)> � (y )], then
this mechanism automatically provides an approximate linearization of the kernel de�ned as:

K( x; y ) =
lX

i =1

ci exp(si x> y); (15)

for some coef�cients:c1; :::; cl ; s1; :::; sl . To see that, note that one can simply de�ne the random
feature map	 for that kernel as:

	( z) = concat (
p

c1� (
p

s1z); :::;
p

cl � (
p

sl z)) ; (16)
whereconcat stands for the concatenation operator. Alternatively, if in additionc1; :::; cl > 0, one
can �rst sample the indexk 2 f 1; :::; lg from the discrete distribution(pi ; :::; pl ) with pt = ctP l

n =1 cn

and then de�ne	 as:

	 k (z) =

vu
u
t

lX

n =1

cn � (
p

sk z) (17)

The mechanism of URFs is the natural extension of this observation to the setting, where the kernel
cannot be given by the sum from Eq. 15, but the formula with the sum replaced by the integral (which
immediately leads to the representation of the function as the Fourier Transform of its inverse Fourier
Transform or vice versa: inverse Fourier Transform of its Fourier Transform). The only remaining
step is to choose a right mapping� for the estimation of the regular softmax kernel and here we
have decided to leverage the recently introduced improvement of the positive random feature map
mechanism from Likhosherstov et al. (2022).

B PROPAGATION OF THEERROR OVER THENETWORK

In this section, we show how the error accumulates when we try to bundle a deep feedforward
network.

The variance of the estimation of the kernel valueK( x; y ) is proportional to 1
m , wherem is the

number of random features. This is the case since its estimator can be rewritten as:

X =
1
m

mX

i =1

X i ;

where eachX i provides an unbiased estimation of the kernel value. Since random variablesX i are
independent, using Azuma's Inequality, we can also conclude that ifjX i j � c, then:

P[jX � K( x; y )j � � ] � 2 exp
�

�
� 2

8mc2

�
; (18)

for any� > 0. Recall fromexp(bx> (� ) bw(� )) = Eg�N (0 ;I d ) [� g (bx)� g ( bw)], where� g : Rd ! R is
de�ned as follows forA � 0:

� g (z) = (1 � 4A)
d
4 exp(Akgk2

2 +
p

1 � 4Ag> z �
kzk2

2

2
) (19)

Note that the boundedness condition holds ifA < 0 (see Remark 3.1).

Now assume that the kernel functionK satis�es (in the region of interest):jK( x; w) � K( u; w)j �
� (a), as long askx � uk1 � a for some function� . Note that this is not a strong assumption as
any continuous function on a compact subset ofRn is uniformly continuous, i.e. satis�es the above
condition for some� , where� (a) ! 0 asa ! 0.

We then conclude that the probability that the approximate output of the bundledd-layer neural
network differs from the exact output by at least� + � (� ) + � � � + � (� � � � (� (� ))) (composition of
(d � 1) � -functions) in theL 1-norm is upper-bounded by the RHS from the Inequality 18, but with
an extra multiplicative factord (coming from the union-bound). We see that the number of random
features needed for an accurate approximation is larger ifK grows faster (e.g. isL -Lipschitz with
larger constantL ).
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C SNNK LAYERS AND RELATION TO L INEARIZATION OF 2-LAYER NEURAL

NETWORKS

In this subsection, we provide details on the training of the SNNK layers and how they can be
injected in place of MLP layers. We use the PyTorch style of Linear layer in our notations, namely
right multiplication byW > . Recall an MLP layer with weight matrixW , a biasb and a non-linear
function� takes an inputX and computes

f (X ) = � (XW > + b) � �( X )	( W ; b)> (20)

Rewriting A as 	( W ; b), one can think ofW as �xed weights whileA are trainable which is
exactly equation 3. MoreoverA has fewer parameters thanW , resulting in parameter ef�cient
training.

Using this above intuition, one can seamlessly plug SNNK in place of either pretrained network
where the input to	 will be pretrained weights or random weights in case of untrained networks.
We do not trainW in this case, but onlyA .

D SNNK-INSPIREDADAPTER BLOCKS

We think of adapters (discarding the nonlinearity) as a low rank factorization of a linear layer. If the
weight matrixW of the linear layer is of size(d� d) andk is the low rank of the factorized matrices
wherek << d , the number of trainable parameters is2 � k � d (again discarding the bias terms) as
opposed tod � d. However, we consider the problem of linearizing the entire block by one feature
matrix of size(d � random features) and we similarly transform the input tensors and compute the
matrix multiplication in the feature space. In this setting, we ignore the bias termb asb is initialized
as the zero vector and so it does not change the initial feature matrix. Thus our implementation of
linearized adapter looks like :

Y := SNNK(X ) = �( X )	( W )> (21)

where� and	 are suitably chosen feature maps. AsW is randomly initialized, we can treat	( W )
as a random unstructured matrixA and updateA . We use a residual connection as in (Houlsby et al.,
2019). It is well-known (Houlsby et al., 2019; He et al., 2022a; Pfeiffer et al., 2020) that for stable
training the adapter block should behave like the identity matrix at initialization. We introduce a
vectorv that we call the gating vector or the modulating vector that is initialized as the zero vector.
Thus the equations of our adapter block becomes :

Y = ( v � SNNK(X )) + X (22)

� stands for Hadamard or element-wise product.

At this point, we would like to give some motivation regarding the use of this vector and discuss
initialization schemes. One simple way to initialize the entire block as the identity, is to chooseA as
the0 matrix but that in turn leads to optimization dif�culties. Another initialization scheme would
be to initializeA from a Gaussian centered around0 with small variance, but does not lead to good
performance. Other detailed initialization schemes are not studied and are beyond the scope of this
work. Meanwhile, adding the gating vector allows us to initialize the block as the identity matrix,
leading to stable training.

Thus the number of training parameters in this regime is(d+ 1) � random features which is consid-
erably lower than the adapters if the number of random features are small. For all our experiments,
we only use16 random features resulting in lowering the number of training parameters compared
to the baseline adapters. Our SNNK-inspired adapters can be used in different con�gurations and
can be also combined with SOTA adapter-based methods and we leave that to future work.

E BUNDLING THE POOLER AND THE CLASSIFIER LAYERS

Thebundlingof the pooler and the classi�er layer takes a particularly simple form in this case: If
W p; bp (resp.W c; bc) are the weight matrices and biases of the pooler and classi�er layer resp and
� be the tanh activation function. Then :

� (XW >
p + bp)W >

c + bc � �( X )	( W p; bp)> W >
c + bc (23)
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Figure 7:Comparison of trainable parameters between the baseline models for toy experiments and the SNNK-
counterparts.

	( W p; bp) is a matrix of sized � k, whered is the dimension of the transformer,k is the number of
random features andk < d . W c is a matrix of sized � c, wherec is the number of output classes.
Thus, instead of storing the two matrices, we can only store the product of the2 matrices which is
of sizek � c, resulting in huge storage savings. Moreover during deploying, one can only use the
smaller matrix as the output layer resulting in lower �ops.

F DATASETS

We describe the dataset statistics used in different experiments. Glue is a benchmark dataset in NLP
comprising of 8 different natural language understanding (NLU) tasks (Wang et al., 2018). Table 2
shows the train, dev splits for various tasks. CiFar-10 consists of 50k natural images for training split

Table 2: Statistics of Glue datasets
Dataset RTE MRPC QNLI QQP SST-2 MNLI STSB COLA

Train/Dev 2.49k/277 3.67k/408 105k/5.46k 364k/40.4k 67.3k/872 393k/9.83k 5.75k/1.5k 8.55k/1.04k

into 10 categories with 5k images in each category and 10k images for testing. CiFar-100 consists of
50k natural images for training split into 100 categories with 500 images in each category and 10k
images for testing. MNIST is a dataset of handwritten digits, consisting of 60k training examples
across 10 categories and 10k test examples. For these datasets, we use a 25% strati�ed random
sampling from the training set to create a validation set which is used to select the best model to run
on the holdout set.

We use three large UCI classi�cation datasets CoverType2 ( 510K points,dim = 54), HIGGS3

( 11M points,dim = 28) and HEPMASS4 ( 11M points,dim = 28) to evaluate SNNK.

G EXPERIMENTS

In this section, we provide additional details for various experiments.

G.1 ADDITIONAL DETAILS ON TOY EXPERIMENTS

In the following subsections, we provide additional details on the toy experiments. The aim for
conducting the toy experiments is to showcase the versality of the SNNK-layer that can be used as
a drop-in replacement for MLP layers in different optimization problems.

G.1.1 QPNN

QPNN is a simple PINN-styled 3 layer neural network (Sehanobish et al., 2021). It learns the poten-
tial energy of a quantum system in an unsupervised manner by learning the principle of conservation
of energy (using Schrodinger's equation). The hidden layer of the QPNN is of size128� 128and
in this work, we replace the hidden layer by our SNNK layer with32 random features, resulting

2https://archive.ics.uci.edu/dataset/31/covertype
3https://archive.ics.uci.edu/dataset/280/higgs
4https://archive.ics.uci.edu/dataset/347/hepmass
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