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Abstract

Causal effect estimation is important for numerous tasks in the natural and social
sciences. However, identifying effects is impossible from observational data
without making strong, often untestable assumptions which might not be applicable
to real-world data. We consider algorithms for the partial identification problem,
bounding the effects of multivariate, continuous treatments over multiple possible
causal models when unmeasured confounding makes identification impossible.
Even in the partial identification setting, most current work is only applicable in
the discrete setting. We propose a framework which is applicable to continuous
high-dimensional data. The observable evidence is matched to the implications of
constraints encoded in a causal model by norm-based criteria. In particular, for the
IV setting, we present ways by which such constrained optimization problems can
be parameterized without likelihood functions for the causal or the observed data
model, reducing the computational and statistical complexity of the task.

1 Introduction
Estimating causal effects is a key goal of scientific inquiry, enabling better decision making in
medicine [5], economics [6], epidemiology [23], and beyond [20, 14]. The gold standard for
estimating effects is the randomized controlled trial (RCT). RCTs work because randomization
removes confounding. However, in many cases it is physically, logistically, or ethically impossible
to conduct RCTs. In such cases, causal effects can only be identified under structural assumptions
[20, 12]. When unobservable confounders are present, techniques such as instrumental variable (IV)
models [12, Ch. 16], the front-door criterion [20, Ch. 3] and proxies [22] may be applicable. Even
then, identification requires further assumptions, not just about the graphical structure but about the
functional form of causal associations, e.g., monotonicity [1], additivity [11, 21, 17, 4] or conditions
such as completeness [22], which are not immediately intuitive as they refer to unspecified hidden
variables, and likely do not apply to most real-world scenarios.

When such assumptions fail, effects may still be partially identifiable—i.e., bounded with respect to
the set of models consistent with the data [16]. This task has not received nearly as much attention
as the point estimation problem, despite promising early work in this area [7, 3]. Lately the topic
has sparked some interest. Xia et al. [24] outline a procedure for bounding causal effects with neural
networks but restrict their focus to discrete, low-dimensional data. Duarte et al. [8], Zhang et al.
[25] reduce the bounding problem to a polynomial program, but both assume that variables are
discrete and [25] further assumes that variables are finite. Kilbertus et al. [15] propose a method
for computing causal bounds in IV models with continuous treatments using gradient descent and
Monte Carlo integration. Their procedure is limited to univariate settings. We extend this work
to higher dimensions and different causal structures, replacing the copula formulation of Kilbertus
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et al. [15] with a more generic parameterization that decouples model fitting from changes due to the
unobserved confounder U .

We make the following contributions: (1) We propose a generic, modular form of the effect bounding
problem compatible with a wide range of graphical structures, function classes, and distance measures,
(2) We derive an efficient solution to the problem via constraint sampling and automatic differentiation,
instantiated for the Instrument variable (IV). Critically, we avoid full density matching, instead only
matching the first two moments of a single conditional distribution. (3) We illustrate our method on
synthetic and semi-synthetic datasets, where simulations confirm that our approach computes valid
bounds even in complex settings where common assumptions fail. While we do introduce a general
framework, we focus on ’coarse’ causal graphs, since they are the most useful in practice. The goal is
to allow for a real-world domain expert to be able to deliver results with minimal assumptions about
non-causal aspects of the model.

2 Setup
We first formulate the general setup and then provide a concrete example based on the IV setting.
Assume we observe data from causal model S⋆, with density function pS⋆ (of which we have an
estimate p̂), including a continuous treatment X ∈ Rp and outcome Y ∈ R among the observed
variables. Using Pearl’s do notation [20], the estimand of interest is ox⋆(S⋆) := ES⋆ [Y | do(X =
x⋆)], typically not identified. Our goal will be to minimize/maximize ox⋆(S⋆) over all admissible
causal models S among a (uncountable) model class S . We characterize admissibility via two types of
constraints. First, the missing edges of the assumed directed acyclic graph (DAG) encode conditional
independencies between variables, which we call structural constraints. Second, we have the data
constraint via a distance function dist(pS , p̂) into R+ that measures the (estimated) discrepancy
between model S ∈ S and the ground truth model S⋆.

Hence, we arrive at the following general problem setting for computing the minimum/maximum
causal effect among all models S that are (dist, ϵ)-compatible with the observed data:

min / max
S∈S

ox⋆(S) [obj] (1)

subject to dist(pS , p̂) ≤ ϵ , [c-data] (2)
structural constraints [c-struct] (3)

Consider the instrumental variable model in Figure 1(i). Following the structural causal model
(SCM) notation of Pearl [20], we observe instruments Z ∈ Z ⊂ Rq, treatments X ∈ X ⊂ Rp, and
outcomes Y ∈ Y ⊂ R with a potentially high-dimensional confounded pair of background variables
UX and UY . Here we assume (A1) X⊥̸⊥Z, (A2) Z ⊥⊥{UX , UY }, and (A3) Z ⊥⊥Y | {X,UX , UY }.
We denote the i.i.d. observations that make up p̂ by D = {xi, yi, zi}ni=1. Instead of the common
additive noise or linearity assumptions, we consider a larger class of potentially non-linear, non-
additive functions f : X × UY → Y, g : Z × UX → X that we will later encode in S. We propose
to avoid full density estimation for [c-data] and instead only estimate X |Z and the first two
moments of Y | {X,Z}. This is to say that dist(pS , p̂) here is the matching of the first two moments
of Y | {X,Z}.

3 Method
In the following, we assume the IV setting and describe the method at a high level for brevity.

The Response function framework [2, 15] allows us to sidestep the complexity of dealing with the
potentially infinite dimensional confounders without loss of generality. We call fu(·) := f(·, u) :
X → Y the response function for the fixed value U = u of the background variable U . A distribution
over values of U entails a distribution over response functions fu. Hence, instead of modeling U
and f separately as part of a causal model S, we can directly encode them jointly via a distribution
over response functions. Without restrictions on the functional dependence of X and Y on U , one
cannot obtain non-trivial bounds [9, 10]. Specifically, we choose a family of response functions
F ⊂ {f : X → Y} that captures plausible direct causal effects from X to Y under all possible values
of the confounding variable(s). We then assume a parameterized family of distributions over F ,
denoted by {pFη | η ∈ Rd}. We propose parameterized response functions as linear combinations of a
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Figure 1: (i) The instrumental variable setting.(ii) The graphical model encoding, i.e., a parameterized
generative distribution pη(θ) that satisfies [c-struct] and matches the observed conditional p̂(x | z).
(iii) The response function framework in which we express possible distributions of the confounder
U and functions g, f with a distribution over functions X → Y parameterized by η.

set of non-linear basis functions {ψk : X → Y}Kk=1 for some K ∈ N:

F :=
{
fθ :=

K∑
k=1

θkψk

∣∣∣ θk ∈ R
}
. (4)

Hence, once F is fixed, pFη is fully described as a distribution over θ ∈ RK . For ease of notation, we
summarize ψ := (ψ1, . . . , ψK). The choice of basis allows the practitioner a continuum of choices
regarding assumptions about the functional relationship between X and Y , linear or not.

3.1 Parameterizing S and satisfying [c-struct]

Next, we describe how to leverage the response function framework for a useful parameterization of
causal models S. For clarity, S := {pη | η ∈ Rd; (A1)-(A3) satisfied for (X,Y, Z) ∼ pη}.

Using the parameterization from Equation (4), we may now reformulate (A2) and (A3) as Z ⊥⊥ θ and
Z⊥̸⊥ θ |X . Consequently, we propose the DAG in Figure 1(ii) as a model for θ, encoding S. The
main takeaways here are

(i) The model encodes (A1), (A2) and (A3). (ii) A model for X | {Z,N} can be fit once upfront
from observed data and can be chosen as any invertible conditional model hZ(N) for which h−1

Z=z(x)
exists uniquely for all z ∈ Z and x ∈ X (implying dN = p). We use conditional normalizing
flows[19], but the practitioner has a free choice here..

We model θ with a partially specified multivariate distribution as follows,

θ |N ∼ pη.θ
(
·;µη0

(N),Ση1
(N)

)
, (5)

with mean and covariance functions µη0
(N) and Ση1

(N), parameterized by neural networks with
parameters η0 and η1 in our experiments. The combined parameters η = (η0, η1) now encode our
family of causal models S = {pη | η ∈ Rd}, where Y is implicitly given by the random variable fθ(X)
with X = hZ(N), N ∼ N (0,1), and the required moments of θ |N as in Equation (5).

We now rephrase our main optimization problem as:

min / max
η∈Rd

ox⋆(η) = ψ(x⋆)⊤ EN [µη0
(N)] [obj]

subject to dist(pη, p̂) ≤ ϵ . [c-data]

For the objective equation, we used the law of total expectation. Since N follows a standard Gaussian,
we can easily estimate the remaining expectation from a finite sample. So far, the data have only
entered once when we chose S such that p̂(X |Z) is matched by all pη ∈ S. We still must enforce
the remaining data matching constraints [c-data], which amounts to defining dist.

N is merely a device for parameterizing p(x | z) and p(θ | x, z), and is not meant to have a causal
interpretation
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3.2 Satisfying [c-data]: matching the data
We first factorize p(Z,X, Y ) = p(Y |X,Z) p(X |Z) p(Z). A key advantage of our construction of S
is that we only need to match the factor p(Y |X,Z) to satisfy [c-data] instead of having to perform
density estimation to match high-dimensional distributions via, e.g., f-divergences, integral probability
metrics, Stein discrepancy, adversarial optimization, or variational inference. This matching can be
conveniently formulated as matching expectations of the two distributions when transformed by a
fixed set of dictionary functions {ϕl : Y → R}Ll=1. That is, we want the absolute values of

νl(x, z) = Ey∼p̂(y | x,z)[ϕl(y)]− Eθ∼pη(θ | x,z)[ϕl(fθ(x))] (6)

to be small for all l and all (x, z) ∈ X × Z . To simplify optimization and modeling, in practice
it often suffices to constrain the first few moments of Y | {X,Z}, e.g., to set ϕ1(Y ) = Y and
ϕ2(Y ) = Y 2, which is what we do. This task is much more data efficient than modeling the complete
joint distribution p(X,Y, Z), as required, for example, by generative methods such as GANs [13].
Since X,Z are continuous (and potentially high-dimensional), this would amount to an uncountably
infinite set of constraints. In high dimensions, a naïve discretization of X,Z also fails [15]. Instead,
we aim to make |νl(x, z)| small at a representative, finite set of points in X × Z . Arguably, the
most representative set is a uniformly random subsample of the observed data D of size M . For
notational simplicity, we assume w.l.o.g. that these “support points” are the first M indices. In
other words, defining (by some overloading of notation) the matrix ν ∈ RL×M via νl,j = νl(xj , zj)
(using j = 1, . . . ,M to index the selected support points), we obtain a natural family of overall
distances dist(pη, p̂) = ∥ν∥ for any (semi-)norm ∥ · ∥ on RL×M . In our experiments, we specifically
consider the entry-wise sup-norm ∥ · ∥∞,∞ and the entry-wise 2-norm ∥ · ∥2,2. For ∥ · ∥∞,∞ we
require the absolute value of each entry to be small, i.e., practically have to enforce M ·L constraints,
whereas for ∥ · ∥2,2 we get away with a single overall constraint. Depending on the problem at hand,
the practitioner can choose a larger value of l (consider more moments), choose an entirely different
distance function, or choose norms different to the ones we choose. This again highlights the flexible
and modular nature of our approach and the continuum of assumptions which the framework easily
allows us to make.

For our assumptions, the first expectation in Equation (6) is estimable from the observed data
via ϕ̂l(x, z) ≈ E[ϕl(Y ) |x, z], where ϕ̂l : X × Z → R are regression functions mapping x, z →
E[ϕl(Y ) |x, z] that were learned in a supervised fashion on the training data D. Because hZ was
assumed to be invertible, our modeling choice for S plays nicely with our constraint formulation, in
that we can explicitly write

θ |x, z ∼ Fθ

(
θ;µη0

(
h−1
z (x)

)
,Ση1

(
h−1
z (x)

))
. (7)

For general dictionary functions ϕl, we can again estimate the second expectation in Equation (6)
using finite samples from a fully-specified version of Equation (7). This further simplifies the second
expectation in Equation (6) to the following:

A1,j(η) = ψ(xj)
⊤µη0(nj) , A2,j(η) = ψ(xj)

⊤(Ση1(nj) + µη0(nj)µη0(nj)
⊤)ψ(xj) , (8)

where nj := h−1
zj (xj) for j ∈ [M ].

3.3 Solving the optimization
Taking all the steps from previous sections together, we have νl,j = ϕ̂l(xj , zj)−Al,j(η) and ultimately
arrive at the following non-convex optimization problem with non-convex constraints

min / max
η∈Rd

ox⋆(η) = ψ(x⋆)⊤ EN [µη0
(N)] [obj] (9)

subject to ∥ν∥ ≤ ϵ [c-data]

for which the augmented Lagrangian method with inequality constraints is a natural choice [18,
Sect. 17.4]. We provide a high-level description in Algorithm 1. Note that for the entry-wise
sup-norm ∥ · ∥∞,∞ we aim at enforcing M · L inequality constraints, one for each entry.

4 Experiments
Since ground truth causal effects must be known to properly evaluate the validity of our bounds, we
make use of simulated datasets in a partially identifiable setting.
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Figure 2: Left (lin-2d-weak; comparing norms) Our framework easily allows for different data-
matching criteria (dist). The choices shown here (∥ · ∥∞,∞ and ∥ · ∥2,2) yield comparable and
consistent bounds. Second Left (quad-2d-weak; quadratic f ) Our bounds are always valid, while
the GAN framework gives some invalid bounds Second Right (lin-2d-strong; comparing response
functions) As expected, neural response functions give wider bounds than a linear polynomial basis
because of being less expressive. Right (lin-2d-strong; GAN comparison) Our method reliably
yields valid bounds even under strong confounding, while the GAN framework becomes unstable,
potentially due to difficulties with the bilevel optimization problem.

4.1 Treatment choices

When visualizing results for multidimensional treatments X , we vary the interventional values x⋆
along a single treatment dimension, keeping the remaining components at fixed values. While this
allows us to show continuous treatment effect curves, we note our method can compute bounds for
any multidimensional intervention do(X = x⋆). Specifically, in the results shown here, we vary the
first component of X and fix the values of the other components to their empirical marginal means.
For each figure, we include a kernel density estimate of the marginal distribution of the empirically
observed treatments to distinguish “data poor” from “data rich” regions. In “data poor” regions, we
may expect our bounds to become looser, as less information about the data-matching constraints is
available. Baselines. We compare our method to a naïve regression and the method of Hu et al. [13].
We are unaware of any other competitor capable of estimating bounds in the presence of multivariate,
continuous treatments/instruments/mediators.

• Regression with MLP. We naïvely fit an MLP with quadratic loss to predict outcome Y from the
multidimensional treatment X , a modeling approach that assumes no confounding at all.

• GAN framework. Hu et al. [13] parameterize the causal model (i.e., its exogenous random vari-
ables and structural equations) with neural networks and apply the adversarial learning framework
to search the parameter space. We adjust the model in their code to our examples, but otherwise
leave hyperparameter choices and convergence criteria untouched.

4.2 Implementation choices

Choice of response functions. As described in Equation (4), we choose linear combinations of
non-linear basis functions {ψk}k∈[K]. For our experiments we mostly work with a set of K neural
basis functions, obtained from the last hidden-layer activations of an MLP fit to the observed data
{(xi, yi)}i∈[n], as well as (multivariate) polynomials up to a fixed degree. For two-dimensional
treatments, we use K = 6 and K = 3 for polynomial and neural basis functions, respectively. For
three-dimensional treatments we use K = 10. For our method, we individually compute lower
(▽) and upper (△) bounds at multiple values x⋆ ∈ R for one dimension of the treatment and show
how it compares to the true causal effect ( ) and naïve regression ( ). The lines shown for
lower and upper ( ) bounds are univariate cubic splines fit to the bounds for individual x⋆-grid
values. We use n = 10, 000 i.i.d. sampled datapoints for each experiment and subsample M = 100
datapoints uniformly at random for the data constraints [c-data]. For the X |Z model in the IV
setting we use a quadratic conditional spline normalizing flow.

Getting final bound estimates. For each x⋆, we run 5 optimizations with different seeds each for
the lower and upper bounds. For the final upper bound estimate, we take the maximum of the 5 upper
bound estimates we get, and for the final lower bound estimate we take the minimum of the 5 lower
bound estimates we get. We follow the same process for the GAN bounds.
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4.3 Results
We focus on datasets where the true effect is a linear or quadratic polynomial function of the
treatment X . A glossary of datasets can be found in Appendix B, along with exact structural
equations for each setting. Figure 3 provides a short description of the naming logic.

lin-2d-strong. This dataset is simulated from an IV setting, where the true effect Y | do(X) is linear
in a two-dimensional treatment X . The naïve regression E[Y |X] differs substantially from the true
effect, indicating strong confounding (see, Figure 2 (Second right)). We start by assessing the effect
of the flexibility of response functions on our bounds in Figure 2 (bottom left). Choosing less flexible
basis functions (polynomials) yields tighter bounds, highlighting the flexibility of our approach in
obtaining more informative bounds when more restrictive assumptions are made. Our method can
also accommodate alternative constraint formulations and slack parameters. While sometimes loose,
especially for flexible basis functions (MLP) and in “data poor” regions towards the tails of the
empirical distribution of observed treatments, our bounds contain the true causal effect for all x⋆.
This validity holds for all other experiments as well. Next, Figure 2 (Right) compares our approach
to the GAN framework baseline. First, we note that methods that fit a model and bounds at the same
time, like Hu et al. [13], essentially need to solve a bilevel optimization problem, where the same
parameters are shared in the definition of the constraints (which require optimizing a measure of
fitness) and the causal quantity of interest (which requires optimizing a different problem). Such a
strategy can be potentially more prone to optimization and regularization challenges. Our goal in
comparing to Hu et al. [13] is to show that our framework simplifies constraints through structural
encoding and avoids full density estimation while giving comparable or better results than those from
the GAN framework. Indeed, Figure 2 (bottom right) shows that despite the flexible neural basis
functions, our approach can yield tighter bounds and avoid the instabilities observed in the GAN
approach when we move towards the tails of the observational distribution.

lin-2d-weak. This is an IV setting with weak confounding. In Figure 2 (Left) we show how our
bounds behave under different choices of dist, namely under the entry-wise ∥ · ∥∞,∞ norm (which
results inM ·L constraints in the augmented Lagrangian) versus the entry-wise ∥·∥2,2 norm (yielding
only a single constraint). The obtained bounds are compatible and comparable, indicating relatively
mild effects of the choice of the data-matching criterion dist.

quad-2d-weak. This is an IV setting with weak confounding and quadratic true effect. We do note
that in this instance, the bounds given by our method are not as smooth in the data poor regions.
However, our bounds are always valid, while the GAN framework gives some invalid bounds

5 Discussion
Limitations. After parameterization, the optimization problem in Equation (1) will generally result
in a non-convex objective with non-convex constraints. Therefore, our proposed gradient-based local
optimization may not converge to a global optimum, possibly rendering our bounds overly tight.
Empirically, we do not observe evidence of consistently getting stuck in bad local optima. Because
we optimize both bounds individually for each value of x⋆, our method may be computationally
expensive when the intervention space is very large. However, it is well-suited for scenarios where
we want reliable bounds on a well-defined set of plausible interventions. Finally, we have not
accounted for the uncertainty of our bounds. Confidence or credible intervals for both extrema can
help practitioners evaluate the reliability of causal inferences, and are an interesting direction for
future work.

Conclusion. Causal modeling inevitably involves a trade-off between the strength of input assump-
tions and the specificity of resulting inferences. If assumptions do not correspond to the real world,
the inference that follows is unwarranted. Our framework allows for a real-world domain expert
to focus more on the coarse structure of the problem and assumptions about the function space, in
contrast to a complex causal graph that is too prone to misspecification, and to deliver results with
minimal assumptions about non-causal aspects of the model, while also having the flexibility of
making stronger assumptions when appropriate.

We have introduced a stochastic causal program for bounding treatment effects in partially identifiable
settings. Our approach does not rely on the typical assumptions of linearity, monotonocity, or

For generality, we use the neural basis functions for all experiments where we compare to the GAN
framework, as they are expected to give wider bounds than polynomials.
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additivity. We presented a novel parameterization for decoupling observed from unobserved potential
outcomes, and derived an efficient procedure for optimizing over a set of causal models consistent
with the data. Experiments demonstrate that our method produces valid and informative bounds in a
wide range of settings, including with continuous and multidimensional variables.

While only the IV setting has been presented here, the method can be more widely applicable, and
has already been applied to a leaky mediator setting in a longer version of the paper. The next steps
would be to apply the method to a real world dataset. Causal conclusions of real world implications
deserve thinking and exposition that are not easily summarized by a non-synthetic benchmark, and
one of our goals in wanting to present in this workshop is to find interested experts to do exactly
that.
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A Pseudocode
Algorithm 1 showcases a possible implementation of the partial identification procedure.

B Glossary of Synthetic Datasets
We describe here the synthetic datasets we use in our experiments.

lin - 2d - strong

Figure 3: Naming logic for the datasets. The first segment says whether y is linear or quadratic in x.
The second segment tells the dimension of the treatment. The third segment denotes the strength of
the confounding, strong or weak.

We use various polynomial datasets where the causal effect is a polynomial function of a single or
multidimensional treatment. We provide the construction of each of these here. Every node except Y
(outcome) is allowed to be multi-dimensional. If a node, say C, is multi-dimensional, we index the
dimension with a subscript. That is, we write C = (c1, c2). Figure 3 visually describes the naming
logic behind the datasets to make the exposition clearer.

The noises, confounder, and instruments follow

c, z, ex ∼ N 2(0, 1)

ey ∼ N (0, 1)

• lin-2d-strong (fy linear in x, strong non-additive confounding)

fx(z, c, ex) = 0.5z + 2c+ ex
fy(x, c, ey) = x1 + x2 − 3(x1 + x2)(c1 + c2) + ey
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Algorithm 1 Computing upper or lower bounds on E[Y | do(X = x⋆)] in the IV setting.

Require: dataset D = {(zi, xi, yi)}ni=1; constraint functions {ϕl : Y → R}Ll=1; basis functions {ψk : X →
Y}Kk=1; norm ∥ · ∥ for dist; batchsize for Monte Carlo B; number of support points M ; tolerance ϵ > 0

Setup: One-time computations shared for different x⋆ values

1: Fit (invertible) conditional normalizing flow X = hZ(N) from data D for N ∼ N (0,1p)

2: Fit MLPs ϕ̂1 : xi, zi → yi and ϕ̂2 : xi, zi → y2i by minimizing the squared loss from data D
3: subsample M indices from [n] (uniform, no replacement) ▷ “support points”, w.l.o.g. use [M ]

Optimization: performed separately for lower and upper bound for each x⋆

4: minimize OBJECTIVE(η) subject to CONSTRAINT(η) ≤ ϵ

5: function OBJECTIVE(η)
6: ox⋆(η)← ψ(x⋆)⊤ 1

B

∑B
j=1 µη0(nj) with nj ∼ N (0,1p) ▷ differentiable w.r.t. η

7: return ±ox⋆(η) ▷ objective, ± for lower/upper bound

8: function CONSTRAINT(η)
9: nj ← h−1

zj (xj) for j ∈ [M ] ▷ invert X |Z model to infer “noises”

10: A1,j(η)← ψ(xj)
⊤µη0(nj) for j ∈ [M ] ▷ moments implied by model

11: A2,j(η)← ψ(xj)
⊤
(
Ση1(nj) + µη0(nj)µη0(nj)

⊤
)
ψ(xj) for j ∈ [M ]

12: νl,j ← ϕ̂l(xj , zj)−Al,j(η) for l ∈ {1, 2}, j ∈ [M ] ▷ constraint matrix
13: return ∥ν∥

• lin-2d-weak (fy linear in x, weak non-additive confounding)

fx(z, c, ex) = 2z + c+ ex
fy(x, c, ey) = 5x1 + 6x2 − x1(c1 + c2) + ey

• quad-2d-weak (fy quadratic in x, weak non-additive confounding)

2fx(z, c, ex) = 2z + c+ ex

fy(x, c, ey) = 5x21 + 6x22 − (x1 + x2)(c1 + c2) + ey
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