51

52

53

Collaborate to Adapt: Source-Free Graph Domain Adaptation via Bi-directional Adaptation

Anonymous Author(s)

ABSTRACT

Unsupervised graph domain adaptation has emerged as a practical solution to transfer knowledge from a label-rich source graph to a completely unlabelled target graph, when there is a scarcity of labels in target graph. However, most of existing methods require a labelled source graph to provide supervision signals, which might not be accessible in the real-world scenarios due to regulations and privacy concerns. In this paper, we explore the scenario of source-free unsupervised graph domain adaptation, which tries to address the domain adaptation problem without accessing the labelled source graph. Specifically, we present a novel paradigm called GraphCTA, which performs model adaptation and graph adaptation collaboratively through a series of procedures: (1) conduct model adaptation based on node's neighborhood predictions in target graph considering both local and global information; (2) perform graph adaptation by updating graph structure and node attributes via neighborhood constrastive learning; and (3) the updated graph serves as an input to facilitate the subsequent iteration of model adaptation, thereby establishing a collaborative loop between model adaptation and graph adaptation. Comprehensive experiments are conducted on various public datasets including transaction, social, and citation graphs. The experimental results demonstrate that our proposed model outperforms recent source free baselines by large margins. Our source code and datasets are available at https://anonymous.4open.science/r/GraphCTA-code.

KEYWORDS

Graph Representation Learning, Graph Domain Adaptation

ACM Reference Format:

Anonymous Author(s). 2024. Collaborate to Adapt: Source-Free Graph Domain Adaptation via Bi-directional Adaptation. In *Proceedings of the ACM Web Conference 2024 (WWW '24), May 13 – May 17, 2024, Singapore.* ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/nnnnnnnnnnnnn

1 INTRODUCTION

The Web is a complex network of interconnected entities, which can be effectively represented using graph structures. Graph techniques have demonstrated impressive performance in various web applications such as online article classification [22, 49], web-scale recommendation systems [10, 59], and anomaly detection [9, 45], etc. Undoubtedly, Graph Neural Networks (GNNs) have emerged as

54 fee. Request permissions from permissions@acm.org.

55 WWW '24, May 13 – May 17, 2024, Singapore

56 © 2024 Association for Computing Machinery.

57 https://doi.org/10.1145/nnnnnnnnn
58

a powerful tool when handling graph-structured data across a broad range of applications. Despite its success, the performance improvement often comes at the cost of utilizing sufficient high-quality labels. Unfortunately, obtaining enough labels for graph-structured data could be a laborious and time-consuming task. For instance, annotating the properties of molecular graphs requires expertise in chemical domains and rigorous laboratory analysis [19]. To alleviate the burden of laborious data annotations, Domain Adaptation (DA) presents an attractive option to transfer the knowledge learned from the labelled source domain to the unlabelled target domain. However, GNN models trained on source domains typically experience significant performance degradation when directly applied to target domains, due to the issue of domain shift [3, 63, 69]. Considerable endeavors have been dedicated to learning domain invariant representations, thereby enhancing the model's ability to generalize across different domains.

59

60

61 62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Recently, two mainstream strategies have been explored for unsupervised graph domain adaptation. One research line is to explicitly minimize the distribution discrepancy between the source and target representations [42, 52, 60]. How to define an appropriate discrepancy metric plays an important role in this kind of methods. Two commonly adopted measures to match cross-domain representations are the maximum mean discrepancy [30] and central moment discrepancy [61]. Another direction is to learn domain invariant representations via adversarial training [7, 41, 53], which achieves implicit representation alignment through a domain discriminator. Its flexibility of not requiring a predefined metric has made it gain increased popularity. Nonetheless, these joint learning approaches require the authorization to access the source data, which poses great challenges regarding data privacy and intellectual concerns. In most practical scenarios, the only accessible resources for domain adaptation are unlabelled target data and a model trained on source data, which is named source-free unsupervised domain adaptation.

Let's imagine a situation where a financial institution operates globally, processing a large number of transactions from domestic and overseas sources. Given the sensitivity of customer information involved in these transactions, privacy regulations restrict the institution's access to transaction data across different countries, such as the European Union General Data Protection Regulation (EU GDPR) and Singapore's Personal Data Protection Act (PDPA), etc. By utilizing source-free graph adaptation, the financial institution can adapt fraud detection models that have been trained on the domestic transaction graph to be applicable to overseas graphs, while respecting privacy regulations that limit the sharing of transaction data across countries. In contrast, the aforementioned source-need domain adaptation models are not applicable in this scenario due to significant privacy concerns associated with accessing and utilizing the labelled source data.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a

ACM ISBN 978-x-xxxx-x/YY/MM...\$15.00 https://doi.org/10.1145/nnnnnn.nnnnnn

While source-free unsupervised domain adaptation has been 117 extensively studied for image and text data [6, 24, 25, 27, 67], there 118 has been limited investigation of source-free adaptation techniques 119 for the non-iid graph-structured data. It involves two primary chal-120 lenges in this scenario: (1) How can adaptation be achieved without 121 122 accessing the labelled source graph? (2) How to mitigate distribution 123 shifts induced by node features as well as graph structures? For in-124 stance, in the context of citation networks, when the topic of a 125 research filed gains increasing popularity, such as the rise of ar-126 tificial intelligence and large language models, the node features (i.e., the contents of the papers) and graph structures (i.e., the cita-127 tion relationships between the papers) might undergo significant 128 changes over the time. The complex interactions among different 129 nodes present great challenges when attempting to adapt the GNN 130 model trained on an earlier version of the citation network (e.g., 131 before 2010) to a more recent version (e.g., after 2010). Meanwhile, 132 without graph labels for supervision, the patterns learned from the 133 source graph may not be suitable for the target graph, which suffers 134 135 source hypothesis bias and results in false predictions in the target graph. One recent work SOGA [34] performs source-free domain 136 adaptation on graphs, but it only focuses on the local neighbor 137 138 similarity within the target graph, overlooking the global informa-139 tion and the inherent graph discrepancy. Hence, it is necessary to design source-free graph domain adaptation techniques that specif-140 ically tackle the challenges posed by graph-structured data, while 141 142 overcoming the limitations of existing approaches.

To address the aforementioned challenges, we propose a novel 143 framework abbreviated as GraphCTA (Collaborate To Adapt), which 144 achieves source-free graph domain adaptation via collaboratively 145 bi-directional adaptations from the perspectives of GNN model and 146 graph data. More specifically, to learn node representations that 147 148 are invariant to arbitrary unknown distribution shifts, GraphCTA generates node representations with selected node neighborhoods 149 and complemented node features. Then, we perform model-view 150 adaptation according to its local neighborhood predictions and the 151 global class prototypes. Memory banks are used to store all target 152 representations and their corresponding predictions through mo-153 mentum updating [17], which generates robust class prototypes 154 155 and ensures consistent predictions during the training stage. To filter out noisy neighbors and complement node features, we further 156 propose to conduct graph-view adaptation based on the model's 157 predictions and the information stored in the memory banks. Partic-158 159 ularly, we derive pseudo labels from high-confidence target samples and utilize neighborhood contrastive learning to guide the graph 160 161 adaptation procedure. By using the updated graph as input, we 162 enable the next round of model adaptation and establish a collaborative loop between the model and the graph adaptation. Theoretical 163 analysis shows that adapting model and graph data collaboratively 164 can reduce the upper bound of target domain prediction error in Ap-165 pendix A. We comprehensively evaluate GraphCTA on multiple 166 benchmarks, and the experimental results demonstrate the effec-167 168 tiveness of our proposed approach, which can even outperform source-need baselines in various scenarios. 169

To summarize, the main contributions are as follows:

170

171

172

173

174

• We investigate the problem of source-free unsupervised graph domain adaptation without access to labelled source

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

graphs during the target adaptation, which is more practical in real-world scenarios and less explored in the literature of graph neural networks.

- To the best of our knowledge, we are the first to perform model adaptation and graph adaptation collaboratively, which is model-agnostic and can be applied to numerous GNN architectures.
- Extensive experimental results show the effectiveness of our method, with GraphCTA outperforming the SOTA base-lines by an average of 2.14% across multiple settings.

2 RELATED WORK

Graph Neural Networks. GNNs have led to significant advancements in graph-related tasks, which incorporate graph structural information via message passing mechanism. Various models have been proposed to enhance their performance and extend their applications. In general, they can be classified into two categories: spectral based and spatial based methods. For spectral approaches, the graph convolution is performed on the spectrum of graph Laplacian. Among them, ChebNet [8] leverages Chebyshev polynomials to approximate graph filters that are localized up to K orders. ARMA [4] uses auto-regressive moving average filter to capture global graph structure. GCN [22] simplifies ChebNet by truncating the Chebyshev polynomial to the first-order, leading to high efficiency. As for spatial methods, the graph convolution is designed to directly aggregate the neighborhood information of each node. For instance, GraphSAGE [16] proposes various aggregator architectures (i.e., mean, LSTM) to aggregate its local neighborhood. GAT [49] employs an attention mechanism to adaptively aggregate node's neighborhood representations. SGC [51] further simplifies the graph convolution by eliminating nonlinearities and collapsing weight matrices between consecutive layers. More detailed introduction can be found in various comprehensive surveys on graph neural networks [54, 68].

Domain Adaptation. Domain adaptation aims to enhance the model's ability to generalize across domains, which transfers the knowledge learned from a labelled source domain to unlabelled target domain. The model's performance may suffer from a significant degradation in target domain due to the domain shifts. To address this challenge, many approaches are proposed to learn domain invariant representations in the field of computer vision and natural language processing [50, 58]. Among them, [30, 32, 33] try to explicitly align source and target feature distributions via minimizing maximum mean discrepancy. Similarly, [44, 61, 62] utilize central moment discrepancy to match high order statistics extracted by neural networks. Instead of directly aligning feature distributions, [18, 31, 47] employ adversarial training strategy to generate indistinguishable source and target representations, where domain invariance is formulated as a binary domain classification problem. All the above mentioned methods assume both source and target data are available during the adaptation procedure, which may not be feasible in real-world scenarios due to privacy concerns. Some recent works [6, 24, 25, 27] investigate source-free domain adaptation, where only well-trained source model and unlabelled target domain data are accessible. Specifically, SHOT [25] utilizes pseudo

labeling strategy associated with entropy minimization and infor-mation maximization to optimize the model on target domain. NRC [57] encourages consistency via neighborhood clustering, where reciprocal neighbors and expanded neighborhoods are incorpo-rated to capture their local structure. JMDS [24] robustly learns with pseudo-labels by assigning different confidence scores to the target samples. However, these methods are specifically designed for independent and identically distributed data, which may not be appropriate for non-iid graph-structured data.

Graph Domain Adaptation. Graph provides a natural way to represent the intricate interactions among different entities, which leads to non-trivial challenges for domain adaptation tasks because of its non-iid properties. There have been some recent efforts that focus on unsupervised graph domain adaptation [7, 34, 52, 53, 60]. Particularly, [42] follows the idea of feature alignments in feature space and utilizes maximum mean discrepancy to yield domain invariant node representations. UDAGCN [53], ACDNE [41] and AdaGCN [7] adopt the techniques of adversarial training to mitigate the distribution divergence, where the difference lies at how they generate effective node representations. ASN [64] disentangles the knowledge into domain-private and domain-shared information, then adversarial loss is adopted to minimize the domain discrepancy. GRADE [52] employs graph subtree discrepancy to quantify the distribution shift between source and target graphs. SpecReg [60] proposes theory-grounded algorithms for graph domain adaptation via spectral regularization. Likewise, the aforementioned methods rely heavily on the supervision signals provided by the labelled source graph, which is usually inaccessible due to privacy preserv-ing policies. Lately, SOGA [34] studies source-free unsupervised graph domain adaptation through preserving the consistency of structural proximity on the target graph. Nevertheless, it follows existing works that perform model adaptation, neglecting the fact that the domain shift is caused by the target graph's property. In contrast, our proposed GraphCTA conducts model adaptation and graph adaptation collaboratively to address this problem.

3 THE PROPOSED GRAPHCTA

3.1 Preliminary and Problem Definition

For source-free unsupervised graph domain adaptation, we are provided with a source pre-trained GNN model and an unlabelled target graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, where \mathcal{V} and \mathcal{E} denote the node and edge sets, respectively. The edge connections are represented as adjacent matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{A}_{i,j} = 1$ if v_i connects to v_j , while the node feature matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ specifies the features of the nodes. Here, n indicates the number of nodes and d is the dimension of the node features. In this paper, we mainly focus on a C-class node classification task in the closed-set setting, where the labelled source graph and unlabelled target graph share the same label space. We further partition the GNN model into two components: the feature extractor $f_{\theta}(\cdot)$ that maps graph \mathcal{G} into node representation space $\mathbb{R}^{n \times h}$ and the classifier $g_{\phi}(\cdot)$ which projects node representations into prediction space $\mathbb{R}^{n \times C}$. Given the aforementioned notations, we can provide a formal definition of our problem as follows:

Definition 3.1 (Source-Free Unsupervised Graph Domain Adaptation). Given a well-trained source GNN model $\kappa = f_{\theta} \circ g_{\phi}$ and an unlabelled target graph G under the domain shift, our goal is to adapt the source pre-trained model to perform effectively on the target graph without any supervision, where the GNN architecture and domain shift can be arbitrary.

To adapt the given source pre-trained model, we address the aforementioned challenges by optimizing the GNN model as well as the target graph data to reduce the gap between source and target domains. Figure 1 provides an overall view of our proposed GraphCTA, which consists of two key components: a *model adaptation* module and a *graph adaptation* module. In the subsequent sections, we will elaborate the details of different components.

3.2 Model Adaptation with Local-Global Consistency

Domain-shift Invariant Node Representation Learning. To mitigate the source hypothesis bias in the target graph, we optimize the source pre-trained GNN model's parameters to generate domain-shift invariant node representations. As GNN models mainly involve propagating and aggregating information from its structural neighborhood, we propose to complement node features and adaptively select node neighborhood when modeling their interactions. Specifically, let $Z \in \mathbb{R}^{n \times h}$ denote the node representations extracted by $f_{\theta}(\cdot)$, which is updated as follows:

$$\mathbf{z}_{i}^{l} = \text{Update}^{l}(\mathbf{z}_{i}^{l-1}, \text{Agg}^{l}(\{\mathbf{z}_{u}^{l-1} | u \in \psi(\mathbf{A}_{i})\})),$$
(1)

where \mathbf{z}_i^l is node v_i 's representation at layer l with $\mathbf{z}_i^0 = \delta(\mathbf{x}_i)$. \mathbf{A}_i represents v_i 's neighborhood. $\delta(\cdot)$ and $\psi(\cdot)$ indicate the node feature complementary and neighborhood selection functions, which will be introduced in Section 3.3. $AGG(\cdot)$ refers to an aggregation function that maps a collection of neighborhood representations to an aggregated representation. $UPDATE(\cdot)$ combines the node's previous and aggregated representations. For readability, we will omit the superscript l and use \mathbf{Z} to denote the node representations in the following sections.

Neighborhood-aware Pseudo Labelling. Since the target representations extracted from the source pre-trained model already form semantic clusters, we propose to achieve model adaptation by encouraging neighborhood prediction consistency. The pseudo labels are generated by aggregating the predicted neighborhood class distributions. However, the local neighborhood could produce noisy supervision signal due to the domain-shift. We further assign a confidence score to each target sample according to the semantic similarities with global class prototypes, which mitigates the potential negative influence introduced by its local neighbors. To generate stable class prototypes and prediction distributions, we build target representation memory bank $\mathcal{F} = [\mathbf{z}_1^m, \mathbf{z}_2^m, \cdots, \mathbf{z}_n^m]$ and predicted distribution memory bank $\mathcal{P} = [\mathbf{p}_1^m, \mathbf{p}_2^m, \cdots, \mathbf{p}_n^m]$, which are updated via a momentum strategy during the training procedure:

$$\mathbf{z}_i^m = (1 - \gamma)\mathbf{z}_i^m + \gamma \mathbf{z}_i,\tag{2}$$

where γ is the momentum coefficient. For memory bank \mathcal{P} , we first sharpen the output predictions $\mathbf{p}_i = \mathbf{p}_i^2 / \sum_{j=1}^n \mathbf{p}_j^2$ to reduce the ambiguity in the predictions. $\mathbf{p}_i = g_\phi(\mathbf{z}_i) \in \mathbb{R}^C$ represents the predicted class distribution. Then, the values stored in the memory bank \mathcal{P} are updated following a similar procedure in Eq. (2).

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

l_{ll}¢ Update Mode1 Model Update Adaptation Model Param Adaptation Model Par Memory Bank Memory Bank Update Memory Bank -0 A)-K-Nearest K-Nearest D Neighbours E Neighbours B 6 \mathcal{L}_G \mathcal{L}_G Update Update Graph Graph Adaptation Struct/Attrs Adaptation Struct/Attrs

Figure 1: The overall architecture of our proposed GraphCTA framework, which is composed of model adaptation and graph adaptation.

With the neighborhood information, we compute the one-hot

$$\hat{\mathbf{p}}_i = \mathbb{1}[\arg\max_c(\frac{1}{|\mathcal{N}(i)|}\sum_{j\in\mathcal{N}(i)}\mathbf{p}_j^m)],\tag{3}$$

where $\mathbb{1}[\cdot]$ is the one-hot function that encodes pseudo labels. $\mathcal{N}(i) = \{v_i | j \in \psi(\mathbf{A}_i)\}$ denotes the selected node neighborhood of node v_i and \mathbf{p}_i^m is the predicted distribution stored in the memory bank \mathcal{P} . As the pseudo label depends heavily on the graph's local structure and does not take the global contextual information into consideration, it could jeopardize the training process and result in erroneous classifications. Thus, we include global class-wise prototypes to weigh the generated pseudo labels. The prototypes provide an estimation of the centroid for each class, which can be calculated as follows:

pseudo label distribution of node v_i as follows:

$$\mu_{c}^{m} = \frac{\sum_{i=1}^{n} \mathbb{I}(\hat{\mathbf{p}}_{i,c} = 1) \cdot \mathbf{z}_{i}^{m}}{\sum_{i=1}^{n} \mathbb{I}(\hat{\mathbf{p}}_{i,c} = 1)},$$
(4)

where $\mathbb{I}(\cdot)$ is the indicator function. \mathbf{z}_i^m represents the node representation stored in the memory bank \mathcal{F} . Then, we define the confidence score for each sample as the semantic similarity between the target representation and its corresponding pseudo class prototype calculated from memory bank. Here, we choose cosine similarity for simplicity:

$$\operatorname{im}(\mathbf{z}_i, \boldsymbol{\mu}_c^m) = \frac{\mathbf{z}_i^\top \boldsymbol{\mu}_c^m}{\|\mathbf{z}_i\|_2 \cdot \|\boldsymbol{\mu}_c^m\|_2},\tag{5}$$

where it gives high confidence scores whose representations are consistent with class-wise prototypes.

S

Local-Global Consistency Optimization. Afterwards, we finetune the model's parameters by optimizing the weighted crossentropy loss between the pseudo label distribution and the predicted class distribution:

$$\mathcal{L}_{\text{CE}} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{c=1}^{C} \operatorname{sim}(\mathbf{z}_i, \boldsymbol{\mu}_c^m) \cdot \hat{\mathbf{p}}_{i,c} \log(\mathbf{p}_{i,c}).$$
(6)

Additionally, we further consider instance-prototype alignment inspired by recent contrastive learning [5, 17, 43] to regularize the

learned representations, which maximizes the similarity between the node representation and its corresponding prototype. The remaining C - 1 prototypes and n - 1 instance representations are regarded as negative pairs that are pushed apart in the latent space. The contrstive loss can be formulated as the following InfoNCE loss [5]:

$$\mathcal{L}_{\rm CO} = -\frac{1}{n} \sum_{i=1}^{n} \log \frac{\exp(\operatorname{sim}(\mathbf{z}_i, \boldsymbol{\mu}_c^m) / \tau)}{\{\sum_{j=1}^{C} \mathbb{I}(j \neq c) \exp(\operatorname{sim}(\mathbf{z}_i, \boldsymbol{\mu}_j^m) / \tau) + \sum_{k=1}^{n} \mathbb{I}(k \neq i) \exp(\operatorname{sim}(\mathbf{z}_i, \mathbf{z}_k) / \tau)\}}, \quad (7)$$

where the temperature τ is a hyper-parameter. Note that the contrastive loss is also able to model the local and global information simultaneously. By integrating these two losses, we can obtain the final objective for model adaptation as follows:

$$\mathcal{L}_{\rm M} = (1 - \lambda)\mathcal{L}_{\rm CE} + \lambda\mathcal{L}_{\rm CO},\tag{8}$$

where λ is the trade-off parameter.

3.3 Graph Adaptation with Self-training

As we have discussed earlier, the performance degradation in target graph can be attributed to the presence of source hypothesis bias and domain shift. Although the model adaptation module can help alleviate the source hypothesis bias to some extent, the underlying domain shift originates from the characteristics of the input graph data. However, most existing approaches mainly focus on designing model adaptation techniques [34, 52, 53, 60], neglecting the fact that the domain shift is aroused from the target graph itself. Therefore, we propose to perform graph adaptation by refining the graph data to make them more compatible between the domains.

Node Feature and Neighborhood Refinement. Specifically, we introduce two simple transformation functions: $X' = \sigma(X)$ which produces new node features by adding or masking values in X, and $A' = \psi(A)$ which generates new adjacent matrix via connecting or deleting edges in A. The goal of graph adaptation module is to find optimal functions that can reduce the domain shift. However, it is a non-trivial task due to the absence of supervision and the unavailability of source graph. While a variety of choices

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

are available to alter the graph data, for instance, the graph structure
learning mechanisms [11, 20, 29, 65], we adopt two extremely simple
and straightforward policies below. More choices are discussed in

ablation study Section 4.3.2.

468

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Given node feature matrix X, we formulate node feature transfor-469 470 mation as $X' = \sigma(X) = X + \Delta X$, which utilizes an additive function to complement node features. $\Delta \mathbf{X} \in \mathbb{R}^{n \times d}$ are continuous free pa-471 rameters and provide high flexibility. This approach enables either 472 473 the masking of node features to zeros or the modification of these 474 features to alternate values. Similarly, we model the graph structure as $\mathbf{A}' = \psi(\mathbf{A}) = \mathbf{A} \oplus \Delta \mathbf{A}$, where $\Delta \mathbf{A} \in \mathbb{R}^{n \times n}$ represents a binary 475 matrix to refine the node's neighborhood and \oplus means the element-476 wise exclusive OR operation (i.e, XOR). That's to say, if the elements 477 in A and ΔA are both 1, the XOR operation returns 0 and results 478 in edge deletion. If elements in A and ΔA are 0 and 1 respectively, 479 480 it leads to the edge additions. To prevent significant deviations from the original graph structure, we impose a constraint on the 481 maximum number of modified entries in the adjacency matrix to be 482 483 less than a predetermined budget \mathcal{B} , i.e., $\sum \Delta A \leq \mathcal{B}$, which reduces the search space and is computation efficient. 484

Self-Training with Neighborhood Contrastive Learning. In order to optimize the free-parameters ΔX and ΔA , we propose to employ a self-training mechanism to guide the graph adaptation procedure, since the ground-truth labels are not available under this setting. In particular, we first identify a set of reliable sample pairs via its prediction confidence as follows:

$$\mathcal{D} = \{ (v_i, \hat{y}_i) | \hat{y}_i = \arg\max_c \mathbf{p}_{i,c} \land \max(\mathbf{p}_i) > \omega, v_i \in \mathcal{V} \}, \quad (9)$$

where a predefined threshold ω is utilized to select the high confidence target samples (i.e., $\omega = 0.9$) and \hat{y}_i denotes its corresponding pseudo label. Different from model adaptation module that leverages local neighborhood to construct pseudo labels, here we solely rely on the sample's own prediction since our goal is to refine the graph structure. In this scenario, its structural neighborhood cannot be regarded as a reliable supervision signal. To exploit the intrinsic local structure in the representation space, we further incorporate neighborhood constrastive learning to push similar samples closer and dissimilar samples apart. Then, the positive samples are generated by extracting *K*-nearest neighbors in memory bank \mathcal{F} via cosine similarity as follows:

$$\chi_i = \{\mathbf{z}_j^m | \arg \operatorname{topk}(\operatorname{sim}(\mathbf{z}_i, \mathbf{z}_j^m)), \mathbf{z}_j^m \in \mathcal{F}\},$$
(10)

where topk(\cdot) is a function returning the most similar *K* samples. Next, we use those samples whose predicted labels are different from \mathbf{p}_i to form negative samples:

$$\Psi_i = \{\mathbf{z}_j^m | \arg\max_c \mathbf{p}_i \neq \arg\max_c \mathbf{p}_j^m, \mathbf{z}_j^m \in \mathcal{F} \land \mathbf{z}_j^m \notin \chi_i\}, \quad (11)$$

where \mathbf{p}_i^m and \mathbf{z}_i^m are from memory banks. Through this way, the knowledge gained from the model adaptation module can facilitate the learning process of graph adaptation. To sum up, the overall loss function for graph adaptation is:

$$\mathcal{L}_{G} = -\frac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} \log(\mathbf{p}_{i,\hat{y}_{i}}) - \alpha \sum_{i=1}^{n} \sum_{j \in \chi_{i}} \sin(\mathbf{z}_{i}, \mathbf{z}_{j}^{m}) +\beta \sum_{i=1}^{n} \sum_{k \in \Psi_{i}} \sin(\mathbf{z}_{i}, \mathbf{z}_{k}^{m}), \qquad (12)$$

where α and β are hyper-parameters to balance the cross-entropy and the neighborhood contrastive learning loss. Since ΔA is binary and constrained, we relax the binary space to a continuous space $[0, 1]^{n \times n}$ and employ projected gradient descent (PGD) [14, 55] for updating ΔA . More details are given in Appendix B.

3.4 The Training Procedure

We employ an alternative training strategy to iteratively update these two collaborative components, i.e., model adaptation module and graph adaptation module. Specifically, in each training epoch, we first update the parameters of graph adaptation module κ to minimize \mathcal{L}_M while keeping ΔX and ΔA fixed. Then, ΔX and ΔA are updated to optimize \mathcal{L}_G while keeping model κ fixed. To facilitate the understanding of our training procedure, we provide a detailed description of the whole process in Algorithm 1 at Appendix C, which outlines the step-by-step process we have adopted to update the collaborative components.

3.5 Complexity Analysis

Assume that we have a graph consisting of *n* nodes and *e* edges, the node representation dimension is set as h and the number of graph neural network layers is L. Then, the time complexity of feature encoder is $O(Lnh^2 + Leh)$. In model adaptation, generating pseudo labels has the time complexity of O(eC + nC), where C is the number of class. The complexity of calculating prototypes and confidence scores is O(nh + nhC). The contrastive loss has the time complexity of $O(n^2h)$. In graph adaptation, node feature transformation has the complexity of O(nd), where d is the node feature dimension. The time complexity of structure refinement is constrained to O(e) and the neighborhood contrastive learning has the time complexity of $O(n^2h)$. When employing batch updating, the time complexity of contrastive learning module can be reduced to $O(B^2h)$, where B represents the batch size. If we further take the localization properties of the graph into consideration, the time complexity for computing K-nearest neighbors in memory bank can be reduced to O(Tnd), where T is average node neighbors within node's t-hop. Thus, the overall time complexity of our proposed GraphCTA is within the same scope of vanilla GNN.

4 EXPERIMENTS

4.1 Experimental Settings

Datasets. Our proposed GraphCTA is evaluated on three public datasets with node classification task, and a summary of their statistics is provided in Table 1, which includes three types of distribution shifts. Among them, **Elliptic**¹ [36] is a temporal bitcoin transaction graph containing a sequence of graph snapshots, where each edge represents a payment flow and each node is labelled as licit, illicit or unknown. Then, we construct three domains by grouping the first 10 start snapshots as Elliptic-S, the middle 10 snapshots as Elliptic-M and the last 10 end snapshots as Elliptic-E according to their chronological order. In this scenario, the model needs to handle the temporal shifts, since the distributions for node features and edges are highly correlated with time. **Twitch**² [38] consists of several social networks collected from different regions, in which the nodes are users and the edges denote their friendships. We choose three

¹https://www.kaggle.com/datasets/ellipticco/elliptic-data-set

 $^{^{2}}https://github.com/benedekrozemberczki/datasets {\sc witch-social-networks}$

582

583

584

585

586

587

588

589

590

591

592

Anon

639

640

641

Table 1. Dataset Statistics.						
Category	Dataset	Distribution Shift	#Nodes	#Edges	#Features	#Classes
	Elliptic-S		58,097	71,732		
Transaction	Elliptic-M	Temporal Level	34,333	38,171	165	3
	Elliptic-E		46,647	53,491		
	Twitch-DE		9,498	153,138		
Social	Twitch-EN	Domain Level	7,126	35,324	3,170	2
	Twitch-FR		6,549	112,666		
	ACMv9		9,360	15,556		
Citation	Citationv1	Temporal & Domain	8,935	15,098	6,775	5
	DBLPv7		5,484	8,117		

Table 1. Dataset Statistics

largest graphs to perform adaptation, i.e., Germany (GE), England 593 (EN) and France (FR). The node features are extracted based on 594 the games played and liked by users, their locations and streaming 595 habits, etc. Each user is binary-labelled, indicating whether they use 596 explicit language. Citation³ [64] involves three citation datasets 597 provided by ArnetMiner [46] extracted from different sources and 598 599 time periods. Specifically, ACMv9 (A), Citationv1 (C), DBLPv7 (D) are derived from ACM (between years 2000 and 2010), Microsoft 600 Academic Graph (before the year 2008) and DBLP (between years 601 2004 and 2008), respectively. Then, each paper is classified into 602 five categories (i.e, DB, AI, CV, IS and Networking) according to 603 its research topic. The distribution shifts are aroused from both 604 temporal and domain levels. More detailed information can be found 605 in Appendix D.1. 606

Baselines. We compare GraphCTA with baselines including 607 no-adaptation, source-need and source-free domain adaptation ap-608 proaches. For no-adaptation methods, the model is first trained on 609 the source graph, and then directly evaluated on the target graph 610 without any adaptation operations. In contrast, source-need meth-611 ods optimize the model with both source and target graphs through 612 implicit or explicit metrics to align their distributions. We refer read-613 ers to Appendix D.2 for more detailed description. Here, we briefly 614 introduce some of the most related SOTA source-free models. As 615 pioneers in exploring the novel and crucial setting of source-free 616 graph domain adaptation, we conduct a comprehensive compari-617 son with baselines from both computer vision and graph domains. 618 Among them, SHOT [25] and its extension SHOT++ [27] employ 619 entropy minimization and information maximization to perform 620 class-wise adaptation. BNM [6] achieves prediction discriminability 621 and diversity via nuclear norm maximization. ATDOC [26] and 622 NRC [57] exploit local neighborhood structure for ensuring label 623 consistency. DaC [67] partitions the target data into source-like 624 and target-specific samples to perform domain adaptation. JMDS 625 [24] assign confidence score to each target sample for robust adap-626 tation learning. GTRANS [20] performs graph transformation at test 627 time to enhance the model's performance. SOGA⁴ [34] maximizes 628 the mutual information between the target graph and the model's 629 output to preserve the structural proximity. 630

Implementation Details. Similar to previous works [34, 53], we randomly split each source graph into 80% as training set, 10% as validation set and the remaining 10% as test set. The source GNN model is first supervised and pre-trained on the training set, followed by

tuning its hyper-parameters on the validation set. The test set in source graph serves as a sanity check to ensure a well-pretrained GNN model, and its final performance is evaluated on the whole target graph. We utilize the source codes provided by the authors and adopt the same GNN backbone with same number of layers. The node representation dimension is set as 128 for all the baselines. Our proposed GraphCTA is implemented with Pytorch Geometric⁵ [12] and optimized with Adam optimizer [21]. The optimal learning rate and weight decay are searched in $\{0.1, 0.01, 1e^{-3}, 1e^{-4}, 5e^{-4}\}$. The smoothing parameter γ in memory banks is fixed as 0.9 by default. Temperature τ and the number of *K*-nearest neighbors are set as 0.2 and 5, respectively. Trade-off hyper-parameters λ , α , β are searched in the range of [0, 1]. Additional details for reproducibility are provided in Appendix G.

4.2 **Results and Analyses**

Table 2 shows the node classification performance across 9 adaptation tasks from 3 datasets. We repeat the experiments 5 times with different seeds and then report their mean accuracy with standard deviation. The overall experimental results are reported in Appendix E. As can be seen from Table 2, the upper parts present the results of source-need approaches that have access to the labelled source graph during adaptation. The middle and lower parts show the results for no-adaptation and source-free methods that does not utilize the labelled source graph. In summary, our proposed GraphCTA is on par with source-need algorithms and even surpasses them in certain scenarios (i.e., $DE \rightarrow FR$ and $C \rightarrow D$). Particularly, our method consistently achieves state-of-the-art performance on all tasks under the source-free setting. It outperforms the strongest source-free baseline by a large margin (2.14% absolute improvements on average). We note that the unsupervised method GAE demonstrates comparable performance on several specific tasks. However, its performance exhibits significant variation depending on the characteristics of the input graph, and thus fails to achieve consistent results in the context of domain adaptation. Additionally, it can be observed that negative transfer occasionally occurs in these models, which is consistent with previous works' findings. For instance, some source-need baselines (e.g., AdaGCN) and source-free methods (e.g., SHOT) perform worse than vanilla GCN without adaptation under the scenario of $M \rightarrow E$. Moreover, it is more commonly observed in the source-free setting than in the source-need setting, primarily due to the lack of available source graph. Finally, our proposed GraphCTA can adapt to different types of graphs and adaptation

686

687

688

689

690

691

692

693

694

695

696

631

632

633

634

⁶³⁶ ³https://github.com/yuntaodu/ASN/tree/main/data

⁶³⁷ ⁴Their citation datasets are similar but distinct from ours. Please refer to Appendix H.

⁶³⁸

⁵https://pytorch-geometric.readthedocs.io/en/latest/

Table 2: Average node classification performance in terms of accuracy (%). OOM means out-of-memory. We use <u>blue</u> to denote the best performance in <u>source-need methods</u> and bold indicates the best performance among source-free approaches.

	Methods	S→M	S→E	M→E	DE→EN	DE→FR	EN→FR	A→D	C→D	C→A
	UDAGCN [53]	81.12±0.04	$73.91 {\pm} 0.64$	77.22±0.16	59.74±0.21	56.61±0.39	56.94 ± 0.70	66.95 ± 0.45	71.77 ± 1.09	66.80 ± 0.23
p	TPN [35]	82.06±0.19	76.59 ± 0.70	79.17 ± 0.33	54.42 ± 0.19	43.43 ± 0.99	38.93 ± 0.28	$69.78 {\pm} 0.69$	74.65 ± 0.74	67.93 ± 0.34
Vee	AdaGCN [7]	77.49 ± 1.07	76.02 ± 0.54	73.57 ± 2.03	54.69 ± 0.50	37.62 ± 0.51	40.45 ± 0.24	$75.04 {\pm} 0.49$	75.59 ± 0.71	71.67 ± 0.91
Ce-]	ASN [64]	OOM	OOM	OOM	55.45 ± 0.11	47.20 ± 0.84	40.29 ± 0.55	$73.80 {\pm} 0.40$	76.36 ± 0.33	72.74 ± 0.49
nro	ACDNE [41]	86.27±1.23	80.66 ± 1.11	81.37 ± 1.20	58.08 ± 0.97	54.01 ± 0.30	57.15 ± 0.61	76.24 ± 0.53	77.21 ± 0.23	73.59 ± 0.34
Sc	GRADE [52]	79.77 ± 0.01	$74.41 {\pm} 0.03$	$78.84 {\pm} 0.06$	56.40 ± 0.05	46.83 ± 0.07	51.17 ± 0.62	68.22 ± 0.37	73.95 ± 0.49	69.55 ± 0.78
	SpecReg [60]	80.90 ± 0.06	$75.89 {\pm} 0.06$	77.65 ± 0.02	56.43 ± 0.11	63.20 ± 0.03	63.21 ± 0.04	$75.93 {\pm} 0.89$	75.74 ± 1.15	72.04 ± 0.63
c	DeepWalk [37]	75.52±0.01	75.98 ± 0.02	75.86 ± 0.05	52.18±0.35	42.03 ± 0.90	44.72 ± 1.03	24.38 ± 1.02	25.00 ± 2.04	21.71±3.52
tio	node2vec [15]	75.53 ± 0.01	$76.00 {\pm} 0.01$	75.92 ± 0.06	52.64 ± 0.62	41.42 ± 0.99	44.14 ± 0.89	$23.84{\pm}2.31$	23.40 ± 2.65	22.83 ± 1.69
pta	GAE [23]	80.54 ± 0.43	72.55 ± 0.52	76.60 ± 1.11	58.33 ± 0.46	42.25 ± 0.87	40.89 ± 1.09	62.45 ± 0.44	66.11 ± 0.49	61.54 ± 0.53
Ada	GCN [22]	80.93±0.19	73.53 ± 1.93	$78.10 {\pm} 0.41$	54.77 ± 0.73	54.17 ± 0.70	42.45 ± 0.97	$69.05 {\pm} 0.86$	74.53 ± 0.36	70.58 ± 0.68
<i>d</i> -0	GAT [49]	79.59 ± 0.61	65.64 ± 0.33	74.91 ± 1.31	54.84 ± 0.37	39.63 ± 0.16	53.28 ± 0.78	53.80 ± 1.53	55.85 ± 1.62	50.37 ± 1.72
Z	GIN [56]	75.70 ± 0.57	73.11 ± 0.11	74.90 ± 0.17	52.39 ± 0.31	44.48 ± 0.84	58.39 ± 0.23	$59.10 {\pm} 0.18$	66.27 ± 0.27	60.46 ± 0.25
	SHOT [25]	80.63±0.11	75.23±0.33	76.20 ± 0.21	56.94±0.27	50.94 ± 0.07	52.62 ± 0.79	$73.32 {\pm} 0.48$	74.16 ± 1.88	69.81±1.08
	SHOT++ [27]	80.80 ± 0.06	74.69 ± 0.33	76.27 ± 0.38	56.57±0.29	52.04 ± 0.56	49.97 ± 0.48	71.51 ± 0.93	74.99 ± 0.90	70.73 ± 0.59
e	BNM [6]	80.80 ± 0.08	74.56 ± 0.41	76.48 ± 0.04	57.92 ± 0.16	51.39 ± 0.22	50.78 ± 1.13	73.59 ± 0.31	75.83 ± 0.64	69.96 ± 0.42
Fre	ATDOC [26]	80.39±0.32	74.43 ± 0.50	76.40 ± 0.20	56.31±0.44	49.02 ± 0.58	42.65 ± 0.16	72.01 ± 0.35	74.80 ± 0.45	67.64 ± 1.44
Ce	NRC [57]	80.79±0.19	74.09 ± 1.26	75.24 ± 0.38	56.96 ± 0.41	50.63 ± 0.09	50.83 ± 0.46	$70.89 {\pm} 0.39$	71.79 ± 0.34	$68.44 {\pm} 0.86$
anc	DaC [67]	80.11±0.18	76.17 ± 0.33	78.47 ± 0.41	58.09±0.55	55.97 ± 0.97	56.55 ± 0.30	73.02 ± 0.51	74.75 ± 0.93	68.81 ± 0.47
Š	JMDS [24]	82.92±0.25	76.29 ± 0.36	79.69 ± 0.31	56.67±0.20	48.72 ± 0.08	46.93 ± 0.26	68.28 ± 1.13	72.68 ± 0.47	64.96 ± 0.63
	GTRANS [20]	81.93±0.29	75.66 ± 0.46	$78.97 {\pm} 0.10$	56.35 ± 0.15	61.30 ± 0.17	60.80 ± 0.26	64.85 ± 0.99	71.44 ± 1.65	67.27 ± 0.25
	SOGA [34]	82.81±0.18	76.32 ± 0.33	$78.97 {\pm} 0.41$	58.27 ± 0.60	53.71 ± 0.32	$57.14 {\pm} 0.49$	$71.62 {\pm} 0.37$	$74.16 {\pm} 0.72$	67.06 ± 0.32
Ours	GraphCTA	$85.82 {\pm} 0.88$	79.47±0.35	81.23±0.61	59.85±0.16	$63.35 {\pm} 0.84$	63.18±0.31	75.62±0.29	77.62±0.22	72.56±0.43

Table 3: Performance with different components.

Models	A→D	C→D	C→A
SOGA [34]	71.62	74.16	67.06
Source Pretrained Model (SPM)	65.07	70.12	61.88
SPM + \mathcal{L}_M (Model Adaptation)	73.32	75.31	71.05
SPM + \mathcal{L}_G (Graph Adaptation)	66.47	73.92	64.13
GraphCTA	75.62	77.62	72.56

tasks. The performance lift can be attributed to the collaborative mechanism between model adaptation and graph adaptation. The presented results demonstrate its effectiveness in facilitating sourcefree unsupervised graph domain adaptation.

4.3 Ablation Study

In this subsection, we conduct ablation studies on citation datasets and similar conclusions can be drawn from the remaining datasets. *Comprehensive parameter sensitivity analyses are provided in Appendix F for further details.*

4.3.1 The Effect of Model Adaptation and Graph Adaptation. To investigate the contribution of model adaptation and graph adaptation in GraphCTA, we show the effectiveness of our proposed collaborative mechanism in Table 3. Specifically, the source-pretrained model is denoted as SPM and we strength the SPM with model adaptation (\mathcal{L}_{M}) and graph adaptation (\mathcal{L}_{G}), respectively. As we can see, both two modules improve the performance of SPM, but the model adaptation module plays a more significant role compared with the graph adaptation module. This is because the model often captures more generic or transferable knowledge across domains, while graph adaptation might be less crucial when the underlying structures or relationships in the graphs are already aligned. In comparison, our method incorporates these two modules into a

Table 4: Performance with different graph adaptation strategies.

Sie in enternamee with anterent graph and pratient strategies							
Models	A→D	C→D	C→A				
SPM	65.07±0.12	70.12 ± 0.25	61.88±0.09				
SUBLIME [29]	65.75 ± 0.12	67.37 ± 0.26	68.69±0.57				
SLAPS [11]	65.99 ± 0.84	72.77 ± 0.73	67.54±0.91				
SPM + \mathcal{L}_{G}	66.47 ± 0.04	73.92 ± 0.14	64.13±0.21				
GraphCTA	75.62±0.29	77.62±0.22	72.56±0.43				

Table 5: Combine graph adaptation with other models.							
Architectures	A→D	C→D	C→A				
SHOT	73.32 ± 0.48	74.16 ± 1.88	69.81±1.08				
SHOT + \mathcal{L}_G	67.39 ± 0.10	76.86 ± 0.08	69.62 ± 0.03				
BNM	73.59 ± 0.31	75.83 ± 0.64	69.96±0.42				
BNM + \mathcal{L}_{G}	62.12 ± 0.98	67.22 ± 0.95	$69.58 {\pm} 0.05$				
GraphCTA	75.62±0.29	77.62±0.22	72.56±0.43				

collaborative paradigm and surpasses all alternatives by a significant margin. Note that our GraphCTA, even with model adaptation alone, surpasses the performance of SOGA, which serves as additional evidence of the effectiveness of our GraphCTA.

4.3.2 The Alternative Graph Adaptation Strategies. As we have discussed in Section 3.3, there exist lots of choices to perform graph adaptation. Here, we present two additional graph structure learning strategies to conduct graph adaptation. While graph structure learning has been extensively studied in the literature [11, 13, 29], most existing methods depend highly on node labels, which are not available in our unsupervised graph domain adaptation setting. To this end, we choose two recent unsupervised graph structure learning models SUBLIME [29] and SLAPS [11] to refine the graph structure, where both of them utilize self-supervised learning techniques. Among them, SUBLIME [29] employs GNN to learn node similarity matrix and KNN-based sparsification is used to produce

 (a) GCN
 (b) GTRANS
 (c) SOGA
 (d) GraphCTA

Figure 2: Visualizations of target graph node representations with each color representing a class in citation networks (C \rightarrow D).

Table 6: Results with different architectures.							
Architectures	A→D	C→D	C→A				
GraphCTA _{GCN}	75.62±0.29	77.62±0.22	72.56±0.43				
GraphCTA _{GAT}	71.84 ± 0.52	72.04 ± 0.87	66.91±0.82				
GraphCTA _{SAGE}	73.50 ± 0.41	73.65 ± 0.26	68.17±0.34				
GraphCTA _{GIN}	72.92±0.39	73.85 ± 0.54	71.26 ± 0.17				

sparse adjacent matrix. Similarly, SLAPS [11] utilizes a denoising autoencoder loss as self-supervision. Table 4 demonstrates the performance with different graph adaptation strategies. As we can see, SUBLIME and SLAPS are not as good as our strategy except in the scenario of $C \rightarrow A$. Notably, SUBLIME occasionally exhibits inferior performance compared to the source-pretrained model (SPM), particularly due to its reliance on data augmentation operations. In contrast, our strategy does not require such operations and exhibits high versatility. Furthermore, we also explore the integration of our graph adaptation strategy with various existing model adaptation approaches, as shown in Table 5. Surprisingly, a simple combination of these two modules often leads to a decline in performance. It becomes evident that a collaborative approach is necessary to achieve optimal results, thus emphasizing the novelty and effectiveness of our proposed GraphCTA method.

4.3.3 Architectures and Hyper-parameter Analyses. As discussed in previous section, our proposed GraphCTA is model-agnostic and can be integrated into various GNN architectures. We investigate the impacts of 4 widely used GNN backbones: GCN [22], GAT [49], GraphSAGE [16] and GIN [56]. Their results are showed in Table

6. In general, the performance varies across different graph neural network architectures, which is also influenced by the used datasets. We observe that the GAT architecture performs worst, since the learned attention weights in source graph are not suitable in target graph and it has more parameters to be fine-tuned due to the multi-head attention mechanism. The simplest GCN architecture surprisingly works well in most cases. At last, we further show the impacts of several hyper-parameters in Figure 3. Particularly, when setting $\lambda = 0.2$, L = 1 or 2, budget $\mathcal{B} = 0.2 |\mathbf{A}|$ and $\tau = 0.2$, our model could obtain the best performance. *More hyper-parameter analyses are provided in Appendix F.*

4.4 Visualization

To gain an intuitive understanding of the learned node representations, we use t-SNE [48] to project the node representations into a 2-D space. Figure 2 presents the scatter plots generated by GCN [22], GTRANS [20], SOGA [34] and our proposed GraphCTA from $C \rightarrow D$, where each color represents a distinct class. It can be observed that the vanilla GCN without adaptation operations fails to produce satisfactory results, as nodes from different classes are mixed together. While two representative source-free baselines GTRANS and SOGA are capable of clustering nodes together, the boundary between these clusters are quite blurred, resulting in only four clusters with significant overlapping. In contrast, our proposed GraphCTA demonstrates the ability to learn more compact node representations within the same category. This highlights its effectiveness in learning discriminative node representations even in the presence of domain shift.

5 CONCLUSION

We investigate a relatively unexplored area in graph representation learning, i.e., source-free unsupervised graph domain adaptation, where the labelled source graph is not available due to privacy concerns. Specifically, we propose a novel framework named GraphCTA that performs model adaptation and graph adaptation collaboratively to mitigate the source hypothesis bias and domain shift. The whole framework is model-agnostic and optimized via an alternative strategy. We conduct comprehensive experiments on three public datasets with fifteen adaptation tasks, which demonstrates the effectiveness of our proposed model compared with recent state-of-the-art baselines. In the future, it would be an intriguing challenge to explore how to extend the GraphCTA framework to handle more domain adaptation tasks, such as source-free semi-supervised graph DA and source-free open-set graph DA.

Anon

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043 1044

929 **REFERENCES**

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

- Alfonso Allen-Perkins, Juan Manuel Pastor, and Ernesto Estrada. 2017. Twowalks degree assortativity in graphs and networks. *Appl. Math. Comput.* 311 (2017), 262–271.
- Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein generative adversarial networks. In International conference on machine learning. PMLR, 214–223.
- [3] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. 2006. Analysis of representations for domain adaptation. Advances in neural information processing systems 19 (2006).
- [4] Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. 2021. Graph neural networks with convolutional arma filters. *IEEE transactions on pattern analysis and machine intelligence* 44, 7 (2021), 3496–3507.
- [5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive learning of visual representations. In International conference on machine learning. PMLR, 1597–1607.
- [6] Shuhao Cui, Shuhui Wang, Junbao Zhuo, Liang Li, Qingming Huang, and Qi Tian. 2020. Towards discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 3941–3950.
- [7] Quanyu Dai, Xiao-Ming Wu, Jiaren Xiao, Xiao Shen, and Dan Wang. 2022. Graph transfer learning via adversarial domain adaptation with graph convolution. IEEE Transactions on Knowledge and Data Engineering (2022).
- [8] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems 29 (2016).
- [9] Ailin Deng and Bryan Hooi. 2021. Graph neural network-based anomaly detection in multivariate time series. In Proceedings of the AAAI conference on artificial intelligence. 4027–4035.
- [10] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. 2019. Graph neural networks for social recommendation. In *The world wide web* conference. 417–426.
- [11] Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. 2021. SLAPS: Selfsupervision improves structure learning for graph neural networks. Advances in Neural Information Processing Systems 34 (2021), 22667–22681.
- [12] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).
- [13] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. 2019. Learning discrete structures for graph neural networks. In International conference on machine learning. PMLR, 1972–1982.
- [14] Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan Günnemann. 2021. Robustness of graph neural networks at scale. Advances in Neural Information Processing Systems 34 (2021), 7637–7649.
- [15] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. 855–864.
- [16] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. Advances in neural information processing systems 30 (2017).
- [17] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 9729–9738.
- [18] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell. 2018. Cycada: Cycle-consistent adversarial domain adaptation. In *International conference on machine learning*. Pmlr, 1989– 1998.
- [19] Rodrigo Hormazabal, Changyoung Park, Soonyoung Lee, Sehui Han, Yeonsik Jo, Jaewan Lee, Ahra Jo, Seung Hwan Kim, Jaegul Choo, Moontae Lee, et al. 2022. CEDe: A collection of expert-curated datasets with atom-level entity annotations for Optical Chemical Structure Recognition. Advances in Neural Information Processing Systems 35 (2022), 27114–27126.
- [20] Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. 2022. Empowering graph representation learning with test-time graph transformation. arXiv preprint arXiv:2210.03561 (2022).
- [21] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
- [22] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).
- [23] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016).
- [24] Jonghyun Lee, Dahuin Jung, Junho Yim, and Sungroh Yoon. 2022. Confidence score for source-free unsupervised domain adaptation. In *International Conference* on Machine Learning. PMLR, 12365–12377.
- [25] Jian Liang, Dapeng Hu, and Jiashi Feng. 2020. Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation. In International Conference on Machine Learning. PMLR, 6028–6039.

- [26] Jian Liang, Dapeng Hu, and Jiashi Feng. 2021. Domain adaptation with auxiliary target domain-oriented classifier. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 16632–16642.
- [27] Jian Liang, Dapeng Hu, Yunbo Wang, Ran He, and Jiashi Feng. 2021. Source data-absent unsupervised domain adaptation through hypothesis transfer and labeling transfer. *IEEE Transactions on Pattern Analysis and Machine Intelligence* 44, 11 (2021), 8602–8617.
- [28] Sijia Liu, Swarnendu Kar, Makan Fardad, and Pramod K Varshney. 2015. Sparsityaware sensor collaboration for linear coherent estimation. *IEEE Transactions on Signal Processing* 63, 10 (2015), 2582–2596.
- [29] Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan. 2022. Towards unsupervised deep graph structure learning. In *Proceedings of the* ACM Web Conference 2022. 1392–1403.
- [30] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. 2015. Learning transferable features with deep adaptation networks. In *International conference* on machine learning. PMLR, 97–105.
- [31] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. 2018. Conditional adversarial domain adaptation. Advances in neural information processing systems 31 (2018).
- [32] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. 2016. Unsupervised domain adaptation with residual transfer networks. Advances in neural information processing systems 29 (2016).
- [33] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. 2017. Deep transfer learning with joint adaptation networks. In *International conference on* machine learning. PMLR, 2208–2217.
- [34] Haitao Mao, Lun Du, Yujia Zheng, Qiang Fu, Zelin Li, Xu Chen, Shi Han, and Dongmei Zhang. 2021. Source free unsupervised graph domain adaptation. arXiv preprint arXiv:2112.00955 (2021).
- [35] Yingwei Pan, Ting Yao, Yehao Li, Yu Wang, Chong-Wah Ngo, and Tao Mei. 2019. Transferrable prototypical networks for unsupervised domain adaptation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2239–2247.
- [36] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim Kaler, Tao Schardl, and Charles Leiserson. 2020. Evolvegcn: Evolving graph convolutional networks for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence. 5363–5370.
- [37] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 701–710.
- [38] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-scale attributed node embedding. *Journal of Complex Networks* 9, 2 (2021), cnab014.
- [39] Jari Saramäki, Mikko Kivelä, Jukka-Pekka Onnela, Kimmo Kaski, and Janos Kertesz. 2007. Generalizations of the clustering coefficient to weighted complex networks. *Physical Review E* 75, 2 (2007), 027105.
- [40] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. 2018. Wasserstein distance guided representation learning for domain adaptation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, Vol. 32.
- [41] Xiao Shen, Quanyu Dai, Fu-lai Chung, Wei Lu, and Kup-Sze Choi. 2020. Adversarial deep network embedding for cross-network node classification. In Proceedings of the AAAI Conference on Artificial Intelligence. 2991–2999.
- [42] Xiao Shen, Quanyu Dai, Sitong Mao, Fu-lai Chung, and Kup-Sze Choi. 2020. Network together: Node classification via cross-network deep network embedding. *IEEE Transactions on Neural Networks and Learning Systems* 32, 5 (2020), 1935–1948.
- [43] Ankit Singh. 2021. Clda: Contrastive learning for semi-supervised domain adaptation. Advances in Neural Information Processing Systems 34 (2021), 5089– 5101.
- [44] Baochen Sun, Jiashi Feng, and Kate Saenko. 2017. Correlation alignment for unsupervised domain adaptation. *Domain adaptation in computer vision applications* (2017), 153–171.
- [45] Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. 2022. Rethinking graph neural networks for anomaly detection. In *International Conference on Machine Learning*. PMLR, 21076–21089.
- [46] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnetminer: extraction and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. 990–998.
- [47] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. 2017. Adversarial discriminative domain adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition. 7167–7176.
- [48] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of machine learning research 9, 11 (2008).
- [49] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint arXiv:1710.10903 (2017).
- [50] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. 2017. Deep hashing network for unsupervised domain adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition.

5018-5027.

- [51] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. 2019. Simplifying graph convolutional networks. In *International conference on machine learning*. PMLR, 6861–6871.
 - [52] Jun Wu, Jingrui He, and Elizabeth Ainsworth. 2022. Non-IID Transfer Learning on Graphs. arXiv preprint arXiv:2212.08174 (2022).
 - [53] Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. 2020. Unsupervised domain adaptive graph convolutional networks. In Proceedings of The Web Conference 2020. 1457–1467.
- [54] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. 2020. A comprehensive survey on graph neural networks. *IEEE transactions on neural networks and learning systems* 32, 1 (2020), 4–24.
- [55] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin. 2019. Topology attack and defense for graph neural networks: An optimization perspective. arXiv preprint arXiv:1906.04214 (2019).
 - [56] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).
- are graph netural networks: *urXv preprint urXv*1610.0022 (2016).
 Shiqi Yang, Joost van de Weijer, Luis Herranz, Shangling Jui, et al. 2021. Exploiting the intrinsic neighborhood structure for source-free domain adaptation. Advances in neural information processing systems 34 (2021), 29393–29405.
- [58] Yunzhi Yao, Shaohan Huang, Wenhui Wang, Li Dong, and Furu Wei. 2021. Adaptand-Distill: Developing Small, Fast and Effective Pretrained Language Models for Domains. In *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021.* 460–470.
 - [59] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. 974–983.
 - [60] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. 2023. Graph Domain Adaptation via Theory-Grounded Spectral Regularization. In The Eleventh International Conference on Learning Representations.
 - [61] Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger, and Susanne Saminger-Platz. 2017. Central moment discrepancy (cmd) for domaininvariant representation learning. arXiv preprint arXiv:1702.08811 (2017).
 - [62] Werner Zellinger, Bernhard A Moser, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger, and Susanne Saminger-Platz. 2019. Robust unsupervised domain adaptation for neural networks via moment alignment. *Information Sciences* 483 (2019), 174–191.
- [63] Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, and Zhikun Wang. 2013.
 Domain adaptation under target and conditional shift. In *International conference* on machine learning. PMLR, 819–827.
 - [64] Xiaowen Zhang, Yuntao Du, Rongbiao Xie, and Chongjun Wang. 2021. Adversarial separation network for cross-network node classification. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 2618–2626.
 - [65] Xiang Zhang and Marinka Zitnik. 2020. Gnnguard: Defending graph neural networks against adversarial attacks. Advances in neural information processing systems 33 (2020), 9263–9275.
 - [66] Yi-Fan Zhang, Xue Wang, Kexin Jin, Kun Yuan, Zhang Zhang, Liang Wang, Rong Jin, and Tieniu Tan. 2023. AdaNPC: Exploring Non-Parametric Classifier for Test-Time Adaptation. arXiv preprint arXiv:2304.12566 (2023).
 - [67] Ziyi Zhang, Weikai Chen, Hui Cheng, Zhen Li, Siyuan Li, Liang Lin, and Guanbin Li. 2022. Divide and Contrast: Source-free Domain Adaptation via Adaptive Contrastive Learning. arXiv preprint arXiv:2211.06612 (2022).
 - [68] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks: A review of methods and applications. AI open 1 (2020), 57–81.
 - [69] Qi Zhu, Carl Yang, Yidan Xu, Haonan Wang, Chao Zhang, and Jiawei Han. 2021. Transfer learning of graph neural networks with ego-graph information maximization. Advances in Neural Information Processing Systems 34 (2021), 1766–1779.

Anon

A THEORETICAL DETAILS

Shen et al. [40, 66] provides a generalization bound on domain adaptation through applying Wasserstein distance [2] between source and target domain distributions. For completeness, we present Definition A.1 and Theorem A.2 as follows:

Definition A.1 (Wasserstein Distance). The ρ -th Wasserstein distance between two distributions \mathbb{D}_S and \mathbb{D}_T is defined as follow:

$$\mathcal{W}_{\rho}(\mathbb{D}_{S},\mathbb{D}_{T}) = (\inf_{\gamma \in \Pi[\mathbb{D}_{S},\mathbb{D}_{T}]} \iint d(x_{s},x_{t})^{\rho} d\gamma(x_{s},x_{t}))^{1/\rho}, \quad (13)$$

where $\Pi[\mathbb{D}_S, \mathbb{D}_T]$ is the set of all joint distribution on $X \times X$ with marginals \mathbb{D}_S and \mathbb{D}_T . $d(x_s, x_t)$ is a distance function for two instances x_s, x_t .

THEOREM A.2. Given two domain distributions \mathbb{D}_S and \mathbb{D}_T , denote $f^* = \arg \min_{f \in \mathcal{H}} (\epsilon_T(f) + \epsilon_S(f))$ and $\xi = \epsilon_T(f^*) + \epsilon_S(f^*)$. Assume all hypotheses h are K-Lipschitz continuous, the risk of hypothesis \hat{f} on the target domain is then bounded by:

$$\epsilon_{\mathrm{T}}(\hat{f}) \le \epsilon_{\mathrm{S}}(\hat{f}) + 2K\mathcal{W}(\mathbb{D}_{\mathrm{S}}, \mathbb{D}_{\mathrm{T}}) + \xi, \tag{14}$$

where W_1 distance is used and we ignore the subscript 1 for simplicity.

With the above definition and theorem, we can know that the target domain prediction error is bounded by summarizing the source domain prediction error, the distribution divergence of source and target domains, and the combined error ξ . Most existing domain adaptation methods can be regarded as minimizing the distribution divergence [42, 52, 60], i.e., the second term in Eq. (14). However, in the source-free setting, the source data are inaccessible, hence the right part is not applicable. Therefore, we need a new generation upper bound for source-free target domain adaptation.

Our proposed GraphCTA mainly consists of two key modules: model adaptation and graph adaptation, where the objective func-tions are designed to constrain the upper bound. Specifically, we utilize structural neighborhood consistency to provide guiding in-formation in model adaptation module. That's to say, the source dis-tribution \mathbb{D}_S is replaced with $\mathbb{D}_N = \bigcup_{x \in \mathbb{D}_T} \mathcal{B}(x, r)$, where $\mathcal{B}(x, r) =$ $\{x': x' \in \mathbf{A}_x \land ||x'-x|| \le r\}$, where $\|\cdot\|$ is L_1 distance function, r > r0 is a small radius, and A_x is sample x's neighborhood. With a small r, we have $\mathcal{W}(\mathbb{D}_{N},\mathbb{D}_{T}) = \inf_{\gamma \in \Pi[\mathbb{D}_{N},\mathbb{D}_{T}]} \iint ||x_{n} - x_{t}|| d\gamma(x_{n},x_{t}) \leq 1$ *r*, where for each $x_t \in \mathbb{D}_T$ we can find at least one $x_n \in \mathbb{D}_N$ such that $||x_n - x_t|| \le r$. Thus, the overall distance will be bounded by r and the domain divergence is reduced. Furthermore, the graph adaptation module aims to correct the covariate-shift in the input space and [20, 67] have prove its capability in reducing prediction error. Then, we have the following Theorem A.3:

THEOREM A.3. Given domain distribution \mathbb{D}_{T} and \mathbb{D}_{N} , where $\mathbb{D}_{N} = \bigcup_{x \in \mathbb{D}_{T}} \mathcal{B}(x,r)$ and $\mathcal{B}(x,r) = \{x' : x' \in A_{x} \land ||x' - x|| \leq r\}$ provide guiding information through local neighborhood. Denote $f^{*} = \arg\min_{f \in \mathcal{H}} (\epsilon_{T}(f) + \epsilon_{N}(f))$ and $\xi = \epsilon_{T}(f^{*}) + \epsilon_{N}(f^{*})$. Assume that all hypotheses h are K-Lipschitz continuous, the risk of hypothesis \hat{f} on the target domain is then bounded by:

$$\epsilon_{\mathrm{T}}(\hat{f}) \le \epsilon_{\mathrm{N}}(\hat{f}) + 2Kr + \xi, \tag{15}$$

where a small r will reduce the bound.

Thus, it can be inferred that the joint application of model adaptation and graph adaptation can lead to a reduction in the terms on the right-hand side of Eq. (15), resulting in the minimization of the upper bound for the prediction error on the target domain.

B OPTIMIZATION

The optimization process for GNN parameters and ΔX is straightforward as they can be updated using gradient descent due to their differentiability. However, optimizing ΔA is notably challenging because of its binary nature and constrained properties. Therefore, we relax ΔA to continuous space $[0, 1]^{n \times n}$ and utilize projected gradient descent (PGD) [14, 55] to update its elements:

$$\Delta \mathbf{A} \leftarrow \Pi_{\mathcal{B}} (\Delta \mathbf{A} - \eta \frac{\partial \mathcal{L}_{\mathbf{G}}}{\partial \Delta \mathbf{A}}), \tag{16}$$

where the gradient step is performed with step size η , and then it is projected into the constrained space \mathcal{B} . We further constrain the search space of ΔA to the existing edges in graph. More specifically, $\Pi_{\mathcal{B}}(\cdot)$ is expressed as:

$$\Pi_{\mathcal{B}}(\mathbf{x}) = \begin{cases} \Pi_{[0,1]}(\mathbf{x}), \text{ if } \mathbf{1}^{\top} \Pi_{[0,1]}(\mathbf{x}) \leq \mathcal{B}, \\ \Pi_{[0,1]}(\mathbf{x} - \gamma \mathbf{1}) \text{ s.t. } \mathbf{1}^{\top} \Pi_{[0,1]}(\mathbf{x} - \gamma \mathbf{1}) = \mathcal{B}. \end{cases}$$
(17)

where $\Pi_{[0,1]}(\cdot)$ restricts the input values to the range [0, 1]. 1 represents a vector with all elements equal to one, and γ is determined by solving the equation $\mathbf{1}^{\top}\Pi_{[0,1]}(\mathbf{x} - \gamma \mathbf{1}) = \mathcal{B}$ with the bisection method [28]. To keep sparsity, we regard each entry as a Bernoulli distribution and sample the learned graph structure as $\mathbf{A}' \sim \text{Bernoulli}(\mathbf{A} \oplus \Delta \mathbf{A})$.

C TRAINING STRATEGY FOR GRAPHCTA

We outline the training strategy for GraphCTA and present the pseudo codes in Algorithm 1.

D DATASETS AND BASELINES

D.1 Distribution Shifts on Graphs

We choose three widely used node classification datasets for domain adaptation, i.e., transaction, social and citation graphs. These datasets contain a varying number of nodes, ranging from thousands to tens of thousands. The statistical information of these datasets is presented in Table 1. In each dataset, they share the same input feature space and output label space, but the characteristics from different graphs often exhibit distinct properties, which results in domain shift. Here, we utilize degree assortativity [1] and clustering coefficient [39] as measures to describe the structural properties of these graphs. Specifically, a high assortativity score indicates that nodes with high degrees are more likely to connect with other high degree nodes, while the clustering coefficient measures the extent to which nodes in a graph tend to form tightly clusters. We provide a quantitative comparison in Figure 4. As we can see, these graphs demonstrate significant disparities in their statistics, suggesting the presence of distribution shifts w.r.t. graph structures.

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

npu	it: Given source pretrained GNN model $\kappa = f_{\theta} \circ g_{\phi}$ and target graph $\mathcal{G} = (\mathbf{A}, \mathbf{X})$
Dutp	put: Predictions $Y \in \mathbb{R}^{n \times C}$ on refined target graph $\mathcal{G} = (A', X')$ with updated model κ'
1: /	$\Delta \mathbf{X}$ and $\Delta \mathbf{A}$ are initialized as zero matrices
2: 1	while not converged or not reached the maximum epochs do
3:	Compute $\mathbf{X}' = \sigma(\mathbf{X}) = \mathbf{X} + \Delta \mathbf{X}$ and $\mathbf{A}' = \psi(\mathbf{A}) = \mathbf{A} \oplus \Delta \mathbf{A}$
4:	for $i \leftarrow 1$ to T_m do \triangleright model adaptation
5:	Fix the parameters of ΔX and ΔA
6:	Compute node representations $Z \in \mathbb{R}^{n \times n}$ and predictions $P \in \mathbb{R}^{n \times c}$ with (A', X')
7:	Calculate \mathcal{L}_{M} according to Eq. (8) and update GNN model's parameters
8:	Update memory banks \mathcal{F} and \mathcal{P} via a momentum manner
9:	for $j \leftarrow 1$ to T_f do > graph adaptation for node features
10:	Fix the parameters of GNN model and $\Delta \mathbf{A}$
11:	Calculate \mathcal{L}_{G} according to Eq. (12) and update $\Delta X \leftarrow \Delta X - \eta \frac{\partial \mathcal{L}_{G}}{\partial \Delta X}$
12:	for $k \leftarrow 1$ to T_s do \triangleright graph adaptation for structure
13:	Fix the parameters of GNN model and ΔX
14:	Calculate \mathcal{L}_{G} according to Eq. (12) and update $\Delta A \leftarrow \Pi_{\mathcal{B}}(\Delta A - \eta \frac{\partial \mathcal{L}_{G}}{\partial \Delta A})$ with PGD
15: U	Update target graph as $\mathbf{X}' = \sigma(\mathbf{X}) = \mathbf{X} + \Delta \mathbf{X}$ and $\mathbf{A}' = \psi(\mathbf{A}) = \text{Bernoulli}(\mathbf{A} \oplus \Delta \mathbf{A})$
16: (Compute predictions $\mathbf{Y} = \kappa'(\mathbf{A}', \mathbf{X}')$ with updated model κ'
	0.005
ficien	
Coef	
ering	
llust	
9	
ivity/C	

EN

Social Data

Figure 4: Graph structure properties statistic, which shows the existence of distribution shifts.

FR

DE

D.2 Baseline Settings

Assortativity

м

In our experiments, we compare our proposed GraphCTA with 3 groups of approaches: no-adaptation, source-need and source-free. The detailed description is as follows:

Clustering Coefficient

No-adaptation. This group contains 3 unsupervised algorithms (i.e., DeepWalk [37], node2vec [15], GAE [23]) and 3 graph neural networks including GCN [22], GAT [49] and GIN [56]. For unsupervised methods, we first learn node representations in source graph via a unsupervised manner. Then, the source label information is utilized to train a logistic regression classifier on the learned source node representations. After that, we learn node representations in target graph via a unsupervised manner and evaluate its performance with the logistic regression classifier trained on source data. For GNN models, they are directly trained with the labelled source graph and evaluated on the target graph, because they can be optimized in an end-to-end manner.

Source-need. Methods of this group utilize the labelled source graph to eliminate the distribution discrepancies explicitly or implicitly. Among them, UDAGCN [53], AdaGCN [7], ASN [64] and ACDNE [41] employ adversarial training to implicitly minimize the distribution divergence. In contrast, TPN [35], GRADE [52]

and SpecReg [60] explicitly regularize the node representations via spectral or MMD loss to reduce the domain shifts. Since the labelled source graph can provide supervision signals, they are able to achieve relatively better performance compared with source-free methods.

Assortativity

Citation Data

Clustering Coefficient

D

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Source-free. In this group, we consider several recent state-ofthe-art source-free baselines. Since there is limited research exploring source-free unsupervised graph domain adaptation, we adapt several baselines from the field of computer vision. Specifically, SHOT [25] and its extension SHOT++ [27] employ entropy minimization and information maximization to perform class-wise adaptation. BNM [6] achieves prediction discriminability and diversity via nuclear norm maximization. ATDOC [26] and NRC [57] exploit local neighborhood structure for ensuring label consistency. DaC [67] partitions the target data into source-like and target-specific samples to perform domain adaptation. JMDS [24] assign confidence score to each target sample for robust adaptation learning. GTRANS [20] performs graph transformation at test time to enhance the model's performance. SOGA [34] maximizes the mutual information between the target graph and the output of the model to preserve the structural proximity.

Methods ER→DE FR→DE FR→EN DE→ER DE→TR EN→FR UDAGCN [53] 58.69±0.75 63.1±0.44 55.11±0.22 59.74±0.21 56.61±0.39 56.94±0.70 TPN [35] 53.82±1.26 43.72±0.83 46.41±0.19 54.42±0.19 43.43±0.99 38.93±0.28 ASN [64] 60.45±0.16 35.94±0.03 54.32±0.88 55.14±0.043 54.02±0.85 56.43±0.11 65.20±0.42 56.43±0.11 65.20±0.42 56.43±0.11 65.20±0.03 63.21±0.043 63.21±0.043 63.21±0.044 63.21±0.014 65.21±0.014 65.20±0.02 56.43±0.11 65.42±0.03 63.21±0.044 63.21±0.044 63.21±0.044 64.92±0.02 56.42±0.03 54.32±0.03 54.72±1.03 64.81±0.09 52.21±0.041 56.34±0.07 55.32±0.02 56.40±0.25 56.40±0.25 56.40±0.25 56.40±0.25 56.40±0.15 56.44±0.27 50.94±0.77 52.42±0.79 54.11±0.44 52.24±0.17 55.35±0.32 55.32±0.32 56.37±0.075 55.71±0.75 56.71±0.75 56.71±0.75 56.71±0.75 56.71±0.75 55.71±0.75 56.	t performance in sou	rce-need methods	and bold ind	icates the bes	t performanc	e among sour	ce-mee appro	
UDACCN [53] 58.04±0.75 TFN [35] 53.82±1.26 43.72±0.83 44.61±0.19 53.82±1.26 43.72±0.83 46.41±0.19 54.42±0.19 44.42±0.19 44.42±0.19 44.42±0.19 44.42±0.19 44.42±0.19 44.42±0.19 44.42±0.19 44.42±0.19 45.43±0.80 55.45±0.11 47.20±0.84 47.20±0.84 47.20±0.85 56.40±0.01 56.40±0.05 56.40±0.01 56.40±0.		Methods	EN→DE	FR→DE	FR→EN	DE→EN	DE→FR	EN→FR
PPG AdaCK [7] 53.82±1.26 43.72±0.83 46.4±0.19 54.42±0.19 43.43±0.99 83.93±0.28 ASN [64] 60.3±0.16 39.5±0.21 47.0±0.12 54.69±0.50 37.62±0.51 40.45±0.42 ASN [64] 60.3±0.16 39.5±0.02 47.0±0.18 58.0±0.07 50.1±0.04 40.2±0.15 GRADE [52] 61.15±0.08 52.0±0.14 49.7±0.05 56.4±0.02 14.4±0.09 63.2±0.03 63.2±0.03 63.2±0.03 63.2±0.03 63.2±0.03 63.2±0.03 63.2±0.03 63.2±0.03 63.2±0.03 63.2±0.03 63.2±0.03 63.2±0.03 63.2±0.03 63.2±0.03 63.2±0.03 63.2±0.03 63.2±0.03 63.2±0.03 64.4±0.29 94.4±0.2±0.99 64.4±0.17 90.6±0.07 50.6±0.07 64.5±0.03 64.4±0.03 90.6±0.07 50.6±0.07 55.2±0.07 55.1±0.03 54.4±0.37 90.6±0.07 50.5±0.07 55.1±0.01 50.5±0.03 56.5±0.03 56.7±0.07 54.1±0.03 50.6±0.07 75.2±0.16 53.9±0.04 63.2±0.07 55.5±0.30 55.1±0.23 55.1±0.20 55.0±0.16 55.9±		UDAGCN [53]	58.69±0.75	63.11±0.44	55.11 ± 0.22	59.74 ± 0.21	56.61±0.39	56.94 ± 0.70
Ads Ads CN 5131±0.68 42.15±0.21 47.04±0.12 54.0±0.50 37.6±0.51 40.45±0.45 ASN [64] 60.45±0.16 39.54±0.63 45.45±0.88 55.45±0.11 47.20±0.84 40.45±0.24 ACDE [52] 61.18±0.08 52.02±0.14 49.74±0.05 56.04±0.07 54.01±0.30 53.11±0.04 BecepWalk [37] 55.08±0.61 41.67±0.93 46.84±0.99 52.18±0.35 42.03±0.90 44.72±1.03 mode2vec [15] 54.61±1.33 41.42±0.83 46.84±0.99 52.18±0.35 42.03±0.90 44.72±1.03 mode2vec [14] 45.75±0.49 44.49±1.31 48.04±0.83 53.83±0.64 22.5±0.87 40.89±1.09 GCN [22] 52.02±0.17 45.37±1.44 47.32±0.33 54.7±0.27 50.9±0.027 52.6±0.70	ч	TPN [35]	53.82±1.26	43.72 ± 0.83	46.41±0.19	54.42 ± 0.19	43.43 ± 0.99	38.93 ± 0.28
ASN [64] 60.45±0.16 39.54±0.63 45.43±0.88 55.43±0.11 47.20±0.84 40.29±0.55 GRADE [52] 61.45±0.18 50.20±0.14 49.74±0.05 56.04±0.05 56.33±0.01 33.21±0.04 BergWalk [37] 55.08±0.01 41.67±0.93 46.84±0.99 52.18±0.35 42.03±0.01 41.42±0.83 ModeZvec [15] 54.57±0.49 44.49±1.31 48.06±0.81 58.33±0.46 42.25±0.87 40.89±1.09 GAE [22] 54.57±0.49 44.49±1.31 48.06±0.81 58.33±0.46 42.25±0.87 40.89±1.09 GAE [23] 54.57±0.49 44.49±1.31 48.06±0.81 58.33±0.46 42.25±0.87 40.89±1.09 GAT [49] 43.65±0.37 55.67±0.75 54.18±0.09 52.39±0.31 44.48±0.84 89.39±0.23 SHOT [25] 55.95±0.40 61.01±0.59 55.12±0.41 56.57±0.29 52.04±0.55 55.97±0.97 56.55±0.30 DAC [71] 62.36±0.23 63.1±0.24 65.47±0.20 47.2±0.84 84.39±0.22 50.78±1.13 JMDS [24] 61.48±0.08 62.12±0.43<	Vee	AdaGCN [7]	51.31±0.68	42.15 ± 0.21	47.04 ± 0.12	54.69 ± 0.50	37.62 ± 0.51	40.45 ± 0.24
Bit of the second se	e-N	ASN [64]	60.45 ± 0.16	39.54 ± 0.63	45.43 ± 0.88	55.45 ± 0.11	47.20 ± 0.84	40.29 ± 0.55
GRADE [52] 61.18±0.08 52.02±0.14 49.74±0.05 56.40±0.05 46.83±0.07 51.17±0.62 Upper Walk [37] 55.08±0.61 11.67±0.93 46.83±0.94 52.18±0.35 42.03±0.09 44.72±1.03 Outper Walk [37] 55.08±0.61 11.67±0.93 46.83±0.94 52.04±0.62 41.42±0.99 41.14±0.89 GAE [23] 54.57±0.49 44.49±1.31 48.06±0.81 58.33±0.46 42.25±0.87 40.89±1.09 GAT [49] 43.65±0.37 43.76±0.74 45.52±0.13 54.84±0.37 39.63±0.16 53.28±0.78 SHOT [25] 58.95±0.40 61.26±0.26 56.40±0.11 56.94±0.27 50.94±0.07 52.62±0.79 SHOT [25] 58.95±0.40 61.26±0.26 56.70±0.20 57.92±0.16 53.39±0.22 50.73±0.48 83.90±0.25 55.73±0.48 83.90±0.25 55.73±0.48 83.90±0.25 55.73±0.48 83.90±0.25 55.73±0.48 80.90±0.55 55.71±0.75 65.70±0.03 55.71±0.48 63.38±0.43 63.38±0.43 63.38±0.43 63.38±0.43 63.38±0.43 63.38±0.43 63.38±0.43 <th< td=""><td>urc</td><td>ACDNE [41]</td><td>58.79±0.73</td><td>55.14 ± 0.43</td><td>54.50 ± 0.45</td><td>58.08 ± 0.97</td><td>54.01 ± 0.30</td><td>57.15 ± 0.61</td></th<>	urc	ACDNE [41]	58.79±0.73	55.14 ± 0.43	54.50 ± 0.45	58.08 ± 0.97	54.01 ± 0.30	57.15 ± 0.61
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	So	GRADE [52]	61.18±0.08	52.02 ± 0.14	49.74 ± 0.05	56.40 ± 0.05	46.83±0.07	51.17 ± 0.62
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		SpecReg [60]	61.45 ± 0.18	61.97±0.21	56.29 ± 0.42	56.43 ± 0.11	63.20 ± 0.03	63.21±0.04
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		DeepWalk [37]	55.08±0.61	41.67±0.93	46.84+0.99	52,18+0.35	42.03+0.90	44.72±1.03
GAE [23] 54.57±0.49 44.49±1.31 48.06±0.81 58.33±0.46 42.25±0.87 40.89±1.09 GCN [22] 52.02±0.17 45.37±1.46 47.32±0.33 54.77±0.73 54.17±0.70 42.45±0.97 GIN [56] 55.26±0.75 55.67±0.75 54.18±0.09 52.39±0.31 44.85±0.84 58.39±0.23 SHOT [25] 58.95±0.40 61.26±0.26 56.04±0.11 56.94±0.27 50.94±0.07 52.62±0.79 SHOT [25] 63.18±0.24 60.94±0.31 56.70±0.20 57.92±0.16 51.39±0.22 50.83±0.44 ATDOC [26] 61.95±0.28 57.47±0.89 54.22±0.43 55.31±0.44 40.92±0.58 42.65±0.16 JDAC [67] 62.58±0.34 55.12±0.41 52.35±0.35 56.79±0.09 86.35±0.83 66.45±0.45 67.42±0.84 46.93±0.25 JMDS [24] 61.48±0.08 62.22±0.14 52.85±0.36 65.35±0.15 61.30±0.17 66.80±0.45 61.30±0.17 66.80±0.45 61.30±0.17 66.80±0.45 61.30±0.17 66.80±0.45 61.32±0.16	ion	node2vec [15]	54.61 ± 1.53	41.42 ± 0.83	46.83 ± 0.54	52.64 ± 0.62	41.42 ± 0.99	44.14 ± 0.89
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	otat	GAE [23]	54 57+0 49	44 49+1 31	48 06+0 81	58 33+0 46	42.25 ± 0.87	40.89 ± 1.09
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	dap	GCN [22]	52.02 ± 0.17	4537 ± 1.01	47.32 ± 0.33	5477+073	$54 17 \pm 0.70$	42.45 ± 0.97
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-A-	GAT [49]	43 65+0 37	4376 ± 074	45.52 ± 0.03	54.84 ± 0.37	39.63 ± 0.16	5328 ± 0.78
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ž	GIN [56]	55.26 ± 0.75	55.67 ± 0.75	54.18 ± 0.09	52.39 ± 0.31	44 48+0 84	58 39+0 23
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		SHOT [25]	58.05±0.75	61 26±0 26	56 40±0.11	56.04±0.27	50.04±0.07	52.62±0.70
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		SHOT++ [27]	63 61±0.90	61.20 ± 0.20	55.40 ± 0.11 55.12 ±0.41	56 57±0.27	52 04±0 56	40 07±0 19
Draw [9]		BNM [4]	61 83+0 24	60 94 ± 0 31	56 70±0 20	57 92±0 16	52.04±0.00	50.78 ± 1.12
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	ee.		61 05 1 0 29	57 47 + 0 80	54.22+0.42	J1.74±0.10	J1.J7±0.22	30.70 ± 1.13
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E L	AIDUC [26]	01.95±0.28	3/.4/±0.89	34.22±0.43	30.31 ± 0.44	49.02±0.58	42.05±0.16
B Date [0/1] 62.35±0.34 35.01±0.7/ 57.75±0.48 58.09±0.25 55.97±0.97 56.55±0.30 JMDS [24] 61.48±0.08 62.12±0.14 52.35±0.32 56.67±0.20 48.72±0.08 46.93±0.26 SOGA [34] 62.00±0.17 62.00±0.23 56.54±0.06 55.35±0.15 61.30±0.17 60.80±0.26 Ours GraphCTA 63.85±0.83 62.45±0.23 58.37±0.61 53.35±0.16 63.35±0.84 63.18±0.31 de classification performance in terms of accuracy with standard deviation (%) on <i>citation datasets</i> . We use in source-need methods and bold indicates the best performance among source-free approaches. D→C Wethods A→D C→D D→A C→A A→C D→C VDAGCN [53] 66.95±0.45 71.77±1.09 58.16±0.19 66.80±0.23 72.15±0.92 73.28±0.52 TPN [35] 69.78±0.69 74.65±0.74 62.99±1.25 67.93±0.34 74.56±0.73 72.54±1.08 AdGCN [7] 75.04±0.49 75.59±0.71 69.67±0.54 71.67±0.49 80.44±0.27 78.23±0.52 GRADE [52] 68.22±0.37 </td <td>Irce</td> <td>INKC [3/]</td> <td>03.08±0.34</td> <td>01.84±0.34</td> <td>30.12±0.05</td> <td>30.90±0.41</td> <td>30.03±0.09</td> <td>30.85±0.46</td>	Irce	INKC [3/]	03.08±0.34	01.84±0.34	30.12±0.05	30.90±0.41	30.03±0.09	30.85±0.46
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sou	Dac [6/]	62.58 ± 0.34	55.61 ± 0.77	57.73 ± 0.48	58.09±0.55	55.9/±0.9/	56.55 ± 0.30
G1RAMS C200 62.00±0.17 62.00±0.23 56.54±0.06 56.53±0.15 61.30±0.17 60.80±0.26 Ours GraphCTA 63.85±0.83 62.45±0.23 58.39±0.41 59.85±0.16 63.35±0.84 63.18±0.31 de classification performance in terms of accuracy with standard deviation (%) on citation datasets. We usen nource-need methods and bold indicates the best performance among source-free approaches. D→C Wethods A→D C→D D→A C→A A→C D→C UDAGCN [53] 66.95±0.45 71.77±1.09 58.16±0.19 66.80±0.23 72.15±0.92 73.82±0.52 Methods A→D C→D D→A C→A A→C D→C AdaGCN [7] 75.0±0.45 71.77±1.09 58.16±0.19 66.80±0.23 72.15±0.92 73.82±0.52 AdaGCN [7] 75.0±0.49 75.559±0.71 69.67±0.54 71.67±0.91 79.3±0.85 78.20±0.90 GRADE [52] 68.2±0.37 73.95±0.49 63.72±0.88 69.55±0.78 76.0±0.57 74.32±0.54 GCN [22] 60.5±0.55 75.7±1.15 71.01±0.64		JMDS [24]	61.48 ± 0.08	62.12 ± 0.14	52.35±0.32	$56.6/\pm0.20$	48.72±0.08	46.93±0.26
SOGA [34] 62.35 ± 1.38 50.22 ± 0.38 50.11 ± 0.23 58.7 ± 0.60 53.7 ± 0.32 57.1 ± 0.32 57.2 ± 0.52 UDAGCN [7] 75.0 ± 0.49 76.3 ± 0.74 62.99 ± 1.25 67.9 ± 0.34 74.5 ± 0.73 72.5 ± 1.08 78.22 ± 0.52 AdaGCN [7] 75.0 ± 0.49 75.5 ± 0.71 69.67 ± 0.54 71.67 ± 0.91 79.3 ± 0.85 78.22 ± 0.52 ACDNE [41] 76.2 ± 0.57 77.2 ± 0.23 71.29 ± 0.66 73.59 ± 0.34 81.75 ± 0.29 80.14 ± 0.09 GRADE [52] 68.2 ± 0.37 73.9 ± 0.34 75.7 ± 1.15 71.0 ± 0.23 71.0 ± 0.49 $80.6\pm0.5\pm0.76$ $76.0\pm0.5\pm0.76$ $76.0\pm0.5\pm0.76$ $76.0\pm0.5\pm0.76$ $76.0\pm0.5\pm0.76$ $76.0\pm0.5\pm0.76$ $76.0\pm0.5\pm0.76$ 76.0 ± 0.27 $23.3\pm0.2\pm$		GIRANS [20]	62.00 ± 0.17	62.06±0.23	56.54 ± 0.06	56.35 ± 0.15	61.30 ± 0.17	60.80±0.26
OursGraphCTA63.85±0.8362.45±0.2358.39±0.4159.85±0.1663.35±0.8463.18±0.31de classification performance in terms of accuracy with standard deviation (%) on citation datasets.We use n source-need methods and bold indicates the best performance among source-free approaches.MethodsA→DC→DD→AC→AA→CD→CMethodsAA→DC→DD→AC→AA→CD→CValueMethods66.9±0.4571.77±1.0958.16±0.1966.80±0.2372.15±0.9273.28±0.52TPN [35]69.78±0.6974.65±0.7462.99±1.2567.93±0.3474.56±0.7372.54±1.08AdaGCN [7]75.04±0.4975.59±0.7169.67±0.5471.67±0.9179.32±0.8578.20±0.90ASN [64]73.80±0.4076.36±0.3370.15±0.6072.54±0.4980.64±0.2778.23±0.52ACDNE [41]76.24±0.5377.24±1.2371.29±0.6673.59±0.3481.75±0.2980.14±0.09GRADE [52]68.22±0.3773.95±0.4963.72±0.8869.55±0.7876.04±0.5774.32±0.54specReg [60]75.93±0.8975.74±1.1571.01±0.6472.04±0.6380.55±0.7079.04±0.83MethodsGAE [23]62.45±0.4466.11±0.4952.79±1.3061.54±0.5360.53±2.3723.76±2.96node2vec [15]23.84±2.3123.40±2.6523.47±2.9222.83±1.6923.37±3.7223.56±3.68GCN [22]62.45±0.4874.53±0.3663.5±0.6970.58±0.6877.38±1.2874.1		SOGA [34]	62.55±1.38	50.22±0.58	50.11±0.23	58.2/±0.60	53./1±0.32	57.14±0.49
de classification performance in terms of accuracy with standard deviation (%) on citation datasets. We use in source-need methods and bold indicates the best performance among source-free approaches. Methods A→D C→D D→A C→A A→C D→C UDAGCN [53] 66.95±0.45 71.77±1.09 58.16±0.19 66.80±0.23 72.15±0.92 73.28±0.52 TPN [35] 69.78±0.69 74.65±0.74 62.99±1.25 67.93±0.34 74.56±0.73 72.54±1.08 AdaGCN [7] 75.04±0.49 75.59±0.71 69.67±0.54 71.67±0.91 79.32±0.85 78.20±0.90 AAND (64] 73.80±0.40 76.36±0.33 70.15±0.60 72.74±0.49 80.64±0.27 78.23±0.52 ACDNE [41] 76.24±0.53 77.21±0.23 71.29±0.66 73.59±0.34 81.75±0.29 80.14±0.09 GRADE [52] 68.22±0.37 73.95±0.49 63.72±0.88 69.55±0.78 76.04±0.57 74.32±0.54 node2vcc [15] 23.84±2.31 23.40±2.65 23.84±2.47 21.71±3.52 23.63±3.37 23.70±2.96 node2vcc [15] 23.84±2.31 23.40±2.65 23.47±2.92 22.83±1.69 23.37±3.72 23.56±3.68 <t< td=""><td></td><td>0 10001</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		0 10001						
de classification performance in terms of accuracy with standard deviation (%) on citation datasets. We use n source-need methods and bold indicates the best performance among source-free approaches.Methods $A \rightarrow D$ $C \rightarrow D$ $D \rightarrow A$ $C \rightarrow A$ $A \rightarrow C$ $D \rightarrow C$ Part Methods $A \rightarrow D$ $C \rightarrow D$ $D \rightarrow A$ $C \rightarrow A$ $A \rightarrow C$ $D \rightarrow C$ Part Methods $(DAGCN [53])$ 66.95 ± 0.45 71.77 ± 1.09 58.16 ± 0.19 66.80 ± 0.23 72.15 ± 0.92 73.28 ± 0.52 Part Mag Na Constraints $(DAGCN [7])$ 75.04 ± 0.49 76.55 ± 0.74 62.99 ± 1.25 67.93 ± 0.34 74.56 ± 0.73 72.24 ± 1.08 Ada GCN [7] 75.04 ± 0.49 75.59 ± 0.71 69.67 ± 0.66 73.59 ± 0.34 81.75 ± 0.29 80.14 ± 0.09 ACDNE [41] 76.24 ± 0.53 77.21 ± 0.23 71.29 ± 0.66 73.59 ± 0.34 81.75 ± 0.29 80.14 ± 0.09 GRADE [52] 68.22 ± 0.37 73.95 ± 0.49 63.72 ± 0.88 69.55 ± 0.78 76.04 ± 0.57 74.32 ± 0.54 Neg NeeReg [60] 75.93 ± 0.39 75.74 ± 1.15 71.01 ± 0.66 72.04 ± 0.63 80.55 ± 0.70 79.04 ± 0.83 Part Methods $GAE [23]$ 62.45 ± 0.44 66.11 ± 0.49 52.79 ± 1.30 61.54 ± 0.53 64.98 ± 0.53 60.53 ± 0.68 Neg Nee Neg I60] 75.33 ± 0.46 74.33 ± 0.56 77.38 ± 1.28 74.17 ± 1.15 71.01 ± 0.64 72.83 ± 0.54 73.85 ± 0.54 Part Methods $GAE [23]$ 62.45 ± 0.44 66.11 ± 0.49 52.93 ± 1.38	Ours	GraphCTA	63.85±0.83	62.45±0.23	58.39±0.41	59.85±0.16	63.35±0.84	63.18±0.31
n source-need methods and bold indicates the best performance among source-free approaches.MethodsA→DC→DD→AC→AA→CD→CUDAGCN [53]66.95±0.4571.77±1.0958.16±0.1966.80±0.2372.15±0.9273.28±0.52TPN [35]69.78±0.6974.65±0.7462.99±1.2567.93±0.3474.55±0.7372.54±1.08AdaGCN [7]75.04±0.4975.59±0.7169.67±0.5471.67±0.9179.32±0.8578.20±0.90ASN [64]73.80±0.4076.36±0.3370.15±0.6072.74±0.4980.64±0.2778.23±0.52ACDNE [41]76.24±0.5377.21±0.2371.29±0.6673.59±0.3481.75±0.2980.14±0.09GRADE [52]68.22±0.3773.95±0.4963.72±0.8869.55±0.7876.04±0.5774.32±0.54SpecReg [60]75.93±0.8975.74±1.1571.01±0.6472.04±0.6380.55±0.7079.04±0.83OcepWalk [37]24.38±1.0225.00±2.0423.88±4.2721.71±3.5223.63±2.3723.70±2.96node2vec [15]23.84±2.3123.40±2.6523.47±2.9222.83±1.6923.37±3.7223.56±3.68GAE [23]62.45±0.4466.11±0.4952.79±1.3061.54±0.5364.98±0.5360.53±0.87GCN [22]69.05±0.8674.53±0.3663.35±0.6970.58±0.6877.38±1.2874.17±1.15GAT [49]53.80±1.5355.85±1.6252.93±1.8450.37±1.7257.13±1.7355.52±1.78GIN [56]59.10±0.1866.27±0.2758.98±0.2860.46±0.2568.61±0.36 <td>Ours</td> <td>GraphCTA</td> <td>63.85±0.83</td> <td>62.45±0.23</td> <td>58.39±0.41</td> <td>59.85±0.16</td> <td>63.35±0.84</td> <td>63.18±0.31</td>	Ours	GraphCTA	63.85±0.83	62.45±0.23	58.39±0.41	59.85±0.16	63.35±0.84	63.18±0.31
Methods A→D C→D D→A C→A A→C D→C Page UDAGCN [53] 66.95±0.45 71.77±1.09 58.16±0.19 66.80±0.23 72.15±0.92 73.28±0.52 TPN [35] 69.78±0.69 74.65±0.74 62.99±1.25 67.93±0.34 74.55±0.73 72.54±1.08 AdaGCN [7] 75.04±0.49 75.59±0.71 69.67±0.54 71.67±0.91 79.32±0.85 78.20±0.90 ASN [64] 73.80±0.40 76.36±0.33 70.15±0.60 72.74±0.49 80.64±0.27 78.23±0.52 ACDNE [41] 76.24±0.53 77.21±0.23 71.29±0.66 73.59±0.34 81.75±0.29 80.14±0.09 GRADE [52] 68.22±0.37 73.95±0.49 63.72±0.88 69.55±0.78 76.04±0.57 74.32±0.54 speckeg [60] 75.93±0.89 75.74±1.15 71.01±0.64 72.04±0.63 80.55±0.70 70.4±0.83 ode2vec [15] 23.84±2.31 23.40±2.65 23.47±2.92 22.83±1.69 23.37±3.72 23.56±3.68 GAT [49] 53.80±1.53 55.85±1.62 52.93±1.84 5	Ours 8: Average node cla	GraphCTA ssification perfor	63.85±0.83 mance in term	62.45±0.23	58.39±0.41 with standar	59.85±0.16 d deviation (%	63.35±0.84	63.18±0.31
UDAGCN [53] 66.95±0.45 71.77±1.09 58.16±0.19 66.80±0.23 72.15±0.92 73.28±0.52 TPN [35] 69.78±0.69 74.65±0.74 62.99±1.25 67.93±0.34 74.56±0.73 72.54±1.08 AdaGCN [7] 75.04±0.49 75.59±0.71 69.67±0.54 71.67±0.91 79.32±0.85 78.20±0.90 ASN [64] 73.80±0.40 76.36±0.33 70.15±0.60 72.74±0.49 80.64±0.27 78.23±0.52 ACDNE [41] 76.24±0.53 77.21±0.23 71.29±0.66 73.59±0.49 80.64±0.27 74.32±0.54 SpecReg [60] 75.93±0.89 75.74±1.15 71.01±0.64 72.04±0.63 80.55±0.70 70.04±0.83 DeepWalk [37] 24.38±1.02 25.09±2.04 23.88±4.27 21.71±3.52 23.63±2.37 23.70±2.96 node2vec [15] 23.84±2.31 23.40±2.65 23.47±2.92 22.83±1.69 23.37±3.72 23.56±3.68 GAE [23] 62.45±0.44 66.11±0.49 52.79±1.30 61.54±0.53 64.98±0.53 60.53±0.87 GCN [22] 69.05±0.86 74.53±0.36 63.	Ours 8: Average node cla berformance in sou	GraphCTA ssification perfor	63.85±0.83 mance in term and bold ind	62.45±0.23 ns of accuracy icates the bes	58.39±0.41 with standar t performanc	59.85±0.16 d deviation (% e among sour	63.35±0.84) on <u>citation do</u> ce-free appro	63.18±0.31 atasets. We use aches.
Part TPN [35] 69.78±0.69 74.65±0.74 62.99±1.25 67.93±0.34 74.56±0.73 72.54±1.08 AdaGCN [7] 75.04±0.49 75.59±0.71 69.67±0.54 71.67±0.91 79.32±0.85 78.20±0.90 ASN [64] 73.80±0.40 76.36±0.33 70.15±0.60 72.74±0.49 80.64±0.27 78.23±0.52 ACDNE [41] 76.24±0.53 77.21±0.23 71.29±0.66 73.59±0.34 81.75±0.29 80.14±0.09 GRADE [52] 68.22±0.37 73.95±0.49 63.72±0.88 69.55±0.78 76.04±0.57 74.32±0.54 SpecReg [60] 75.93±0.89 75.74±1.15 71.01±0.64 72.04±0.63 80.55±0.70 79.04±0.83 node2vcc [15] 23.84±2.31 23.40±2.65 23.47±2.92 22.83±1.69 23.37±3.72 23.56±3.68 GAE [23] 62.45±0.44 66.11±0.49 52.79±1.30 61.54±0.53 64.98±0.53 60.53±0.87 GCN [22] 69.05±0.86 74.53±0.36 63.35±0.69 70.58±0.68 77.38±1.28 74.17±1.15 GAT [49] 53.80±1.53 55.85±1.62	Ours Ours Average node cla rformance in sou	GraphCTA ssification perfor rce-need methods Methods	63.85 ± 0.83 mance in terms and bold ind $A \rightarrow D$	62.45 ± 0.23 is of accuracy icates the bes $C \rightarrow D$	58.39 ± 0.41 with standar t performanc $D \rightarrow A$	59.85 ± 0.16 d deviation (% e among sour C \rightarrow A	63.35 ± 0.84 a) on <u>citation data</u> ce-free appro A \rightarrow C	$\frac{\text{atasets.}}{\text{b} \rightarrow \text{C}}$
No. AdaGCN [7] 75.04±0.49 75.59±0.71 69.67±0.54 71.67±0.91 79.32±0.85 78.20±0.90 ASN [64] 73.80±0.40 76.36±0.33 70.15±0.60 72.74±0.49 80.64±0.27 78.23±0.52 ACDNE [41] 76.24±0.53 77.21±0.23 71.29±0.66 73.59±0.34 81.75±0.29 80.14±0.09 GRADE [52] 68.22±0.37 73.95±0.49 63.72±0.88 69.55±0.78 76.04±0.57 74.32±0.54 SpecReg [60] 75.93±0.89 75.74±1.15 71.01±0.64 72.04±0.63 80.55±0.70 79.04±0.83 node2vec [15] 23.84±2.31 23.00±2.04 23.88±4.27 21.71±3.52 23.63±2.37 23.70±2.96 GAE [23] 62.45±0.44 66.11±0.49 52.79±1.30 61.54±0.53 60.53±0.87 64.98±0.53 60.53±0.87 GCN [22] 69.05±0.86 74.53±0.36 63.35±0.69 70.58±0.68 77.38±1.28 74.17±1.15 GAT [49] 53.80±1.53 55.85±1.62 52.93±1.84 50.37±1.72 57.13±1.73 55.52±1.78 GIN [56] 79.10±0.18	Ours Average node cla erformance in sou	GraphCTA ssification perfor cce-need methods Methods UDAGCN [53]	63.85 ± 0.83 mance in term and bold ind $A \rightarrow D$ 66.95 ± 0.45	62.45 ± 0.23 is of accuracy icates the bes $C \rightarrow D$ 71.77 ± 1.09	58.39 ± 0.41 with standar t performanc D \rightarrow A 58.16 \pm 0.19	59.85 ± 0.16 d deviation (% e among sour $C \rightarrow A$ 66.80 ± 0.23	63.35 ± 0.84 a) on <u>citation da</u> ce-free appro <u>A \rightarrow C</u> 72.15\pm0.92	63.18 ± 0.31 $atasets. We use$ $aches.$ $D\rightarrow C$ 73.28 ± 0.52
ASN [64] 73.80±0.40 76.36±0.33 70.15±0.60 72.74±0.49 80.64±0.27 78.23±0.52 ACDNE [41] 76.24±0.53 77.21±0.23 71.29±0.66 73.59±0.34 81.75±0.29 80.14±0.09 GRADE [52] 68.22±0.37 73.95±0.49 63.72±0.88 69.55±0.78 76.04±0.57 74.32±0.54 SpecReg [60] 75.93±0.89 75.74±1.15 71.01±0.64 72.04±0.63 80.55±0.70 79.04±0.83 node2vec [15] 23.84±2.31 23.00±2.04 23.88±4.27 21.71±3.52 23.63±2.37 23.56±3.68 GAE [23] 62.45±0.44 66.11±0.49 52.79±1.30 61.54±0.53 64.98±0.53 60.53±0.87 GCN [22] 69.05±0.86 74.53±0.36 63.35±0.69 70.58±0.68 77.38±1.28 74.17±1.15 GAT [49] 53.80±1.53 55.85±1.62 52.93±1.84 50.37±1.72 57.13±1.73 55.52±1.78 GIN [56] 59.10±0.18 66.27±0.27 58.98±0.28 60.46±0.25 68.61±0.36 69.25±0.34 MCT [25] 73.32±0.48 71.6±1.88 62.86±1.73 </td <td>Ours</td> <td>GraphCTA ssification perfor cce-need methods Methods UDAGCN [53] TPN [35]</td> <td>63.85±0.83 mance in term and bold ind A→D 66.95±0.45 69.78±0.69</td> <td>62.45 ± 0.23 is of accuracy icates the bes $C\rightarrow D$ 71.77 ± 1.09 74.65 ± 0.74</td> <td>58.39±0.41 with standar t performanc D→A 58.16±0.19 62.99±1.25</td> <td>59.85±0.16 d deviation (% e among sour C→A 66.80±0.23 67.93±0.34</td> <td>63.35±0.84) on <u>citation de</u> ce-free appro <u>A→C</u> 72.15±0.92 74.56±0.73</td> <td>63.18±0.31 <u>atasets</u>. We use aches. D→C 73.28±0.52 72.54±1.08</td>	Ours	GraphCTA ssification perfor cce-need methods Methods UDAGCN [53] TPN [35]	63.85±0.83 mance in term and bold ind A→D 66.95±0.45 69.78±0.69	62.45 ± 0.23 is of accuracy icates the bes $C\rightarrow D$ 71.77 ± 1.09 74.65 ± 0.74	58.39±0.41 with standar t performanc D→A 58.16±0.19 62.99±1.25	59.85±0.16 d deviation (% e among sour C→A 66.80±0.23 67.93±0.34	63.35±0.84) on <u>citation de</u> ce-free appro <u>A→C</u> 72.15±0.92 74.56±0.73	63.18±0.31 <u>atasets</u> . We use aches. D→C 73.28±0.52 72.54±1.08
MethodACDNE [41]76.24±0.5377.21±0.2371.29±0.6673.59±0.3481.75±0.2980.14±0.09GRADE [52]68.22±0.3773.95±0.4963.72±0.8869.55±0.7876.04±0.5774.32±0.54SpecReg [60]75.93±0.8975.74±1.1571.01±0.6472.04±0.6380.55±0.7079.04±0.83mode2vec [15]24.38±1.0225.00±2.0423.88±4.2721.71±3.5223.63±2.3723.70±2.96node2vec [15]23.84±2.3123.40±2.6523.47±2.9222.83±1.6923.37±3.7223.56±3.68GAE [23]62.45±0.4466.11±0.4952.79±1.3061.54±0.5364.98±0.5360.53±0.87GCN [22]69.05±0.8674.53±0.3663.35±0.6970.58±0.6877.38±1.2874.17±1.15GAT [49]53.80±1.5355.85±1.6252.93±1.8450.37±1.7257.13±1.7355.52±1.78GIN [56]59.10±0.1866.27±0.2758.98±0.2860.46±0.2568.61±0.3669.25±0.34SHOT [25]73.32±0.4874.16±1.8862.86±1.7369.81±1.0876.81±1.4174.94±1.65SHOT++ [27]71.51±0.9374.99±0.9065.50±0.6470.73±0.5976.77±0.7476.70±1.05BNM [6]73.59±0.3175.83±0.6465.83±0.6769.96±0.4278.91±0.3476.87±0.75ATDOC [26]72.01±0.3574.80±0.4563.67±0.8867.64±1.4476.94±0.9274.89±0.99NRC [57]70.89±0.3971.79±0.3465.25±0.5668.44±0.6675.93±0.7076.19±0.66DaC [67]73.02±0.51	Average node cla formance in sou	GraphCTA ssification perfor cce-need methods Methods UDAGCN [53] TPN [35] AdaGCN [7]	63.85±0.83 mance in term and bold ind A→D 66.95±0.45 69.78±0.69 75.04±0.49	62.45±0.23 s of accuracy icates the bes C→D 71.77±1.09 74.65±0.74 75.59±0.71	58.39±0.41 with standar t performanc D→A 58.16±0.19 62.99±1.25 69.67±0.54	59.85±0.16 d deviation (% e among sour C→A 66.80±0.23 67.93±0.34 71.67±0.91	63.35±0.84) on <u>citation de</u> ce-free appro <u>A→C</u> 72.15±0.92 74.56±0.73 79.32±0.85	63.18±0.31 <u>atasets</u> . We use aches. D→C 73.28±0.52 72.54±1.08 78.20±0.90
Š GRADE [52] 68.22±0.37 73.95±0.49 63.72±0.88 69.55±0.78 76.04±0.57 74.32±0.54 SpecReg [60] 75.93±0.89 75.74±1.15 71.01±0.64 72.04±0.63 80.55±0.70 79.04±0.83 node2vec [15] 24.38±1.02 25.00±2.04 23.88±4.27 21.71±3.52 23.63±2.37 23.70±2.96 node2vec [15] 23.84±2.31 23.40±2.65 23.47±2.92 22.83±1.69 23.37±3.72 23.56±3.68 GAE [23] 62.45±0.44 66.11±0.49 52.79±1.30 61.54±0.53 64.98±0.53 60.53±0.87 GCN [22] 69.05±0.66 74.53±0.36 63.35±0.69 70.58±0.68 77.38±1.28 74.17±1.15 GAT [49] 53.80±1.53 55.85±1.62 52.93±1.84 50.37±1.72 57.13±1.73 55.52±1.78 GIN [56] 59.10±0.18 66.27±0.27 58.98±0.28 60.46±0.25 68.61±0.36 69.25±0.36 SHOT [25] 73.32±0.48 74.16±1.88 62.86±1.73 69.81±0.47 76.81±1.41 74.94±1.65 SHOT [26] 72.01±0.35 74.80±0.45	Average node cla formance in sou	GraphCTA ssification perfor cce-need methods Methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64]	63.85±0.83 mance in term and bold ind A→D 66.95±0.45 69.78±0.69 75.04±0.49 73.80±0.40	62.45±0.23 s of accuracy icates the bes C→D 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33	58.39±0.41 with standar t performanc D→A 58.16±0.19 62.99±1.25 69.67±0.54 70.15±0.60	59.85±0.16 d deviation (% e among sour C→A 66.80±0.23 67.93±0.34 71.67±0.91 72.74±0.49	63.35±0.84) on <u>citation de</u> ce-free appro <u>A→C</u> 72.15±0.92 74.56±0.73 79.32±0.85 80.64±0.27	$\begin{array}{c} \textbf{63.18\pm0.31} \\ \hline \textbf{atasets.} & \textbf{We us} \\ \textbf{aches.} \\ \hline \hline \textbf{D} \rightarrow \textbf{C} \\ \hline 73.28\pm0.52 \\ 72.54\pm1.08 \\ 78.20\pm0.90 \\ 78.23\pm0.52 \end{array}$
SpecReg [60] 75.93±0.89 75.74±1.15 71.01±0.64 72.04±0.63 80.55±0.70 79.04±0.83 Piger (1) DeepWalk [37] 24.38±1.02 25.00±2.04 23.88±4.27 21.71±3.52 23.63±2.37 23.70±2.96 node2vec [15] 23.84±2.31 23.40±2.65 23.47±2.92 22.83±1.69 23.37±3.72 23.56±3.68 GAE [23] 62.45±0.44 66.11±0.49 52.79±1.30 61.54±0.53 64.98±0.53 60.53±0.87 GCN [22] 69.05±0.66 74.53±0.36 63.35±0.69 70.58±0.68 77.38±1.28 74.17±1.15 GAT [49] 53.80±1.53 55.85±1.62 52.93±1.84 50.37±1.72 57.13±1.73 55.52±1.78 GIN [56] 59.10±0.18 66.27±0.27 58.98±0.28 60.46±0.25 68.61±0.36 69.25±0.34 SHOT [25] 73.32±0.48 74.16±1.88 62.86±1.73 69.81±0.48 76.71±0.74 76.70±1.05 BNM [6] 73.59±0.31 75.83±0.64 65.83±0.67 69.96±0.42 78.91±0.34 76.87±0.79 NRC [57] 70.89±0.39 71.79±0.34<	Average node cla formance in sou	GraphCTA ssification perfor cce-need methods Methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41]	63.85±0.83 mance in term and bold ind A→D 66.95±0.45 69.78±0.69 75.04±0.49 73.80±0.40 76.24±0.53	62.45±0.23 as of accuracy icates the bes C→D 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33 77.21±0.23	58.39±0.41 with standar t performanc D→A 58.16±0.19 62.99±1.25 69.67±0.54 70.15±0.60 71.29±0.66	59.85±0.16 d deviation (% e among sour C→A 66.80±0.23 67.93±0.34 71.67±0.91 72.74±0.49 73.59±0.34	63.35±0.84 b) on <u>citation da</u> ce-free appro A→C 72.15±0.92 74.56±0.73 79.32±0.85 80.64±0.27 81.75±0.29	$\begin{array}{c} \textbf{63.18\pm0.31}\\ \hline \textbf{atasets.} & \textbf{We use}\\ \textbf{aches.}\\ \hline \textbf{D} \rightarrow \textbf{C}\\ \hline \textbf{73.28\pm0.52}\\ \textbf{72.54\pm1.08}\\ \textbf{78.20\pm0.90}\\ \textbf{78.23\pm0.52}\\ \textbf{80.14\pm0.09} \end{array}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ours	GraphCTA ssification perfor cce-need methods Methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41] GRADE [52]	63.85±0.83 mance in term and bold ind A→D 66.95±0.45 69.78±0.69 75.04±0.49 73.80±0.40 76.24±0.53 68.22±0.37	62.45±0.23 as of accuracy icates the bes C→D 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33 77.21±0.23 73.95±0.49	58.39±0.41 with standar t performanc 58.16±0.19 62.99±1.25 69.67±0.54 70.15±0.60 71.29±0.66 63.72±0.88	59.85±0.16 d deviation (% e among sour C→A 66.80±0.23 67.93±0.34 71.67±0.91 72.74±0.49 73.59±0.34 69.55±0.78	63.35±0.84 a) on citation decerfree appro A→C 72.15±0.92 74.56±0.73 79.32±0.85 80.64±0.27 81.75±0.29 76.04±0.57	$\begin{array}{c} \textbf{63.18\pm0.31}\\ \hline \textbf{atasets.} & \textbf{We use}\\ \textbf{aches.}\\ \hline \textbf{D} \rightarrow \textbf{C}\\ \hline \textbf{73.28\pm0.52}\\ \textbf{72.54\pm1.08}\\ \textbf{78.20\pm0.90}\\ \textbf{78.23\pm0.52}\\ \textbf{80.14\pm0.09}\\ \textbf{74.32\pm0.54} \end{array}$
Node2vec [15] 23.84±2.31 23.40±2.65 23.47±2.92 22.83±1.69 23.37±3.72 23.56±3.68 GAE [23] 62.45±0.44 66.11±0.49 52.79±1.30 61.54±0.53 64.98±0.53 60.53±0.87 GCN [22] 69.05±0.86 74.53±0.36 63.35±0.69 70.58±0.68 77.38±1.28 74.17±1.15 GAT [49] 53.80±1.53 55.85±1.62 52.93±1.84 50.37±1.72 57.13±1.73 55.52±1.78 GIN [56] 59.10±0.18 66.27±0.27 58.98±0.28 60.46±0.25 68.61±0.36 69.25±0.34 SHOT [25] 73.32±0.48 74.16±1.88 62.86±1.73 69.81±1.08 76.81±1.41 74.94±1.65 SHOT [25] 73.32±0.48 74.99±0.90 65.50±0.64 70.73±0.59 76.77±0.74 76.70±1.05 BNM [6] 73.59±0.31 75.83±0.64 65.83±0.67 69.96±0.42 78.91±0.34 76.87±0.75 MRC [57] 70.89±0.39 71.79±0.34 65.25±0.56 68.44±0.86 75.93±0.70 76.19±0.66 DaC [67] 73.02±0.51 74.75±0.93 65.18±1.87	8: Average node cla berformance in sou	GraphCTA ssification perfor cce-need methods Methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41] GRADE [52] SpecReg [60]	63.85±0.83 mance in term and bold ind A→D 66.95±0.45 69.78±0.69 75.04±0.49 73.80±0.40 76.24±0.53 68.22±0.37 75.93±0.89	62.45±0.23 as of accuracy icates the bes C→D 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33 77.21±0.23 73.95±0.49 75.74±1.15	58.39±0.41 with standar t performanc D→A 58.16±0.19 62.99±1.25 69.67±0.54 70.15±0.60 71.29±0.66 63.72±0.88 71.01±0.64	59.85±0.16 d deviation (% e among sour C→A 66.80±0.23 67.93±0.34 71.67±0.91 72.74±0.49 73.59±0.34 69.55±0.78 72.04±0.63	63.35±0.84 ce-free appro A→C 72.15±0.92 74.56±0.73 79.32±0.85 80.64±0.27 81.75±0.29 76.04±0.57 80.55±0.70	$\begin{array}{c} \textbf{63.18\pm0.31} \\ \hline \textbf{atasets.} & \textbf{We us}_{a ches.} \\ \hline \textbf{D} \rightarrow \textbf{C} \\ \hline \textbf{73.28\pm0.52} \\ \textbf{72.54\pm1.08} \\ \textbf{78.20\pm0.90} \\ \textbf{78.23\pm0.52} \\ \textbf{80.14\pm0.09} \\ \textbf{74.32\pm0.54} \\ \textbf{79.04\pm0.83} \end{array}$
Part of the part of	8: Average node cla erformance in sou	GraphCTA ssification perfor rce-need methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41] GRADE [52] SpecReg [60] DeepWalk [37]	63.85±0.83 mance in term and bold ind A→D 66.95±0.45 69.78±0.69 75.04±0.49 73.80±0.40 76.24±0.53 68.22±0.37 75.93±0.89 24.38±1.02	62.45±0.23 as of accuracy icates the bes C→D 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33 77.21±0.23 73.95±0.49 75.74±1.15 25.00±2.04	58.39±0.41 with standar t performanc D→A 58.16±0.19 62.99±1.25 69.67±0.54 70.15±0.60 71.29±0.66 63.72±0.88 71.01±0.64 23.88±4.27	59.85±0.16 d deviation (% e among sour C→A 66.80±0.23 67.93±0.34 71.67±0.91 72.74±0.49 73.59±0.34 69.55±0.78 72.04±0.63 21.71±3.52	63.35±0.84 b) on citation decefree appro A→C 72.15±0.92 74.56±0.73 79.32±0.85 80.64±0.27 81.75±0.29 76.04±0.57 80.55±0.70 23.63±2.37	$\begin{array}{c} \textbf{63.18\pm0.31}\\ \hline \textbf{atasets.} & \textbf{We us}\\ \textbf{aches.}\\ \hline \textbf{D} \rightarrow \textbf{C}\\ \hline 73.28\pm0.52\\ 72.54\pm1.08\\ 78.20\pm0.90\\ 78.23\pm0.52\\ \textbf{80.14\pm0.09}\\ 74.32\pm0.54\\ 79.04\pm0.83\\ \hline 23.70\pm2.96 \end{array}$
Provide GCN [22] 69.05±0.86 74.53±0.36 63.35±0.69 70.58±0.68 77.38±1.28 74.17±1.15 GAT [49] 53.80±1.53 55.85±1.62 52.93±1.84 50.37±1.72 57.13±1.73 55.52±1.78 GIN [56] 59.10±0.18 66.27±0.27 58.98±0.28 60.46±0.25 68.61±0.36 69.25±0.34 SHOT [25] 73.32±0.48 74.16±1.88 62.86±1.73 69.81±1.08 76.81±1.41 74.94±1.65 SHOT++ [27] 71.51±0.93 74.99±0.90 65.50±0.64 70.73±0.59 76.77±0.74 76.70±1.05 BNM [6] 73.59±0.31 75.83±0.64 65.83±0.67 69.96±0.42 78.91±0.34 76.87±0.75 MRC [57] 70.89±0.39 71.79±0.34 65.25±0.56 68.44±0.86 75.93±0.70 76.19±0.66 DaC [67] 73.02±0.51 74.75±0.93 65.18±1.87 68.81±0.47 77.43±0.70 76.78±0.72 JMDS [24] 68.28±1.13 72.68±0.47 59.41±1.32 64.96±0.63 70.84±1.27 70.40±0.53 GTRANS [20] 64.85±0.99 71.44±1.65	Ours	GraphCTA ssification perfor rce-need methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41] GRADE [52] SpecReg [60] DeepWalk [37] node2vec [15]	63.85±0.83 mance in term and bold ind A→D 66.95±0.45 69.78±0.69 75.04±0.49 73.80±0.40 76.24±0.53 68.22±0.37 75.93±0.89 24.38±1.02 23.84±2.31	62.45±0.23 as of accuracy icates the bes $C \rightarrow D$ 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33 77.21±0.23 73.95±0.49 75.74±1.15 25.00±2.04 23.40±2.65	58.39±0.41 with standar t performanc D→A 58.16±0.19 62.99±1.25 69.67±0.54 70.15±0.60 71.29±0.66 63.72±0.88 71.01±0.64 23.88±4.27 23.47±2.92	59.85±0.16 d deviation (% e among sour C→A 66.80±0.23 67.93±0.34 71.67±0.91 72.74±0.49 73.59±0.34 69.55±0.78 72.04±0.63 21.71±3.52 22.83±1.69	63.35±0.84 b) on citation defined approvide the second s	63.18±0.31 atasets. We use aches. D→C 73.28±0.52 72.54±1.08 78.20±0.90 78.23±0.52 80.14±0.09 74.32±0.54 79.04±0.83 23.70±2.96 23.56±3.68 23.64
Sec GAT [49] 53.80±1.53 55.85±1.62 52.93±1.84 50.37±1.72 57.13±1.73 55.52±1.78 GIN [56] 59.10±0.18 66.27±0.27 58.98±0.28 60.46±0.25 68.61±0.36 69.25±0.34 SHOT [25] 73.32±0.48 74.16±1.88 62.86±1.73 69.81±1.08 76.81±1.41 74.94±1.65 SHOT++ [27] 71.51±0.93 74.99±0.90 65.50±0.64 70.73±0.59 76.77±0.74 76.70±1.05 BNM [6] 73.59±0.31 75.83±0.64 65.83±0.67 69.96±0.42 78.91±0.34 76.87±0.75 MRC [57] 70.89±0.39 71.79±0.34 65.25±0.56 68.44±0.86 75.93±0.70 76.19±0.66 DaC [67] 73.02±0.51 74.75±0.93 65.18±1.87 68.81±0.47 77.43±0.70 76.78±0.72 JMDS [24] 68.28±1.13 72.68±0.47 59.41±1.32 64.96±0.63 70.84±1.27 70.40±0.53 GTRANS [20] 64.85±0.99 71.44±1.65 63.47±1.93 67.27±0.25 69.05±0.34 72.27±0.29 SOGA [34] 71.62±0.37 74.16±0.72	Ourse 8: Average node cla performance in sou Source-Need	GraphCTA ssification perfor rce-need methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41] GRADE [52] SpecReg [60] DeepWalk [37] node2vec [15] GAE [23]	63.85±0.83 mance in term and bold ind 66.95±0.45 69.78±0.69 75.04±0.49 73.80±0.40 76.24±0.53 68.22±0.37 75.93±0.89 24.38±1.02 23.84±2.31 62.45±0.44	62.45±0.23 as of accuracy icates the bes $C \rightarrow D$ 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33 77.21±0.23 73.95±0.49 75.74±1.15 25.00±2.04 23.40±2.65 66.11±0.49	58.39±0.41 with standar t performanc D→A 58.16±0.19 62.99±1.25 69.67±0.54 70.15±0.60 71.29±0.66 63.72±0.88 71.01±0.64 23.88±4.27 23.47±2.92 52.79±1.30	59.85 ± 0.16 d deviation (% e among sour C \rightarrow A 66.80 \pm 0.23 67.93 \pm 0.34 71.67 \pm 0.91 72.74 \pm 0.49 73.59 \pm 0.34 69.55 \pm 0.78 72.04 \pm 0.63 21.71 \pm 3.52 22.83 \pm 1.69 61.54 \pm 0.53	63.35±0.84 On citation decentree appro A→C 72.15±0.92 74.56±0.73 79.32±0.85 80.64±0.27 81.75±0.29 76.04±0.57 80.55±0.70 23.63±2.37 23.37±3.72 64.98±0.53	63.18±0.31 atasets. We use aches. D \rightarrow C 73.28±0.52 72.54±1.08 78.20±0.90 78.23±0.52 80.14±0.09 74.32±0.54 79.04±0.83 23.70±2.96 23.56±3.68 60.53±0.87
Z GIN [56] 59.10±0.18 66.27±0.27 58.98±0.28 60.46±0.25 68.61±0.36 69.25±0.34 SHOT [25] 73.32±0.48 74.16±1.88 62.86±1.73 69.81±1.08 76.81±1.41 74.94±1.65 SHOT [27] 71.51±0.93 74.99±0.90 65.50±0.64 70.73±0.59 76.77±0.74 76.70±1.05 BNM [6] 73.59±0.31 75.83±0.64 65.83±0.67 69.96±0.42 78.91±0.34 76.87±0.75 ATDOC [26] 72.01±0.35 74.80±0.45 63.67±0.88 67.64±1.44 76.94±0.92 74.89±0.99 NRC [57] 70.89±0.39 71.79±0.34 65.25±0.56 68.44±0.86 75.93±0.70 76.19±0.66 DaC [67] 73.02±0.51 74.75±0.93 65.18±1.87 68.81±0.47 77.43±0.70 76.78±0.72 JMDS [24] 68.28±1.13 72.68±0.47 59.41±1.32 64.96±0.63 70.84±1.27 70.40±0.53 GTRANS [20] 64.85±0.99 71.44±1.65 63.47±1.93 67.27±0.25 69.05±0.34 72.27±0.29 SOGA [34] 71.62±0.37 74.16±0.72 <	e 8: Average node cla performance in sou Source-Need	GraphCTA ssification perfor rce-need methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41] GRADE [52] SpecReg [60] DeepWalk [37] node2vec [15] GAE [23] GCN [22]	$\begin{array}{c} \textbf{63.85\pm0.83} \\ \textbf{mance in term} \\ \textbf{and bold ind} \\ \hline \textbf{A} \rightarrow \textbf{D} \\ \textbf{66.95\pm0.45} \\ \textbf{69.78\pm0.69} \\ \textbf{75.04\pm0.49} \\ \textbf{73.80\pm0.40} \\ \textbf{76.24\pm0.53} \\ \textbf{68.22\pm0.37} \\ \textbf{75.93\pm0.89} \\ \textbf{24.38\pm1.02} \\ \textbf{23.84\pm2.31} \\ \textbf{62.45\pm0.44} \\ \textbf{69.05\pm0.86} \end{array}$	62.45±0.23 as of accuracy icates the bes $C \rightarrow D$ 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33 77.21±0.23 73.95±0.49 75.74±1.15 25.00±2.04 23.40±2.65 66.11±0.49 74.53±0.36	$\begin{array}{c} \textbf{58.39 \pm 0.41} \\ \textbf{with standar} \\ \textbf{t performanc} \\ \hline \textbf{D} \rightarrow \textbf{A} \\ \hline \textbf{58.16 \pm 0.19} \\ \textbf{62.99 \pm 1.25} \\ \textbf{69.67 \pm 0.54} \\ 70.15 \pm 0.60 \\ \hline \textbf{71.29 \pm 0.66} \\ \textbf{63.72 \pm 0.88} \\ \hline \textbf{71.01 \pm 0.64} \\ \hline \textbf{23.88 \pm 4.27} \\ \textbf{23.47 \pm 2.92} \\ \hline \textbf{52.79 \pm 1.30} \\ \textbf{63.35 \pm 0.69} \end{array}$	59.85 ± 0.16 d deviation (% e among sour C \rightarrow A 66.80 \pm 0.23 67.93 \pm 0.34 71.67 \pm 0.91 72.74 \pm 0.49 73.59 \pm 0.34 69.55 \pm 0.78 72.04 \pm 0.63 21.71 \pm 3.52 22.83 \pm 1.69 61.54 \pm 0.53 70.58 \pm 0.68	63.35±0.84 C A→C 72.15±0.92 74.56±0.73 79.32±0.85 80.64±0.27 81.75±0.29 76.04±0.57 80.55±0.70 23.63±2.37 23.37±3.72 64.98±0.53 77.38±1.28	63.18±0.31 atasets. We use aches. D \rightarrow C 73.28±0.52 72.54±1.08 78.20±0.90 78.23±0.52 80.14±0.09 74.32±0.54 79.04±0.83 23.70±2.96 23.56±3.68 60.53±0.87 74.17±1.15
SHOT [25] 73.32±0.48 74.16±1.88 62.86±1.73 69.81±1.08 76.81±1.41 74.94±1.65 SHOT [27] 71.51±0.93 74.99±0.90 65.50±0.64 70.73±0.59 76.77±0.74 76.70±1.05 BNM [6] 73.59±0.31 75.83±0.64 65.83±0.67 69.96±0.42 78.91±0.34 76.87±0.75 ATDOC [26] 72.01±0.35 74.80±0.45 63.67±0.88 67.64±1.44 76.94±0.92 74.89±0.99 NRC [57] 70.89±0.39 71.79±0.34 65.25±0.56 68.44±0.86 75.93±0.70 76.19±0.66 DaC [67] 73.02±0.51 74.75±0.93 65.18±1.87 68.81±0.47 77.43±0.70 76.78±0.72 JMDS [24] 68.28±1.13 72.68±0.47 59.41±1.32 64.96±0.63 70.84±1.27 70.40±0.53 GTRANS [20] 64.85±0.99 71.44±1.65 63.47±1.93 67.27±0.25 69.05±0.34 72.27±0.29 SOGA [34] 71.62±0.37 74.16±0.72 66.00±0.35 67.06±0.32 77.05±0.56 75.53±0.94	e 8: Average node cla performance in sou Source-Need	GraphCTA ssification perfor rce-need methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41] GRADE [52] SpecReg [60] DeepWalk [37] node2vec [15] GAE [23] GCN [22] GAT [49]	$\begin{array}{c} \textbf{63.85}{\pm}\textbf{0.83} \\ \hline \textbf{mance in term} \\ \textbf{and bold ind} \\ \hline \textbf{A}{\rightarrow}\textbf{D} \\ \hline \textbf{66.95}{\pm}\textbf{0.45} \\ \textbf{69.78}{\pm}\textbf{0.69} \\ \textbf{75.04}{\pm}\textbf{0.49} \\ \textbf{73.80}{\pm}\textbf{0.40} \\ \textbf{76.24}{\pm}\textbf{0.53} \\ \textbf{68.22}{\pm}\textbf{0.37} \\ \textbf{75.93}{\pm}\textbf{0.89} \\ \textbf{24.38}{\pm}\textbf{1.02} \\ \textbf{23.84}{\pm}\textbf{2.31} \\ \textbf{62.45}{\pm}\textbf{0.44} \\ \textbf{69.05}{\pm}\textbf{0.86} \\ \textbf{53.80}{\pm}\textbf{1.53} \end{array}$	62.45±0.23 as of accuracy icates the bes $C \rightarrow D$ 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33 77.21±0.23 73.95±0.49 75.74±1.15 25.00±2.04 23.40±2.65 66.11±0.49 74.53±0.36 55.85±1.62	$\begin{array}{c} \textbf{58.39 \pm 0.41} \\ \textbf{with standar} \\ \textbf{t performanc} \\ \hline \textbf{D} \rightarrow \textbf{A} \\ \hline \textbf{58.16 \pm 0.19} \\ \textbf{62.99 \pm 1.25} \\ \textbf{69.67 \pm 0.54} \\ \textbf{70.15 \pm 0.60} \\ \textbf{71.29 \pm 0.66} \\ \textbf{63.72 \pm 0.88} \\ \textbf{71.01 \pm 0.64} \\ \hline \textbf{23.88 \pm 4.27} \\ \textbf{23.47 \pm 2.92} \\ \textbf{52.79 \pm 1.30} \\ \textbf{63.35 \pm 0.69} \\ \textbf{52.93 \pm 1.84} \end{array}$	59.85 ± 0.16 d deviation (% e among sour C \rightarrow A 66.80 \pm 0.23 67.93 \pm 0.34 71.67 \pm 0.91 72.74 \pm 0.49 73.59 \pm 0.34 69.55 \pm 0.78 72.04 \pm 0.63 21.71 \pm 3.52 22.83 \pm 1.69 61.54 \pm 0.53 70.58 \pm 0.68 50.37 \pm 1.72	63.35±0.84 C A→C 72.15±0.92 74.56±0.73 79.32±0.85 80.64±0.27 81.75±0.29 76.04±0.57 80.55±0.70 23.63±2.37 23.37±3.72 64.98±0.53 77.38±1.28 57.13±1.73	63.18±0.31 atasets. We use aches. D \rightarrow C 73.28±0.52 72.54±1.08 78.20±0.90 78.23±0.52 80.14±0.09 74.32±0.54 79.04±0.83 23.70±2.96 23.56±3.68 60.53±0.87 74.17±1.15 55.52±1.78
SHOT++ 127 71.51±0.93 74.99±0.90 65.50±0.64 70.73±0.59 76.77±0.74 76.70±1.05 BNM [6] 73.59±0.31 75.83±0.64 65.83±0.67 69.96±0.42 78.91±0.34 76.87±0.75 ATDOC [26] 72.01±0.35 74.80±0.45 63.67±0.88 67.64±1.44 76.94±0.92 74.89±0.99 NRC [57] 70.89±0.39 71.79±0.34 65.25±0.56 68.44±0.86 75.93±0.70 76.19±0.66 DaC [67] 73.02±0.51 74.75±0.93 65.18±1.87 68.81±0.47 77.43±0.70 76.78±0.72 JMDS [24] 68.28±1.13 72.68±0.47 59.41±1.32 64.96±0.63 70.84±1.27 70.40±0.53 GTRANS [20] 64.85±0.99 71.44±1.65 63.47±1.93 67.27±0.25 69.05±0.34 72.27±0.29 SOGA [34] 71.62±0.37 74.16±0.72 66.00±0.35 67.06±0.32 77.05±0.56 75.3±0.94 Ours GraphCTA 75.62±0.29 77.62±0.22 70.04±0.15 72.56±0.43 80.55±0	Ours Performance in source-Need Source-Need	GraphCTA ssification perfor rce-need methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41] GRADE [52] SpecReg [60] DeepWalk [37] node2vec [15] GAE [23] GCN [22] GAT [49] GIN [56]	$\begin{array}{c} \textbf{63.85}{\pm}\textbf{0.83} \\ \hline \textbf{mance in term} \\ \textbf{and bold ind} \\ \hline \textbf{A}{\rightarrow}\textbf{D} \\ \hline \textbf{66.95}{\pm}\textbf{0.45} \\ \textbf{69.78}{\pm}\textbf{0.69} \\ \textbf{75.04}{\pm}\textbf{0.49} \\ \textbf{73.80}{\pm}\textbf{0.40} \\ \textbf{76.24}{\pm}\textbf{0.53} \\ \textbf{68.22}{\pm}\textbf{0.37} \\ \textbf{75.93}{\pm}\textbf{0.89} \\ \textbf{24.38}{\pm}\textbf{1.02} \\ \textbf{23.84}{\pm}\textbf{2.31} \\ \textbf{62.45}{\pm}\textbf{0.44} \\ \textbf{69.05}{\pm}\textbf{0.86} \\ \textbf{53.80}{\pm}\textbf{1.53} \\ \textbf{59.10}{\pm}\textbf{0.18} \end{array}$	62.45±0.23 as of accuracy icates the bes $C \rightarrow D$ 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33 77.21±0.23 73.95±0.49 75.74±1.15 25.00±2.04 23.40±2.65 66.11±0.49 74.53±0.36 55.85±1.62 66.27±0.27	$\begin{array}{c} \textbf{58.39\pm0.41} \\ \textbf{with standar} \\ \textbf{t performanc} \\ \hline \textbf{D} \rightarrow \textbf{A} \\ \hline \textbf{58.16\pm0.19} \\ 62.99\pm1.25 \\ 69.67\pm0.54 \\ 70.15\pm0.60 \\ 71.29\pm0.66 \\ 63.72\pm0.88 \\ 71.01\pm0.64 \\ 23.88\pm4.27 \\ 23.47\pm2.92 \\ 52.79\pm1.30 \\ 63.35\pm0.69 \\ 52.93\pm1.84 \\ 58.98\pm0.28 \end{array}$	59.85 ± 0.16 d deviation (% e among sour C \rightarrow A 66.80 \pm 0.23 67.93 \pm 0.34 71.67 \pm 0.91 72.74 \pm 0.49 73.59 \pm 0.34 69.55 \pm 0.78 72.04 \pm 0.63 21.71 \pm 3.52 22.83 \pm 1.69 61.54 \pm 0.53 70.58 \pm 0.68 50.37 \pm 1.72 60.46 \pm 0.25	$\begin{array}{c} \textbf{63.35 \pm 0.84} \\ \textbf{63.35 \pm 0.84} \\ \textbf{62.55 \pm 0.84} \\ \textbf{62.55 \pm 0.73} \\ \textbf{72.15 \pm 0.92} \\ \textbf{74.56 \pm 0.73} \\ \textbf{79.32 \pm 0.85} \\ \textbf{80.64 \pm 0.27} \\ \textbf{81.75 \pm 0.29} \\ \textbf{76.04 \pm 0.57} \\ \textbf{80.55 \pm 0.70} \\ \textbf{23.63 \pm 2.37} \\ \textbf{23.37 \pm 3.72} \\ \textbf{64.98 \pm 0.53} \\ \textbf{77.38 \pm 1.28} \\ \textbf{57.13 \pm 1.73} \\ \textbf{68.61 \pm 0.36} \end{array}$	63.18±0.31 atasets. We use aches. D \rightarrow C 73.28±0.52 72.54±1.08 78.20±0.90 78.23±0.52 80.14±0.09 74.32±0.54 79.04±0.83 23.70±2.96 23.56±3.68 60.53±0.87 74.17±1.15 55.52±1.78 69.25±0.34
BNM [6] 73.59±0.31 75.83±0.64 65.83±0.67 69.96±0.42 78.91±0.34 76.87±0.75 ATDOC [26] 72.01±0.35 74.80±0.45 63.67±0.88 67.64±1.44 76.94±0.92 74.89±0.99 NRC [57] 70.89±0.39 71.79±0.34 65.25±0.56 68.44±0.86 75.93±0.70 76.19±0.66 DaC [67] 73.02±0.51 74.75±0.93 65.18±1.87 68.81±0.47 77.43±0.70 76.78±0.72 JMDS [24] 68.28±1.13 72.68±0.47 59.41±1.32 64.96±0.63 70.84±1.27 70.40±0.53 GTRANS [20] 64.85±0.99 71.44±1.65 63.47±1.93 67.27±0.25 69.05±0.34 72.27±0.29 SOGA [34] 71.62±0.37 74.16±0.72 66.00±0.35 67.06±0.32 77.05±0.56 75.53±0.94 Ours GraphCTA 75.62±0.29 77.62±0.22 70.04±0.15 72.56±0.43 80.55±0.13 79.56±0.27	e 8: Average node cla performance in sou	GraphCTA ssification perfor rce-need methods Methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41] GRADE [52] SpecReg [60] DeepWalk [37] node2vec [15] GAE [23] GCN [22] GAT [49] GIN [56] SHOT [25]	$\begin{array}{c} \textbf{63.85}{\pm}\textbf{0.83} \\ \hline \textbf{mance in term} \\ \textbf{and bold ind} \\ \hline \textbf{A}{\rightarrow}\textbf{D} \\ \hline \textbf{66.95}{\pm}\textbf{0.45} \\ \textbf{69.78}{\pm}\textbf{0.69} \\ \textbf{75.04}{\pm}\textbf{0.49} \\ \textbf{73.80}{\pm}\textbf{0.40} \\ \textbf{76.24}{\pm}\textbf{0.53} \\ \textbf{68.22}{\pm}\textbf{0.37} \\ \textbf{75.93}{\pm}\textbf{0.89} \\ \textbf{24.38}{\pm}\textbf{1.02} \\ \textbf{23.84}{\pm}\textbf{2.31} \\ \textbf{62.45}{\pm}\textbf{0.44} \\ \textbf{69.05}{\pm}\textbf{0.86} \\ \textbf{53.80}{\pm}\textbf{1.53} \\ \textbf{59.10}{\pm}\textbf{0.18} \\ \textbf{73.32}{\pm}\textbf{0.48} \end{array}$	62.45±0.23 Is of accuracy icates the bes $C \rightarrow D$ 71.77 ± 1.09 74.65 ± 0.74 75.59 ± 0.71 76.36 ± 0.33 77.21 ± 0.23 73.95 ± 0.49 75.74 ± 1.15 25.00 ± 2.04 23.40 ± 2.65 66.11 ± 0.49 74.53 ± 0.36 55.85 ± 1.62 66.27 ± 0.27 $74.16+1.88$	$\begin{array}{c} \textbf{58.39 \pm 0.41} \\ \textbf{with standar} \\ \textbf{t performanc} \\ \hline \textbf{D} \rightarrow \textbf{A} \\ \hline \textbf{58.16 \pm 0.19} \\ 62.99 \pm 1.25 \\ 69.67 \pm 0.54 \\ 70.15 \pm 0.60 \\ 71.29 \pm 0.66 \\ 63.72 \pm 0.88 \\ 71.01 \pm 0.64 \\ 23.88 \pm 4.27 \\ 23.47 \pm 2.92 \\ 52.79 \pm 1.30 \\ 63.35 \pm 0.69 \\ 52.93 \pm 1.84 \\ 58.98 \pm 0.28 \\ 62.86 \pm 1.73 \end{array}$	59.85±0.16 d deviation (% e among sour $C \rightarrow A$ 66.80 ± 0.23 67.93 ± 0.34 71.67 ± 0.91 72.74 ± 0.49 73.59 ± 0.34 69.55 ± 0.78 72.04 ± 0.63 21.71 ± 3.52 22.83 ± 1.69 61.54 ± 0.53 70.58 ± 0.68 50.37 ± 1.72 60.46 ± 0.25 69.81 ± 1.08	$\begin{array}{c} \textbf{63.35 \pm 0.84} \\ \textbf{63.35 \pm 0.84} \\ \textbf{63.35 \pm 0.84} \\ \textbf{62.55 \pm 0.70} \\ \hline \textbf{A \rightarrow C} \\ \hline \textbf{72.15 \pm 0.92} \\ \hline \textbf{74.56 \pm 0.73} \\ \hline \textbf{79.32 \pm 0.85} \\ \textbf{80.64 \pm 0.27} \\ \textbf{81.75 \pm 0.29} \\ \hline \textbf{76.04 \pm 0.57} \\ \textbf{80.55 \pm 0.70} \\ \hline \textbf{23.63 \pm 2.37} \\ \hline \textbf{23.37 \pm 3.72} \\ \hline \textbf{64.98 \pm 0.53} \\ \hline \textbf{77.38 \pm 1.28} \\ \hline \textbf{57.13 \pm 1.73} \\ \hline \textbf{68.61 \pm 0.36} \\ \hline \textbf{76.81 \pm 1.41} \end{array}$	63.18±0.31 atasets. We use aches. D \rightarrow C 73.28±0.52 72.54±1.08 78.20±0.90 78.23±0.52 80.14±0.09 74.32±0.54 79.04±0.83 23.70±2.96 23.56±3.68 60.53±0.87 74.17±1.15 55.52±1.78 69.25±0.34 74.94±1.65
ATDOC [26] 72.01±0.35 74.80±0.45 63.67±0.88 67.64±1.44 76.94±0.92 74.89±0.99 by NRC [57] 70.89±0.39 71.79±0.34 65.25±0.56 68.44±0.86 75.93±0.70 76.19±0.66 DaC [67] 73.02±0.51 74.75±0.93 65.18±1.87 68.81±0.47 77.43±0.70 76.78±0.72 JMDS [24] 68.28±1.13 72.68±0.47 59.41±1.32 64.96±0.63 70.84±1.27 70.40±0.53 GTRANS [20] 64.85±0.99 71.44±1.65 63.47±1.93 67.27±0.25 69.05±0.34 72.27±0.29 SOGA [34] 71.62±0.37 74.16±0.72 66.00±0.35 67.06±0.32 77.05±0.56 75.53±0.94 Ours GraphCTA 75.62±0.29 77.62±0.22 70.04±0.15 72.56±0.43 80.55±0.13 79.56±0.27	Ours 8: Average node cla performance in sou No-Portion No-Po	GraphCTA ssification perfor ce-need methods Methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41] GRADE [52] SpecReg [60] DeepWalk [37] node2vec [15] GAE [23] GCN [22] GAT [49] GIN [56] SHOT [25] SHOT++ [27]	$\begin{array}{c} \textbf{63.85 \pm 0.83} \\ \hline \textbf{mance in term} \\ \textbf{and bold ind} \\ \hline \textbf{A} \rightarrow \textbf{D} \\ \hline \textbf{66.95 \pm 0.45} \\ \textbf{69.78 \pm 0.69} \\ \textbf{75.04 \pm 0.49} \\ \textbf{73.80 \pm 0.40} \\ \textbf{76.24 \pm 0.53} \\ \textbf{68.22 \pm 0.37} \\ \textbf{75.93 \pm 0.89} \\ \textbf{24.38 \pm 1.02} \\ \textbf{23.84 \pm 2.31} \\ \textbf{62.45 \pm 0.44} \\ \textbf{69.05 \pm 0.86} \\ \textbf{53.80 \pm 1.53} \\ \textbf{59.10 \pm 0.18} \\ \textbf{73.32 \pm 0.48} \\ \textbf{71.51 \pm 0.93} \end{array}$	62.45±0.23 Is of accuracy icates the bes $C \rightarrow D$ 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33 77.21±0.23 73.95±0.49 75.74±1.15 25.00±2.04 23.40±2.65 66.11±0.49 74.53±0.36 74.55±1.62 66.27±0.27 74.16±1.88 74.99±0.90	$\begin{array}{c} \textbf{58.39 \pm 0.41} \\ \textbf{with standar} \\ \textbf{t performanc} \\ \hline \textbf{D} \rightarrow \textbf{A} \\ \hline \textbf{58.16 \pm 0.19} \\ 62.99 \pm 1.25 \\ 69.67 \pm 0.54 \\ 70.15 \pm 0.60 \\ 71.29 \pm 0.66 \\ 63.72 \pm 0.88 \\ 71.01 \pm 0.64 \\ 23.88 \pm 4.27 \\ 23.47 \pm 2.92 \\ 52.79 \pm 1.30 \\ 63.35 \pm 0.69 \\ 52.93 \pm 1.84 \\ 58.98 \pm 0.28 \\ 62.86 \pm 1.73 \\ 65.50 \pm 0.64 \end{array}$	59.85 ± 0.16 d deviation (% e among sour C \rightarrow A 66.80 \pm 0.23 67.93 \pm 0.34 71.67 \pm 0.91 72.74 \pm 0.49 73.59 \pm 0.34 69.55 \pm 0.78 72.04 \pm 0.63 21.71 \pm 3.52 22.83 \pm 1.69 61.54 \pm 0.53 70.58 \pm 0.68 50.37 \pm 1.72 60.46 \pm 0.25 69.81 \pm 1.08 70.73 \pm 0.59	$\begin{array}{c} \textbf{63.35 \pm 0.84} \\ \textbf{63.35 \pm 0.84} \\ \textbf{63.35 \pm 0.84} \\ \textbf{72.15 \pm 0.92} \\ \textbf{74.56 \pm 0.73} \\ \textbf{79.32 \pm 0.85} \\ \textbf{80.64 \pm 0.27} \\ \textbf{81.75 \pm 0.29} \\ \textbf{76.04 \pm 0.57} \\ \textbf{80.55 \pm 0.70} \\ \textbf{23.63 \pm 2.37} \\ \textbf{23.37 \pm 3.72} \\ \textbf{64.98 \pm 0.53} \\ \textbf{77.38 \pm 1.28} \\ \textbf{57.13 \pm 1.73} \\ \textbf{68.61 \pm 0.36} \\ \textbf{76.81 \pm 1.41} \\ \textbf{76.77 \pm 0.74} \end{array}$	63.18±0.31 atasets. We use aches. D \rightarrow C 73.28±0.52 72.54±1.08 78.20±0.90 78.23±0.52 80.14±0.09 74.32±0.54 79.04±0.83 23.70±2.96 23.56±3.68 60.53±0.87 74.17±1.15 55.52±1.78 69.25±0.34 74.94±1.65 76.70±1.05
MRC [57] 70.89±0.39 71.79±0.34 65.25±0.56 68.44±0.86 75.93±0.70 76.19±0.66 DaC [67] 73.02±0.51 74.75±0.93 65.18±1.87 68.81±0.47 77.43±0.70 76.78±0.72 JMDS [24] 68.28±1.13 72.68±0.47 59.41±1.32 64.96±0.63 70.84±1.27 70.40±0.53 GTRANS [20] 64.85±0.99 71.44±1.65 63.47±1.93 67.27±0.25 69.05±0.34 72.27±0.29 SOGA [34] 71.62±0.37 74.16±0.72 66.00±0.35 67.06±0.32 77.05±0.56 75.3±0.94 Ours GraphCTA 75.62±0.29 77.62±0.22 70.04±0.15 72.56±0.43 80.55±0.13 79.56±0.27	Ours 8: Average node cla erformance in sou	GraphCTA ssification perfor rce-need methods Methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41] GRADE [52] SpecReg [60] DeepWalk [37] node2vec [15] GAE [23] GCN [22] GAT [49] GIN [56] SHOT [25] SHOT++ [27] BNM [6]	$\begin{array}{c} \textbf{63.85}{\pm}\textbf{0.83} \\ \hline \textbf{mance in term} \\ \textbf{and bold ind} \\ \hline \textbf{A}{\rightarrow}\textbf{D} \\ \hline \textbf{66.95}{\pm}\textbf{0.45} \\ \textbf{69.78}{\pm}\textbf{0.69} \\ \textbf{75.04}{\pm}\textbf{0.49} \\ \textbf{75.04}{\pm}\textbf{0.49} \\ \textbf{73.80}{\pm}\textbf{0.40} \\ \textbf{76.24}{\pm}\textbf{0.53} \\ \textbf{68.22}{\pm}\textbf{0.37} \\ \textbf{75.93}{\pm}\textbf{0.89} \\ \textbf{24.38}{\pm}\textbf{1.02} \\ \textbf{23.84}{\pm}\textbf{2.31} \\ \textbf{62.45}{\pm}\textbf{0.44} \\ \textbf{69.05}{\pm}\textbf{0.86} \\ \textbf{53.80}{\pm}\textbf{1.53} \\ \textbf{59.10}{\pm}\textbf{0.18} \\ \textbf{73.32}{\pm}\textbf{0.48} \\ \textbf{71.51}{\pm}\textbf{0.93} \\ \textbf{73.59}{\pm}\textbf{0.31} \end{array}$	62.45±0.23 Is of accuracy icates the bes $C \rightarrow D$ 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33 77.21±0.23 73.95±0.49 75.74±1.15 25.00±2.04 23.40±2.65 66.11±0.49 74.53±0.36 55.85±1.62 66.27±0.27 74.16±1.88 74.99±0.90 75.84±0.64 44	$\begin{array}{c} 58.39 \pm 0.41 \\ \hline \\ \mbox{with standar} \\ \mbox{t performanc} \\ \hline \\ \mbox{D} \rightarrow A \\ 58.16 \pm 0.19 \\ 62.99 \pm 1.25 \\ 69.67 \pm 0.54 \\ 70.15 \pm 0.60 \\ 71.29 \pm 0.66 \\ 63.72 \pm 0.88 \\ 71.01 \pm 0.64 \\ 23.88 \pm 4.27 \\ 23.47 \pm 2.92 \\ 52.79 \pm 1.30 \\ 63.35 \pm 0.69 \\ 52.93 \pm 1.84 \\ 58.98 \pm 0.28 \\ 62.86 \pm 1.73 \\ 65.50 \pm 0.64 \\ 65.83 \pm 0.67 \\ \end{array}$	59.85 ± 0.16 d deviation (% e among sour C \rightarrow A 66.80 \pm 0.23 67.93 \pm 0.34 71.67 \pm 0.91 72.74 \pm 0.49 73.59 \pm 0.34 69.55 \pm 0.78 72.04 \pm 0.63 21.71 \pm 3.52 22.83 \pm 1.69 61.54 \pm 0.53 70.58 \pm 0.68 50.37 \pm 1.72 60.46 \pm 0.25 69.81 \pm 1.08 70.73 \pm 0.59 69.96 \pm 0.42	63.35±0.84 citation defined approximate $A \rightarrow C$ 72.15±0.92 74.56±0.73 79.32±0.85 80.64±0.27 81.75±0.29 76.04±0.57 80.55±0.70 23.63±2.37 23.37±3.72 64.98±0.53 77.38±1.28 57.13±1.73 68.61±0.36 76.81±1.41 76.77±0.74 78.91±0.34	63.18±0.31 atasets. We use aches. D \rightarrow C 73.28±0.52 72.54±1.08 78.20±0.90 78.23±0.52 80.14±0.09 74.32±0.54 79.04±0.83 23.70±2.96 23.56±3.68 60.53±0.87 74.17±1.15 55.52±1.78 69.25±0.34 74.94±1.65 76.70±1.05 76.87±0.75
Bit Mate [27] 76.5710.57 71.7710.57 65.2510.50 66.7410.60 73.7510.70 76.7910.60 DaC [67] 73.02±0.51 74.75±0.93 65.18±1.87 68.81±0.47 77.43±0.70 76.78±0.72 JMDS [24] 68.28±1.13 72.68±0.47 59.41±1.32 64.96±0.63 70.84±1.27 70.40±0.53 GTRANS [20] 64.85±0.99 71.44±1.65 63.47±1.93 67.27±0.25 69.05±0.34 72.27±0.29 SOGA [34] 71.62±0.37 74.16±0.72 66.00±0.35 67.06±0.32 77.05±0.56 75.53±0.94 Ours GraphCTA 75.62±0.29 77.62±0.22 70.04±0.15 72.56±0.43 80.55±0.13 79.56±0.27	Durs Ours 8: Average node cla performance in sou	GraphCTA ssification perfor rce-need methods Methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41] GRADE [52] SpecReg [60] DeepWalk [37] node2vec [15] GAE [23] GCN [22] GAT [49] GIN [56] SHOT [25] SHOT [25] SHOT [25] SHOT [42] BNM [6] ATDOC [26]	$\begin{array}{c} \textbf{63.85 \pm 0.83} \\ \hline \textbf{mance in term} \\ \textbf{and bold ind} \\ \hline \textbf{A} \rightarrow \textbf{D} \\ \hline \textbf{66.95 \pm 0.45} \\ \textbf{69.78 \pm 0.69} \\ \textbf{75.04 \pm 0.49} \\ \textbf{75.04 \pm 0.49} \\ \textbf{76.24 \pm 0.53} \\ \textbf{68.22 \pm 0.37} \\ \textbf{75.93 \pm 0.89} \\ \textbf{24.38 \pm 1.02} \\ \textbf{23.84 \pm 2.31} \\ \textbf{62.45 \pm 0.44} \\ \textbf{69.05 \pm 0.86} \\ \textbf{53.80 \pm 1.53} \\ \textbf{59.10 \pm 0.18} \\ \textbf{73.32 \pm 0.48} \\ \textbf{71.51 \pm 0.93} \\ \textbf{73.59 \pm 0.31} \\ \textbf{72.01 \pm 0.35} \end{array}$	62.45±0.23 Is of accuracy icates the bes $C \rightarrow D$ 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33 77.21±0.23 73.95±0.49 75.74±1.15 25.00±2.04 23.40±2.65 66.11±0.49 74.53±0.36 55.85±1.62 66.27±0.27 74.16±1.88 74.99±0.90 75.83±0.64 74.80±0.45	58.39±0.41 with standar t performanc $D \rightarrow A$ 58.16±0.19 62.99±1.25 69.67±0.54 70.15±0.60 71.29±0.66 63.72±0.88 71.01±0.64 23.88±4.27 23.47±2.92 52.79±1.30 63.35±0.69 52.93±1.84 58.98±0.28 62.86±1.73 65.50±0.64 65.83±0.67 63.67±0.88	59.85 ± 0.16 d deviation (% e among sour C \rightarrow A 66.80\pm0.23 67.93\pm0.34 71.67\pm0.91 72.74\pm0.49 73.59\pm0.34 69.55\pm0.78 72.04\pm0.63 21.71\pm3.52 22.83\pm1.69 61.54\pm0.53 70.58\pm0.68 50.37\pm1.72 60.46\pm0.25 69.81\pm1.08 70.73\pm0.59 69.96\pm0.42 67.64\pm1.44	63.35±0.84 ce-free appro A \rightarrow C 72.15±0.92 74.56±0.73 79.32±0.85 80.64±0.27 81.75±0.29 76.04±0.57 80.55±0.70 23.63±2.37 23.37±3.72 64.98±0.53 77.38±1.28 57.13±1.73 68.61±0.36 76.81±1.41 76.77±0.74 78.91±0.34 76.94±0.92	63.18±0.31 atasets. We use aches. D \rightarrow C 73.28±0.52 72.54±1.08 78.20±0.90 78.23±0.52 80.14±0.09 74.32±0.54 79.04±0.83 23.70±2.96 23.56±3.68 60.53±0.87 74.17±1.15 55.52±1.78 69.25±0.34 74.94±1.65 76.70±1.05 76.87±0.75 74.89±0.99
5 Date [07] 75.02±0.51 74.75±0.75 05.16±1.67 06.81±0.47 77.43±0.70 76.78±0.72 JMDS [24] 68.28±1.13 72.68±0.47 59.41±1.32 64.96±0.63 70.84±1.27 70.40±0.53 GTRANS [20] 64.85±0.99 71.44±1.65 63.47±1.93 67.27±0.25 69.05±0.34 72.27±0.29 SOGA [34] 71.62±0.37 74.16±0.72 66.00±0.35 67.06±0.32 77.05±0.56 75.53±0.94 Ours GraphCTA 75.62±0.29 77.62±0.22 70.04±0.15 72.56±0.43 80.55±0.13 79.56±0.27	Serverage node classer Serverage node classer No-Adaptation No-Adaptation	GraphCTA ssification perfor rce-need methods Methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41] GRADE [52] SpecReg [60] DeepWalk [37] node2vec [15] GAE [23] GCN [22] GAT [49] GIN [56] SHOT [25] SHOT [25] SHOT++ [27] BNM [6] ATDOC [26] NBC [57]	63.85±0.83 mance in term and bold ind A\rightarrowD 66.95±0.45 69.78±0.69 75.04±0.49 73.80±0.40 76.24±0.53 68.22±0.37 75.93±0.89 24.38±1.02 23.84±2.31 62.45±0.44 69.05±0.86 53.80±1.53 59.10±0.18 73.32±0.48 71.51±0.93 73.59±0.31 72.01±0.35 70.89±0.30	62.45±0.23 as of accuracy icates the bes $C \rightarrow D$ 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33 77.21±0.23 73.95±0.49 75.74±1.15 25.00±2.04 23.40±2.65 66.11±0.49 74.53±0.36 55.85±1.62 66.27±0.27 74.16±1.88 74.99±0.90 75.83±0.64 74.80±0.45 71.79±0.34	58.39 \pm 0.41 with standar t performanc $D \rightarrow A$ 58.16 \pm 0.19 62.99 \pm 1.25 69.67 \pm 0.54 70.15 \pm 0.60 71.29 \pm 0.66 63.72 \pm 0.88 71.01 \pm 0.64 23.88 \pm 4.27 23.47 \pm 2.92 52.79 \pm 1.30 63.35 \pm 0.69 52.93 \pm 1.84 58.98 \pm 0.28 62.86 \pm 1.73 65.50 \pm 0.64 65.53 \pm 0.67 63.67 \pm 0.88 65.25 \pm 0.56	59.85 \pm 0.16 d deviation (% e among sour C \rightarrow A 66.80 \pm 0.23 67.93 \pm 0.34 71.67 \pm 0.91 72.74 \pm 0.49 73.59 \pm 0.34 69.55 \pm 0.78 72.04 \pm 0.63 21.71 \pm 3.52 22.83 \pm 1.69 61.54 \pm 0.53 70.58 \pm 0.68 50.37 \pm 1.72 60.46 \pm 0.25 69.81 \pm 1.08 70.73 \pm 0.59 69.96 \pm 0.42 67.64 \pm 1.44 68.44 \pm 0.86	63.35±0.84 ce-free appro A \rightarrow C 72.15±0.92 74.56±0.73 79.32±0.85 80.64±0.27 81.75±0.29 76.04±0.57 80.55±0.70 23.63±2.37 23.37±3.72 64.98±0.53 77.38±1.28 57.13±1.73 68.61±0.36 76.81±1.41 76.78±0.74 76.94±0.92 75.93±0.70	63.18 \pm 0.31 atasets. We use aches. D \rightarrow C 73.28 \pm 0.52 72.54 \pm 1.08 78.20 \pm 0.90 78.23 \pm 0.52 80.14 \pm 0.09 74.32 \pm 0.54 79.04 \pm 0.83 23.70 \pm 2.96 23.56 \pm 3.68 60.53 \pm 0.87 74.17 \pm 1.15 55.52 \pm 1.78 69.25 \pm 0.34 74.94 \pm 1.65 76.70 \pm 1.05 76.87 \pm 0.75 74.89 \pm 0.99 76.19 \pm 0.66
JNLS [24] 00.20±1.13 72.00±0.47 59.41±1.32 04.90±0.63 70.64±1.27 70.40±0.53 GTRANS [20] 64.85±0.99 71.44±1.65 63.47±1.93 67.27±0.25 69.05±0.34 72.27±0.29 SOGA [34] 71.62±0.37 74.16±0.72 66.00±0.35 67.06±0.32 77.05±0.56 75.53±0.94 Ours GraphCTA 75.62±0.29 77.62±0.22 70.04±0.15 72.56±0.43 80.55±0.13 79.56±0.27	Source-Free No-Adaptation No-Need Source-Need Source-Need No-Need No-N	GraphCTA ssification perfor rce-need methods Methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41] GRADE [52] SpecReg [60] DeepWalk [37] node2vec [15] GAE [23] GCN [22] GAT [49] GIN [56] SHOT [25] SHOT [25] SHOT++ [27] BNM [6] ATDOC [26] NRC [57] Dec [7]	63.85±0.83 mance in term and bold ind A \rightarrow D 66.95±0.45 69.78±0.69 75.04±0.49 73.80±0.40 76.24±0.53 68.22±0.37 75.93±0.89 24.38±1.02 23.84±2.31 62.45±0.44 69.05±0.86 53.80±1.53 59.10±0.18 73.32±0.48 71.51±0.93 73.59±0.31 72.01±0.35 70.89±0.39 73.09±0.51	62.45±0.23 as of accuracy icates the bess $C \rightarrow D$ 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33 77.21±0.23 73.95±0.49 75.74±1.15 25.00±2.04 23.40±2.65 66.11±0.49 74.53±0.36 55.85±1.62 66.27±0.27 74.16±1.88 74.99±0.90 75.83±0.64 74.80±0.45 71.79±0.34 74.75±0.92	58.39±0.41 with standar t performanc $D \rightarrow A$ 58.16±0.19 62.99±1.25 69.67±0.54 70.15±0.60 71.29±0.66 63.72±0.88 71.01±0.64 23.88±4.27 23.47±2.92 52.79±1.30 63.35±0.69 52.93±1.84 58.98±0.28 62.86±1.73 65.50±0.64 65.83±0.67 63.67±0.88 65.25±0.56 65.18±1.97	59.85 \pm 0.16 d deviation (% e among sour C \rightarrow A 66.80 \pm 0.23 67.93 \pm 0.34 71.67 \pm 0.91 72.74 \pm 0.49 73.59 \pm 0.34 69.55 \pm 0.78 72.04 \pm 0.63 21.71 \pm 3.52 22.83 \pm 1.69 61.54 \pm 0.53 70.58 \pm 0.68 50.37 \pm 1.72 60.46 \pm 0.25 69.81 \pm 1.08 70.73 \pm 0.59 69.96 \pm 0.42 67.64 \pm 1.44 68.44 \pm 0.86 68 81 \pm 0.47	63.35±0.84 ce-free appro A \rightarrow C 72.15±0.92 74.56±0.73 79.32±0.85 80.64±0.27 81.75±0.29 76.04±0.57 80.55±0.70 23.63±2.37 23.37±3.72 64.98±0.53 77.38±1.28 57.13±1.73 68.61±0.36 76.81±1.41 76.77±0.74 78.91±0.34 76.94±0.92 75.93±0.70 77.43±0.70	63.18 \pm 0.31 atasets. We use aches. D \rightarrow C 73.28 \pm 0.52 72.54 \pm 1.08 78.20 \pm 0.90 78.23 \pm 0.52 80.14 \pm 0.09 74.32 \pm 0.54 79.04 \pm 0.83 23.70 \pm 2.96 23.56 \pm 3.68 60.53 \pm 0.87 74.17 \pm 1.15 55.52 \pm 1.78 69.25 \pm 0.34 74.94 \pm 1.65 76.70 \pm 1.05 76.87 \pm 0.75 74.89 \pm 0.99 76.19 \pm 0.66 76.79 \pm 0.72 74.99 \pm 0.72
OIRANS [20] 04.05±0.99 /1.44±1.05 05.4/±1.93 07.2/±0.25 09.05±0.34 72.2/±0.29 SOGA [34] 71.62±0.37 74.16±0.72 66.00±0.35 67.06±0.32 77.05±0.56 75.53±0.94 Ours GraphCTA 75.62±0.29 77.62±0.22 70.04±0.15 72.56±0.43 80.55±0.13 79.56±0.27	Source-Free Source-Need Source-Free Source-Need Source	GraphCTA ssification perfor rce-need methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41] GRADE [52] SpecReg [60] DeepWalk [37] node2vec [15] GAE [23] GCN [22] GAT [49] GIN [56] SHOT [25] SHOT [25] SHOT [25] SHOT [25] SHOT ++ [27] BNM [6] ATDOC [26] NRC [57] DaC [67] IMDS [74]	63.85±0.83 mance in term and bold ind A \rightarrow D 66.95±0.45 69.78±0.69 75.04±0.49 73.80±0.40 76.24±0.53 68.22±0.37 75.93±0.89 24.38±1.02 23.84±2.31 62.45±0.44 69.05±0.86 53.80±1.53 59.10±0.18 73.32±0.48 71.51±0.93 73.59±0.31 72.01±0.35 70.89±0.39 73.02±0.51 69.29±1.12	62.45±0.23 as of accuracy icates the bess $C \rightarrow D$ 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33 77.21±0.23 73.95±0.49 75.74±1.15 25.00±2.04 23.40±2.65 66.11±0.49 74.53±0.36 55.85±1.62 66.27±0.27 74.16±1.88 74.99±0.90 75.83±0.64 74.80±0.45 71.79±0.34 74.75±0.93 72.68±0.47	58.39±0.41 with standar t performanc $D \rightarrow A$ 58.16±0.19 62.99±1.25 69.67±0.54 70.15±0.60 71.29±0.66 63.72±0.88 71.01±0.64 23.88±4.27 23.47±2.92 52.79±1.30 63.35±0.69 52.93±1.84 58.98±0.28 62.86±1.73 65.50±0.64 65.83±0.67 63.67±0.88 65.25±0.56 65.18±1.87 50.41±1.22	59.85±0.16 d deviation (% e among sour $C \rightarrow A$ 66.80±0.23 67.93±0.34 71.67±0.91 72.74±0.49 73.59±0.34 69.55±0.78 72.04±0.63 21.71±3.52 22.83±1.69 61.54±0.53 70.58±0.68 50.37±1.72 60.46±0.25 69.81±1.08 70.73±0.59 69.96±0.42 67.64±1.44 68.84±0.47 64.06±0.62	63.35±0.84 ce-free appro A \rightarrow C 72.15±0.92 74.56±0.73 79.32±0.85 80.64±0.27 81.75±0.29 76.04±0.57 80.55±0.70 23.63±2.37 23.37±3.72 64.98±0.53 77.38±1.28 57.13±1.73 68.61±0.36 76.81±1.41 76.79±0.74 78.91±0.34 76.94±0.92 75.93±0.70 74.350.70 74.350.70 74.350.70 76.84±1.27 76.94±1.27 76.95 77.85 77.85 77.85 77.85 77.43±0.70 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70.84±1.27 70	63.18 \pm 0.31 atasets. We use aches. D \rightarrow C 73.28 \pm 0.52 72.54 \pm 1.08 78.20 \pm 0.90 78.23 \pm 0.52 80.14 \pm 0.09 74.32 \pm 0.54 79.04 \pm 0.83 23.70 \pm 2.96 23.56 \pm 3.68 60.53 \pm 0.87 74.17 \pm 1.15 55.52 \pm 1.78 69.25 \pm 0.34 74.94 \pm 1.65 76.70 \pm 1.05 76.87 \pm 0.75 74.89 \pm 0.99 76.19 \pm 0.66 76.78 \pm 0.72 70.40 \pm 52
Ours GraphCTA 75.62±0.29 77.62±0.22 70.04±0.15 72.56±0.43 80.55±0.13 79.56±0.27	Ourse 8: Average node cla performance in sour source-Free No-Adaptation	GraphCTA ssification perfor rce-need methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41] GRADE [52] SpecReg [60] DeepWalk [37] node2vec [15] GAE [23] GCN [22] GAT [49] GIN [56] SHOT [25] SHOT [25] SHOT [25] SHOT [25] SHOT [25] SHOT ++ [27] BNM [6] ATDOC [26] NRC [57] DaC [67] JMDS [24] CTDWE [22]	63.85±0.83 mance in term and bold ind A\rightarrowD 66.95±0.45 69.78±0.69 75.04±0.49 73.80±0.40 76.24±0.53 68.22±0.37 75.93±0.89 24.38±1.02 23.84±2.31 62.45±0.44 69.05±0.86 53.80±1.53 59.10±0.18 73.32±0.48 71.51±0.93 73.59±0.31 72.01±0.35 70.89±0.39 73.02±0.51 68.28±1.13 64.85±0.20	62.45±0.23 as of accuracy icates the bes $C \rightarrow D$ 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33 77.21±0.23 73.95±0.49 75.74±1.15 25.00±2.04 23.40±2.65 66.11±0.49 74.53±0.36 55.85±1.62 66.27±0.27 74.16±1.88 74.99±0.90 75.83±0.64 74.80±0.45 71.79±0.34 74.75±0.93 72.68±0.47 71.44±1.55 71.79±0.34 74.75±0.93 72.68±0.47 71.44±1.55 71.79±0.74 71.44±1.55 71.79±0.74 71.79±0.74 71.79±0.74 71.79±0.74 71.79±0.77 71.44±1.55 71.79±0.74 71.79±0.77 71.44±1.55 71.79±0.74 71.79±0.77 71.44±1.55 71.79±0.74 71.79±0.77 71.44±1.55 71.79±0.74 71.75±0.93 72.68±0.47 71.75±0.93 72.45 73.95±0.47 73.45 74.45±0.93 74.45±0.95 74.55 74	58.39±0.41 with standar t performanc $D \rightarrow A$ 58.16±0.19 62.99±1.25 69.67±0.54 70.15±0.60 71.29±0.66 63.72±0.88 71.01±0.64 23.88±4.27 23.47±2.92 52.79±1.30 63.35±0.69 52.93±1.84 58.98±0.28 62.86±1.73 65.50±0.64 65.83±0.67 63.67±0.88 65.25±0.56 65.18±1.87 59.41±1.32 (2.47±1.22)	59.85±0.16 d deviation (% e among sour $C \rightarrow A$ 66.80±0.23 67.93±0.34 71.67±0.91 72.74±0.49 73.59±0.34 69.55±0.78 72.04±0.63 21.71±3.52 22.83±1.69 61.54±0.53 70.58±0.68 50.37±1.72 60.46±0.25 69.81±1.08 70.73±0.59 69.96±0.42 67.64±1.44 68.81±0.47 64.96±0.63 (7.27±0.27	63.35±0.84 ce-free appro A \rightarrow C 72.15±0.92 74.56±0.73 79.32±0.85 80.64±0.27 81.75±0.29 76.04±0.57 80.55±0.70 23.63±2.37 23.37±3.72 64.98±0.53 77.38±1.28 57.13±1.73 68.61±0.36 76.81±1.41 76.77±0.74 78.91±0.34 76.94±0.92 75.93±0.70 77.43±0.70 77.43±0.70 70.84±1.27 70.82 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 	63.18±0.31 atasets. We use aches. D \rightarrow C 73.28±0.52 72.54±1.08 78.20±0.90 78.23±0.52 80.14±0.09 74.32±0.54 79.04±0.83 23.70±2.96 23.56±3.68 60.53±0.87 74.17±1.15 55.52±1.78 69.25±0.34 74.94±1.65 76.87±0.75 74.89±0.99 76.19±0.66 76.78±0.72 70.40±0.53 72.51±0.73
Ours GraphCIA 75.62±0.29 77.62±0.22 70.04±0.15 72.56±0.43 80.55±0.13 79.56±0.27	Ourse 8: Average node cla performance in sou performance Source-Free NoAdaptation	GraphCTA ssification perfor rce-need methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41] GRADE [52] SpecReg [60] DeepWalk [37] node2vec [15] GAE [23] GCN [22] GAT [49] GIN [56] SHOT [25] SHOT [25] SHOT [25] SHOT [25] SHOT ++ [27] BNM [6] ATDOC [26] NRC [57] DaC [67] JMDS [24] GTRANS [20]	63.85±0.83 mance in term and bold ind $A \rightarrow D$ 66.95±0.45 69.78±0.69 75.04±0.49 73.80±0.40 76.24±0.53 68.22±0.37 75.93±0.89 24.38±1.02 23.84±2.31 62.45±0.44 69.05±0.86 53.80±1.53 59.10±0.18 73.32±0.48 71.51±0.93 73.59±0.31 72.01±0.35 70.89±0.39 73.02±0.51 68.28±1.13 64.85±0.99 74.62±0.27	62.45±0.23 as of accuracy icates the bes $C \rightarrow D$ 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33 77.21±0.23 73.95±0.49 75.74±1.15 25.00±2.04 23.40±2.65 66.11±0.49 74.53±0.36 55.85±1.62 66.27±0.27 74.16±1.88 74.99±0.90 75.83±0.64 74.80±0.45 71.79±0.34 74.75±0.93 72.68±0.47 71.44±1.65 74.16±0.72	58.39±0.41 with standar t performanc $D \rightarrow A$ 58.16±0.19 62.99±1.25 69.67±0.54 70.15±0.60 71.29±0.66 63.72±0.88 71.01±0.64 23.88±4.27 23.47±2.92 52.79±1.30 63.35±0.69 52.93±1.84 58.98±0.28 62.86±1.73 65.50±0.64 65.83±0.67 63.67±0.88 65.25±0.56 65.18±1.87 59.41±1.32 63.47±1.93 64.00±0.25	59.85±0.16 d deviation (% e among sour $C \rightarrow A$ 66.80±0.23 67.93±0.34 71.67±0.91 72.74±0.49 73.59±0.34 69.55±0.78 72.04±0.63 21.71±3.52 22.83±1.69 61.54±0.53 70.58±0.68 50.37±1.72 60.46±0.25 69.81±1.08 70.73±0.59 69.96±0.42 67.64±1.44 68.81±0.47 64.96±0.63 67.27±0.25 67.05±0.25	63.35±0.84 ce-free appro A \rightarrow C 72.15±0.92 74.56±0.73 79.32±0.85 80.64±0.27 81.75±0.29 76.04±0.57 80.55±0.70 23.63±2.37 23.37±3.72 64.98±0.53 77.38±1.28 57.13±1.73 68.61±0.36 76.81±1.41 76.77±0.74 78.91±0.34 76.94±0.92 75.93±0.70 77.43±0.70 77.43±0.70 70.84±1.27 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 69.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05±0.37 77.05 77.05±0.37 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 77.05 7	63.18±0.31 atasets. We use aches. D \rightarrow C 73.28±0.52 72.54±1.08 78.20±0.90 78.23±0.52 80.14±0.09 74.32±0.54 79.04±0.83 23.70±2.96 23.56±3.68 60.53±0.87 74.17±1.15 55.52±1.78 69.25±0.34 74.94±1.65 76.70±1.05 76.87±0.75 74.89±0.99 76.19±0.66 76.78±0.72 70.40±0.53 72.27±0.29
	Source-Free No-Adaptation	GraphCTA ssification perfor rce-need methods UDAGCN [53] TPN [35] AdaGCN [7] ASN [64] ACDNE [41] GRADE [52] SpecReg [60] DeepWalk [37] node2vec [15] GAE [23] GCN [22] GAT [49] GIN [56] SHOT [25] SHOT++ [27] BNM [6] ATDOC [26] NRC [57] DaC [67] JMDS [24] GTRANS [20] SOGA [34]	63.85±0.83 mance in term and bold ind A \rightarrow D 66.95±0.45 69.78±0.69 75.04±0.49 73.80±0.40 76.24±0.53 68.22±0.37 75.93±0.89 24.38±1.02 23.84±2.31 62.45±0.44 69.05±0.86 53.80±1.53 59.10±0.18 73.32±0.48 71.51±0.93 73.59±0.31 72.01±0.35 70.89±0.39 73.02±0.51 68.28±1.13 64.85±0.99 71.62±0.37 75.94	62.45±0.23 as of accuracy icates the bes $C \rightarrow D$ 71.77±1.09 74.65±0.74 75.59±0.71 76.36±0.33 77.21±0.23 73.95±0.49 75.74±1.15 25.00±2.04 23.40±2.65 66.11±0.49 74.53±0.36 55.85±1.62 66.27±0.27 74.16±1.88 74.99±0.90 75.83±0.64 74.80±0.45 71.79±0.34 74.75±0.93 72.68±0.47 71.44±1.65 71.64±0.72	58.39 \pm 0.41 with standar t performanc D \rightarrow A 58.16 \pm 0.19 62.99 \pm 1.25 69.67 \pm 0.54 70.15 \pm 0.60 71.29 \pm 0.66 63.72 \pm 0.88 71.01 \pm 0.64 23.88 \pm 4.27 23.47 \pm 2.92 52.79 \pm 1.30 63.35 \pm 0.69 52.93 \pm 1.84 58.98 \pm 0.28 62.86 \pm 1.73 65.50 \pm 0.64 65.83 \pm 0.67 63.67 \pm 0.88 65.25 \pm 0.56 65.18 \pm 1.87 59.41 \pm 1.32 63.47 \pm 1.93 60.00 \pm 0.35 60.02 \pm 0.25 60.02 \pm 0.25 60.02 \pm 0.25 60.02 \pm 0.	59.85±0.16 d deviation (% e among sour $C \rightarrow A$ 66.80±0.23 67.93±0.34 71.67±0.91 72.74±0.49 73.59±0.34 69.55±0.78 72.04±0.63 21.71±3.52 22.83±1.69 61.54±0.53 70.58±0.68 50.37±1.72 60.46±0.25 69.81±1.08 70.73±0.59 69.96±0.42 67.64±1.44 68.81±0.47 64.96±0.63 67.27±0.25 67.06±0.32 70.54±0.44 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.47 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54±0.45 70.54 70.54 70.54 70.54 70.54 70.54 70.54 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.55 70.5	63.35±0.84 ce-free appro A \rightarrow C 72.15±0.92 74.56±0.73 79.32±0.85 80.64±0.27 81.75±0.29 76.04±0.57 80.55±0.70 23.63±2.37 23.37±3.72 64.98±0.53 77.38±1.28 57.13±1.73 68.61±0.36 76.81±1.41 76.77±0.74 78.91±0.34 76.94±0.92 75.93±0.70 77.43±0.70 77.43±0.70 70.84±1.27 69.05±0.34 70.5±0.56	63.18±0.31 atasets. We use aches. D \rightarrow C 73.28±0.52 72.54±1.08 78.20±0.90 78.23±0.52 80.14±0.09 74.32±0.54 79.04±0.83 23.70±2.96 23.56±3.68 60.53±0.87 74.17±1.15 55.52±1.78 69.25±0.34 74.94±1.65 76.70±1.05 76.87±0.75 74.89±0.99 76.19±0.66 76.78±0.72 70.40±0.53 72.27±0.29 72.53±0.94

Table 7: Average node classification performance in terms of accuracy with standard deviation (%) on social datasets. We use blue to denote the

E MORE EXPERIMENTAL RESULTS

1443

1444

1445

1446

1447

1448

1449

1450

Table 7 and Table 8 present all adaptation results on social and citation datasets. As transaction datasets exhibit temporal shifts, we only focus on performing adaptation tasks that involve transitioning from previous graphs to later graphs (i.e., $S \rightarrow M$, $S \rightarrow E$ and $E \rightarrow M$ in Table 2). From Table 7 and Table 8, we have the following observations: (1) The no-adaptation baselines perform poorly in most scenarios, since they do not take target graph into consideration thus failing to model the domain shifts. (2) In general, the source-need methods could achieve relatively good performance, because the labelled source graph provides available supervision

1501

1502

1503

1504

1505

1506

1507

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

signals to directly minimize their distribution discrepancies. (3) 1509 While the source-free setting is challenging, we can still obtain 1510 1511 satisfied results via employing appropriate learning paradigms. Our proposed model gains significant improvements over recent SOTA 1512 baselines, which verifies the effectiveness of GraphCTA. 1513

MORE HYPER-PARAMETER ANALYSES F

We provide more hyper-parameter sensitivity analyses in Figure 5. Specifically, we explore the impact of various key hyperparameters by varying them across different scales. For the trade-off parameter λ , the model's performance gradually decreases when its value exceeds a certain threshold (i.e., 0.2). This indicates weighted crossentropy loss plays a more important role compared with contrastive loss, as it provides explicit supervision signals. Similar trends are also identified in parameters α and β . In particular, we note that it exhibits significant oscillation during the adaptation task from C to D across all three parameters. This maybe because the training procedure is sensitive to the incorporation of contrastive learning module in this particular adaptation scenario. On the other hand, GraphCTA is relatively robust to the number of nearest neighbors K and temperature τ . When the number of *K* increases, there is a slight decline in its performance, which might be caused by the introduced noisy neighbors. Nevertheless, a smaller value can consistently yield better performance.

EXPERIMENTAL RESULTS REPRODUCE G

We present the detailed running configurations for all the compared methods. As the methods in [6, 24-27, 57, 67] are specifically designed for image data, their codes cannot directly run on the graph-structured data. Thus, we replace their backbones with the same GCN [22] architecture used in our model for fair comparisons. We conduct our experiments on a Linux server with a NVIDIA's A100 GPU. The embedding size is set to 128 for each method. The code sources and other specific hyper-parameter settings of compared methods are listed as below.

DeepWalk [37] and node2vec [15]. We use the codes provided by Pytorch Geometric. The walk length is set as 20 and window size is set to 10. We set the number of walks for each node to 10 and the number of negative samples for each training pair is set to 1. For node2vec, we set parameters p = 0.5 and q = 2.

GAE [23], GCN [22], GAT [49] and GIN [56]. We also use the implementation in Pytorch Geometric. The number of layers and node representations are set as 2 and 128, respectively. The learning rate and weight are search in the range of $\{0.1, 0.01, 1e^{-3}, 1e^{-4}, 5e^{-4}\}$.

For the remaining baselines, we use the source codes provided by the authors at Github if available. Their links are as follows:

1556	 UDAGCN [53]: https://github.com/GRAND-Lab/UDAGCN
1557	 AdaGCN [7]: https://github.com/daiquanyu/AdaGCN
1558	• ASN [64]: https://github.com/yuntaodu/ASN
1559	• ACDNE [41]: https://github.com/shenxiaocam/ACDNE
1560	• GRADE [52]: https://github.com/jwu4sml/GRADE
1561	• SpecReg [60]: https://github.com/Shen-Lab/GDA-SpecReg
1562	• SHOT [25]: https://github.com/tim-learn/SHOT
1563	• SHOT++ [27]: https://github.com/tim-learn/SHOT-plus
1564	• BNM [6]: https://github.com/cuishuhao/BNM
1565	• ATDOC [26]: https://github.com/tim-learn/ATDOC
1566	

Anon

1567

Table 9: Citation datasets used in SpecReg and SOGA.

Dataset	#Nodes	#Edges	#Features	#Classes		
DBLPv8	5,578	7,341	7 5 2 7	(
ACMv9	7,410	11,135	/,55/	6		
*Two adaptation tasks: $D \rightarrow A$ and $A \rightarrow D$						

Table 10: Citation datasets used in our paper.

Dataset	#Nodes	#Edges	#Features	#Classes
ACMv9	9,360	15,556		
Citationv1	8,935	15,098	6,775	5
DBLPv7	5,484	8,117		

*Six adaptation tasks: $D \rightarrow A$, $A \rightarrow D$, $C \rightarrow A$, $A \rightarrow C$, $C \rightarrow D$, $D \rightarrow C$.

- NRC [57]: https://github.com/Albert0147/NRC_SFDA
- DaC [67]: https://github.com/ZyeZhang/DaC
- JMDS [24]: https://github.com/Jhyun17/CoWA-JMDS
- GTRANS [20]: https://github.com/ChandlerBang/GTrans

As SOGA [34] do not release its source codes, we try our best to implement it based on the descriptions in its paper. Our proposed GraphCTA is implemented with Pytorch Geometric [12] and optimized with Adam optimizer [21]. The optimal learning rate and weight decay are searched in $\{0.1, 0.01, 1e^{-3}, 1e^{-4}, 5e^{-4}\}$. The smoothing parameter γ in memory banks is fixed as 0.9 by default. Temperature τ and the number of *K*-nearest neighbors are set as 0.2 and 5, respectively. Trade-off hyper-parameters λ , α , β are searched in the range of [0, 1].

Η ADDITIONAL EXPERIMENTS

H.1 **Comparisons on SpecReg/SOGA datasets**

We note that two recent baselines SpecReg [60] and SOGA [34] utilize the citation datasets that are similar yet distinct from the citation datasets used in our paper. SpecReg and SOGA follow UDAGCN [53], which provides 2 domains with node feature dimension of 7,537 and number of classes as 6. (Note that UDAGCN also uses Citationv2 dataset in their paper, but they do not release this dataset.) Our paper utilizes the widely used citation datasets provided by AdaGCN [7], ASN [64] and ACDNE [41], which provides 3 domains with node features dimension of 6,775 and number of classes as 5. This dataset provides us with the opportunity to explore a broader range of adaptation settings, encompassing six adaptation tasks instead of two. The detailed statistical information is summarized in Table 9 and Table 10. As can be seen, their datasets are different from ours in number of nodes, edges, node features and number of classes.

To show the effectiveness of our proposed GraphCTA, we provide the results on same datasets used by SpecReg and SOGA in Table 11. For source-need baseline SpecReg, we report the results in their original papers and the results reproduced by their released source codes. As for source-free baseline SOGA, the authors do not release their source codes and we have tried our best to reproduce their results. As we can see in the table, our reproduced SOGA results are very closed to their reported results, which means our reproduced codes for SOGA are reliable. Moreover, it is worth noting that our proposed source-free GraphCTA outperforms SOGA with different gains and achieves comparable performance with source-need baseline SpecReg.

1620

1621

1622

1623

WWW '24, May 13 - May 17, 2024, Singapore

WWW '24, May 13 - May 17, 2024, Singapore

Figure 6: The comparison of learning curves between GraphCTA and SOGA.

Table 11: Results on citation datasets used by SpecReg and SOGA.

1755	Methods	DBLPv8-	→ACMv9	ACMv9-	→DBLPv8
1756		Macro-F1	Micro-F1	Macro-F1	Micro-F1
1757	SpecReg (report)	-	76.26 ± 0.05	-	$91.65 {\pm} 0.06$
1758	SpecReg (reproduce)	$65.83 {\pm} 0.28$	75.52 ± 0.17	$91.96 {\pm} 0.74$	$91.30 {\pm} 0.80$
1750	SOGA (report)	63.60 ± 0.30	-	92.80 ± 1.80	-
1/39	SOGA (reproduce)	63.47 ± 1.32	71.94 ± 1.15	91.35 ± 1.82	91.22 ± 1.90
1760	GraphCTA	64.58 ± 0.72	74.08 ± 0.15	91.95 ± 0.29	91.62 ± 0.52

H.2 Comparisons on training convergence

We compare the training convergence of GraphCTA and SOGA in Figure 6. Each model is trained 5 times with random seeds (i.e., 1,2,3,4,5). The light gray lines are the results for each experiment. We plot the mean accuracy curve and fill the area within its standard deviation. As can be seen, our proposed GraphCTA converges with fewer epochs and is more stable with smaller deviations.