
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Collaborate to Adapt: Source-Free Graph Domain Adaptation via
Bi-directional Adaptation

Anonymous Author(s)

ABSTRACT

Unsupervised graph domain adaptation has emerged as a practical

solution to transfer knowledge from a label-rich source graph to

a completely unlabelled target graph, when there is a scarcity of

labels in target graph. However, most of existing methods require a

labelled source graph to provide supervision signals, which might

not be accessible in the real-world scenarios due to regulations

and privacy concerns. In this paper, we explore the scenario of

source-free unsupervised graph domain adaptation, which tries

to address the domain adaptation problem without accessing the

labelled source graph. Specifically, we present a novel paradigm

called GraphCTA, which performs model adaptation and graph

adaptation collaboratively through a series of procedures: (1) con-

duct model adaptation based on node’s neighborhood predictions

in target graph considering both local and global information; (2)

perform graph adaptation by updating graph structure and node

attributes via neighborhood constrastive learning; and (3) the up-

dated graph serves as an input to facilitate the subsequent iteration

of model adaptation, thereby establishing a collaborative loop be-

tween model adaptation and graph adaptation. Comprehensive

experiments are conducted on various public datasets including

transaction, social, and citation graphs. The experimental results

demonstrate that our proposed model outperforms recent source

free baselines by large margins. Our source code and datasets are

available at https://anonymous.4open.science/r/GraphCTA-code.

KEYWORDS

Graph Representation Learning, Graph Domain Adaptation

ACM Reference Format:

Anonymous Author(s). 2024. Collaborate to Adapt: Source-Free Graph Do-

main Adaptation via Bi-directional Adaptation. In Proceedings of the ACM
Web Conference 2024 (WWW ’24), May 13 – May 17, 2024, Singapore. ACM,

New York, NY, USA, 16 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The Web is a complex network of interconnected entities, which

can be effectively represented using graph structures. Graph tech-

niques have demonstrated impressive performance in various web

applications such as online article classification [22, 49], web-scale

recommendation systems [10, 59], and anomaly detection [9, 45],

etc. Undoubtedly, Graph Neural Networks (GNNs) have emerged as

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW ’24, May 13 – May 17, 2024, Singapore
© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

a powerful tool when handling graph-structured data across a broad

range of applications. Despite its success, the performance improve-

ment often comes at the cost of utilizing sufficient high-quality

labels. Unfortunately, obtaining enough labels for graph-structured

data could be a laborious and time-consuming task. For instance,

annotating the properties of molecular graphs requires expertise in

chemical domains and rigorous laboratory analysis [19]. To allevi-

ate the burden of laborious data annotations, Domain Adaptation

(DA) presents an attractive option to transfer the knowledge learned

from the labelled source domain to the unlabelled target domain.

However, GNN models trained on source domains typically experi-

ence significant performance degradation when directly applied to

target domains, due to the issue of domain shift [3, 63, 69]. Consid-

erable endeavors have been dedicated to learning domain invariant

representations, thereby enhancing the model’s ability to generalize

across different domains.

Recently, two mainstream strategies have been explored for un-

supervised graph domain adaptation. One research line is to explic-

itly minimize the distribution discrepancy between the source and

target representations [42, 52, 60]. How to define an appropriate

discrepancy metric plays an important role in this kind of methods.

Two commonly adopted measures to match cross-domain repre-

sentations are the maximum mean discrepancy [30] and central

moment discrepancy [61]. Another direction is to learn domain

invariant representations via adversarial training [7, 41, 53], which

achieves implicit representation alignment through a domain dis-

criminator. Its flexibility of not requiring a predefined metric has

made it gain increased popularity. Nonetheless, these joint learn-

ing approaches require the authorization to access the source data,

which poses great challenges regarding data privacy and intel-

lectual concerns. In most practical scenarios, the only accessible

resources for domain adaptation are unlabelled target data and a

model trained on source data, which is named source-free unsuper-

vised domain adaptation.

Let’s imagine a situation where a financial institution operates

globally, processing a large number of transactions from domestic

and overseas sources. Given the sensitivity of customer information

involved in these transactions, privacy regulations restrict the insti-

tution’s access to transaction data across different countries, such

as the European Union General Data Protection Regulation (EU

GDPR) and Singapore’s Personal Data Protection Act (PDPA), etc.

By utilizing source-free graph adaptation, the financial institution

can adapt fraud detection models that have been trained on the do-

mestic transaction graph to be applicable to overseas graphs, while

respecting privacy regulations that limit the sharing of transaction

data across countries. In contrast, the aforementioned source-need

domain adaptation models are not applicable in this scenario due to

significant privacy concerns associated with accessing and utilizing

the labelled source data.

1

https://anonymous.4open.science/r/GraphCTA-code
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, May 13 – May 17, 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

While source-free unsupervised domain adaptation has been

extensively studied for image and text data [6, 24, 25, 27, 67], there

has been limited investigation of source-free adaptation techniques

for the non-iid graph-structured data. It involves two primary chal-

lenges in this scenario: (1) How can adaptation be achieved without
accessing the labelled source graph? (2) How to mitigate distribution
shifts induced by node features as well as graph structures? For in-
stance, in the context of citation networks, when the topic of a

research filed gains increasing popularity, such as the rise of ar-

tificial intelligence and large language models, the node features

(i.e., the contents of the papers) and graph structures (i.e., the cita-

tion relationships between the papers) might undergo significant

changes over the time. The complex interactions among different

nodes present great challenges when attempting to adapt the GNN

model trained on an earlier version of the citation network (e.g.,

before 2010) to a more recent version (e.g., after 2010). Meanwhile,

without graph labels for supervision, the patterns learned from the

source graph may not be suitable for the target graph, which suffers

source hypothesis bias and results in false predictions in the target

graph. One recent work SOGA [34] performs source-free domain

adaptation on graphs, but it only focuses on the local neighbor

similarity within the target graph, overlooking the global informa-

tion and the inherent graph discrepancy. Hence, it is necessary to

design source-free graph domain adaptation techniques that specif-

ically tackle the challenges posed by graph-structured data, while

overcoming the limitations of existing approaches.

To address the aforementioned challenges, we propose a novel

framework abbreviated as GraphCTA (CollaborateToAdapt), which
achieves source-free graph domain adaptation via collaboratively

bi-directional adaptations from the perspectives of GNN model and

graph data. More specifically, to learn node representations that

are invariant to arbitrary unknown distribution shifts, GraphCTA

generates node representations with selected node neighborhoods

and complemented node features. Then, we perform model-view
adaptation according to its local neighborhood predictions and the

global class prototypes. Memory banks are used to store all target

representations and their corresponding predictions through mo-

mentum updating [17], which generates robust class prototypes

and ensures consistent predictions during the training stage. To fil-

ter out noisy neighbors and complement node features, we further

propose to conduct graph-view adaptation based on the model’s

predictions and the information stored in the memory banks. Partic-

ularly, we derive pseudo labels from high-confidence target samples

and utilize neighborhood contrastive learning to guide the graph

adaptation procedure. By using the updated graph as input, we

enable the next round of model adaptation and establish a collabo-

rative loop between the model and the graph adaptation. Theoretical
analysis shows that adapting model and graph data collaboratively
can reduce the upper bound of target domain prediction error in Ap-
pendix A. We comprehensively evaluate GraphCTA on multiple

benchmarks, and the experimental results demonstrate the effec-

tiveness of our proposed approach, which can even outperform

source-need baselines in various scenarios.

To summarize, the main contributions are as follows:

• We investigate the problem of source-free unsupervised

graph domain adaptation without access to labelled source

graphs during the target adaptation, which is more practical

in real-world scenarios and less explored in the literature

of graph neural networks.

• To the best of our knowledge, we are the first to perform

model adaptation and graph adaptation collaboratively,

which is model-agnostic and can be applied to numerous

GNN architectures.

• Extensive experimental results show the effectiveness of

our method, with GraphCTA outperforming the SOTA base-

lines by an average of 2.14% across multiple settings.

2 RELATEDWORK

Graph Neural Networks. GNNs have led to significant advance-

ments in graph-related tasks, which incorporate graph structural

information via message passing mechanism. Various models have

been proposed to enhance their performance and extend their ap-

plications. In general, they can be classified into two categories:

spectral based and spatial based methods. For spectral approaches,

the graph convolution is performed on the spectrum of graph Lapla-

cian. Among them, ChebNet [8] leverages Chebyshev polynomi-

als to approximate graph filters that are localized up to K orders.

ARMA [4] uses auto-regressive moving average filter to capture

global graph structure. GCN [22] simplifies ChebNet by truncating

the Chebyshev polynomial to the first-order, leading to high effi-

ciency. As for spatial methods, the graph convolution is designed

to directly aggregate the neighborhood information of each node.

For instance, GraphSAGE [16] proposes various aggregator archi-

tectures (i.e., mean, LSTM) to aggregate its local neighborhood.

GAT [49] employs an attention mechanism to adaptively aggregate

node’s neighborhood representations. SGC [51] further simplifies

the graph convolution by eliminating nonlinearities and collapsing

weight matrices between consecutive layers. More detailed intro-

duction can be found in various comprehensive surveys on graph

neural networks [54, 68].

Domain Adaptation. Domain adaptation aims to enhance the

model’s ability to generalize across domains, which transfers the

knowledge learned from a labelled source domain to unlabelled tar-

get domain. The model’s performance may suffer from a significant

degradation in target domain due to the domain shifts. To address

this challenge, many approaches are proposed to learn domain in-

variant representations in the field of computer vision and natural

language processing [50, 58]. Among them, [30, 32, 33] try to ex-

plicitly align source and target feature distributions via minimizing

maximum mean discrepancy. Similarly, [44, 61, 62] utilize central

moment discrepancy to match high order statistics extracted by

neural networks. Instead of directly aligning feature distributions,

[18, 31, 47] employ adversarial training strategy to generate in-

distinguishable source and target representations, where domain

invariance is formulated as a binary domain classification problem.

All the above mentioned methods assume both source and target

data are available during the adaptation procedure, which may not

be feasible in real-world scenarios due to privacy concerns. Some

recent works [6, 24, 25, 27] investigate source-free domain adapta-

tion, where only well-trained source model and unlabelled target

domain data are accessible. Specifically, SHOT [25] utilizes pseudo

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Collaborate to Adapt: Source-Free Graph Domain Adaptation via Bi-directional Adaptation WWW ’24, May 13 – May 17, 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

labeling strategy associated with entropy minimization and infor-

mation maximization to optimize the model on target domain. NRC

[57] encourages consistency via neighborhood clustering, where

reciprocal neighbors and expanded neighborhoods are incorpo-

rated to capture their local structure. JMDS [24] robustly learns

with pseudo-labels by assigning different confidence scores to the

target samples. However, these methods are specifically designed

for independent and identically distributed data, which may not be

appropriate for non-iid graph-structured data.

Graph Domain Adaptation. Graph provides a natural way to

represent the intricate interactions among different entities, which

leads to non-trivial challenges for domain adaptation tasks because

of its non-iid properties. There have been some recent efforts that

focus on unsupervised graph domain adaptation [7, 34, 52, 53, 60].

Particularly, [42] follows the idea of feature alignments in feature

space and utilizes maximum mean discrepancy to yield domain

invariant node representations. UDAGCN [53], ACDNE [41] and

AdaGCN [7] adopt the techniques of adversarial training to mitigate

the distribution divergence, where the difference lies at how they

generate effective node representations. ASN [64] disentangles the

knowledge into domain-private and domain-shared information,

then adversarial loss is adopted to minimize the domain discrepancy.

GRADE [52] employs graph subtree discrepancy to quantify the

distribution shift between source and target graphs. SpecReg [60]

proposes theory-grounded algorithms for graph domain adaptation

via spectral regularization. Likewise, the aforementioned methods

rely heavily on the supervision signals provided by the labelled

source graph, which is usually inaccessible due to privacy preserv-

ing policies. Lately, SOGA [34] studies source-free unsupervised

graph domain adaptation through preserving the consistency of

structural proximity on the target graph. Nevertheless, it follows

existing works that perform model adaptation, neglecting the fact

that the domain shift is caused by the target graph’s property. In

contrast, our proposed GraphCTA conducts model adaptation and

graph adaptation collaboratively to address this problem.

3 THE PROPOSED GRAPHCTA

3.1 Preliminary and Problem Definition

For source-free unsupervised graph domain adaptation, we are

provided with a source pre-trained GNN model and an unlabelled

target graph G = (V, E,X), whereV and E denote the node and

edge sets, respectively. The edge connections are represented as

adjacentmatrixA ∈ R𝑛×𝑛 andA𝑖, 𝑗 = 1 if 𝑣𝑖 connects to 𝑣 𝑗 , while the

node feature matrix X ∈ R𝑛×𝑑 specifies the features of the nodes.

Here, 𝑛 indicates the number of nodes and 𝑑 is the dimension of

the node features. In this paper, we mainly focus on a 𝐶-class node

classification task in the closed-set setting, where the labelled source

graph and unlabelled target graph share the same label space. We

further partition the GNN model into two components: the feature

extractor 𝑓𝜃 (·) that maps graph G into node representation space

R𝑛×ℎ and the classifier 𝑔𝜙 (·) which projects node representations

into prediction space R𝑛×𝐶 . Given the aforementioned notations,

we can provide a formal definition of our problem as follows:

Definition 3.1 (Source-Free Unsupervised Graph Domain Adapta-
tion). Given a well-trained source GNN model 𝜅 = 𝑓𝜃 ◦ 𝑔𝜙 and an

unlabelled target graph G under the domain shift, our goal is to adapt
the source pre-trained model to perform effectively on the target graph
without any supervision, where the GNN architecture and domain
shift can be arbitrary.

To adapt the given source pre-trained model, we address the

aforementioned challenges by optimizing the GNN model as well

as the target graph data to reduce the gap between source and

target domains. Figure 1 provides an overall view of our proposed

GraphCTA, which consists of two key components: a model adap-
tation module and a graph adaptation module. In the subsequent

sections, we will elaborate the details of different components.

3.2 Model Adaptation with Local-Global

Consistency

Domain-shift Invariant Node Representation Learning. To

mitigate the source hypothesis bias in the target graph, we opti-

mize the source pre-trained GNN model’s parameters to gener-

ate domain-shift invariant node representations. As GNN models

mainly involve propagating and aggregating information from its

structural neighborhood, we propose to complement node features

and adaptively select node neighborhoodwhenmodeling their inter-

actions. Specifically, let Z ∈ R𝑛×ℎ denote the node representations

extracted by 𝑓𝜃 (·), which is updated as follows:

z𝑙𝑖 = Update
𝑙 (z𝑙−1𝑖 ,Agg𝑙 ({z𝑙−1𝑢 |𝑢 ∈ 𝜓 (A𝑖)})), (1)

where z𝑙
𝑖
is node 𝑣𝑖 ’s representation at layer 𝑙 with z0

𝑖
= 𝛿 (x𝑖). A𝑖

represents 𝑣𝑖 ’s neighborhood. 𝛿 (·) and𝜓 (·) indicate the node fea-
ture complementary and neighborhood selection functions, which

will be introduced in Section 3.3. Agg(·) refers to an aggregation

function that maps a collection of neighborhood representations

to an aggregated representation. Update(·) combines the node’s

previous and aggregated representations. For readability, we will

omit the superscript 𝑙 and use Z to denote the node representations

in the following sections.

Neighborhood-aware Pseudo Labelling. Since the target rep-

resentations extracted from the source pre-trained model already

form semantic clusters, we propose to achieve model adaptation

by encouraging neighborhood prediction consistency. The pseudo

labels are generated by aggregating the predicted neighborhood

class distributions. However, the local neighborhood could produce

noisy supervision signal due to the domain-shift. We further assign

a confidence score to each target sample according to the seman-

tic similarities with global class prototypes, which mitigates the

potential negative influence introduced by its local neighbors. To

generate stable class prototypes and prediction distributions, we

build target representation memory bank F = [z𝑚
1
, z𝑚

2
, · · · , z𝑚𝑛]

and predicted distribution memory bank P = [p𝑚
1
, p𝑚

2
, · · · , p𝑚𝑛],

which are updated via a momentum strategy during the training

procedure:

z𝑚𝑖 = (1 − 𝛾)z𝑚𝑖 + 𝛾z𝑖 , (2)

where 𝛾 is the momentum coefficient. For memory bank P, we
first sharpen the output predictions p𝑖 = p2

𝑖
/∑𝑛

𝑗=1 p
2

𝑗
to reduce

the ambiguity in the predictions. p𝑖 = 𝑔𝜙 (z𝑖) ∈ R𝐶 represents the

predicted class distribution. Then, the values stored in the memory

bank P are updated following a similar procedure in Eq. (2).

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’24, May 13 – May 17, 2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

A

B

E

C

F

D

Model

Adaptation

A

B

E

C

F

D

Graph

Adaptation

A

B

E

C

F

D

Memory Bank

Update

A

B

E

C

F

D

Model

Adaptation

Graph

Adaptation

Memory Bank

A

B

E

C

F

D

Update

A

B

E

C

F

D

Predict

Update Memory Bank

A C

DB
E

F

K-Nearest

Neighbours

K-Nearest

NeighboursE

A C

D

B

F

LG LG

B

E

F

A

C

D

LM LM

Struct/Attrs

Update Update

Struct/Attrs

Model Params Model Params

Figure 1: The overall architecture of our proposed GraphCTA framework, which is composed of model adaptation and graph adaptation.

With the neighborhood information, we compute the one-hot

pseudo label distribution of node 𝑣𝑖 as follows:

p̂𝑖 = 1[argmax

𝑐
(1

|N (𝑖) |
∑︁

𝑗∈N(𝑖)
p𝑚𝑗)], (3)

where 1[·] is the one-hot function that encodes pseudo labels.

N(𝑖) = {𝑣 𝑗 | 𝑗 ∈ 𝜓 (A𝑖)} denotes the selected node neighborhood of

node 𝑣𝑖 and p𝑚
𝑗
is the predicted distribution stored in the memory

bank P. As the pseudo label depends heavily on the graph’s local

structure and does not take the global contextual information into

consideration, it could jeopardize the training process and result

in erroneous classifications. Thus, we include global class-wise

prototypes to weigh the generated pseudo labels. The prototypes

provide an estimation of the centroid for each class, which can be

calculated as follows:

𝝁𝑚𝑐 =

∑𝑛
𝑖=1 I(p̂𝑖,𝑐 = 1) · z𝑚

𝑖∑𝑛
𝑖=1 I(p̂𝑖,𝑐 = 1) , (4)

where I(·) is the indicator function. z𝑚
𝑖

represents the node rep-

resentation stored in the memory bank F . Then, we define the

confidence score for each sample as the semantic similarity be-

tween the target representation and its corresponding pseudo class

prototype calculated from memory bank. Here, we choose cosine

similarity for simplicity:

sim(z𝑖 , 𝝁𝑚𝑐) =
z⊤
𝑖
𝝁𝑚𝑐

∥z𝑖 ∥2 · ∥𝝁𝑚𝑐 ∥2
, (5)

where it gives high confidence scores whose representations are

consistent with class-wise prototypes.

Local-Global ConsistencyOptimization.Afterwards, we fine-

tune the model’s parameters by optimizing the weighted cross-

entropy loss between the pseudo label distribution and the predicted

class distribution:

LCE = − 1
𝑛

𝑛∑︁
𝑖=1

𝐶∑︁
𝑐=1

sim(z𝑖 , 𝝁𝑚𝑐) · p̂𝑖,𝑐 log(p𝑖,𝑐). (6)

Additionally, we further consider instance-prototype alignment

inspired by recent contrastive learning [5, 17, 43] to regularize the

learned representations, which maximizes the similarity between

the node representation and its corresponding prototype. The re-

maining 𝐶 − 1 prototypes and 𝑛 − 1 instance representations are
regarded as negative pairs that are pushed apart in the latent space.

The contrstive loss can be formulated as the following InfoNCE

loss [5]:

LCO = − 1
𝑛

𝑛∑︁
𝑖=1

log

exp(sim(z𝑖 , 𝝁𝑚𝑐)/𝜏)
{∑𝐶

𝑗=1 I(𝑗 ≠ 𝑐)exp(sim(z𝑖 , 𝝁𝑚𝑗)/𝜏)
+∑𝑛

𝑘=1
I(𝑘 ≠ 𝑖)exp(sim(z𝑖 , z𝑘)/𝜏)}

, (7)

where the temperature 𝜏 is a hyper-parameter. Note that the con-

trastive loss is also able to model the local and global information

simultaneously. By integrating these two losses, we can obtain the

final objective for model adaptation as follows:

LM = (1 − 𝜆)LCE + 𝜆LCO, (8)

where 𝜆 is the trade-off parameter.

3.3 Graph Adaptation with Self-training

As we have discussed earlier, the performance degradation in target

graph can be attributed to the presence of source hypothesis bias

and domain shift. Although the model adaptation module can help

alleviate the source hypothesis bias to some extent, the underlying

domain shift originates from the characteristics of the input graph

data. However, most existing approaches mainly focus on designing

model adaptation techniques [34, 52, 53, 60], neglecting the fact that

the domain shift is aroused from the target graph itself. Therefore,

we propose to perform graph adaptation by refining the graph data

to make them more compatible between the domains.

Node Feature and Neighborhood Refinement. Specifically,

we introduce two simple transformation functions: X′ = 𝜎 (X)
which produces new node features by adding or masking values

in X, and A′ = 𝜓 (A) which generates new adjacent matrix via

connecting or deleting edges in A. The goal of graph adaptation

module is to find optimal functions that can reduce the domain shift.

However, it is a non-trivial task due to the absence of supervision

and the unavailability of source graph. While a variety of choices

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Collaborate to Adapt: Source-Free Graph Domain Adaptation via Bi-directional Adaptation WWW ’24, May 13 – May 17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

are available to alter the graph data, for instance, the graph structure

learningmechanisms [11, 20, 29, 65], we adopt two extremely simple

and straightforward policies below. More choices are discussed in

ablation study Section 4.3.2.

Given node feature matrixX, we formulate node feature transfor-

mation as X′ = 𝜎 (X) = X + ΔX, which utilizes an additive function

to complement node features. ΔX ∈ R𝑛×𝑑 are continuous free pa-

rameters and provide high flexibility. This approach enables either

the masking of node features to zeros or the modification of these

features to alternate values. Similarly, we model the graph structure

as A′ = 𝜓 (A) = A ⊕ ΔA, where ΔA ∈ R𝑛×𝑛 represents a binary

matrix to refine the node’s neighborhood and ⊕ means the element-

wise exclusive OR operation (i.e, XOR). That’s to say, if the elements

in A and ΔA are both 1, the XOR operation returns 0 and results

in edge deletion. If elements in A and ΔA are 0 and 1 respectively,

it leads to the edge additions. To prevent significant deviations

from the original graph structure, we impose a constraint on the

maximum number of modified entries in the adjacency matrix to be

less than a predetermined budget B, i.e.,∑ΔA ≤ B, which reduces

the search space and is computation efficient.

Self-Training with Neighborhood Contrastive Learning. In

order to optimize the free-parameters ΔX and ΔA, we propose to
employ a self-training mechanism to guide the graph adaptation

procedure, since the ground-truth labels are not available under

this setting. In particular, we first identify a set of reliable sample

pairs via its prediction confidence as follows:

D = {(𝑣𝑖 , 𝑦𝑖) |𝑦𝑖 = argmax

𝑐
p𝑖,𝑐 ∧max(p𝑖) > 𝜔, 𝑣𝑖 ∈ V}, (9)

where a predefined threshold 𝜔 is utilized to select the high confi-

dence target samples (i.e.,𝜔 = 0.9) and𝑦𝑖 denotes its corresponding

pseudo label. Different from model adaptation module that lever-

ages local neighborhood to construct pseudo labels, here we solely

rely on the sample’s own prediction since our goal is to refine the

graph structure. In this scenario, its structural neighborhood cannot

be regarded as a reliable supervision signal. To exploit the intrinsic

local structure in the representation space, we further incorporate

neighborhood constrastive learning to push similar samples closer

and dissimilar samples apart. Then, the positive samples are gen-

erated by extracting 𝐾-nearest neighbors in memory bank F via

cosine similarity as follows:

𝜒𝑖 = {z𝑚𝑗 | arg topk(sim(z𝑖 , z
𝑚
𝑗)), z

𝑚
𝑗 ∈ F }, (10)

where topk(·) is a function returning the most similar 𝐾 samples.

Next, we use those samples whose predicted labels are different

from p𝑖 to form negative samples:

Ψ𝑖 = {z𝑚𝑗 |argmax

𝑐
p𝑖 ≠ argmax

𝑐
p𝑚𝑗 , z

𝑚
𝑗 ∈ F ∧ z

𝑚
𝑗 ∉ 𝜒𝑖 }, (11)

where p𝑚
𝑖

and z𝑚
𝑖

are from memory banks. Through this way, the

knowledge gained from the model adaptation module can facilitate

the learning process of graph adaptation. To sum up, the overall

loss function for graph adaptation is:

LG = − 1

|D |
∑
𝑖∈D log(p𝑖,�̂�𝑖) − 𝛼

∑𝑛
𝑖=1

∑
𝑗∈𝜒𝑖 sim(z𝑖 , z

𝑚
𝑗
)

+𝛽∑𝑛
𝑖=1

∑
𝑘∈Ψ𝑖 sim(z𝑖 , z

𝑚
𝑘
), (12)

where 𝛼 and 𝛽 are hyper-parameters to balance the cross-entropy

and the neighborhood contrastive learning loss. Since ΔA is binary

and constrained, we relax the binary space to a continuous space

[0, 1]𝑛×𝑛 and employ projected gradient descent (PGD) [14, 55] for

updating ΔA. More details are given in Appendix B.

3.4 The Training Procedure

We employ an alternative training strategy to iteratively update

these two collaborative components, i.e., model adaptation module

and graph adaptation module. Specifically, in each training epoch,

we first update the parameters of graph adaptation module 𝜅 to

minimizeLM while keepingΔX andΔA fixed. Then,ΔX andΔA are

updated to optimize LG while keeping model 𝜅 fixed. To facilitate

the understanding of our training procedure, we provide a detailed
description of the whole process in Algorithm 1 at Appendix C, which
outlines the step-by-step process we have adopted to update the

collaborative components.

3.5 Complexity Analysis

Assume that we have a graph consisting of 𝑛 nodes and 𝑒 edges,

the node representation dimension is set as ℎ and the number of

graph neural network layers is 𝐿. Then, the time complexity of

feature encoder is 𝑂 (𝐿𝑛ℎ2 + 𝐿𝑒ℎ). In model adaptation, generating

pseudo labels has the time complexity of 𝑂 (𝑒𝐶 + 𝑛𝐶), where 𝐶
is the number of class. The complexity of calculating prototypes

and confidence scores is 𝑂 (𝑛ℎ + 𝑛ℎ𝐶). The contrastive loss has

the time complexity of 𝑂 (𝑛2ℎ). In graph adaptation, node feature

transformation has the complexity of 𝑂 (𝑛𝑑), where 𝑑 is the node

feature dimension. The time complexity of structure refinement is

constrained to𝑂 (𝑒) and the neighborhood contrastive learning has
the time complexity of 𝑂 (𝑛2ℎ). When employing batch updating,

the time complexity of contrastive learning module can be reduced

to 𝑂 (𝐵2ℎ), where 𝐵 represents the batch size. If we further take

the localization properties of the graph into consideration, the time

complexity for computing K-nearest neighbors in memory bank can

be reduced to 𝑂 (𝑇𝑛𝑑), where 𝑇 is average node neighbors within

node’s 𝑡-hop. Thus, the overall time complexity of our proposed

GraphCTA is within the same scope of vanilla GNN.

4 EXPERIMENTS

4.1 Experimental Settings

Datasets. Our proposed GraphCTA is evaluated on three public

datasets with node classification task, and a summary of their statis-

tics is provided in Table 1, which includes three types of distribution

shifts. Among them, Elliptic
1
[36] is a temporal bitcoin transaction

graph containing a sequence of graph snapshots, where each edge

represents a payment flow and each node is labelled as licit, illicit or

unknown. Then, we construct three domains by grouping the first

10 start snapshots as Elliptic-S, the middle 10 snapshots as Elliptic-

M and the last 10 end snapshots as Elliptic-E according to their

chronological order. In this scenario, the model needs to handle the

temporal shifts, since the distributions for node features and edges

are highly correlated with time. Twitch
2
[38] consists of several

social networks collected from different regions, in which the nodes

are users and the edges denote their friendships. We choose three

1
https://www.kaggle.com/datasets/ellipticco/elliptic-data-set

2
https://github.com/benedekrozemberczki/datasets#twitch-social-networks

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’24, May 13 – May 17, 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Dataset Statistics.

Category Dataset Distribution Shift #Nodes #Edges #Features #Classes

Transaction

Elliptic-S

Temporal Level

58,097 71,732

165 3Elliptic-M 34,333 38,171

Elliptic-E 46,647 53,491

Social

Twitch-DE

Domain Level

9,498 153,138

3,170 2Twitch-EN 7,126 35,324

Twitch-FR 6,549 112,666

Citation

ACMv9

Temporal & Domain

9,360 15,556

6,775 5Citationv1 8,935 15,098

DBLPv7 5,484 8,117

largest graphs to perform adaptation, i.e., Germany (GE), England

(EN) and France (FR). The node features are extracted based on

the games played and liked by users, their locations and streaming

habits, etc. Each user is binary-labelled, indicating whether they use

explicit language. Citation
3
[64] involves three citation datasets

provided by ArnetMiner [46] extracted from different sources and

time periods. Specifically, ACMv9 (A), Citationv1 (C), DBLPv7 (D)

are derived from ACM (between years 2000 and 2010), Microsoft

Academic Graph (before the year 2008) and DBLP (between years

2004 and 2008), respectively. Then, each paper is classified into

five categories (i.e, DB, AI, CV, IS and Networking) according to

its research topic. The distribution shifts are aroused from both

temporal and domain levels.More detailed information can be found
in Appendix D.1.

Baselines. We compare GraphCTA with baselines including

no-adaptation, source-need and source-free domain adaptation ap-

proaches. For no-adaptation methods, the model is first trained on

the source graph, and then directly evaluated on the target graph

without any adaptation operations. In contrast, source-need meth-

ods optimize the model with both source and target graphs through

implicit or explicit metrics to align their distributions.We refer read-
ers to Appendix D.2 for more detailed description. Here, we briefly
introduce some of the most related SOTA source-free models. As

pioneers in exploring the novel and crucial setting of source-free

graph domain adaptation, we conduct a comprehensive compari-

son with baselines from both computer vision and graph domains.

Among them, SHOT [25] and its extension SHOT++ [27] employ

entropy minimization and information maximization to perform

class-wise adaptation. BNM [6] achieves prediction discriminability

and diversity via nuclear norm maximization. ATDOC [26] and

NRC [57] exploit local neighborhood structure for ensuring label

consistency. DaC [67] partitions the target data into source-like

and target-specific samples to perform domain adaptation. JMDS

[24] assign confidence score to each target sample for robust adap-

tation learning. GTrans [20] performs graph transformation at test

time to enhance the model’s performance. SOGA
4
[34] maximizes

the mutual information between the target graph and the model’s

output to preserve the structural proximity.

ImplementationDetails. Similar to previousworks [34, 53], we

randomly split each source graph into 80% as training set, 10% as val-

idation set and the remaining 10% as test set. The source GNNmodel

is first supervised and pre-trained on the training set, followed by

3
https://github.com/yuntaodu/ASN/tree/main/data

4
Their citation datasets are similar but distinct from ours. Please refer to Appendix H.

tuning its hyper-parameters on the validation set. The test set in

source graph serves as a sanity check to ensure a well-pretrained

GNN model, and its final performance is evaluated on the whole

target graph. We utilize the source codes provided by the authors

and adopt the same GNN backbone with same number of layers.

The node representation dimension is set as 128 for all the baselines.

Our proposed GraphCTA is implemented with Pytorch Geometric
5

[12] and optimized with Adam optimizer [21]. The optimal learning

rate and weight decay are searched in {0.1, 0.01, 1𝑒−3, 1𝑒−4, 5𝑒−4}.
The smoothing parameter 𝛾 in memory banks is fixed as 0.9 by

default. Temperature 𝜏 and the number of 𝐾-nearest neighbors are

set as 0.2 and 5, respectively. Trade-off hyper-parameters 𝜆, 𝛼, 𝛽 are

searched in the range of [0, 1]. Additional details for reproducibility
are provided in Appendix G.

4.2 Results and Analyses

Table 2 shows the node classification performance across 9 adapta-

tion tasks from 3 datasets. We repeat the experiments 5 times with

different seeds and then report their mean accuracy with standard

deviation. The overall experimental results are reported in Appendix
E. As can be seen from Table 2, the upper parts present the results of

source-need approaches that have access to the labelled source graph
during adaptation. The middle and lower parts show the results

for no-adaptation and source-free methods that does not utilize

the labelled source graph. In summary, our proposed GraphCTA

is on par with source-need algorithms and even surpasses them in

certain scenarios (i.e., DE→FR and C→D). Particularly, our method

consistently achieves state-of-the-art performance on all tasks un-

der the source-free setting. It outperforms the strongest source-free
baseline by a large margin (2.14% absolute improvements on aver-
age). We note that the unsupervised method GAE demonstrates

comparable performance on several specific tasks. However, its

performance exhibits significant variation depending on the char-

acteristics of the input graph, and thus fails to achieve consistent

results in the context of domain adaptation. Additionally, it can be
observed that negative transfer occasionally occurs in these models,
which is consistent with previous works’ findings. For instance, some

source-need baselines (e.g., AdaGCN) and source-free methods (e.g.,

SHOT) perform worse than vanilla GCN without adaptation under

the scenario of M→E. Moreover, it is more commonly observed in

the source-free setting than in the source-need setting, primarily

due to the lack of available source graph. Finally, our proposed

GraphCTA can adapt to different types of graphs and adaptation

5
https://pytorch-geometric.readthedocs.io/en/latest/

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Collaborate to Adapt: Source-Free Graph Domain Adaptation via Bi-directional Adaptation WWW ’24, May 13 – May 17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Average node classification performance in terms of accuracy (%). OOM means out-of-memory. We use blue to denote the best

performance in source-need methods and bold indicates the best performance among source-free approaches.

Methods S→M S→E M→E DE→EN DE→FR EN→FR A→D C→D C→A

S
o
u
r
c
e
-
N
e
e
d

UDAGCN [53] 81.12±0.04 73.91±0.64 77.22±0.16 59.74±0.21 56.61±0.39 56.94±0.70 66.95±0.45 71.77±1.09 66.80±0.23
TPN [35] 82.06±0.19 76.59±0.70 79.17±0.33 54.42±0.19 43.43±0.99 38.93±0.28 69.78±0.69 74.65±0.74 67.93±0.34
AdaGCN [7] 77.49±1.07 76.02±0.54 73.57±2.03 54.69±0.50 37.62±0.51 40.45±0.24 75.04±0.49 75.59±0.71 71.67±0.91
ASN [64] OOM OOM OOM 55.45±0.11 47.20±0.84 40.29±0.55 73.80±0.40 76.36±0.33 72.74±0.49
ACDNE [41] 86.27±1.23 80.66±1.11 81.37±1.20 58.08±0.97 54.01±0.30 57.15±0.61 76.24±0.53 77.21±0.23 73.59±0.34
GRADE [52] 79.77±0.01 74.41±0.03 78.84±0.06 56.40±0.05 46.83±0.07 51.17±0.62 68.22±0.37 73.95±0.49 69.55±0.78
SpecReg [60] 80.90±0.06 75.89±0.06 77.65±0.02 56.43±0.11 63.20±0.03 63.21±0.04 75.93±0.89 75.74±1.15 72.04±0.63

N
o
-
A
d
a
p
t
a
t
i
o
n

DeepWalk [37] 75.52±0.01 75.98±0.02 75.86±0.05 52.18±0.35 42.03±0.90 44.72±1.03 24.38±1.02 25.00±2.04 21.71±3.52
node2vec [15] 75.53±0.01 76.00±0.01 75.92±0.06 52.64±0.62 41.42±0.99 44.14±0.89 23.84±2.31 23.40±2.65 22.83±1.69
GAE [23] 80.54±0.43 72.55±0.52 76.60±1.11 58.33±0.46 42.25±0.87 40.89±1.09 62.45±0.44 66.11±0.49 61.54±0.53
GCN [22] 80.93±0.19 73.53±1.93 78.10±0.41 54.77±0.73 54.17±0.70 42.45±0.97 69.05±0.86 74.53±0.36 70.58±0.68
GAT [49] 79.59±0.61 65.64±0.33 74.91±1.31 54.84±0.37 39.63±0.16 53.28±0.78 53.80±1.53 55.85±1.62 50.37±1.72
GIN [56] 75.70±0.57 73.11±0.11 74.90±0.17 52.39±0.31 44.48±0.84 58.39±0.23 59.10±0.18 66.27±0.27 60.46±0.25

S
o
u
r
c
e
-
F
r
e
e

SHOT [25] 80.63±0.11 75.23±0.33 76.20±0.21 56.94±0.27 50.94±0.07 52.62±0.79 73.32±0.48 74.16±1.88 69.81±1.08
SHOT++ [27] 80.80±0.06 74.69±0.33 76.27±0.38 56.57±0.29 52.04±0.56 49.97±0.48 71.51±0.93 74.99±0.90 70.73±0.59
BNM [6] 80.80±0.08 74.56±0.41 76.48±0.04 57.92±0.16 51.39±0.22 50.78±1.13 73.59±0.31 75.83±0.64 69.96±0.42
ATDOC [26] 80.39±0.32 74.43±0.50 76.40±0.20 56.31±0.44 49.02±0.58 42.65±0.16 72.01±0.35 74.80±0.45 67.64±1.44
NRC [57] 80.79±0.19 74.09±1.26 75.24±0.38 56.96±0.41 50.63±0.09 50.83±0.46 70.89±0.39 71.79±0.34 68.44±0.86
DaC [67] 80.11±0.18 76.17±0.33 78.47±0.41 58.09±0.55 55.97±0.97 56.55±0.30 73.02±0.51 74.75±0.93 68.81±0.47
JMDS [24] 82.92±0.25 76.29±0.36 79.69±0.31 56.67±0.20 48.72±0.08 46.93±0.26 68.28±1.13 72.68±0.47 64.96±0.63
GTrans [20] 81.93±0.29 75.66±0.46 78.97±0.10 56.35±0.15 61.30±0.17 60.80±0.26 64.85±0.99 71.44±1.65 67.27±0.25
SOGA [34] 82.81±0.18 76.32±0.33 78.97±0.41 58.27±0.60 53.71±0.32 57.14±0.49 71.62±0.37 74.16±0.72 67.06±0.32

Ours GraphCTA 85.82±0.88 79.47±0.35 81.23±0.61 59.85±0.16 63.35±0.84 63.18±0.31 75.62±0.29 77.62±0.22 72.56±0.43

Table 3: Performance with different components.

Models A→D C→D C→A

SOGA [34] 71.62 74.16 67.06

Source Pretrained Model (SPM) 65.07 70.12 61.88

SPM + LM (Model Adaptation) 73.32 75.31 71.05

SPM + LG (Graph Adaptation) 66.47 73.92 64.13

GraphCTA 75.62 77.62 72.56

tasks. The performance lift can be attributed to the collaborative

mechanism between model adaptation and graph adaptation. The

presented results demonstrate its effectiveness in facilitating source-

free unsupervised graph domain adaptation.

4.3 Ablation Study

In this subsection, we conduct ablation studies on citation datasets

and similar conclusions can be drawn from the remaining datasets.

Comprehensive parameter sensitivity analyses are provided in Appen-
dix F for further details.

4.3.1 The Effect of Model Adaptation and Graph Adaptation. To in-

vestigate the contribution of model adaptation and graph adaptation

in GraphCTA, we show the effectiveness of our proposed collab-

orative mechanism in Table 3. Specifically, the source-pretrained

model is denoted as SPM and we strength the SPM with model

adaptation (LM) and graph adaptation (LG), respectively. As we

can see, both twomodules improve the performance of SPM, but the

model adaptation module plays a more significant role compared

with the graph adaptation module. This is because the model often

captures more generic or transferable knowledge across domains,

while graph adaptation might be less crucial when the underlying

structures or relationships in the graphs are already aligned. In

comparison, our method incorporates these two modules into a

Table 4: Performance with different graph adaptation strategies.

Models A→D C→D C→A

SPM 65.07±0.12 70.12±0.25 61.88±0.09
SUBLIME [29] 65.75±0.12 67.37±0.26 68.69±0.57
SLAPS [11] 65.99±0.84 72.77±0.73 67.54±0.91
SPM + LG 66.47±0.04 73.92±0.14 64.13±0.21
GraphCTA 75.62±0.29 77.62±0.22 72.56±0.43

Table 5: Combine graph adaptation with other models.

Architectures A→D C→D C→A

SHOT 73.32±0.48 74.16±1.88 69.81±1.08
SHOT + LG 67.39±0.10 76.86±0.08 69.62±0.03
BNM 73.59±0.31 75.83±0.64 69.96±0.42
BNM + LG 62.12±0.98 67.22±0.95 69.58±0.05
GraphCTA 75.62±0.29 77.62±0.22 72.56±0.43

collaborative paradigm and surpasses all alternatives by a signifi-

cant margin. Note that our GraphCTA, even with model adaptation

alone, surpasses the performance of SOGA, which serves as addi-

tional evidence of the effectiveness of our GraphCTA.

4.3.2 The Alternative Graph Adaptation Strategies. As we have dis-
cussed in Section 3.3, there exist lots of choices to perform graph

adaptation. Here, we present two additional graph structure learn-

ing strategies to conduct graph adaptation. While graph structure

learning has been extensively studied in the literature [11, 13, 29],

most existing methods depend highly on node labels, which are

not available in our unsupervised graph domain adaptation setting.

To this end, we choose two recent unsupervised graph structure

learning models SUBLIME [29] and SLAPS [11] to refine the graph

structure, where both of them utilize self-supervised learning tech-

niques. Among them, SUBLIME [29] employs GNN to learn node

similarity matrix and KNN-based sparsification is used to produce

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’24, May 13 – May 17, 2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) GCN (b) GTrans (c) SOGA (d) GraphCTA

Figure 2: Visualizations of target graph node representations with each color representing a class in citation networks (C→D).

Table 6: Results with different architectures.

Architectures A→D C→D C→A

GraphCTA
GCN

75.62±0.29 77.62±0.22 72.56±0.43
GraphCTA

GAT
71.84±0.52 72.04±0.87 66.91±0.82

GraphCTA
SAGE

73.50±0.41 73.65±0.26 68.17±0.34
GraphCTA

GIN
72.92±0.39 73.85±0.54 71.26±0.17

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trade-off parameter λ

70

72

74

76

78

A
cc

u
ra

cy

A-D

C-D

C-A

1 2 3 4 5

Number of layers L

62

64

66

68

70

72

74

76

78

80

A
cc

u
ra

cy

A-D C-D C-A

0.2 0.4 0.6 0.8 1.0

Ratio of modified entries in adjacent matrix

71

72

73

74

75

76

77

78

79

A
cc

u
ra

cy

A-D

C-D

C-A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Temperature parameter

70

72

74

76

78

A
cc

u
ra

cy

A-D

C-D

C-A

Figure 3: Hyper-parameter sensitivity analysis.

sparse adjacent matrix. Similarly, SLAPS [11] utilizes a denoising

autoencoder loss as self-supervision. Table 4 demonstrates the per-

formance with different graph adaptation strategies. As we can see,

SUBLIME and SLAPS are not as good as our strategy except in the

scenario of C→A. Notably, SUBLIME occasionally exhibits inferior

performance compared to the source-pretrained model (SPM), par-

ticularly due to its reliance on data augmentation operations. In

contrast, our strategy does not require such operations and exhibits

high versatility. Furthermore, we also explore the integration of our

graph adaptation strategy with various existing model adaptation

approaches, as shown in Table 5. Surprisingly, a simple combination

of these two modules often leads to a decline in performance. It be-

comes evident that a collaborative approach is necessary to achieve

optimal results, thus emphasizing the novelty and effectiveness of

our proposed GraphCTA method.

4.3.3 Architectures and Hyper-parameter Analyses. As discussed in
previous section, our proposed GraphCTA is model-agnostic and

can be integrated into various GNN architectures. We investigate

the impacts of 4 widely used GNN backbones: GCN [22], GAT [49],

GraphSAGE [16] and GIN [56]. Their results are showed in Table

6. In general, the performance varies across different graph neural

network architectures, which is also influenced by the used datasets.

We observe that the GAT architecture performs worst, since the

learned attention weights in source graph are not suitable in tar-

get graph and it has more parameters to be fine-tuned due to the

multi-head attention mechanism. The simplest GCN architecture

surprisingly works well in most cases. At last, we further show

the impacts of several hyper-parameters in Figure 3. Particularly,

when setting 𝜆 = 0.2, 𝐿 = 1 or 2, budget B = 0.2|A| and 𝜏 = 0.2, our

model could obtain the best performance. More hyper-parameter
analyses are provided in Appendix F.

4.4 Visualization

To gain an intuitive understanding of the learned node representa-

tions, we use t-SNE [48] to project the node representations into

a 2-D space. Figure 2 presents the scatter plots generated by GCN

[22], GTrans [20], SOGA [34] and our proposed GraphCTA from

𝐶 → 𝐷 , where each color represents a distinct class. It can be ob-

served that the vanilla GCN without adaptation operations fails

to produce satisfactory results, as nodes from different classes are

mixed together. While two representative source-free baselines

GTrans and SOGA are capable of clustering nodes together, the

boundary between these clusters are quite blurred, resulting in only

four clusters with significant overlapping. In contrast, our proposed

GraphCTA demonstrates the ability to learn more compact node

representations within the same category. This highlights its effec-

tiveness in learning discriminative node representations even in

the presence of domain shift.

5 CONCLUSION

We investigate a relatively unexplored area in graph representa-

tion learning, i.e., source-free unsupervised graph domain adapta-

tion, where the labelled source graph is not available due to pri-

vacy concerns. Specifically, we propose a novel framework named

GraphCTA that performs model adaptation and graph adaptation

collaboratively to mitigate the source hypothesis bias and domain

shift. The whole framework is model-agnostic and optimized via

an alternative strategy. We conduct comprehensive experiments on

three public datasets with fifteen adaptation tasks, which demon-

strates the effectiveness of our proposed model compared with

recent state-of-the-art baselines. In the future, it would be an in-

triguing challenge to explore how to extend the GraphCTA frame-

work to handle more domain adaptation tasks, such as source-free

semi-supervised graph DA and source-free open-set graph DA.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Collaborate to Adapt: Source-Free Graph Domain Adaptation via Bi-directional Adaptation WWW ’24, May 13 – May 17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] Alfonso Allen-Perkins, Juan Manuel Pastor, and Ernesto Estrada. 2017. Two-

walks degree assortativity in graphs and networks. Appl. Math. Comput. 311
(2017), 262–271.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein genera-

tive adversarial networks. In International conference on machine learning. PMLR,

214–223.

[3] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. 2006. Anal-

ysis of representations for domain adaptation. Advances in neural information
processing systems 19 (2006).

[4] Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. 2021.

Graph neural networks with convolutional arma filters. IEEE transactions on
pattern analysis and machine intelligence 44, 7 (2021), 3496–3507.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.

A simple framework for contrastive learning of visual representations. In Inter-
national conference on machine learning. PMLR, 1597–1607.

[6] Shuhao Cui, Shuhui Wang, Junbao Zhuo, Liang Li, Qingming Huang, and Qi Tian.

2020. Towards discriminability and diversity: Batch nuclear-norm maximization

under label insufficient situations. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 3941–3950.

[7] Quanyu Dai, Xiao-MingWu, Jiaren Xiao, Xiao Shen, and DanWang. 2022. Graph

transfer learning via adversarial domain adaptation with graph convolution.

IEEE Transactions on Knowledge and Data Engineering (2022).

[8] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-

tional neural networks on graphs with fast localized spectral filtering. Advances
in neural information processing systems 29 (2016).

[9] Ailin Deng and Bryan Hooi. 2021. Graph neural network-based anomaly detec-

tion in multivariate time series. In Proceedings of the AAAI conference on artificial
intelligence. 4027–4035.

[10] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.

2019. Graph neural networks for social recommendation. In The world wide web
conference. 417–426.

[11] Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. 2021. SLAPS: Self-

supervision improves structure learning for graph neural networks. Advances in
Neural Information Processing Systems 34 (2021), 22667–22681.

[12] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning

with PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).
[13] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. 2019. Learn-

ing discrete structures for graph neural networks. In International conference on
machine learning. PMLR, 1972–1982.

[14] Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bo-

jchevski, and Stephan Günnemann. 2021. Robustness of graph neural networks

at scale. Advances in Neural Information Processing Systems 34 (2021), 7637–7649.
[15] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. Advances in neural information processing systems 30
(2017).

[17] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-

mentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 9729–9738.

[18] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,

Alexei Efros, and Trevor Darrell. 2018. Cycada: Cycle-consistent adversarial

domain adaptation. In International conference on machine learning. Pmlr, 1989–

1998.

[19] Rodrigo Hormazabal, Changyoung Park, Soonyoung Lee, Sehui Han, Yeonsik Jo,

Jaewan Lee, Ahra Jo, Seung Hwan Kim, Jaegul Choo, Moontae Lee, et al. 2022.

CEDe: A collection of expert-curated datasets with atom-level entity annotations

for Optical Chemical Structure Recognition. Advances in Neural Information
Processing Systems 35 (2022), 27114–27126.

[20] Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. 2022.

Empowering graph representation learning with test-time graph transformation.

arXiv preprint arXiv:2210.03561 (2022).
[21] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[22] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with

graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[23] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

[24] Jonghyun Lee, Dahuin Jung, Junho Yim, and Sungroh Yoon. 2022. Confidence

score for source-free unsupervised domain adaptation. In International Conference
on Machine Learning. PMLR, 12365–12377.

[25] Jian Liang, Dapeng Hu, and Jiashi Feng. 2020. Do we really need to access the

source data? source hypothesis transfer for unsupervised domain adaptation. In

International Conference on Machine Learning. PMLR, 6028–6039.

[26] Jian Liang, Dapeng Hu, and Jiashi Feng. 2021. Domain adaptation with auxiliary

target domain-oriented classifier. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 16632–16642.

[27] Jian Liang, Dapeng Hu, Yunbo Wang, Ran He, and Jiashi Feng. 2021. Source

data-absent unsupervised domain adaptation through hypothesis transfer and

labeling transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence
44, 11 (2021), 8602–8617.

[28] Sijia Liu, Swarnendu Kar, Makan Fardad, and Pramod K Varshney. 2015. Sparsity-

aware sensor collaboration for linear coherent estimation. IEEE Transactions on
Signal Processing 63, 10 (2015), 2582–2596.

[29] Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan.

2022. Towards unsupervised deep graph structure learning. In Proceedings of the
ACM Web Conference 2022. 1392–1403.

[30] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. 2015. Learning

transferable features with deep adaptation networks. In International conference
on machine learning. PMLR, 97–105.

[31] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. 2018.

Conditional adversarial domain adaptation. Advances in neural information
processing systems 31 (2018).

[32] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. 2016. Unsuper-

vised domain adaptation with residual transfer networks. Advances in neural
information processing systems 29 (2016).

[33] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. 2017. Deep

transfer learning with joint adaptation networks. In International conference on
machine learning. PMLR, 2208–2217.

[34] Haitao Mao, Lun Du, Yujia Zheng, Qiang Fu, Zelin Li, Xu Chen, Shi Han, and

Dongmei Zhang. 2021. Source free unsupervised graph domain adaptation. arXiv
preprint arXiv:2112.00955 (2021).

[35] Yingwei Pan, Ting Yao, Yehao Li, Yu Wang, Chong-Wah Ngo, and Tao Mei. 2019.

Transferrable prototypical networks for unsupervised domain adaptation. In

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
2239–2247.

[36] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,

Hiroki Kanezashi, TimKaler, Tao Schardl, and Charles Leiserson. 2020. Evolvegcn:

Evolving graph convolutional networks for dynamic graphs. In Proceedings of
the AAAI conference on artificial intelligence. 5363–5370.

[37] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[38] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-scale attributed

node embedding. Journal of Complex Networks 9, 2 (2021), cnab014.
[39] Jari Saramäki, Mikko Kivelä, Jukka-Pekka Onnela, Kimmo Kaski, and Janos

Kertesz. 2007. Generalizations of the clustering coefficient to weighted complex

networks. Physical Review E 75, 2 (2007), 027105.

[40] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. 2018. Wasserstein distance

guided representation learning for domain adaptation. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32.

[41] Xiao Shen, Quanyu Dai, Fu-lai Chung, Wei Lu, and Kup-Sze Choi. 2020. Adversar-

ial deep network embedding for cross-network node classification. In Proceedings
of the AAAI Conference on Artificial Intelligence. 2991–2999.

[42] Xiao Shen, Quanyu Dai, Sitong Mao, Fu-lai Chung, and Kup-Sze Choi. 2020.

Network together: Node classification via cross-network deep network embed-

ding. IEEE Transactions on Neural Networks and Learning Systems 32, 5 (2020),
1935–1948.

[43] Ankit Singh. 2021. Clda: Contrastive learning for semi-supervised domain

adaptation. Advances in Neural Information Processing Systems 34 (2021), 5089–
5101.

[44] Baochen Sun, Jiashi Feng, and Kate Saenko. 2017. Correlation alignment for unsu-

pervised domain adaptation. Domain adaptation in computer vision applications
(2017), 153–171.

[45] Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. 2022. Rethinking graph neural

networks for anomaly detection. In International Conference on Machine Learning.
PMLR, 21076–21089.

[46] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Ar-

netminer: extraction and mining of academic social networks. In Proceedings of
the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining. 990–998.

[47] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. 2017. Adversar-

ial discriminative domain adaptation. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 7167–7176.

[48] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using

t-SNE. Journal of machine learning research 9, 11 (2008).

[49] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[50] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman

Panchanathan. 2017. Deep hashing network for unsupervised domain adaptation.

In Proceedings of the IEEE conference on computer vision and pattern recognition.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’24, May 13 – May 17, 2024, Singapore Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

5018–5027.

[51] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861–6871.

[52] Jun Wu, Jingrui He, and Elizabeth Ainsworth. 2022. Non-IID Transfer Learning

on Graphs. arXiv preprint arXiv:2212.08174 (2022).
[53] Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. 2020.

Unsupervised domain adaptive graph convolutional networks. In Proceedings of
The Web Conference 2020. 1457–1467.

[54] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[55] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong,

and Xue Lin. 2019. Topology attack and defense for graph neural networks: An

optimization perspective. arXiv preprint arXiv:1906.04214 (2019).
[56] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful

are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).
[57] Shiqi Yang, Joost van deWeijer, Luis Herranz, Shangling Jui, et al. 2021. Exploiting

the intrinsic neighborhood structure for source-free domain adaptation. Advances
in neural information processing systems 34 (2021), 29393–29405.

[58] Yunzhi Yao, Shaohan Huang, Wenhui Wang, Li Dong, and Furu Wei. 2021. Adapt-

and-Distill: Developing Small, Fast and Effective Pretrained Language Models

for Domains. In Findings of the Association for Computational Linguistics: ACL-
IJCNLP 2021. 460–470.

[59] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale

recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974–983.

[60] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. 2023. Graph Do-

main Adaptation via Theory-Grounded Spectral Regularization. In The Eleventh
International Conference on Learning Representations.

[61] Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger, and

Susanne Saminger-Platz. 2017. Central moment discrepancy (cmd) for domain-

invariant representation learning. arXiv preprint arXiv:1702.08811 (2017).
[62] Werner Zellinger, Bernhard A Moser, Thomas Grubinger, Edwin Lughofer,

Thomas Natschläger, and Susanne Saminger-Platz. 2019. Robust unsupervised

domain adaptation for neural networks via moment alignment. Information
Sciences 483 (2019), 174–191.

[63] Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, and Zhikun Wang. 2013.

Domain adaptation under target and conditional shift. In International conference
on machine learning. PMLR, 819–827.

[64] Xiaowen Zhang, Yuntao Du, Rongbiao Xie, and Chongjun Wang. 2021. Adver-

sarial separation network for cross-network node classification. In Proceedings of
the 30th ACM International Conference on Information & Knowledge Management.
2618–2626.

[65] Xiang Zhang and Marinka Zitnik. 2020. Gnnguard: Defending graph neural

networks against adversarial attacks. Advances in neural information processing
systems 33 (2020), 9263–9275.

[66] Yi-Fan Zhang, Xue Wang, Kexin Jin, Kun Yuan, Zhang Zhang, Liang Wang, Rong

Jin, and Tieniu Tan. 2023. AdaNPC: Exploring Non-Parametric Classifier for

Test-Time Adaptation. arXiv preprint arXiv:2304.12566 (2023).
[67] Ziyi Zhang, Weikai Chen, Hui Cheng, Zhen Li, Siyuan Li, Liang Lin, and Guanbin

Li. 2022. Divide and Contrast: Source-free Domain Adaptation via Adaptive

Contrastive Learning. arXiv preprint arXiv:2211.06612 (2022).
[68] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,

Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:

A review of methods and applications. AI open 1 (2020), 57–81.

[69] Qi Zhu, Carl Yang, Yidan Xu, Haonan Wang, Chao Zhang, and Jiawei Han.

2021. Transfer learning of graph neural networks with ego-graph information

maximization. Advances in Neural Information Processing Systems 34 (2021),

1766–1779.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Collaborate to Adapt: Source-Free Graph Domain Adaptation via Bi-directional Adaptation WWW ’24, May 13 – May 17, 2024, Singapore

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A THEORETICAL DETAILS

Shen et al. [40, 66] provides a generalization bound on domain adap-

tation through applying Wasserstein distance [2] between source

and target domain distributions. For completeness, we present Def-

inition A.1 and Theorem A.2 as follows:

Definition A.1 (Wasserstein Distance). The 𝜌-th Wasserstein dis-

tance between two distributions DS and DT is defined as follow:

W𝜌 (DS,DT) = (inf

𝛾 ∈Π[DS,DT]

∬
𝑑 (𝑥𝑠 , 𝑥𝑡)𝜌𝑑𝛾 (𝑥𝑠 , 𝑥𝑡))1/𝜌 , (13)

where Π[DS,DT] is the set of all joint distribution on X × X with

marginals DS and DT. 𝑑 (𝑥𝑠 , 𝑥𝑡) is a distance function for two in-

stances 𝑥𝑠 , 𝑥𝑡 .

Theorem A.2. Given two domain distributionsDS andDT, denote
𝑓 ∗ = argmin𝑓 ∈H (𝜖T (𝑓) + 𝜖S (𝑓)) and 𝜉 = 𝜖T (𝑓 ∗) + 𝜖S (𝑓 ∗). Assume
all hypotheses ℎ are 𝐾-Lipschitz continuous, the risk of hypothesis ˆ𝑓

on the target domain is then bounded by:

𝜖T (ˆ𝑓) ≤ 𝜖S (ˆ𝑓) + 2𝐾W(DS,DT) + 𝜉, (14)

whereW1 distance is used and we ignore the subscript 1 for simplicity.

With the above definition and theorem, we can know that the tar-

get domain prediction error is bounded by summarizing the source

domain prediction error, the distribution divergence of source and

target domains, and the combined error 𝜉 . Most existing domain

adaptation methods can be regarded as minimizing the distribution

divergence [42, 52, 60], i.e., the second term in Eq. (14). However, in

the source-free setting, the source data are inaccessible, hence the

right part is not applicable. Therefore, we need a new generation

upper bound for source-free target domain adaptation.

Our proposed GraphCTA mainly consists of two key modules:

model adaptation and graph adaptation, where the objective func-

tions are designed to constrain the upper bound. Specifically, we

utilize structural neighborhood consistency to provide guiding in-

formation in model adaptation module. That’s to say, the source dis-

tributionDS is replacedwithDN =
⋃

𝑥∈DT
B(𝑥, 𝑟), whereB(𝑥, 𝑟) =

{𝑥 ′ : 𝑥 ′ ∈ A𝑥 ∧∥𝑥 ′−𝑥 ∥ ≤ 𝑟 }, where ∥ · ∥ is 𝐿1 distance function, 𝑟 >
0 is a small radius, andA𝑥 is sample 𝑥 ′𝑠 neighborhood. With a small

𝑟 , we haveW(DN,DT) = inf𝛾 ∈Π[DN,DT]
∬
∥𝑥𝑛 − 𝑥𝑡 ∥𝑑𝛾 (𝑥𝑛, 𝑥𝑡) ≤

𝑟 , where for each 𝑥𝑡 ∈ DT we can find at least one 𝑥𝑛 ∈ DN such

that ∥𝑥𝑛 − 𝑥𝑡 ∥ ≤ 𝑟 . Thus, the overall distance will be bounded by

𝑟 and the domain divergence is reduced. Furthermore, the graph

adaptation module aims to correct the covariate-shift in the input

space and [20, 67] have prove its capability in reducing prediction

error. Then, we have the following Theorem A.3:

Theorem A.3. Given domain distribution DT and DN, where
DN =

⋃
𝑥∈DT

B(𝑥, 𝑟) and B(𝑥, 𝑟) = {𝑥 ′ : 𝑥 ′ ∈ A𝑥 ∧ ∥𝑥 ′ − 𝑥 ∥ ≤ 𝑟 }
provide guiding information through local neighborhood. Denote
𝑓 ∗ = argmin𝑓 ∈H (𝜖T (𝑓) + 𝜖N (𝑓)) and 𝜉 = 𝜖T (𝑓 ∗) + 𝜖N (𝑓 ∗). As-
sume that all hypotheses ℎ are 𝐾-Lipschitz continuous, the risk of
hypothesis ˆ𝑓 on the target domain is then bounded by:

𝜖T (ˆ𝑓) ≤ 𝜖N (ˆ𝑓) + 2𝐾𝑟 + 𝜉, (15)

where a small 𝑟 will reduce the bound.

Thus, it can be inferred that the joint application of model adap-

tation and graph adaptation can lead to a reduction in the terms on

the right-hand side of Eq. (15), resulting in the minimization of the

upper bound for the prediction error on the target domain.

B OPTIMIZATION

The optimization process for GNN parameters and ΔX is straight-

forward as they can be updated using gradient descent due to their

differentiability. However, optimizing ΔA is notably challenging

because of its binary nature and constrained properties. Therefore,

we relax ΔA to continuous space [0, 1]𝑛×𝑛 and utilize projected

gradient descent (PGD) [14, 55] to update its elements:

ΔA← ΠB (ΔA − 𝜂
𝜕LG

𝜕ΔA
), (16)

where the gradient step is performed with step size 𝜂, and then it

is projected into the constrained space B. We further constrain the

search space of ΔA to the existing edges in graph. More specifically,

ΠB (·) is expressed as:

ΠB (x) =
{

Π[0,1] (x), if 1⊤Π[0,1] (x) ≤ B,
Π[0,1] (x − 𝛾1) s.t. 1⊤Π[0,1] (x − 𝛾1) = B .

(17)

where Π[0,1] (·) restricts the input values to the range [0, 1]. 1 rep-
resents a vector with all elements equal to one, and 𝛾 is deter-

mined by solving the equation 1⊤Π[0,1] (x − 𝛾1) = B with the

bisection method [28]. To keep sparsity, we regard each entry as a

Bernoulli distribution and sample the learned graph structure as

A′ ∼ Bernoulli(A ⊕ ΔA).

C TRAINING STRATEGY FOR GRAPHCTA

We outline the training strategy for GraphCTA and present the

pseudo codes in Algorithm 1.

D DATASETS AND BASELINES

D.1 Distribution Shifts on Graphs

We choose three widely used node classification datasets for do-

main adaptation, i.e., transaction, social and citation graphs. These

datasets contain a varying number of nodes, ranging from thou-

sands to tens of thousands. The statistical information of these

datasets is presented in Table 1. In each dataset, they share the

same input feature space and output label space, but the character-

istics from different graphs often exhibit distinct properties, which

results in domain shift. Here, we utilize degree assortativity [1] and

clustering coefficient [39] as measures to describe the structural

properties of these graphs. Specifically, a high assortativity score

indicates that nodes with high degrees are more likely to connect

with other high degree nodes, while the clustering coefficient mea-

sures the extent to which nodes in a graph tend to form tightly

clusters. We provide a quantitative comparison in Figure 4. As we

can see, these graphs demonstrate significant disparities in their

statistics, suggesting the presence of distribution shifts w.r.t. graph

structures.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’24, May 13 – May 17, 2024, Singapore Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Algorithm 1 GraphCTA’s Training Strategy

Input: Given source pretrained GNN model 𝜅 = 𝑓𝜃 ◦ 𝑔𝜙 and target graph G = (A,X)
Output: Predictions Y ∈ R𝑛×𝐶 on refined target graph G = (A′,X′) with updated model 𝜅′

1: ΔX and ΔA are initialized as zero matrices

2: while not converged or not reached the maximum epochs do

3: Compute X′ = 𝜎 (X) = X + ΔX and A′ = 𝜓 (A) = A ⊕ ΔA
4: for 𝑖 ← 1 to 𝑇𝑚 do ⊲ model adaptation

5: Fix the parameters of ΔX and ΔA
6: Compute node representations Z ∈ R𝑛×ℎ and predictions P ∈ R𝑛×𝐶 with (A′,X′)
7: Calculate LM according to Eq. (8) and update GNN model’s parameters

8: Update memory banks F and P via a momentum manner

9: for 𝑗 ← 1 to 𝑇𝑓 do ⊲ graph adaptation for node features

10: Fix the parameters of GNN model and ΔA
11: Calculate LG according to Eq. (12) and update ΔX← ΔX − 𝜂 𝜕LG

𝜕ΔX
12: for 𝑘 ← 1 to 𝑇𝑠 do ⊲ graph adaptation for structure

13: Fix the parameters of GNN model and ΔX
14: Calculate LG according to Eq. (12) and update ΔA← ΠB (ΔA − 𝜂 𝜕LG

𝜕ΔA) with PGD

15: Update target graph as X′ = 𝜎 (X) = X + ΔX and A′ = 𝜓 (A) = Bernoulli(A ⊕ ΔA)
16: Compute predictions Y = 𝜅′ (A′,X′) with updated model 𝜅′

S M E

Transaction Datasets

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

A
ss

o
rt

a
ti

v
it

y
/C

lu
st

er
in

g
 C

o
ef

fi
ci

en
t

Assortativity Clustering Coefficient

DE EN FR

Social Datasets

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

A
ss

o
rt

a
ti

v
it

y
/C

lu
st

er
in

g
 C

o
ef

fi
ci

en
t

Assortativity Clustering Coefficient

A C D

Citation Datasets

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

A
ss

o
rt

a
ti

v
it

y
/C

lu
st

er
in

g
 C

o
ef

fi
ci

en
t

Assortativity Clustering Coefficient

Figure 4: Graph structure properties statistic, which shows the existence of distribution shifts.

D.2 Baseline Settings

In our experiments, we compare our proposed GraphCTA with 3

groups of approaches: no-adaptation, source-need and source-free.
The detailed description is as follows:

No-adaptation. This group contains 3 unsupervised algorithms

(i.e., DeepWalk [37], node2vec [15], GAE [23]) and 3 graph neural

networks including GCN [22], GAT [49] and GIN [56]. For unsuper-

vised methods, we first learn node representations in source graph

via a unsupervised manner. Then, the source label information is

utilized to train a logistic regression classifier on the learned source

node representations. After that, we learn node representations

in target graph via a unsupervised manner and evaluate its per-

formance with the logistic regression classifier trained on source

data. For GNN models, they are directly trained with the labelled

source graph and evaluated on the target graph, because they can

be optimized in an end-to-end manner.

Source-need.Methods of this group utilize the labelled source

graph to eliminate the distribution discrepancies explicitly or im-

plicitly. Among them, UDAGCN [53], AdaGCN [7], ASN [64] and

ACDNE [41] employ adversarial training to implicitly minimize

the distribution divergence. In contrast, TPN [35], GRADE [52]

and SpecReg [60] explicitly regularize the node representations

via spectral or MMD loss to reduce the domain shifts. Since the

labelled source graph can provide supervision signals, they are able

to achieve relatively better performance compared with source-free

methods.

Source-free. In this group, we consider several recent state-of-

the-art source-free baselines. Since there is limited research ex-

ploring source-free unsupervised graph domain adaptation, we

adapt several baselines from the field of computer vision. Specifi-

cally, SHOT [25] and its extension SHOT++ [27] employ entropy

minimization and information maximization to perform class-wise

adaptation. BNM [6] achieves prediction discriminability and di-

versity via nuclear norm maximization. ATDOC [26] and NRC

[57] exploit local neighborhood structure for ensuring label con-

sistency. DaC [67] partitions the target data into source-like and

target-specific samples to perform domain adaptation. JMDS [24]

assign confidence score to each target sample for robust adaptation

learning. GTrans [20] performs graph transformation at test time

to enhance the model’s performance. SOGA [34] maximizes the

mutual information between the target graph and the output of the

model to preserve the structural proximity.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Collaborate to Adapt: Source-Free Graph Domain Adaptation via Bi-directional Adaptation WWW ’24, May 13 – May 17, 2024, Singapore

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 7: Average node classification performance in terms of accuracy with standard deviation (%) on social datasets. We use blue to denote the

best performance in source-need methods and bold indicates the best performance among source-free approaches.

Methods EN→DE FR→DE FR→EN DE→EN DE→FR EN→FR

S
o
u
r
c
e
-
N
e
e
d

UDAGCN [53] 58.69±0.75 63.11±0.44 55.11±0.22 59.74±0.21 56.61±0.39 56.94±0.70
TPN [35] 53.82±1.26 43.72±0.83 46.41±0.19 54.42±0.19 43.43±0.99 38.93±0.28
AdaGCN [7] 51.31±0.68 42.15±0.21 47.04±0.12 54.69±0.50 37.62±0.51 40.45±0.24
ASN [64] 60.45±0.16 39.54±0.63 45.43±0.88 55.45±0.11 47.20±0.84 40.29±0.55
ACDNE [41] 58.79±0.73 55.14±0.43 54.50±0.45 58.08±0.97 54.01±0.30 57.15±0.61
GRADE [52] 61.18±0.08 52.02±0.14 49.74±0.05 56.40±0.05 46.83±0.07 51.17±0.62
SpecReg [60] 61.45±0.18 61.97±0.21 56.29±0.42 56.43±0.11 63.20±0.03 63.21±0.04

N
o
-
A
d
a
p
t
a
t
i
o
n

DeepWalk [37] 55.08±0.61 41.67±0.93 46.84±0.99 52.18±0.35 42.03±0.90 44.72±1.03
node2vec [15] 54.61±1.53 41.42±0.83 46.83±0.54 52.64±0.62 41.42±0.99 44.14±0.89
GAE [23] 54.57±0.49 44.49±1.31 48.06±0.81 58.33±0.46 42.25±0.87 40.89±1.09
GCN [22] 52.02±0.17 45.37±1.46 47.32±0.33 54.77±0.73 54.17±0.70 42.45±0.97
GAT [49] 43.65±0.37 43.76±0.74 45.52±0.13 54.84±0.37 39.63±0.16 53.28±0.78
GIN [56] 55.26±0.75 55.67±0.75 54.18±0.09 52.39±0.31 44.48±0.84 58.39±0.23

S
o
u
r
c
e
-
F
r
e
e

SHOT [25] 58.95±0.40 61.26±0.26 56.40±0.11 56.94±0.27 50.94±0.07 52.62±0.79
SHOT++ [27] 63.61±0.20 61.01±0.59 55.12±0.41 56.57±0.29 52.04±0.56 49.97±0.48
BNM [6] 61.83±0.24 60.94±0.31 56.70±0.20 57.92±0.16 51.39±0.22 50.78±1.13
ATDOC [26] 61.95±0.28 57.47±0.89 54.22±0.43 56.31±0.44 49.02±0.58 42.65±0.16
NRC [57] 63.08±0.34 61.84±0.34 56.12±0.65 56.96±0.41 50.63±0.09 50.83±0.46
DaC [67] 62.58±0.34 55.61±0.77 57.73±0.48 58.09±0.55 55.97±0.97 56.55±0.30
JMDS [24] 61.48±0.08 62.12±0.14 52.35±0.32 56.67±0.20 48.72±0.08 46.93±0.26
GTrans [20] 62.00±0.17 62.06±0.23 56.54±0.06 56.35±0.15 61.30±0.17 60.80±0.26
SOGA [34] 62.55±1.38 50.22±0.58 50.11±0.23 58.27±0.60 53.71±0.32 57.14±0.49

Ours GraphCTA 63.85±0.83 62.45±0.23 58.39±0.41 59.85±0.16 63.35±0.84 63.18±0.31

Table 8: Average node classification performance in terms of accuracy with standard deviation (%) on citation datasets. We use blue to denote the

best performance in source-need methods and bold indicates the best performance among source-free approaches.

Methods A→D C→D D→A C→A A→C D→C

S
o
u
r
c
e
-
N
e
e
d

UDAGCN [53] 66.95±0.45 71.77±1.09 58.16±0.19 66.80±0.23 72.15±0.92 73.28±0.52
TPN [35] 69.78±0.69 74.65±0.74 62.99±1.25 67.93±0.34 74.56±0.73 72.54±1.08
AdaGCN [7] 75.04±0.49 75.59±0.71 69.67±0.54 71.67±0.91 79.32±0.85 78.20±0.90
ASN [64] 73.80±0.40 76.36±0.33 70.15±0.60 72.74±0.49 80.64±0.27 78.23±0.52
ACDNE [41] 76.24±0.53 77.21±0.23 71.29±0.66 73.59±0.34 81.75±0.29 80.14±0.09
GRADE [52] 68.22±0.37 73.95±0.49 63.72±0.88 69.55±0.78 76.04±0.57 74.32±0.54
SpecReg [60] 75.93±0.89 75.74±1.15 71.01±0.64 72.04±0.63 80.55±0.70 79.04±0.83

N
o
-
A
d
a
p
t
a
t
i
o
n

DeepWalk [37] 24.38±1.02 25.00±2.04 23.88±4.27 21.71±3.52 23.63±2.37 23.70±2.96
node2vec [15] 23.84±2.31 23.40±2.65 23.47±2.92 22.83±1.69 23.37±3.72 23.56±3.68
GAE [23] 62.45±0.44 66.11±0.49 52.79±1.30 61.54±0.53 64.98±0.53 60.53±0.87
GCN [22] 69.05±0.86 74.53±0.36 63.35±0.69 70.58±0.68 77.38±1.28 74.17±1.15
GAT [49] 53.80±1.53 55.85±1.62 52.93±1.84 50.37±1.72 57.13±1.73 55.52±1.78
GIN [56] 59.10±0.18 66.27±0.27 58.98±0.28 60.46±0.25 68.61±0.36 69.25±0.34

S
o
u
r
c
e
-
F
r
e
e

SHOT [25] 73.32±0.48 74.16±1.88 62.86±1.73 69.81±1.08 76.81±1.41 74.94±1.65
SHOT++ [27] 71.51±0.93 74.99±0.90 65.50±0.64 70.73±0.59 76.77±0.74 76.70±1.05
BNM [6] 73.59±0.31 75.83±0.64 65.83±0.67 69.96±0.42 78.91±0.34 76.87±0.75
ATDOC [26] 72.01±0.35 74.80±0.45 63.67±0.88 67.64±1.44 76.94±0.92 74.89±0.99
NRC [57] 70.89±0.39 71.79±0.34 65.25±0.56 68.44±0.86 75.93±0.70 76.19±0.66
DaC [67] 73.02±0.51 74.75±0.93 65.18±1.87 68.81±0.47 77.43±0.70 76.78±0.72
JMDS [24] 68.28±1.13 72.68±0.47 59.41±1.32 64.96±0.63 70.84±1.27 70.40±0.53
GTrans [20] 64.85±0.99 71.44±1.65 63.47±1.93 67.27±0.25 69.05±0.34 72.27±0.29
SOGA [34] 71.62±0.37 74.16±0.72 66.00±0.35 67.06±0.32 77.05±0.56 75.53±0.94

Ours GraphCTA 75.62±0.29 77.62±0.22 70.04±0.15 72.56±0.43 80.55±0.13 79.56±0.27

E MORE EXPERIMENTAL RESULTS

Table 7 and Table 8 present all adaptation results on social and

citation datasets. As transaction datasets exhibit temporal shifts,

we only focus on performing adaptation tasks that involve transi-

tioning from previous graphs to later graphs (i.e., S→M, S→E and

E→M in Table 2). From Table 7 and Table 8, we have the following

observations: (1) The no-adaptation baselines perform poorly in

most scenarios, since they do not take target graph into consider-

ation thus failing to model the domain shifts. (2) In general, the

source-need methods could achieve relatively good performance,

because the labelled source graph provides available supervision

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

WWW ’24, May 13 – May 17, 2024, Singapore Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

signals to directly minimize their distribution discrepancies. (3)

While the source-free setting is challenging, we can still obtain

satisfied results via employing appropriate learning paradigms. Our

proposed model gains significant improvements over recent SOTA

baselines, which verifies the effectiveness of GraphCTA.

F MORE HYPER-PARAMETER ANALYSES

We provide more hyper-parameter sensitivity analyses in Figure 5.

Specifically, we explore the impact of various key hyperparameters

by varying them across different scales. For the trade-off parameter

𝜆, the model’s performance gradually decreases when its value

exceeds a certain threshold (i.e., 0.2). This indicates weighted cross-

entropy loss plays a more important role compared with contrastive

loss, as it provides explicit supervision signals. Similar trends are

also identified in parameters 𝛼 and 𝛽 . In particular, we note that it

exhibits significant oscillation during the adaptation task from 𝐶

to 𝐷 across all three parameters. This maybe because the training

procedure is sensitive to the incorporation of contrastive learning

module in this particular adaptation scenario. On the other hand,

GraphCTA is relatively robust to the number of nearest neighbors𝐾

and temperature 𝜏 . When the number of𝐾 increases, there is a slight

decline in its performance, whichmight be caused by the introduced

noisy neighbors. Nevertheless, a smaller value can consistently yield

better performance.

G EXPERIMENTAL RESULTS REPRODUCE

We present the detailed running configurations for all the com-

pared methods. As the methods in [6, 24–27, 57, 67] are specifically

designed for image data, their codes cannot directly run on the

graph-structured data. Thus, we replace their backbones with the

same GCN [22] architecture used in our model for fair comparisons.

We conduct our experiments on a Linux server with a NVIDIA’s

A100 GPU. The embedding size is set to 128 for each method. The

code sources and other specific hyper-parameter settings of com-

pared methods are listed as below.

DeepWalk [37] and node2vec [15]. We use the codes provided

by Pytorch Geometric. The walk length is set as 20 and window

size is set to 10. We set the number of walks for each node to 10

and the number of negative samples for each training pair is set to

1. For node2vec, we set parameters 𝑝 = 0.5 and 𝑞 = 2.

GAE [23],GCN [22],GAT [49] andGIN [56].We also use the im-

plementation in Pytorch Geometric. The number of layers and node

representations are set as 2 and 128, respectively. The learning rate

and weight are search in the range of {0.1, 0.01, 1𝑒−3, 1𝑒−4, 5𝑒−4}.
For the remaining baselines, we use the source codes provided

by the authors at Github if available. Their links are as follows:

• UDAGCN [53]: https://github.com/GRAND-Lab/UDAGCN

• AdaGCN [7]: https://github.com/daiquanyu/AdaGCN

• ASN [64]: https://github.com/yuntaodu/ASN

• ACDNE [41]: https://github.com/shenxiaocam/ACDNE

• GRADE [52]: https://github.com/jwu4sml/GRADE

• SpecReg [60]: https://github.com/Shen-Lab/GDA-SpecReg

• SHOT [25]: https://github.com/tim-learn/SHOT

• SHOT++ [27]: https://github.com/tim-learn/SHOT-plus

• BNM [6]: https://github.com/cuishuhao/BNM

• ATDOC [26]: https://github.com/tim-learn/ATDOC

Table 9: Citation datasets used in SpecReg and SOGA.

Dataset #Nodes #Edges #Features #Classes

DBLPv8 5,578 7,341

7,537 6

ACMv9 7,410 11,135

*Two adaptation tasks: D→A and A→D.

Table 10: Citation datasets used in our paper.

Dataset #Nodes #Edges #Features #Classes

ACMv9 9,360 15,556

6,775 5Citationv1 8,935 15,098

DBLPv7 5,484 8,117

*Six adaptation tasks: D→A, A→D, C→A, A→C, C→D, D→C.

• NRC [57]: https://github.com/Albert0147/NRC_SFDA

• DaC [67]: https://github.com/ZyeZhang/DaC

• JMDS [24]: https://github.com/Jhyun17/CoWA-JMDS

• GTrans [20]: https://github.com/ChandlerBang/GTrans

As SOGA [34] do not release its source codes, we try our best

to implement it based on the descriptions in its paper. Our pro-

posed GraphCTA is implemented with Pytorch Geometric [12]

and optimized with Adam optimizer [21]. The optimal learning rate

and weight decay are searched in {0.1, 0.01, 1𝑒−3, 1𝑒−4, 5𝑒−4}. The
smoothing parameter 𝛾 in memory banks is fixed as 0.9 by default.

Temperature 𝜏 and the number of𝐾-nearest neighbors are set as 0.2

and 5, respectively. Trade-off hyper-parameters 𝜆, 𝛼, 𝛽 are searched

in the range of [0, 1].

H ADDITIONAL EXPERIMENTS

H.1 Comparisons on SpecReg/SOGA datasets

We note that two recent baselines SpecReg [60] and SOGA [34]

utilize the citation datasets that are similar yet distinct from the

citation datasets used in our paper. SpecReg and SOGA follow

UDAGCN [53], which provides 2 domains with node feature di-

mension of 7,537 and number of classes as 6. (Note that UDAGCN

also uses Citationv2 dataset in their paper, but they do not release

this dataset.) Our paper utilizes the widely used citation datasets

provided by AdaGCN [7], ASN [64] and ACDNE [41], which pro-

vides 3 domains with node features dimension of 6,775 and number

of classes as 5. This dataset provides us with the opportunity to

explore a broader range of adaptation settings, encompassing six

adaptation tasks instead of two. The detailed statistical information

is summarized in Table 9 and Table 10. As can be seen, their datasets

are different from ours in number of nodes, edges, node features

and number of classes.

To show the effectiveness of our proposed GraphCTA, we pro-

vide the results on same datasets used by SpecReg and SOGA in

Table 11. For source-need baseline SpecReg, we report the results

in their original papers and the results reproduced by their released

source codes. As for source-free baseline SOGA, the authors do not

release their source codes and we have tried our best to reproduce

their results. As we can see in the table, our reproduced SOGA

results are very closed to their reported results, which means our

reproduced codes for SOGA are reliable. Moreover, it is worth not-

ing that our proposed source-free GraphCTA outperforms SOGA

with different gains and achieves comparable performance with

source-need baseline SpecReg.

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Collaborate to Adapt: Source-Free Graph Domain Adaptation via Bi-directional Adaptation WWW ’24, May 13 – May 17, 2024, Singapore

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trade-off parameter λ

70

75

80

85

90

A
cc

u
ra

cy

S-M

S-E

M-E

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trade-off parameter λ

50

55

60

65

70

A
cc

u
ra

cy

DE-EN

DE-FR

EN-FR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trade-off parameter λ

70

72

74

76

78

A
cc

u
ra

cy

A-D

C-D

C-A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trade-off parameter α

75

80

85

90

A
cc

u
ra

cy

S-M

S-E

M-E

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trade-off parameter α

50

55

60

65
A

cc
u

ra
cy

DE-EN

DE-FR

EN-FR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trade-off parameter α

70

72

74

76

78

A
cc

u
ra

cy

A-D

C-D

C-A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trade-off parameter β

75

80

85

90

A
cc

u
ra

cy

S-M

S-E

M-E

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trade-off parameter β

50

55

60

65

A
cc

u
ra

cy

DE-EN

DE-FR

EN-FR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trade-off parameter β

66

68

70

72

74

76

78

A
cc

u
ra

cy

A-D

C-D

C-A

5 10 15 20 25

K-nearest neighbors

75

80

85

90

A
cc

u
ra

cy

S-M

S-E

M-E

5 10 15 20 25

K-nearest neighbors

55

60

65

70

A
cc

u
ra

cy

DE-EN

DE-FR

EN-FR

5 10 15 20 25

K-nearest neighbors

70

72

74

76

78

80

A
cc

u
ra

cy

A-D

C-D

C-A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Temperature parameter

75

80

85

90

A
cc

u
ra

cy

S-M

S-E

M-E

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Temperature parameter

50

55

60

65

A
cc

u
ra

cy

DE-EN

DE-FR

EN-FR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Temperature parameter

70

72

74

76

78

A
cc

u
ra

cy

A-D

C-D

C-A

Figure 5: Hyper-parameter sensitivity analyses on transaction, social and citation datasets.

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

WWW ’24, May 13 – May 17, 2024, Singapore Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Figure 6: The comparison of learning curves between GraphCTA and SOGA.

Table 11: Results on citation datasets used by SpecReg and SOGA.

Methods DBLPv8→ACMv9 ACMv9→DBLPv8

Macro-F1 Micro-F1 Macro-F1 Micro-F1

SpecReg (report) - 76.26±0.05 - 91.65±0.06
SpecReg (reproduce) 65.83±0.28 75.52±0.17 91.96±0.74 91.30±0.80

SOGA (report) 63.60±0.30 - 92.80±1.80 -

SOGA (reproduce) 63.47±1.32 71.94±1.15 91.35±1.82 91.22±1.90
GraphCTA 64.58±0.72 74.08±0.15 91.95±0.29 91.62±0.52

H.2 Comparisons on training convergence

We compare the training convergence of GraphCTA and SOGA

in Figure 6. Each model is trained 5 times with random seeds (i.e.,

1,2,3,4,5). The light gray lines are the results for each experiment.

We plot themean accuracy curve and fill the area within its standard

deviation. As can be seen, our proposed GraphCTA converges with

fewer epochs and is more stable with smaller deviations.

16

	Abstract
	1 Introduction
	2 Related Work
	3 The Proposed GraphCTA
	3.1 Preliminary and Problem Definition
	3.2 Model Adaptation with Local-Global Consistency
	3.3 Graph Adaptation with Self-training
	3.4 The Training Procedure
	3.5 Complexity Analysis

	4 Experiments
	4.1 Experimental Settings
	4.2 Results and Analyses
	4.3 Ablation Study
	4.4 Visualization

	5 Conclusion
	References
	A Theoretical Details
	B Optimization
	C Training Strategy for GraphCTA
	D Datasets and Baselines
	D.1 Distribution Shifts on Graphs
	D.2 Baseline Settings

	E More Experimental Results
	F More Hyper-parameter Analyses
	G Experimental Results Reproduce
	H Additional Experiments
	H.1 Comparisons on SpecReg/SOGA datasets
	H.2 Comparisons on training convergence

