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Abstract

Recent advancements in omnimodal learning have significantly improved under-
standing and generation across images, text, and speech, yet these developments
remain predominantly confined to proprietary models. The lack of high-quality
omnimodal datasets and the challenges of real-time emotional speech synthesis
have notably hindered progress in open-source research. To address these limi-
tations, we introduce OpenOmni, a two-stage training framework that integrates
omnimodal alignment and speech generation to develop a state-of-the-art omni-
modal large language model. In the alignment phase, a pretrained speech model
undergoes further training on image-text tasks, enabling (near) zero-shot general-
ization from vision to speech, outperforming models trained on tri-modal datasets.
In the speech generation phase, a lightweight decoder is trained on speech tasks
with direct preference optimization, which enables real-time emotional speech
synthesis with high fidelity. Extensive experiments demonstrate that OpenOmni
surpasses state-of-the-art models across omnimodal, vision-language, and speech-
language benchmarks. It achieves a 4-point absolute improvement on OmniBench
over the leading open-source model VITA, despite using 5x fewer training ex-
amples and a smaller model size (7B vs. 7x8B). Besides, OpenOmni achieves
real-time speech generation with less than 1 second latency at non-autoregressive
mode, reducing inference time by 5x compared to autoregressive methods, and
improves emotion classification accuracy by 7.7%. The codebase is available at
https://github.com/RainBowLuoCS/0OpenOmni.

1 Introduction

The success of large language models (LLMs) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] has driven rapid ad-
vancements in multimodal large language models (MLLMs) [11, 12, 13, 14, 15, 16, 17], partic-
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Figure 1: Overview of the motivation and architecture of OpenOmni. (a) OpenOmni adopts a
progressive alignment strategy to generalize from vision-language to speech-language tasks, avoid-
ing the need for costly tri-modal datasets and resources. (b) OpenOmni integrates a lightweight
end-to-end speech decoder, enabling parallel text and speech generation while effectively reducing
inference latency. (c) By utilizing DPO, OpenOmni generates emotionally coherent and context-
aware speech without relying on additional control modules or handcrafted prompts. For simplicity,
our core architecture is presented without the connectors between modules.

ularly in vision-language models (VLMs) [18, 19, 20, 21, 22, 23] and speech-language models
(SLMs) [24, 25, 26, 27, 28]. These innovations mark a paradigm shift in machine understanding
and human-computer interaction, fueling interest in omnimodal large language models (OLLMs),
which are models that integrate vision, language, and speech into a unified system. The emergence
of GPT-40 underscores the potential of holistic multimodal Al, yet open-source alternatives remain
significantly behind.

Despite their promise, existing open-source OLLMs [29, 30, 31, 32] face three fundamental chal-
lenges, limiting their performance in real-world applications. First, training fully end-to-end OLLMs
requires high-quality tri-modal datasets (images, speech, and text), which are scarce, expensive, and
difficult to curate at scale. Most open-source models rely on true tri-modal corpora and ignore pair-
wise datasets (e.g., image-text or speech-speech), resulting in suboptimal cross-modal alignment and
weaker generalization. Without effective zero-shot alignment strategies, these models struggle to
transfer learned representations across modalities, reducing their robustness in realistic multimodal
tasks. Second, existing models predominantly rely on autoregressive (AR) architectures, which gen-
erate outputs sequentially, introducing high inference latency that hinders real-time multimodal in-
teraction. Speech generation, in particular, is slow, as most models integrate external text-to-speech
(TTS) modules [33], resulting in latency overhead and preventing end-to-end optimization. Achiev-
ing low-latency multimodal synthesis is essential for applications such as conversational Al, assis-
tive technologies, and real-time interactive agents, where response time directly affects usability.
Finally, emotionally expressive speech is critical for natural and engaging human-computer inter-
actions. However, current OLLMs fail to generate emotionally consistent responses. Most models
lack self-awareness, producing flat and robotic speech that does not modulate prosody, tone, or sen-
timent based on conversational context. Without direct preference optimization (DPO) [34, 35] for
emotional speech, existing models struggle to align speech intonation with user emotions, leading
to inauthentic and disconnected interactions. To summarize, these challenges significantly constrain
the real-world applicability of open-source OLLMSs, leaving commercial models far ahead in omni-
modal reasoning, real-time interaction, and expressive speech synthesis.

To bridge this gap, we propose OpenOmni in this paper, which is a fully open-source two-stage
training framework that enables efficient omnimodal learning while addressing the key limitations
of existing models. As illustrated in Figure 1, OpenOmni introduces a progressive alignment strategy
that enables cross-modal generalization from vision-language tasks to speech-language tasks, elim-
inating the need for expensive tri-modal datasets and computing resources. It further incorporates a
lightweight and end-to-end speech decoder that facilitates parallel text and speech generation, which
drastically reduces inference latency compared to autoregressive models. Moreover, by leveraging
direct preference optimization (DPO), our model generates emotionally coherent and context-aware
speech without requiring additional control modules or handcrafted prompts.

Extensive experiments confirm that OpenOmni achieves state-of-the-art performance in omnimodal
alignment, real-time speech synthesis, and emotional speech generation. Compared to VITA [31],
the leading fully open-source OLLM, which employs a 7x 8B language model trained on 5M sam-



ples, OpenOmni attains superior results with a smaller model size (7B vs. 7x8B) and 3 x fewer train-
ing samples (1.6M vs. 5M) while outperforming VITA by four absolute points on the OmniBench
benchmark [36]. Additionally, OpenOmni reduces speech generation latency by 5x, achieving real-
time inference (<1 second) and improving emotion classification accuracy by 7.7%. Our main
contributions are summarized as follows:

* High-quality speech datasets. We construct O2S-300K and EO2S-9K, comprising 8,000
hours of bilingual text-synthesized speech, which enables efficient speech generation and
emotional preference optimization.

* Effective zero-shot omnimodal alignment. We introduce a scalable and model-agnostic
framework that enables low-resource and rapid omnimodal alignment using text as a pivot,
followed by speech generation and emotional preference training. This approach allows
the rapid development of an advanced all-modal assistant akin to GPT-4o0.

* An end-to-end omnimodal LLM. We train OpenOmni with integrated text, image, and
speech understanding progressively. After speech generation training and emotional pref-
erence optimization, OpenOmni can naturally produce real-time emotional speech.

2 Related Work

Vision-language models. The rapid advancement of vision-language models (VLMs) has been
largely driven by the remarkable success of large language models (LLMs) [37, 38, 39, 40, 41] and
the increasing availability of diverse image-text instruction data [18, 42, 43, 44, 45, 46, 47, 48].
LLaVA [18] and MiniGPT-4 [49] demonstrate strong cross-task generalization by integrating vi-
sual encoders with LLMs through lightweight connector modules trained on instruction datasets.
To further enhance visual perception, LLaVA-NeXT [19] employs dynamic resolution techniques,
which improve the adaptability to images of varying sizes and complexities. Expanding beyond
conventional methods, DreamLLLM [50] explores interleaved generation, enabling the simultane-
ous production of images and text within a shared multimodal context. Meanwhile, DEEM [21]
enhances model robustness by employing diffusion models to extract visual features, which re-
places traditional visual encoders and simplifies the overall architecture. These innovations collec-
tively contribute to advancing vision-language reasoning in multimodal systems. Readers can refer
to [51, 52, 53, 54, 55] for more details and recent advances in VLMs.

Speech-language models. Recent advancements in speech-language models (SLMs) [56, 57, 58,
59, 60] have significantly improved human-computer interactions by enabling direct speech process-
ing without relying on intermediate text transcription. For example, SpeechGPT [11] and LLaMA-
Omni [25] eliminate the need for explicit text-based transcriptions, reducing latency in multimodal
content generation. For full-duplex dialogue systems, Moshi [61] and OmniFlatten [62] introduce
mechanisms for handling simultaneous speech and text streams, adeptly managing challenges such
as overlapping speech and interruptions [63]. Meanwhile, Freeze-Omni [64] introduces an innova-
tive training approach that preserves the core capabilities of the original LLM, allowing low-latency
speech-to-speech dialogue without requiring modifications to the pre-trained architecture. Focusing
on emotional speech synthesis, Emo-DPO [65] applies direct preference optimization to generate
expressive and controllable emotional speech, which addresses the emotional coherence gap in ex-
isting speech-language models. These developments mark a significant shift towards more natural
and real-time speech interactions in multimodal Al systems. Readers can refer to [66] for more
details of SLMs.

Omnimodal language models. With the development of multimodal research, models are in-
creasingly shifting towards unified frameworks that seamlessly integrate diverse input and out-
put modalities [67]. By tokenizing different data types into a shared representation, models like
AnyGPT [29] and Unified-10 2 [68] achieve seamless cross-modal task adaptability, allowing them
to process audio, text, and images without significant architectural modifications. More recently,
Mini-Omni2 [69] extends multimodal capabilities by integrating visual and auditory encoders, en-
abling real-time multimodal responses while incorporating mechanisms for detecting and interpret-
ing semantic interruptions. Meanwhile, video-SALMONN [30] enhances video understanding by
incorporating fine-grained temporal modeling, improving the model’s ability to interpret speech
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Figure 2: Overview of the training process of OpenOmni. To enable zero-shot omnimodal learn-
ing and real-time emotional speech generation, OpenOmni undergoes a progressive three-stage train-
ing process: (1) Speech-text alignment. A speech encoder extracts continuous speech and text fea-
tures for alignment learning, equipping the large language model with speech understanding capa-
bilities. (2) Image-text alignment. An image encoder extracts continuous image and text features,
facilitating alignment learning that enhances OpenOmni’s image comprehension and instruction-
following abilities. This process also establishes implicit omnimodal alignment, which enables
omni-understanding. (3) Text-guided speech generation. A lightweight speech decoder is trained
using high-quality synthesized speech dialogue data, with a focus on direct preference optimization
for emotional speech. This final stage allows OpenOmni to generate real-time and self-aware emo-
tional speech. A text-guided module (TGM) is utilized to accelerate the training convergence.

and actions within videos. To enhance human-computer interaction, VITA [31] introduces du-
plex communication schemes, enabling fluid and intuitive exchanges between users and Al models.
EMOVA [32] further extends the expressive capabilities of multimodal systems by integrating con-
trollable emotional speech synthesis, which provides more natural and engaging user interactions.

Building upon these advancements, OpenOmni introduces a novel method for nearly zero-shot om-
nimodal alignment across language, vision, and speech, which incorporates self-aware emotional
speech synthesis to enhance expressiveness and realism. By optimizing for speed, data efficiency,
and generalization, OpenOmni achieves state-of-the-art performance in omnimodal tasks, surpassing
previous models in real-time speech generation, multimodal alignment, and emotion-aware synthe-
sis. Note that compared to Qwen-Omni [70], OpenOmni is a fully open-source solution focused on
achieving advanced OLLMs under limited training and data resources, which helps researchers to
easily conduct their studies and accelerate innovation in the field.

3 Method

In this section, we first formulate the omnimodal learning problem and provide an overview of the
training procedure of OpenOmni as demonstrated in Figure 2. Afterward, we describe the specific
training procedures for omnimodal alignment and real-time speech generation step by step.

3.1 Problem Setup and OpenOmni Overview

Problem setup. Omnimodal learning aims to model the relationships between images (x"),
speech (x*), and text (x"). The speech-to-text alignment task, which generates relevant text responses
given input speech encoded by a speech encoder hs(+), is formulated as learning pg (x| hs(x*)), pa-
rameterized by ¢. Similarly, the image-to-text alignment task, which involves generating textual
descriptions for input images encoded by an image encoder h,(+), is modeled as learning the condi-
tional distribution pg (x'|hy(x")), parameterized by 6. Lastly, the omnimodal-to-speech generation
task, which synthesizes speech responses based on input text, speech, and images, is represented
as learning pq, (x°| frm (X', hs(x°), hy(x"))), parameterized by b, where fipm represents the large
language model.



In the setting of standard omnimodal learning, training typically relies on image-speech-text triples
D, = {(x!,x5,x4)}£ |. Nevertheless, high-quality image-text-speech datasets are scarce. To mit-
igate this limitation, we introduce text as a pivot, which leverages a large-scale speech-text dataset
Dy = {(x5,x4)}M | and image-text dataset Dy, = {(x},x})}Y |, where M > K and N > K. In-
spired by human learning mechanisms, where individuals naturally align visual concepts with speech
across languages, OpenOmni transfers visual concepts learned from image-text tasks to speech un-
derstanding. Technically, OpenOmni decomposes the omnimodal alignment process into two con-
secutive stages: speech-text alignment and image-text alignment. The speech-text alignment stage
establishes cross-modal alignment between speech x* and text x'. This is achieved by training a
speech LLM on text-speech pairs Dy, with the objective pg(x'|hs(x*)), which also ensures that the
hidden representations of semantically similar speech-text pairs are close. In the image-text align-
ment stage, OpenOmni utilizes image-text pairs Dy to optimize the objective pg (x'|hy(x")). Note
that OpenOmni is architecture-agnostic, which allows flexible integration with existing advanced
model architectures. Below, we detail OpenOmni.

3.2 Speech-Text Alignment

We incorporate a speech encoder hg to extract audio features from input speech x*. These audio
features hs(x®) are then replaced with corresponding text as input into the LLM. Following recent
work to train speech conversation models [25, 24, 11], we pretrain OpenOmni on a large scale of
text-speech pairs using the language modeling objective:

M
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3.3 Image-Text Alignment

We incorporate an image encoder h, to provide visual features as h,(x"). These visual features are
then concatenated with the text embedding as input into the speech LLM. Following prior work to
train image-text conversation models [18, 42], OpenOmni’s training process for image-text align-
ment consists of two sub-stages: image-text pretraining and image-text instruction tuning.

Image-text pretraining. In this sub-stage, we pretrain the visual module to align it with the LLM
on a large scale of image-text pairs using the language modeling objective:

N
Ly1(8,Dy) = =) logpa(xi|hy(x})). 2)
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Here we fix the parameters of the LLM to prevent short texts in the image-text pairs from influencing
the general capabilities.

Image-text instruction tuning. To enhance models’ capabilities in following human instructions,
we conduct instruction tuning on elaborately curated multimodal instruction tuning datasets built by
blending existing image-text instruction tuning datasets. We denote this image-text instruction tun-
ing dataset as D!, = {(x},x}9, x"*)}L,, where x}9 denotes the instruction and x%* is the response.
Both the visual module and the speech LLM are then fine-tuned by maximizing the probability of
the response:

L
L(0,D)) ==Y logpe(x;*|hy(x)), fm(xi?)). 3)
=1



Remark. We observe a quasi-zero-shot transfer capability in OpenOmni within this scenario.
When instruction tuning is performed exclusively on the image-text dataset, the model demon-
strates the ability to respond accurately to an image x" and either a text-based question x"4 or an
instruction provided in speech x*9. However, its responses are predominantly in text. This behavior
can be attributed to the inherent similarity between the hidden representations of textual and spoken
instructions learned by the LLM, i.e., fiim(x") & fiim(hs(x%9)). Consequently, the model sat-
isfies the following approximation: pg(x"|hy(x"), foim(x59)) =~ pe(x"?|hy(x"), fLim(hs(x*9))).
OpenOmni completes the progressive omnimodal alignment, enabling the LLM to achieve a com-
prehensive understanding across image, text, and speech modalities.

3.4 Text-Guided Speech Generation

For speech generation, we incorporate a speech decoder h3 to generate speech based on the out-
put of the LLM fipm. The speech generation training process in OpenOmni consists of two
sub-stages: speech decoder training and emotional speech direct preference optimization (DPO).
Speech decoder training. To equip OpenOmni
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Figure 3: The structure of our speech de-
coder. The speech decoder consists of a mix-
ture of expert modules and multiple transformer
layers, which achieves end-to-end speech unit

To process the speech response x*?, we fol-
low [11, 25] to discretize speech into discrete
units. Specifically, we use a pretrained speech to- . e
kenizer [11] to extract continuous speech repre- leam}ng t.hrough the connectionist temporal
sentations and then convert these representations classification (CTC) loss.

into a single unit, resulting in the final discrete unit sequence x"™* = [x}% x5 ...,], where
x;* € {0,1,...,V — 1} with V is the speech vocabulary size. The discrete units can then be
converted back into a waveform using an additional unit-based vocoder [72], trained on English and
Chinese datasets. As shown in Figure 3, we integrate the streaming speech decoder after the LLM
to generate speech responses. The decoder consists of a mixture of expert (MoE) layer and a tiny
standard decoder-only language model. The MoE layer stabilizes training and accelerates conver-
gence—without this layer, the speech decoder fails to train effectively. Similar to [73, 74, 25], the
speech decoder takes the output hidden states from the LLLM as input and generates the discrete unit
sequence corresponding to the speech response in real-time.

Given the output hidden states of the text response, denoted by frim(x",x*), we first pass these
hidden states through the text-guided module (TGM) to obtain the transformed hidden state c. Then,
c is fed into the speech decoder layers, leading to the final hidden state sequence o. We use con-
nectionist temporal classification (CTC) [75] to align o with the discrete unit sequence x**. During
training, CTC marginalizes over all possible alignments as follows:

Lere(, Dy ) = — log py (x*|o) = —log Z Py (Alo) = —log Z Hp¢ (x;o),
AcA(x"?) AcA(xm)
“)

where A(x"?*) denotes all possible alignments that collapse to x"*. During inference, the best
alignment is selected as Ax = arg max, p(A|o). The corresponding discrete unit sequence is fed
into the vocoder to synthesize the waveform.

Emotional speech DPO. To enable OpenOmni to generate self-aware, emotionally coherent, and
expressive speech based on contextual history without additional control modules, we introduce



the CTC-DPO algorithm. This method enhances smooth and natural dialogue interactions and is
formulated as

T (yw|X)
71—ref(YW|X)
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re

where [ is a constant, o is the sigmoid function, and (y,y)) is the preference pair. Besides,
the reference model ¢ is the pretrained model from the real-time speech generation stage and
remains fixed during DPO training. Only the policy model 7, is updated. Compared to traditional
reinforcement learning with human feedback (RLHF) [76], the DPO paradigm is simpler, more
efficient, and more stable for aligning OpenOmni with self-aware emotional speech generation.

Following the Plutchik model of emotions [77], we construct a multi-turn dialogue preference
dataset incorporating nine distinct emotions. Each preference pair consists of an emotionally con-
gruent speech response unit sequence y,, = xy%, which aligns with the conversational history, and
an emotionally neutral sequence y; = x;"*, which is inconsistent with the context. The policy model
7, during training is optimized as: —log 7, (y[x) = —10g 3" A ¢ a (xua) [T Py (x;]0). After train-
ing, OpenOmni is capable of generating real-time and emotionally expressive multi-turn dialogues.

4 [Experiments

4.1 Implementation Details

In this subsection, we introduce data construction and the models used. More details about the data
and optimization strategy of OpenOmni can be found in Appendix A and Appendix D respectively.

Omnimodal alignment data. During the speech-text alignment phase, in addition to WeNet-
Speech [78], LibriSpeech [79], and AlShell-4 [80], we exploit portions of shorter responses from
02S-300K, totaling 8,000 hours of data, for bilingual speech-text alignment training. For image-
text alignment, we train OpenOmni on the LLaVA-Pretrain-595K [18]. Besides, in the image-text
instruction tuning stage, we fine-tune OpenOmni on the compact high-quality dataset MMEvol [42]
for efficient optimization.

Speech decoder training data. To support real-time speech generation, we curate a dataset of
300K instructions from MMEvol [42] and UltraChat [71] that include long responses for training
the speech decoder. Specifically, we decompose multi-turn dialogues into single-turn question-
answer pairs, rank the responses based on their length, and select 100K question-answer pairs with
relatively long responses. To support bilingual output in Chinese and English, we translate S0K
question-answer pairs into their corresponding Chinese versions using GPT-40-mini API, and then
convert the answers into the corresponding speech using CosyVoice [33]. We employ the same
method for text-conditioned speech synthesis on 200K randomly selected data from UltraChat. As
a result, we obtain 8,000 hours of high-quality bilingual speech generation data, termed O2S-300K.

Emotional speech DPO data. Based on the Plutchik model of emotions [77], which categorizes
emotions into eight distinct types, we curate a multi-turn speech preference dataset, EO2S-9K, for
self-awareness emotion evaluation. In more detail, we randomly select 200K samples from MMEvol
and employ Qwen2-72B [2] to categorize responses into nine predefined emotions per round. From
this, we extract 1K bilingual dialogues labeled with emotion categories, reserving an additional 100
samples as an emotional test set for evaluating self-aware speech generation. Since certain emotions,
such as anger and sadness, are underrepresented in the MMEvol dataset, we augment the dataset
using the GPT-40-mini API to ensure sufficient data for these categories. The final dataset maintains
an equal representation of Chinese and English samples. To further enhance emotional preference
training, we use Cosy Voice [33] to generate unconditional speech as negative samples and emotion-
conditioned speech as positive samples, constructing preference pairs for training direct preference
optimization in emotional speech generation.

Models. We design the architecture following LLaVA series [18, 19], where the omnimodal large
language model consists of four key components: an LLM (Qwen2.5-7B-Instruct [2]) for next token
prediction, an image encoder (CLIP-ViT-L [81]) for extracting visual features, a speech encoder



Table 1: Overall omni-understanding results on OmniBench. In each case, the best result is
indicated in bold, and the second-best result is marked with an underline.

Method Action & Story Plot Identification Contextual & Identity & Text & Count & Overall
Activity Description Inference & Description Environmental Relationship Symbols Quantity
AnyGPT (7B) [29] 5.98 8.70 7.59 4.74 5.67 12.50 8.00 20.00 7.01
Video-SALMONN (13B) [30] 28.69 25.65 24.47 23.22 29.08 21.83 52.00 26.63 26.53
UnifiedIO2-Large (1.1B) [68] 28.29 22.17 3249 30.81 28.37 21.83 16.00 13.33 27.76
UnifiedlO2-XLarge (3.2B) [68] 30.28 26.52 30.38 31.75 28.37 18.75 28.00 26.63 29.16
UnifiedI02-XXLarge (6.8B) [68]| 27.49 23.04 28.69 25.59 26.95 12.50 12.00 46.67 25.92
Baichuan-Omni (7B) [84] - - - - - - - - 33.25
VITA (7x8B) [31] 3347 34.35 27.00 36.02 43.97 31.25 24.00 6.67 33.45
VITA-1.5 (7B) [31] - - - - - - - - 33.48
OpenOmni (7B) | 36.65 45.65 3291 44.08 48.23 34.38 24.00 3333 37.40

Table 2: Comparison with state-of-the-art methods on visual-language benchmarks. This in-
cludes an indication of audio input/output support. The best performance among fully open-source
models is highlighted in bold.

Model | w/AudioIO | PT IT | MMStar MMB MMB®N HallBench MathVista" MMMU' AIZD RWQA
Proprietary Models

GPT-40 v - - - 83.4 82.1 55.0 63.8 69.1 - 75.4
GPT-40-mini v - - - - - 46.1 524 60.0 - 67.1
‘Weight Open-Source

MiniCPM-V2.5 (8B) [85] X 570M  9.IM 51.3 76.7 733 42.5 54.3 45.8 - 63.5
Qwen2-VL-Chat (7B) [20] X 1.4B - 60.7 86.4 81.9 50.6 58.2 52.7 - 69.7
Baichuan-Omni (7B) [84] v - &M - 76.2 74.9 47.8 51.9 47.3 - 62.6
EMOVA (8B) [32] v 74M  4.4M - 82.8 - - 61.1 - 82.8 64.3
Fully Open-Source

Cambrain-I (8B) [86] X 25M ™M 50.7 - - 343 47.0 41.8 73.1 64.2
MMEvol (7B) [42] X 0.6M  1.5M 51.6 74.6 74.3 42.9 524 45.1 74.7 63.9
VITA (7x8B) [31] v - SM - 74.7 71.4 39.7 44.9 453 743 59.0
OpenOmni (7B) v 0.6M 1.7M 52.3 76.2 76.4 44.2 52.7 46.7 74.8 64.3

(Whisper-large-v3 [82]) for extracting audio features and a streaming speech decoder (Qwen2.5-
0.5B-Instruct [2]) for generating vivid speech in real-time. Moreover, an image-text projector and
a speech-text projector are adopted to align the image-text and speech-text modalities, respectively.
The MoE module and the text-guided module are designed to align the omnimodal embedding and
speech decoder efficiently and stably. For the autoregressive mode, we use the speech tokenizer
from GLM4-Voice [83] with a vocabulary size of 16K, which leads to better speech quality. For
non-autoregressive models, we use the CosVoice [33] speech tokenizer with a smaller vocabulary
size of 6K, which facilitates faster convergence during CTC-based optimization. All experiments
are conducted on 8 xXNVIDIA A100-80G GPUs.

4.2 Main Results and Discussions

Omni-language evaluation. OmniBench [36] is a pioneering benchmark designed to evaluate om-
nimodal large language models (OLLMs) by assessing their ability to integrate and interpret simul-
taneous inputs from images, audio, and text. This evaluation framework consists of 1,142 question-
answer pairs categorized into tasks that focus on cognitive and reasoning abilities, which poses sig-
nificant challenges in entity recognition, causal inference, and abstract concept comprehension. We
compare our OpenOmni with other OLLMs on OmniBench, with results summarized in Table 1. No-
tably, our model achieves excellent zero-shot omnimodal alignment using only two training phases:
speech-text alignment and image-text alignment. Compared to the fully open-source state-of-the-art
OLLM, e.g., VITA [31], which is trained on tri-modal data (image-speech-text triplets), OpenOmni
achieves superior overall results on OmniBench (37.40 vs. 33.45) despite using significantly fewer
training parameters (7B vs. 7x8B) and less image-text training data (1.6M vs. 5M). Furthermore,
by leveraging text as a pivot, our method completes omnimodal alignment implicitly, which demon-
strates enhanced scalability in scenarios with limited tri-modal data. In addition to OmniBench, we
provide empirical results on AV-Odyssey Bench in Appendix B.1.

Vision-language evaluation. To assess the effectiveness of OpenOmni in aligning image-text
modalities, we compare its performance against previous vision-language models (VLLMs) across
eight representative benchmarks: MMBench-EN [87], MMBench-CN [87], MMStar [88], Re-
alWorldQA [89], MMMU [90], MathVista [91], AI2D [92], and HallusionBench [93]. To en-



Table 3: Comparison with state-of-the-art methods on speech-language benchmarks. In each
case, the best result among Omnimodal LLMs is indicated in bold.

AlShell-2 (ZH-CER) Librispeech (EN-WER)

Model Dev Test Test_clean Test_other
S2T T2S S2T T2S S2T T2S S2T T2S
Speech LLM
SpeechT5 [95] - - - - 2.4 - 5.8 -
SALMONN [96] - - - - 2.1 - 49 -
Mini-Omni (7B) [69] - - - - 4.7 - 94 -
Freeze-Omni (7B) [64] - - - - 3.2 - 7.7 -
Qwen2-Audio (7B) [24] 3.1 - 33 - 2.0 - 4.5 -
Omnimodal LLM
AnyGPT (13B) [29] - - - - 8.5 - - -
VITA (7x8B) [31] - - - - 8.1 - 18.4 -
EMOVA (7B) [32] 10.3 7.9 - - 4.0 34 - -
VITA 1.5 (7B) [31] - - - - 34 - 7.5 -
OpenOmni (7B) 6.8 73 69 131 3.1 2.6 4.1 5.6

Table 4: Overall self-aware emotional speech generation results on the bilingual EO2S-9K test
set. In each case, the best result is indicated in bold.

Model Lang | Angry & Disgusted ~ Fearful ~Happy  Neutral  Other Sad Surprised  Overall

OpenOmni  ZH 89.7 54.8 333 923 51.6 60.2 23.7 57.9
w/ DPO ZH 96.6 78.4 37.7 97.1 62.8 90.7 29.8 70.4

OpenOmni  EN 89.2 68.7 57.5 91.9 48.0 75.6 7.5 62.6
w/ DPO EN 91.3 70.4 60.6 94.6 49.6 77.3 13.9 65.4

sure reproducibility and maintain consistency across all models and benchmarks, we employ
VLMEvalKit [94] for zero-shot evaluation. As shown in Table 2, OpenOmni achieves superior
results compared to the fully open-source state-of-the-art OLLM, VITA [31], despite being trained
on significantly less data. Notably, our model outperforms VITA with gains of 7.0% on MMBench-
Chinese and 11.3% on HallusionBench. We can also observe that the use of additional speech
modals can further enhance the vision-language capabilities of the model. Furthermore, compared
to other fully open-source VLMs, OpenOmni maintains competitive performance despite reduced
training data, which demonstrates the effectiveness of our image-text alignment strategy.

Speech-language evaluation. To evaluate the speech understanding and generation capabilities of
our OpenOmni, we measure word error rate (WER) on the Alshell-2 [80] and Librispeech [79]
benchmarks for two tasks: speech-to-text recognition (S2T) and text-to-speech generation (T2S).
Specifically, for T2S evaluation, we use Whisper-large-V3 to transcribe OpenOmni’s synthesized
speech and compute WER against ground-truth text labels. As shown in Table 3, OpenOmni
achieves the best performance on both S2T and T2S tasks for bilingual (Chinese and English) data,
and outperforms other omnimodal models. These results indicate that OpenOmni not only compre-
hends speech effectively but also generates fluent and high-quality audio while maintaining strong
alignment between speech and text modalities. Additionally, compared to VITA [31], which relies
on separate text-to-speech (TTS) models, and EMOVA [32], which uses an autoregressive (AR)
structure, OpenOmni demonstrates significantly faster speech generation via two-mode support.
Owing to its end-to-end, lightweight, and non-autoregressive (NAR) decoding mode, OpenOmni
can generate up to 30 seconds of speech with less than one second of latency, which achieves real-
time speech generation at over 5Sx speed of autoregressive models.

Emotional speech synthesis evaluation. To assess the effectiveness of direct preference optimiza-
tion in emotional speech generation, we evaluate OpenOmni’s self-aware emotional speech synthe-
sis on the EO2S-9K test set. Specifically, we use Emotion2Vec [97] to classify the emotions in the
generated speech and measure accuracy against ground-truth labels. As shown in Table 4, direct
preference optimization for emotional speech effectively enhances OpenOmni’s ability to generate
emotionally expressive speech. This improvement is particularly evident in bilingual and multi-



turn emotional speech generation tasks, demonstrating the model’s ability to produce natural and
contextually aware speech with accurate emotional intonation.

We also provide ablation studies to investigate the text-guided module (TGM), the number of layers
and experts in the speech decoder, training strategy in alignment stages, and the performance of
order in progressive alignment. Due to the limited page, experimental results and the following
discussions can be checked in Appendix C.

5 Conclusion

In this paper, we introduce OpenOmni, a novel omnimodal model that leverages text as a pivot to
achieve tri-modal zero-shot alignment, which addresses the challenge of limited tri-modal data. By
integrating a lightweight streaming speech decoder with direct preference optimization for emo-
tional speech, OpenOmni enables real-time, self-aware, and high-quality speech interactions. The
extensive evaluations demonstrate that OpenOmni achieves state-of-the-art performance on multiple
benchmarks while using significantly fewer training parameters and less training data than previous
advanced models. Comprehensive ablation studies and discussions are also presented to rigorously
validate our claims.
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A Data Construction

We provide details of the data construction for multiple training stages below:

* OpenOmni-1-1: In addition to datasets WeNetSpeech, LibriSpeech, and AIShell-4, we
randomly select 80K image-text instruction data with shorter responses from MMEvol [42].
We translate 40K of this data into Chinese using Qwen72B and synthesize the responses
into speech data with CosVoice. This results in 1,600 hours of OpenOmni-1-1 data for
speech-text alignment pretraining.

* OpenOmni-2-1: For rapid image-text alignment pretraining, we use the llava pretrain
dataset, following previous work [18, 19, 42, 98].

* OpenOmni-2-2: To achieve efficient image-text instruction tuning, we employ MMEvol
data. Since we later train the speech decoder by freezing the LLM mode, we include O2S-
300K to stabilize the training of the speech decoder, leading to a combined dataset of 1.7M
for OpenOmni-2-2.

* OpenOmni-3-1: To better utilize computational resources, we select 300K data with long
response instructions from MMEvol and UltraChat. This includes 100K image-text instruc-
tion data, 100K single-round dialogue, and 100K multi-round dialogue. We synthesize the
corresponding speech using CosVoice, resulting in 8,000 hours of O2S-300K.

* OpenOmni-3-2: We curate 9K emotion preference data and generate emotional speech
preference pairs using CosVoice’s conditional control. This is used for emotional speech
direct preference optimization.

B Additional Experiments

B.1 Additional Omni-Language Evaluation

In addition to OmniBench, we conduct experiments on the AV-Odyssey Bench [99], which involves
the four modalities: audio, text, image, and video. For video, we test by averaging 8 sampled frames
into a single image. The experimental results are shown in Table 5 below. Compared to other
OLLMSs, OpenOmni achieves the best average performance using only bi-modal speech-text and
image-text data. With 7B model parameters and no audio or video training, it outperforms VITA by
4.4 points, demonstrating the effectiveness and efficiency of OpenOmni.

Table 5: Overall omni-understanding results on AV-Odyssey Bench. In each case, the best result
is indicated in bold. We conduct a performance comparison of omni-understanding among various
fully open-source Omnimodal Large Language Models (OLLMs) on AV-Odyssey Bench. Compared
to the state-of-the-art OLLM, VITA [31], which was trained on tri-modal data, OpenOmni achieves
comparable advanced performance using significantly less training data and smaller model size.

Method \ Timbre Tone Melody Space Time Hall Intricacy Overall
OneLLM (7B) [100] 25.0 25.5 21.5 375 293 255 38.4 27.4
PandaGPT (7B) [101] 23.5 23.2 27.6 45.0 23.8  28.0 23.9 26.7
Video-LLaMA (7B) [102] 25.5 223 244 30.0 262 250 30.7 26.1
Video-LLaMA2(7B) [103] 24.1 25.5 26.4 30.0 272 33.0 34.5 26.8
AnyGPT (7B) [29] 24.6 25.0 26.4 27.5 29.2  29.0 25.7 26.1
NexTGPT (7B) [104] 233 20.9 27.8 30.0 28.8 285 23.6 25.5
VITA (7x8B) [31] 24.1 26.4 27.8 22.5 26.3 310 36.8 26.4
OpenOmni (7B) | 239 27.7 259 60.0 252 295 37.6 32.8

C Additional Ablation Studies

On TGM. To explore the effect of TGM on speech generation in two modes, we plot the change of
training loss under the same setting. As shown in Figure 4, we can observe that TGM can signifi-
cantly improve the convergence speed of training and the performance of model speech generation,

17



Smoothed Loss vs Step (Outliers Replaced)

Files
18 A —— AR Mode w/o TGM
—— AR Mode w/ TGM
—— NAR Mode w/o TGM
161 —— NAR Mode w/ TGM
14 A
12 A
(%]
%]
o
)
10 A
8 T A,
| ‘ v |
61 ! )l ﬁ
a1 M AN
4 .
(') 250 5(')0 7.%0 10'00 12'50 15'00 17'50 20'00
Step

Figure 4: Ablation study of the text-guided module (TGM). In order to explore the effect of
TGM on speech generation under the two modes, we plot the change of training loss under the same
setting. TGM can significantly improve the convergence speed of training and improve the effect of
speech generation of the speech decoder.

Table 6: Ablation study on the number of layers and experts in the speech decoder. Increasing
experts in the mixture of experts module stabilizes the CTC loss during training and enhances speech

generation capacity. Deeper transformer layers improve English and Chinese speech generation,
with greater benefits for Chinese.

Layers Experts Wenetspeech(ZH) Librispeech(EN)
Test Net Test_Meeting Test.clean Test-other

2 1 113.6 129.7 87.8 96.5

2 2 16.7 22.3 10.7 14.6

2 4 8.5 8.4 4.2 4.7

4 4 73 7.9 3.8 4.3

6 4 6.4 6.7 4.1 4.5

Table 7: Ablation study of the model training in image-text alignment and speech-text align-
ment stages. The speech and text have clear temporal correspondence, enabling low-cost alignment.
In contrast, the image-text gap is larger, requiring LLM fine-tuning for better results.

Stage LLM freeze ~ GPUxHour MMStar MathVista™ MMMUY AI2D
image-text v 76 41.2 423 35.5 54.3
image-text X 192 444 47.6 40.2 59.1

Stage LLM freeze ~GPUxHour  AlShell-2-Dev  AlIShell-2-Test  LibriSpeech-Test-Clean  LibriSpeech-Test-Other
speech-text v/ 32 12.7 11.5 9.8 13.3
image-text X 192 13.1 11.8 10.1 13.5
speech-text X 84 12.2 11.1 9.2 12.8

which verifies the effectiveness of our model design, whether it is a next-token-prediction (NTP)
loss under the stable AR mode or CTC loss under the unstable NAR mode.

On the number of layers and experts in the speech decoder. To explore the impact of the number
of layers in the NAR speech decoder and the MoE module on Chinese and English speech genera-
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Table 8: Ablation study of the alignment order and joint training strategy. The order of the
alignment strategies has minimal impact on the final performance. Compared to joint training, the
multi-stage alignment strategy not only significantly reduces memory requirements during training
but also ensures competitive results, making it the most efficient and optimal training strategy under
low-resource conditions.

Order Joint . : .M v AlShell-2 LibriSpeech

First Training VRAM MMStar  HallBench  MathVista MMMU AI2D RWQA Dev  Test Test-Clean  Test-Other
image-text X 40GBx8 447 359 47.1 40.7 58.6 60.1 134 113 10.4 13.6
speech-text  x 40GBx8 444 36.7 47.6 40.2 59.1 559 127 115 9.8 133
speech-text v 90GB x8 4.9 371 47.8 40.6 59.6 60.4 124 111 94 13.1

tion, we conduct ablation experiments on WeNetSpeech [78] and LibriSpeech [79]. As illustrated
in Table 6, the instability and fragility associated with training using the CTC loss function present
significant challenges. When simply employing a single feed-forward network (i.e., the number
of experts is 1), it becomes increasingly difficult to reconcile the conflicting training dynamics in-
herent in mixed-language scenarios, particularly when dealing with varying response lengths. As
a result, training the speech decoder under these conditions proves to be quite challenging. Our
findings demonstrate that incrementally increasing the number of experts significantly enhances the
model’s performance in bilingual speech generation, thereby underscoring the effectiveness of our
MoE module design. However, we observe inconsistent preferences regarding the optimal number
of layers in the speech decoder for generating speech in Chinese and English. Specifically, while
four layers yield the best results for English generation, six layers are more suitable for generating
Chinese speech.

LLM training in image-text alignment and speech-text alignment stages. To investigate whether
training large language models affects modality alignment at different stages, we conduct an ablation
study. As shown in Table 7, since speech and text data naturally have a temporal alignment relation-
ship, freezing the LLM during alignment training still achieves competitive alignment performance.
However, the gap between image and text modalities is significantly larger, and better alignment
results are only achieved by unfreezing the LLM during training. Furthermore, we find that even
after image-text training, there is no catastrophic forgetting of knowledge related to speech-text
alignment. This validates the effectiveness and efficiency of our progressive alignment method.

Alignment order and joint training strategy. We conduct ablation studies to explore the impact of
multi-stage alignment order and joint training strategies. By using 20K speech data and 500K image
data, as shown in Table 8, we observe that the relative order of speech-text alignment and image-text
alignment has little effect on the final performance, which indicates a low correlation between the
two stages.

Due to limitations in data and computational resources, we adopt a multi-stage progressive multi-
modal alignment strategy to complete the omnimodal alignment training. At any given stage, only
two modalities of data are processed simultaneously. This method not only alleviates the challenges
posed by missing tri-modal data but also significantly reduces computational memory requirements.
With fewer computational resources and less training data, our method achieves superior omnimodal
alignment results compared to existing approaches.

As shown in Table 8, it can be observed that multi-stage training requires only 40GB x 8 of VRAM,
which is significantly lower than the memory demands of joint training. At the same time, it achieves
comparable results, making it a more efficient and practical choice in resource-constrained scenarios.

D Additional Implementation Details

OpenOmni is trained in five sequential sub-stages. Further details on these training stages are pro-
vided in Table 9.

Besides, as shown in Figure 5, we provide more details of the speech decoder design and training

here. For the speech decoder, OpenOmni supports both autoregressive (AR) and non-autoregressive
(NAR) methods. Specifically, the AR mode has better generation quality but a slower generation
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Figure 5: Overview of text-guided module and speech decoder mode. (Left) Text-guided mod-
ule fuses the hidden state and response textual feature via cross-attention, accelerating convergence
speed of training without dropping the speed of speech decoding and context emotion perception.
(Right) OpenOmni supports both autoregressive (AR) and non-autoregressive speech (NAR) gen-
eration. The NAR mode uses the CTC loss modeling and a 6K speech vocabulary size to enable
real-time parallel speech decoding generation. The AR mode uses the NTP loss modeling and a
speech vocabulary size of 16K to support streaming decoding and higher-quality speech generation.
To make the training of the speech generator more stable, we design a text-guided output feature
fusion method to ensure the correctness of semantic alignment in speech generation modeling.

Table 9: The detailed training setup for OpenOmni and the hyperparameters across the training
stage. All experiments are conducted on 8 xNVIDIA A100-80G GPUs. The dataset index can be
checked in Appendix A.

Hyperparameter I 1I 111 v A\
batch size 256 128 128 32 32

Ir 1x1073 1x1073 5x107° 5x 1074 5x 1074
warmup ratio 0.3 0.3 0.3 0.3 0.3
epoch 1 1 1 3 3
freeze LLM v v X v v
optimizer AdamW AdamW AdamW AdamW AdamW
cost 40 GPU Hours 80 GPU Hours 500 GPU Hours 36 GPU Hours 8 GPU Hours
dataset 1-1 2-1 2-2 3-1 3-2

loss Lo Ly Ly Lcre Lcrc-ppo

speed, while the NAR mode can achieve real-time speech generation, but the generation quality
is slightly worse. At the same time, in order to train the speech generator more efficiently, we
also design a text-guided feature fusion module, so that the conditional features used for speech
generation have more accurate alignment semantics, which can improve the generation quality and
training efficiency of the speech decoder.

NAR mode. In the NAR mode, the conditional features generated by OLLM are fed into the speech
decoder by a layer of MoE and then upsampled to obtain the predicted speech output, and finally,
the end-to-end optimization is carried out by the CTC loss modeling of the speech output. Due to
the instability of CTC loss training, the smaller the size of the speech vocabulary, the easier it is to
be successfully trained, but the generation quality of the corresponding speech will be affected by
the smaller vocabulary.

AR mode. The AR mode projects the conditional features generated by OLLM into the speech
space through a layer of linear layer and feeds them into the speech decoder to obtain the speech
prediction output, and finally optimizes the speech output end-to-end by modeling the NTP loss.
Due to the stability of NTP loss training, the quality of speech generation will be higher than that of
NAR generation, but the speed of speech generation will be reduced by AR decoding.
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Note that both AR and NAR modes depend on the quality of the speech generation conditional fea-
tures generated by OLLM. Although OpenOmni will let the OLLM fit the text answer corresponding
to the speech through multiple rounds of training in advance, there will still be OLLM outputs de-
coded into the wrong text answer. In this case, the erroneously generated condition features will be
incorrectly aligned with the speech during the training process, which will ultimately reduce the per-
formance of the speech decoder. To ensure the efficiency of training, OpenOmni fuses the speech
generation condition features output by OLLM with the corresponding text features with correct
semantics, and then feeds them into the speech decoder for speech generation modeling training.
Through the feature fusion module of text prior, OpenOmni avoids the misalignment of speech and
corresponding text and ultimately makes the speech decoder training more stable. At the same time,
it enjoys more efficient and accurate speech generation quality.

E Broader Impacts

OpenOmni marks a significant advancement in open-source omnimodal large language models
(OLLMs), seamlessly integrating vision, language, and speech into a unified framework. Its open-
source nature fosters transparency, community-driven innovation, and trust in Al technologies.
However, challenges remain, including emotional manipulation and privacy concerns. To address
these, we emphasize responsible Al practices and secure handling of speech data.

F Limitation

Due to resource limitations, our method primarily focuses on Chinese and English and has not been
trained or validated on multilingual data. In the future, we plan to utilize multilingual speech data to
activate the multilingual capabilities of the large language model, thereby enhancing its applicability
across diverse scenarios.

G Prompt Template

We provide the specific prompts used in our tasks, as well as examples of synthesized multi-turn
emotional speech data, to help readers better understand this work.

English Prompts used in Text-to-Speech (T2S) and Speech-to-Text (S2T) tasks.

S2T (ASR)

Please translate the user’s spoken input into corresponding text, word by word.
T2S

Echo game: Repeat this sentence back to me exactly as I said it!
Mirror challenge: Reflect my words right back at me!

Parrot mode: Can you mimic what I just said?

Copycat test: Let’s see how well you can replicate my sentence!
Playback time: Rewind and repeat my last sentence.

Echo chamber: Say back to me what I just mentioned.

Simulate my speech: Can you say exactly what I just did?
Mimicry game: Echo my words precisely!

Repeat relay: Send my sentence back to me unchanged.
Reflection exercise: Reiterate my last statement word for word.
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English emotional preference data case.

Emotion: Neutral

user: “Please engage in a conversation with me.”

assistant: “Of course, please go ahead with your question.” [A calm and collected woman,
speaking in a steady and neutral tone.]

user: “I was wondering how you manage to stay so composed all the time.”

assistant: “It’s something that comes with practice and mindfulness. I focus on observing
my surroundings and maintaining a balanced perspective.” [A composed woman, speaking
in a measured and tranquil tone.]

user: “That sounds quite challenging. Do you ever feel overwhelmed?”

assistant: “There are moments when things can be overwhelming, but I remind myself to
breathe and take one step at a time.” [A calm woman, delivering her words in an even and
serene manner. |

user: “Do you have any techniques to stay calm under pressure?”

assistant: “Yes, I practice meditation and deep breathing exercises. It helps to center my
thoughts and maintain clarity.” [A composed woman, speaking with a steady and soothing
tone. ]

user: “I see. Do you think anyone can learn to be as calm as you?”

assistant: “Absolutely. It requires patience and consistent practice, but anyone can develop
the ability to remain calm and composed.” [A neutral-toned woman, expressing herself in
a clear and composed manner.]

user: “What advice would you give to someone starting on this path?

assistant: “Begin with small steps. Start by observing your thoughts and emotions with-
out judgment. Practice mindfulness and breathing exercises daily.” [A composed woman,
offering her advice in a gentle and calm tone.]

user: “Thank you for your advice. It has been very insightful.”

assistant: “You’re welcome. I’'m glad I could help. Remember, the journey to calmness is
gradual, but rewarding.” [A tranquil woman, speaking in a reassuring and composed tone.]
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim the contributions and scope in both the abstract and introduction,
supported by a series of justifications.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation in Appendix F.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate “Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .
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Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide extensive experimental details in the main content (see Section 4)
and appendix (see Appendix D).

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide the full instructions to access publicly available data and code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details in Section 4, Appendix A, and
Appendix D.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]

Justification: Following previous works, one trial was performed in each experimental case
due to time consumption.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer “Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

¢ Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide such implementation details in Appendix D.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We adhere to the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide the broader impact statement in Appendix E.
Guidelines:
* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper involves only publicly available datasets and models. No specific
safeguards were necessary.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the relevant papers and provide links to existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA|

Justification: This paper does not introduce new assets. Therefore, no documentation is
applicable.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects.
Therefore, the inclusion of participant instructions, screenshots, and compensation details
is not applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA|
Justification: This paper does not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper does not involve LLMs for any important, original, or non-
standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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