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ABSTRACT

This paper establishes a mathematical foundation for the Adam optimizer, eluci-
dating its connection to natural gradient descent through Riemannian and infor-
mation geometry. We provide an accessible and detailed analysis of the diagonal
empirical Fisher information matrix (FIM) in Adam, clarifying all approximations
to bridge the gap between the natural gradient and Adam, and advocating for the
use of log probability functions as loss, which should be based on discrete distri-
butions, due to the limitations of empirical FIM. Our analysis uncovers flaws in the
original Adam algorithm, leading to proposed corrections such as enhanced mo-
mentum calculations, adjusted bias corrections, and gradient clipping. We refine
the weight decay term based on our theoretical framework. Our modified algo-
rithm, Fisher Adam (FAdam), demonstrates superior performance across diverse
domains including LLM, ASR, and VQ-VAE, achieving SoTA results in ASR.

1 INTRODUCTION

Natural Gradient Descent (NGD) is a powerful optimization method that has shown promise in
training machine learning models. Introduced by Amari (1998), and revisited recently Pascanu &
Bengio (2013), NGD offers an alternative to traditional gradient descent by taking into account
the curvature of the loss landscape. This is achieved through the use of the Fisher information
matrix (FIM), which provides a Riemannian metric for the statistical manifold. Despite its potential
benefits, NGD faces a significant computational challenge: the calculation of FIM, which can be
prohibitively expensive for large models like deep neural networks.

Adam (Kingma & Ba, 2014) is the de facto standard optimizer, favored for its fast convergence and
practicality. While the original paper mentions the second momentum term can be interpreted as
the diagonal FIM, a comprehensive theoretical understanding of the square root FIM, akin to the
approach first seen in AdaGrad (Lydia & Francis, 2019), has remained elusive Lin et al. (2024).
This is in contrast to NGD, which utilizes the inverse FIM.

Our main contribution is to provide an accessible mathematical explanation of the Adam opti-
mizer, drawing upon fundamental concepts from Riemannian geometry and information geometry,
thereby demonstrating that Adam is an approximation of NGD. This framework enables us to illu-
minate the origin of the square root term in Adam and to advocate for the use of a log probability
function as the loss function when employing Adam.

We demonstrate that Adam utilizes the diagonal empirical Fisher information, providing a detailed
explanation of both the diagonal approximation and the empirical approximation. Notably, the em-
pirical approximation suggests that the loss function should be based on discrete distributions, which
implies using categorical cross-entropy loss rather than L2 loss in the image domain. Furthermore,
our analysis uncovers flaws in the original Adam, leading us to propose corrections such as aver-
aging natural gradient by momentum, adjusting bias corrections, and introducing gradient clipping.
We also enhance the weight decay using principles of Riemannian geometry. Our modified algo-
rithm, named Fisher Adam (FAdam), demonstrates strong performance across various domains,
as evidenced by our experiments with Large Language Models (LLMs) for text, Automatic Speech
Recognition (ASR) for speech, and Vector Quantized Variational Autoencoder (VQ-VAE) for image.
In particular, our ASR experiments achieve new state-of-the-art results.
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2 BACKGROUND

We use the notation from differential geometry, as introduced in Appendix A.1.

2.1 GRADIENT ON RIEMANNIAN MANIFOLD

The inner product in the tangent space of a Riemannian manifold is defined by the Riemannian
metric tensor g = gijdθ

i ⊗ dθj . The Riemannian metric tensor components, gij , are symmetric and
positive definite. Therefore, gij is always invertible, and its inverse is denoted as gij .

v⃗ · u⃗ := g(v⃗, u⃗) = gijdθ
i ⊗ dθj(vk

∂

∂θk
, ur ∂

∂θr
) = gijv

kurdθi(
∂

∂θk
)⊗ dθj(

∂

∂θr
) = gijv

iuj (1)

The differential form of a scalar field ϕ (e.g., loss L(θ)) is defined in the covector space, as shown in
Eq. (33). However, since the model parameter θ resides in the vector space, we need to transform the
covector dϕ into the vector space to perform operations involving both dϕ and θ (e.g., optimizing θ
as shown in Eq. (13)).

The object transformed into the vector space is defined as the gradient ϕ, denoted as ∇ϕ, and its
definition is based on the inner product being equivalent to the directional derivative (Eq. (35)), as
shown in Eq. (2). By rearranging the terms with respect to∇ϕ, we obtain the following equation for
the gradient ∇ϕ in the tangent space TθM, as shown in Eq. (3).1

(∇ϕ)ivjgij = ∇ϕ · v⃗ := dϕ(v⃗) = vj
∂ϕ

∂θj
(2)

(∇ϕ)i = gij
∂ϕ

∂θj
→ ∇ϕ = gij

∂ϕ

∂θj
∂

∂θi
(3)

In Euclidean space, the Riemannian metric gij is Kronecker delta, so the gradient is usually ex-
pressed as follows:

∇ϕ =
∂ϕ

∂θi
∂

∂θi
(4)

In ML community, Eq. (4) is often denoted as the gradient ∇ϕ, while Eq. (3) is denoted as the
natural gradient ∇̃ϕ. This notation conflicts with conventions in differential geometry. Since our
paper is focused on ML, we will adhere to ML conventions from this point forward.

Typically, the component part of tensor operations are represented using matrix multiplication. The
metric tensor component, gij , is represented by a matrix G, and ∇ϕ is a column vector.

∇̃ϕ = G−1∇ϕ (5)

Equation 1 can also be expressed using matrix multiplication.

v⃗ · u⃗ = v⊤Gu (6)

2.2 FISHER INFORMATION MATRIX (FIM) AND NATURAL GRADIENT

The Fisher information quantifies the amount of information an observable random variable x (repre-
senting data) conveys about an unknown parameter θ (representing a model parameter) influencing
its probability. Given the probability mass function P (x|θ) (or probability density function p(x|θ))
for the random variable x, the Fisher information is defined as the variance of the score function
(i.e., the gradient of the log-likelihood), which is symmetric and positive semi-definite by definition.

1gij is the inverse tensor component of gij , such that gijgij = 1.
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F (θ) := Ex∼Pθ
[∇θ logP (x|θ)∇θ logP (x|θ)⊤]. (7)

Fisher information is the expected value of the Hessian matrix. (Proof provided in Appendix A.2.) It
represents the curvature of the log-likelihood on the statistical manifold where the model parameters
θ reside.

F (θ) = −Ex∼Pθ
[∇2

θ logP (x|θ)] = −Ex∼Pθ
[Hθ(logP (x|θ))]. (8)

In the realm of statistical manifolds, the distance between θ and θ+d is quantified by the Kullback-
Leibler divergence DKL(P (x|θ)∥P (x|θ+ d)). For an infinitesimal displacement d, a second-order
Taylor series approximation reveals the Fisher information as the underlying distance metric (Amari,
1998; Pascanu & Bengio, 2013; Kristiadi, 2018). A detailed proof can be found in Appendix A.3.

DKL(P (x|θ)∥P (x|θ + d)) ≈ 1

2
d⊤F (θ)d. (9)

As mentioned in Eq. (6), the magnitude of a vector v in the tangent space TθM can be expressed
using the inner product, and the Fisher Information Matrix (FIM) serves as the Riemannian met-
ric Amari (2012).2 Prior works Berman et al. (2023b); Berman & Klinger (2024); Berman et al.
(2023a) have demonstrated the importance of FIM in providing an inherent scale for learning.

v⃗ · v⃗ = ∥v∥2 = v⊤Gv = v⊤F (θ)v (10)

In statistical manifolds, the gradient is described using the Fisher information F in Eq. (5), and this
is called the natural gradient.

∇̃ϕ = F−1∇ϕ (11)

The intuitive interpretation of Eq. (11) is that components with higher information undergo conser-
vative movement, while components with lower information exhibit wider movement. 3

3 TOWARD FADAM

3.1 LOSS AND FIM

To utilize the natural gradient Eq. (11), we need to know both the gradient term and FIM. The
gradient term requires the calculation of the loss L(θ), while the FIM requires the score func-
tion ∇θ logP (x|θ). If the loss is expressed in the form of − logP (x|θ), we eliminate the need
to calculate the score function separately. Therefore, for using natural gradient optimizers like
Adam4 Kingma & Ba (2014), the loss function must be in the form of the log-likelihood. We
will delve deeper into the choice of loss function in Section 3.3.1.

∇̃L(θ) = F−1∇L(θ) = Ex∼Pθ
[∇θ logP (x|θ)∇θ logP (x|θ)⊤]−1∇θ− logP (x|θ) (12)

The model parameter θ is updated using the given natural gradient ∇̃L(θ), where η is the learning
rate.

2Since FIM is symmetric and positive semi-definite, it produces a Pseudo-Riemannian manifold Amari
(2012).

3The inverse FIM exhibits a close relationship with the covariance matrix of the log likelihood, denoted
as Σ−1

θ . The Mahalanobis distance, dM (x,P)2, which measures the distance between a data point x and a
distribution P , is defined as dM (x,P)2 := (x − µ)⊤Σ−1

x (x − µ) (Mahalanobis, 2018). Comparing this to
Eq. (10), we discern a connection between the inverse Fisher information and the covariance matrix: higher
covariance indicates lower information. This parallel echoes the principle in information theory where higher
entropy corresponds to lower information.

4We will discuss why Adam is considered a natural gradient optimizer in Section 3.4.
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θt+1 = θt − ηF−1∇L(θ) (13)

Natural gradient is considered a second-order method because FIM is the expected value of the
Hessian, as shown in Eq. (8). A comparison with Newton’s method is provided in Appendix B.1.

3.2 DIAGONAL FISHER INFORMATION

One key reason for Adam Kingma & Ba (2014)’s significant success compared to other second-
order methods is its memory complexity. Adam scales linearly with the number of parameters,
O(N), while methods using FIM typically scale quadratically, O(N2). For models with billions of
parameters, O(N2) is impractical.

Adam utilizes the diagonal Fisher information matrix. As discussed in 2.2, the inverse FIM approx-
imates the covariance of the log likelihood. The diagonal FIM results in the loss of all covariance
information except for the variances. Interestingly, Adam’s success story suggests that the loss of
covariance information might not be detrimental in practice.

Let f̂(θ) denote the diagonal FIM 5 obtained by diagonalizing FIM in Eq. (7). The gradient of loss
function (12) is greatly simplified.

f̂(θ) := Ex∼Pθ
[∇θ logP (x|θ)2] (14)

∇̃L(θ) = f̂−1∇L(θ) = − ∇θlogP (x|θ)
Ex∼Pθ

[∇θ logP (x|θ)2]
(15)

Amari et al. (2019) proves that the off-diagonal elements of FIM are smaller than the diagonal
elements by an order of 1/

√
n, where n represents the number of elements in the matrix. This

finding justifies the use of the quasi-diagonal natural gradient method when the weight matrices of
each layer are sufficiently large like LLM (Large Language Models).

Meanwhile, there have been efforts to capture important off-diagonal elements. For example, ap-
proximation methods utilizing low-rank approximations Roux et al. (2007); Mu et al. (2022) and
Kronecker-factored approximations Martens & Grosse (2015); Gupta et al. (2018); Anil et al.
(2019); Martins Gomes et al. (2024) have been explored. The application of off-diagonal FIM
to Adam is left for future study.

3.3 EMPIRICAL FISHER INFORMATION

To compute the diagonal FIM in Eq. (14), the expected value needs to be calculated with respect to
the parametric probabilistic model P (x|θ). While data can be sampled from the parametric model,
it is not always a straightforward process. Various sampling methods exist, such as Gibbs sampling,
Langevin Markov chain Monte Carlo (MCMC) sampling Parisi (1981), Metropolis-Hastings MC
sampling Neal et al. (2011) and the recent GFlowNet (Bengio et al., 2021). However, none of these
methods are universally efficient in generating sufficient data with high fidelity and diversity.

Instead of P (x|θ), we utilize the true data-generating distribution pdata(x) to compute FIM. Al-
though the exact form of pdata(x) is unknown, we have access to a training set of samples. We
compute FIM by utilizing the training set D by substituting the true distribution pdata(x) with the
empirical distribution p̂data(x). This approximated FIM is referred to as the empirical FIM in the
statistics community (Kunstner et al., 2019). The training set might not contain enough samples of
low-probability x, which could lead to issues with the empirical FIM.

f̂(θ) = Ex∼Pθ
[∇θ logP (x|θ)2] ≈ Ex∼pdata

[∇θ logP (x|θ)2], (16)

≈ Ex∼p̂data
[∇θ logP (x|θ)2] = 1

|D|
∑
x∈D
∇θ logP (x|θ)2 (17)

5Actually, from this point forward, the diagonal FIM is a vector.
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The expected value of the loss function is also obtained from the empirical distribution rather than
the true distribution. Optimizing this cost function J(θ) is referred to as empirical risk minimization,
for similar reasons.

J(θ) = −Ex∼pdata
[logP (x|θ)] ≈ −Ex∼p̂data

[logP (x|θ)] = − 1

|D|
∑
x∈D

logP (x|θ) (18)

∇θJ(θ) = ∇θEx∈D[L(θ)] =
1

|D|
∑
x∈D
∇θL(θ) = −

1

|D|
∑
x∈D
∇θ logP (x|θ) (19)

Calculating the exact cost function and FIM over the entire training set is computationally expen-
sive. Therefore, in practice, the expected value is approximated using a minibatch B. As this ap-
proximation further increases the uncertainty in the empirical FIM, FIM is typically estimated using
an exponential moving average (EMA). Therefore, during training, natural gradient is computed as
follows:

∇̃J(θ) = f̂−1∇J(θ) ≈ −Ex∈B[∇θ logP (x|θ)]/EEMA[Ex∈B[∇θ logP (x|θ)2]] (20)

≈ −Ex∈B[∇θ logP (x|θ)]/EEMA[Ex∈B[∇θ logP (x|θ)]2] (21)

= −g/EEMA[g
2] (22)

Let the gradient of a minibatch be denoted as g. To reuse g for calculating FIM, Adam makes
another approximation from Eq. (20) to Eq. (21). Wang & Aitchison (2024) showed that using
Eq. (20) makes Adam less sensitive to batch size. Adam variants are recommended to use large
batch sizes Smith et al. (2017); Kunstner et al. (2023) to accurately estimate not only the gradient
but also FIM.

In supervised learning, the loss function becomes conditional log-likelihood, necessitating specific
considerations detailed in Appendix B.2.

3.3.1 DISCRETE VS CONTINUOUS PROBABILITY DISTRIBUTIONS

It’s worth noting that while Adam often outperforms SGD in the text domain, several studies have
reported that its convergence point in the image domain, particularly for generative tasks or when
using CNNs, can be inferior to that of SGD Luo et al. (2019); Yuan & Gao (2020); Zhang et al.
(2020); Jelassi et al. (2021); Kunstner et al. (2023). Empirical evidence indicates that Adam excels
when dealing with discrete distributions, such as text inputs with categorical distributions. However,
it may encounter difficulties when handling continuous distributions, such as image inputs with
Gaussian distributions.

In the image domain, using the L2 loss is common practice due to its equivalence to the negative
log-likelihood of a Gaussian distribution under the gradient. k represents the partition function of
the Gaussian distribution, which is equal to 1/

√
2πσ2. Since it is independent of θ, it is eliminated

when the gradient is taken.

∇θJ(θ) ≈ −Ex∼p̂data
[∇θ log p(x|θ)] = −Ex∼p̂data

[
∇θ log k exp−

(
x− µ(θ)√

2σ

)2
]

(23)

=
1

2σ2
Ex∼p̂data

[
∇θ(x− µ(θ))2

]
=

1

2σ2|D|
∑
x∈D
∇θ(x− µ(θ))2 (24)

We performed empirical approximations to calculate the expected value of FIM. Eq. (16) represents
the empirical approximation of FIM for generative models, while Eq. (52) and Eq. (58) represent the
empirical approximations for discriminative models. We hypothesize that these empirical approxi-
mations cause significantly more problems in continuous distributions than in discrete distributions.
This disparity arises from the fundamental difference in how expected values are calculated for dis-
crete and continuous distributions. Discrete distributions rely on probability mass functions, where
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the softmax function often concentrates the majority of probability mass on a few top logits. This
concentration allows for relatively accurate empirical approximations. 6 7 In contrast, continuous
distributions require integration over their probability density functions, making the estimation of
their expected values with a single sampled value an overly simplified and potentially inaccurate
approximation.

Kunstner et al. (2019) argue against the use of the empirical Fisher in natural gradient descent,
providing examples solely with continuous inputs and distributions.8 Their findings support our
assertion that Adam may not perform well with continuous distributions, while the empirical success
of Adam suggests that the empirical Fisher is adequate for discrete distributions.

We propose utilizing log-likelihood loss based on discrete probability distributions. In the image
domain, this translates to using cross-entropy (CE) loss on a categorical distribution instead of
the L2 loss.9 This can be implemented by modifying predictions to utilize a one-hot encoding, pre-
dicting 256 values per RGB channel. As demonstrated in Section 4.3, this modification significantly
enhances the FID (Fréchet Inception Distance) metric for VQ-VAE Van Den Oord et al. (2017).

It has also been reported that categorical CE loss improves accuracy in floating-point number re-
gression tasks Imani & White (2018); Schrittwieser et al. (2020); Sønderby et al. (2020); Hafner
et al. (2023); Farebrother et al. (2024). Farebrother et al. (2024) reported that CE loss with a
histogram-based discretization (HL-Gauss Imani & White (2018)) significantly improved the pre-
diction of rewards and values in reinforcement learning.

The exceptional scalability of Large Language Models (LLMs) (Brown et al., 2020; Kaplan et al.,
2020) with model size can likely be attributed to two factors: the inherently discrete nature of text
data and the widespread use of the Adam optimizer. As LLMs continue to evolve into foundation
models Bommasani et al. (2021) for various modalities, image, speech, and video domains are also
adopting discrete token representations Borsos et al. (2023); Team et al. (2023); Lu et al. (2023).
This provides further evidence that empirical FIM estimation necessitates the use of discrete distri-
butions.

3.4 FISHER ADAM

3.4.1 RECIPROCAL VS RECIPROCAL SQUARE-ROOT FOR FIM

We have discovered that the second momentum term in Adam Kingma & Ba (2014) closely resem-
bles a natural gradient with a diagonal empirical FIM, as demonstrated in Eq. (22) and Eq. (60).
However, there is a key distinction: while natural gradients are divided by the FIM, Adam divides
gradients by the square root of the FIM, as shown in Algorithm 3.

To precisely update θt at each training step as per Eq. (13), we ideally need an accurate estimation of
FIM. However, the empirical FIM computed by the minibatch data B is noisy. Relying on a diagonal
empirical FIM can result in zero components, which causes the natural gradient to diverge due to

6Label smoothing in classification tasks Szegedy et al. (2016) has been shown to enhance performance. A
theoretical explanation is that it results in a more accurate estimation of the empirical FIM. This is because
label smoothing leads to a better approximation of the empirical FIM by computing all possible labels (y),
rather than relying on a single data sample, as shown in Eq. (57).

7Knowledge distillation Hinton (2015) is employed to enhance the performance of Large Language Mod-
els Gunter et al. (2024); Team et al. (2024); Dubey et al. (2024). This technique leverages the teacher model’s
probability distribution to calculate the expected value of the student model’s log probability, enabling Adam to
estimate FIM more accurately. While knowledge distillation is recognized for its ability to transfer dark knowl-
edge from teacher to student, its effectiveness may also be attributed to the improved optimization facilitated
by the precise FIM estimation within Adam.

8Regrettably, relying on image classification (i.e., continuous inputs) or, even more restrictively, simple
regression like curve fitting (i.e., continuous distribution) to analyze Adam or FIM may limit the generalizability
of findings Kunstner et al. (2019); Reddi et al. (2019); Cohen et al. (2022).

9Diffusion models Ho et al. (2020) seem to perform well with L2 loss. It is likely because the expectation
of the loss is taken over not only image samples but also the noisy diffusion steps, which cover the model
distribution sufficiently, allowing for a more accurate empirical estimate of the FIM. This could be a significant
factor contributing to the success of diffusion models.
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Algorithm 1 Fisher Adam (FAdam)
1: given β1 = 0.9, β2 = 0.999, ϵ = 10−15, c = 1, λ = 0.001, ρ = 0.5, ηt
2: initialize θ0, t← 0, m0 ← 0N , f0 ← 1N ▷ FIM init to 1 as per Section 3.4.4
3: repeat
4: t← t+ 1
5: gt ← ∇θ logPt(θt−1) ▷ Stochastic gradient as per Eq. (12)
6: β̂2 ← β2(1− βt−1

2 )/(1− βt
2) ▷ Bias correction as per Section 3.4.4

7: ft ← β̂2ft−1 + (1− β̂2)g
2
t ▷ EMA diagonal empirical FIM as per Section 3.4.1

8: ḡt ← gt/(f
ρ
t + ϵ) ▷ Invariant natural gradient as per Eq. (27)

9: ḡt ← ḡt/max(1,RMS(ḡt)/c) ▷ Clip the gradient as per Appendix B.3
10: mt ← β1mt−1 + (1− β1)ḡt ▷ EMA momentum as per Section 3.4.2
11: ḡw ← θt−1/(f

ρ
t + ϵ) ▷ Weight decay as per Eq. (28)

12: ḡw ← ḡw/max(1,RMS(ḡw)/c) ▷ Clip weight decay as per Appendix B.3
13: θt ← θt−1 − ηt(mt + λḡw) ▷ Update θ as per Eq. (13)
14: until stopping criterion is met
15: return optimized parameters θt

division by zero. To address this and obtain a more stable diagonal empirical FIM, an exponential
moving average (EMA) is employed.

The gradient and FIM in Eq. (22) vary at each point θ. As shown in Section 2.1, not only their
components change but also their underlying basis. However, EMA averages the components of the
Fisher information tensor obtained across different θ points, despite their potentially differing basis.
This is a mathematically invalid operation, except for in Euclidean space.10 As β2=0.999 is standard
value in Adam, EMA has a half-life of 700 steps 11, meaning it averages FIM over roughly 1000
steps. During this time, the basis can shift significantly as the model parameter moves to a new θ
location on the manifold.

In differential geometry, scalars, vectors and tensors are invariant under a coordinate change. The
length of a vector, derived from the inner product (Eq. (1)), is a scalar. For a given gradient, we can
express its length as shown in Eq. (10), and simplify it using the diagonal FIM in Eq. (26).

We only have access to the components of the gradient vector, and the invariant quantity is the vector
length. However, EMA attempts to average the vector components as if they were in Euclidean
space, ignoring the changing basis. To address this, we propose constructing a gradient vector
(Eq. (27)) in Euclidean space that has the same length as the known vector length (Eq. (26)), and
then apply EMA to this artificial Euclidean vector.

We refer to it as the invariant natural gradient, denoted as ∇̄J(θ). This is the reason why Adam
uses the square root, as shown in Algorithm 3. In Appendix C.1.1, we conduct an ablation study
on the exponent of the FIM term, and find that the square root is the optimal choice.

∥∇̃J(θ)∥ = ∇̃J(θ) · ∇̃J(θ) = (F−1∇J(θ))⊤F (F−1∇J(θ)) = ∇J(θ)⊤F−1∇J(θ) (25)

≈ ∇J(θ)⊤f̂−1∇J(θ) = ∥∇J(θ)/
√
f̂∥2 (26)

∇̄J(θ) := ∇J(θ)/
√

f̂ (27)

Adam variants like AdaDelta Zeiler (2012), AdaMax Kingma & Ba (2014) and Yogi Zaheer et al.
(2018) modify the second momentum to further deviate from the natural gradient. A more principled
approach would focus on improving the estimation of the empirical FIM, incorporating off-diagonal
elements, and investigating how to make using natural gradient, instead of invariant natural gradient.

10Properly adding tensors from different tangent spaces requires parallel transport, which relies on under-
standing how the manifold’s basis changes. This is determined by the Riemannian metric tensor field, but
accurately knowing even the FIM at a single point is computationally expensive, making knowledge of the
entire FIM field intractable.

11∼ log(0.5)/ log(0.999)
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If we were able to achieve a more accurate FIM estimation with smaller β2, it might be possible to
eliminate the square root operation.

3.4.2 MOMENTUM

Momentum methods Rumelhart et al. (1986) employ exponential moving average (EMA) of gradi-
ents along the optimization trajectory to mitigate the noise inherent in stochastic gradients estimated
from minibatches B.

At a point θ on the statistical manifold, the ideal gradient is the invariant natural gradient, as shown
in Eq. (27). Therefore, momentum should average the invariant natural gradient ∇̄J(θ) rather than
the raw gradient, as shown in Algorithm 1. In contrast, as shown in Algorithm 3, Adam Kingma &
Ba (2014) calculates the first and second momentums separately and then combines them, lacking a
clear theoretical justification. In Algorithm 4, Adafactor Shazeer & Stern (2018), on the other hand,
already aligns with our proposed approach. LaProp Ziyin et al. (2020) has empirically demonstrated
the benefits of this modification. Furthermore, the second momentum is not momentum. We refer
to it as FIM.

FAdam omits zero bias correction in EMA of momentum 12, because excessive gradient descent
is unnecessary before the momentum is sufficiently accumulated. This approach can be viewed as
built-in informed warmup schedule. Adafactor implementation Shazeer (2018) already omits zero
bias correction for momentum, although this is not explicitly mentioned in the paper Shazeer &
Stern (2018).

3.4.3 WEIGHT DECAY ON MANIFOLD

AdamW Loshchilov & Hutter (2017), which decouples the weight decay term from the loss and
applies it directly to the Adam optimizer, has demonstrated general performance improvements
and is now widely used as a standard practice. Our mathematical framework provides a sound
theoretical explanation for this observed phenomenon. The loss function should be log-likelihood,
but the weight decay term has nothing to do with the probability distribution. If the weight decay
term is included in the loss, it causes problems in estimating the FIM. 13

Weight decay is a great example of how auxiliary losses should be handled. If the auxiliary loss is
related to the log-likelihood, it can be included in the loss. Otherwise, it should be bypassed by
the Adam optimizer, as in the case of weight decay.

Furthermore, following Eq. (11), weight decay should also be applied as a natural gradient. Since
we already have the FIM, we can express the weight decay gradient in a similar way to Eq. (27).

gw = θ/

√
f̂ (28)

Intuitively, components with low Fisher information can be pushed closer to zero without signif-
icantly impacting the model performance. Elastic weight consolidation Kirkpatrick et al. (2017)
leverages a similar concept, utilizing Fisher information to regularize the change of θ.14

It has been reported that for training large-scale models like LLMs, decoupling weight decay from
the learning rate helps stabilize training Wortsman et al. (2023). However, since our modifications
make the weight decay adaptable to the loss surface, such workarounds might not be necessary.
Further research is needed to confirm this hypothesis.

12mt ←mt/(1− βt
1)

13While the weight decay term can be seen as a form of prior in a Bayesian framework, it is often directly
added to the loss function (equivalent to the log posterior). The AdamW Loshchilov & Hutter (2017) highlights
that this practice can negatively impact performance, suggesting that the commonly used L2 weight decay might
not accurately represent the true prior of the model.

14EWC can directly utilize FIM from FAdam, eliminating the need to compute it separately.
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3.4.4 FADAM

Fisher Adam (FAdam), incorporating all the discussed modifications, is presented in Algorithm 1.
Fisher Adafactor (FAdafactor) modification of Adafactor is presented in Algorithm 2 in Ap-
pendix B.4. 15

3.4.5 CONVERGENCE ANALYSIS

Algorithm 1 does not deviate from the assumptions of the convergence analysis presented in Eq. (15)
of the latest Adam convergence proof by Défossez et al. (2020). Therefore, FAdam achieves the
following convergence guarantees. Specifically, as the number of iterations N becomes sufficiently
large, the expected value of the gradient becomes sufficiently small. The detailed explanation is
provided in Appendix B.6.

E
[
∥∇F (xτ )∥2

]
≤ O(d ln(N)/

√
N) (29)

4 EXPERIMENT
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Figure 1: Comparison of FAdam and Adam performance. (a) Eval loss (log pplx) on 1B LLMs,
presenting FAdafactor outperforms Adafactor. (b) Average WER on LibriSpeech using 600M Con-
former models, presenting FAdam outperforms Adam. (c) FID of ImageNet generation using 100M
VQ-VAE models, presenting FAdam outperforms AdamW. (d) Comparison of FIM exponents on a
1B LLM, showing 0.5 (square root) as the optimal choice.

In our experiments, we took existing state-of-the-art models from various domains and simply re-
placed their optimizers with FAdam, keeping all other hyperparameters unchanged, except for ϵ.

15Additionally, we have specified that FIM (f0) is initialized to 1, not 0, in Algorithm 1. This is because
FIM represents a Riemannian metric, which defaults to the identity matrix in flat space. However, this change
does not affect the logic of the algorithm because bias correction ignores the initial value. The bias correction
for FIM is adopted from Adafactor Shazeer & Stern (2018), which is agnostic to the initial value.
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Despite this, FAdam consistently outperformed the original Adam variants. Our results demonstrate
that FAdam can be effectively used as a drop-in replacement for Adam in real-world applications.

4.1 LLM (TEXT DOMAIN)

We pretrained the 1B parameter LLM model from mT5-Large Xue (2020) on mC4 dataset Raffel
et al. (2020). FAdafactor and Adafactor shared the same hyperparameters, β1=0.9, β2=0.99, and
λ=0.001. However, the epsilon value used was ϵ=1e-12 for FAdafactor and ϵ=1e-30 for Adafactor.
As demonstrated in Fig. 1a, FAdafactor outperforms Adafactor.

4.2 ASR (SPEECH DOMAIN)

The 600M parameter Conformer Gulati et al. (2020) model from the w2v-BERT Chung et al. (2021)
is one of the lowest WER (word error rate) achieving models on the LibriSpeech dataset Panayotov
et al. (2015). This model was pretrained using w2v-BERT and then finetuned on LibriSpeech data
using the RNNT loss Graves (2012). The WER was further improved to SoTA levels using noisy
student semi-supervised finetuning Park et al. (2020) on LibriLight Kahn et al. (2020). We compared
Adam and FAdam using models that were fine-tuned in a semi-supervised fashion on LibriLight
data, paired with semi-supervised pseudo labels.

FAdam and Adam share the same hyperparameters: β1=0.9, β2=0.98, and λ=0.001, except for ϵ
(FAdam 1e-12 and Adam 1e-8). As demonstrated in Fig. 1b and Table 1, FAdam not only outper-
forms Adam but also establishes a new state-of-the-art (SoTA) Word Error Rate (WER) on Lib-
riSpeech for 600M parameter models.

LibriSpeech WERs dev dev-other test test-other avg
Adam (w2v-BERT paper Chung et al. (2021)) 1.30 2.60 1.40 2.70 2.00
Adam 1.30 2.54 1.33 2.59 1.93
FAdam 1.29 2.49 1.34 2.49 1.89

Table 1: LibriSpeech WERs

4.3 VQ-VAE (IMAGE DOMAIN)

We trained a 100M parameter ViT VQ-GAN model Yu et al. (2021) on the ImageNet dataset Rus-
sakovsky et al. (2015). To verify the hypothesis from Section 3.3.1 that categorical cross-entropy
(CE) loss is superior to L2 loss on Adam, we exclusively used either CE loss or L2 loss + logit-
laplace during training.16 The VQ-GAN paper Yu et al. (2021) introduced logit-laplace to adjust the
output scale when using L2 loss.

FAdam and AdamW Loshchilov & Hutter (2017) share the same hyperparameters: β1=0.9, β2=0.99,
and λ=1e-4, except for ϵ (FAdam 1e-15 and AdamW 1e-8). As demonstrated in Fig. 1c, FAdam
outperforms AdamW, and categorical CE loss not only outperforms L2 loss but also eliminates the
need for the complex logit-laplace transformation.

5 CONCLUSION

In this work, we have revealed the mathematical foundation of the Adam optimizer, clarifying the
constraints on loss function selection and the approximations involved in its derivation. This ground-
work opens avenues for future research to develop improved optimizers by mitigating these ap-
proximations. Building upon our theoretical foundation, we have proposed an enhanced algorithm,
FAdam, and demonstrated its effectiveness across diverse domains.

16Since our primary focus is on replacing the L2 loss, we omitted GAN and perceptual losses, making the
model effectively a VQ-VAE Van Den Oord et al. (2017) rather than a VQ-GAN.
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Mazaré, Julien Karadayi, Vitaliy Liptchinsky, Ronan Collobert, Christian Fuegen, et al. Libri-
light: A benchmark for asr with limited or no supervision. pp. 7669–7673, 2020.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Agustinus Kristiadi. Natural gradient descent. https://agustinus.kristia.de/
techblog/2018/03/14/natural-gradient/, 2018.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approx-
imation for natural gradient descent. Advances in neural information processing systems, 32,
2019.

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
main factor behind the gap between sgd and adam on transformers, but sign descent might be.
arXiv preprint arXiv:2304.13960, 2023.

12

https://agustinus.kristia.de/techblog/2018/03/14/natural-gradient/
https://agustinus.kristia.de/techblog/2018/03/14/natural-gradient/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Wu Lin, Felix Dangel, Runa Eschenhagen, Juhan Bae, Richard E Turner, and Alireza Makhzani.
Can we remove the square-root in adaptive gradient methods? a second-order perspective. arXiv
preprint arXiv:2402.03496, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Jiasen Lu, Christopher Clark, Sangho Lee, Zichen Zhang, Savya Khosla, Ryan Marten, Derek
Hoiem, and Aniruddha Kembhavi. Unified-io 2: Scaling autoregressive multimodal models with
vision, language, audio, and action. arXiv preprint arXiv:2312.17172, 2023.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

Agnes Lydia and Sagayaraj Francis. Adagrad—an optimizer for stochastic gradient descent. Int. J.
Inf. Comput. Sci, 6(5):566–568, 2019.

Prasanta Chandra Mahalanobis. On the generalized distance in statistics. Sankhyā: The Indian
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A BACKGROUND

A.1 TENSOR CALCULUS NOTATION

In this paper, we will derive the Adam algorithm from the perspective of information geometry.
Since statistical formulas are frequently used in machine learning papers, but Riemannian geometry
formulas are not, we will first clarify the notation before proceeding. We follow the notation of
Petersen (2006)’s Riemannian geometry textbook.

We define the tangent space at a point θ on a manifold as TθM. Given a vector v⃗ = viei on TθM,
the basis vectors are defined as partial derivatives as follows:

ei :=
∂

∂θi
(30)

Therefore, a vector v⃗ can be expressed using Einstein notation as follows, with vi representing the
vector components and ∂

∂θi representing the basis vectors:

v⃗ = v = vi
∂

∂θi
(31)

From an ML practitioner’s perspective, the reason for understanding vector is that the parameters θ
of probability density (or mass) functions p(θ) (i.e., scalar fields) reside within a vector space.

Given a covector w = wie
i in the dual space of a vector space, the covector basis is defined using a

differential one-form.

ei := dθi (32)

From an ML practitioner’s perspective, the reason for understanding covector is that the differential
form of the loss, dL(θ), reside within a covector space.

dL(θ) = ∂L(θ)
∂θi

dθi (33)

The operation between the vector basis and the covector basis results in the Kronecker delta. The
operation between vector v⃗ and covector dL is as shown in Eq. (35). The meaning of Eq. (35) is the
directional derivative, representing the derivative of the loss L in the direction of v⃗.

dθi(
∂

∂θj
) = δij (34)

dL(v⃗) = ∂L(θ)
∂θi

vjdθi(
∂

∂θj
) =

∂L(θ)
∂θi

vi (35)

The covariant derivative is an extension of the directional derivative operation from a scalar filed to
vector and tensor fields. 17 The covariant derivative of a vector field w⃗ along a vector v⃗ is denoted
as follows, where Γk

ij represents the Christoffel symbols:

Dv⃗w⃗ = vi
∂

∂θi
(wj ∂

∂θj
) = vi

∂

∂θi
wj ∂

∂θj
+ viwj ∂

∂θi
∂

∂θj
= (vi

∂

∂θi
wk + viwjΓk

ij)
∂

∂θk
(36)

17When applied to a scalar field (i.e., a scalar function), the covariant derivative is called the directional
derivative.
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A.2 THE PROOF OF FISHER IS NEGATIVE HESSIAN

The relationship between Fisher information and the negative Hessian’s expectation can be proven
as follows:

∇2
θ logP (x|θ) = ∇

2
θP (x|θ)
P (x|θ)

−∇θ logP (x|θ)∇θ logP (x|θ)⊤ (37)

Ex∼Pθ

[
∇2

θP (x|θ)
P (x|θ)

]
=

∫
P (x|θ)∇

2
θP (x|θ)
P (x|θ)

dx = ∇2
θ

∫
P (x|θ)dx = ∇2

θ1 = 0 (38)

Ex∼Pθ

[
∇2

θ logP (x|θ)
]
= −Ex∼Pθ

[
∇θ logP (x|θ)∇θ logP (x|θ)⊤

]
(39)

A.3 THE PROOF OF KL APPROXIMATION

As seen in Eq. (9), the Kullback-Leibler (KL) divergence with an infinitesimal displacement d can
be approximated by the Fisher information. We provide a proof of this relationship below, following
the approach presented in Kristiadi (2018).

DKL(P (x|θ)∥P (x|θ + d)) ≈ 1

2
d⊤F (θ)d. (40)

By using a second-order Taylor series approximation, the KL divergence can be approximated as
follows:

DKL(Pθ∥Pθ+d) ≈ DKL(Pθ∥Pθ)+(∇θ′DKL(Pθ∥Pθ′)|θ=θ′)⊤d+
1

2
d⊤∇2

θ′DKL(Pθ∥Pθ′)d (41)

DKL(Pθ∥Pθ) is 0 by the definition of KL divergence. The first-order approximation term also
becomes 0 through the following process.

∇θ′DKL(Pθ∥Pθ′) =((((((((
∇θ′Ex∼Pθ

[logPθ]−∇θ′Ex∼Pθ
[logPθ′ ] = −Ex∼Pθ

[∇θ′ logPθ′ ] (42)

= −
∫

Pθ∇θ′ logPθ′ |θ=θ′dx = −
∫

Pθ
∇θ′Pθ′

Pθ′
|θ=θ′dx (43)

= −
∫
∇θPθdx = −∇θ

∫
Pθdx = −∇θ1 = 0 (44)

The Fisher information emerges from the second-order approximation term, as shown by utilizing
the Hessian property in Eq. (8).

∇2
θ′DKL(Pθ∥Pθ′) =((((((((

∇2
θ′Ex∼Pθ

[logPθ]−∇2
θ′Ex∼Pθ

[logPθ′ ] (45)

= −Ex∼Pθ

[
∇2

θ′ logPθ′ |θ=θ′
]
= −Ex∼Pθ

[
∇2

θ logPθ

]
(46)

= F (θ) (47)

Therefore, equation Eq. (9) is proven.

B TOWARD FADAM

B.1 COMPARED TO NEWTON’S SECOND-ORDER METHOD

As shown in Eq. (8), FIM is equivalent to the Hessian of the loss.

F (θ) = −Ex∼Pθ
[Hθ(logP (x|θ))] = Ex∼Pθ

[Hθ(L(θ))]. (48)
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Therefore, θ update Eq. (13) incorporates the Hessian term.

θt+1 = θt − ηEx∼Pθ
[Hθ(L(θ))]−1∇L(θ) (49)

As FIM is the expected value of the Hessian, natural gradient optimization is considered a second
order method. Since the Fisher Information Matrix (FIM) is positive semi-definite, the Hessian term
is also positive semi-definite, ensuring a convex optimization.

Meanwhile, Newton’s method is a second-order optimization method that is effective only when
the loss function is strongly convex with a Lipschitz continuous Hessian. The update equation for
Newton’s method Bonnans et al. (2006) is as follows.

θt+1 = θt − ηHθ(L(θ))−1∇L(θ) (50)

Although the two methods were derived through vastly different processes, they both involve the
inverse of the Hessian matrix, as shown in Eq. (49) and Eq. (50). However, there is a significant
difference between the two methods. Natural gradient descent requires the loss function to be the
log-likelihood, while Newton’s method has no such restriction on the choice of loss function. Natural
gradient descent guarantees convergence due to the positive semi-definiteness of FIM (the expected
value of the Hessian), whereas Newton’s method does not.

Consequently, various complex techniques are employed when using Newton’s method, such as the
Gauss-Newton algorithm, conjugate gradient method, and trust region method Bonnans et al. (2006).
These techniques ensure that each step update is confined within a trust region, mitigating the risk
of divergence.

This is why second-order optimization methods based on FIM have demonstrated faster convergence
compared to Newton’s method in practice (Schraudolph, 2002; Martens et al., 2010; Vinyals &
Povey, 2012). Recent second-order optimization methods often utilize FIM instead of the Hessian
of the loss function Gupta et al. (2018); Anil et al. (2019). However, these methods require the loss
function to be the log-likelihood and are subject to certain constraints discussed in Section 3.2 and
Section 3.3.

B.2 CONDITIONAL PROBABILITY DISTRIBUTION FOR EMPIRICAL FISHER INFORMATION

In supervised learning, the loss function typically becomes a joint distribution − logP (x, y|θ).
Since the expected value over P (x,θ) is generally intractable, it is replaced with the empirical
distribution p̂data(x) in Eq. (52). As noted in Eq. (16), this is referred to as the empirical Fisher.
The training set also provides the ground truth label y. Therefore, the loss function becomes the
cross-entropy calculated using the conditional log-likelihood, as shown in Eq. (53).

∇θJ(θ) = −Ex,y∼pdata
[∇θ logP (y|x,θ) +∇θ logP (x|θ)] (51)

≈ −Ex,y∼p̂data
[∇θ logP (y|x,θ) +(((((((∇θ log p̂data(x)] (52)

= −Ex,y∼p̂data
[∇θ logP (y|x,θ)] := g (53)

The FIM, similar to the cost function, also requires the calculation of an expected value over the
joint distribution. By approximating the expectation with the empirical distribution p̂data(x, y) and
moving out the square as shown in Eq. (21), we obtain the following equation:

f̂(θ) = Ex,y∼P (y|x,θ)P (x|θ)[(∇θ logP (y|x,θ) +∇θ logP (x|θ))2] (54)

≈ Ex,y∼P (y|x,θ)p̂data(x)[(∇θ logP (y|x,θ) +(((((((∇θ log p̂data(x))2] (55)

≈ Ex,y∼P (y|x,θ)p̂data(x)[∇θ logP (y|x,θ)2] (56)

As shown in equation Eq. (22), generative models are able to reuse the gradient g for calculating
FIM. However, this reuse poses a challenge when dealing with conditional distributions. This is
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because Equation Eq. (53) calculates the expected value over the label y, while Equation Eq. (56)
calculates the expected value over the conditional distribution of the model. To address this, we
introduce an additional approximation by calculating the expected value over the label y in Eq. (57).
This is commonly referred to as the empirical FIM in the ML community (Kunstner et al., 2019),
while the statistics community refers to the approximation in Eq. (55) as the empirical FIM, as
explained in Eq. (16). To avoid confusion, we will refer to this as the conditional empirical FIM.

f̂(θ) ≈ Ex,y∼p̂data
[∇θ logP (y|x,θ)2] (57)

≈ Ex,y∼p̂data
[∇θ logP (y|x,θ)]2 = g2 (58)

As seen in Eq. (21), to reuse g in Eq. (53), a non-principled approximation is made by taking the
square outside the expectation in Eq. (58). Similar to the generative model in Eq. (22), we can obtain
the natural gradient with respect to a minibatch B as follows:

∇̃J(θ) = f̂−1∇J(θ) ≈ −Ex,y∈B[∇θ logP (y|x,θ)]/EEMA[Ex,y∈B[∇θ logP (y|x,θ)]2] (59)

= −g/EEMA[g
2] (60)

Despite the numerous non-trivial approximations made to FIM, it is remarkable that Adam has
achieved such great success. Eliminating these non-trivial approximations could be a promising
direction for future research.

B.3 CLIPPING AND EPSILON

Although not mentioned in the original Adam paper, it was later discovered that gradient clipping
is essential for Adam Zhang et al. (2020); Gilmer et al. (2021) and is now used as a standard prac-
tice. Adafactor Shazeer & Stern (2018) incorporates clipping Pascanu et al. (2013) in the algorithm,
because the diagonal empirical FIM can have zero components. Therefore, clipping is applied to
the invariant natural gradient, and then the clipped gradient is used to calculate the momentum,
as demonstrated in Algorithm 1. The Adafactor implementation Shazeer (2018) already incorpo-
rates this approach, although it is not explicitly mentioned in the original paper Shazeer & Stern
(2018), as shown in Algorithm 4. Since clipping is already incorporated into the optimizer, global
clipping Pascanu et al. (2013) is not necessary.18 In our experiments, we did not observe any benefit
from applying global clipping.

To prevent division by zero before clipping, ϵ is added. The standard value for ϵ in Adam is 1e-
8. Adafactor Shazeer & Stern (2018) uses 1e-30, but since it is added inside the square root, this
translates to 1e-15 on the Adam scale. Wortsman et al. (2023) recommends using a smaller epsilon
value of 1e-15 for large-scale models like LLMs due to the empirical observation that the root mean
square (RMS) value of gradients tends to decrease as models get larger and training progresses.

To prevent division by zero before clipping, ϵ is added. The standard value for ϵ in Adam is 1e-8.
However, Wortsman et al. (2023) recommends using a smaller epsilon value of 1e-15 for large-scale
models like LLMs. This is because the root mean square (RMS) value of gradients tends to decrease
as models get larger and training progresses. Adafactor Shazeer & Stern (2018) uses 1e-30, but since
it is added inside the square root, this translates to 1e-15 on the Adam scale. In our experiments,
we confirm that an ϵ value of around 1e-15 yields good results across all domains, as shown in
Appendix C.1.2. Therefore, we use 1e-15 as the default ϵ for FAdam, which provides both good
performance and robustness for large models.

EAdam Yuan & Gao (2020) and Adafactor Shazeer & Stern (2018) modified the algorithm to accu-
mulate ϵ within EMA, but we did not observe any benefits from this approach in our experiments.

B.4 FADAFACTOR

Adafactor Shazeer & Stern (2018) is modified as shown in Algorithm 2, and we refer to this variant
as Fisher Adafactor (FAdafactor).

18This feature is often included in ML frameworks as a legacy practice without a clear justification.
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Algorithm 2 Fisher Adafactor (FAdafactor)
1: given β1 = 0.9, β2 = 0.999, ϵ = 10−15, c = 1, λ = 0.001, ρ = 0.5, ηt
2: initialize θ0, t← 0, m0 ← 0n×m, R0 ← 1n, C0 ← 1⊤m ▷ FIM init to 1 as per Section 3.4.4
3: repeat
4: t← t+ 1
5: gt ← ∇θ logPt(θt−1) ▷ Stochastic gradient gt ∈ Rn×m as per Eq. (12)
6: β̂2 ← β2(1− βt−1

2 )/(1− βt
2) ▷ Bias correction as per Section 3.4.4

7: Rt ← β̂2Rt−1 + (1− β̂2)g
2
t 1m ▷ EMA column vector Rt ∈ Rn

8: Ct ← β̂2Ct−1 + (1− β̂2)1
⊤
n g

2
t ▷ EMA row vector Ct ∈ Rm

9: ft ← RtCt/1
⊤
nRt ▷ Diagonal empirical FIM as per Section 3.4.1

10: ḡt ← gt/(f
ρ
t + ϵ) ▷ Invariant natural gradient as per Eq. (27)

11: ḡt ← ḡt/max(1,RMS(ḡt)/c) ▷ Clip the gradient as per Appendix B.3
12: mt ← β1mt−1 + (1− β1)ḡt ▷ EMA momentum as per Section 3.4.2
13: ḡw ← θt−1/(f

ρ
t + ϵ) ▷ Weight decay as per Eq. (28)

14: ḡw ← ḡw/max(1,RMS(ḡw)/c) ▷ Clip weight decay as per Appendix B.3
15: θt ← θt−1 − ηt(mt + λḡw) ▷ Update θ as per Eq. (13)
16: until stopping criterion is met
17: return optimized parameters θt

B.5 ADAM AND ADAFACTOR

To facilitate comparison between the original algorithms, we present Adam (Algorithm 3) and
Adafactor (Algorithm 4), alongside FAdam (Algorithm 1) and FAdafactor (Algorithm 2). Since
the full Adafactor algorithm is not explicitly detailed in the original paper Shazeer & Stern (2018),
we refer the original implementation Shazeer (2018).

Remarkably, Adafactor Shazeer & Stern (2018) had already empirically discovered and imple-
mented several of the results we derived from our mathematical framework: applying natural gra-
dient to momentum (Section 3.4.2), omitting bias correction for momentum (Section 3.4.2), and
clipping gradients (Appendix B.3). This is akin to the invention of the steam engine before the es-
tablishment of thermodynamics, and these empirical findings significantly bolstered our confidence
in developing our theory. However, it is peculiar that the momentum calculation incorporates the
learning rate, while weight decay remains independent of the learning rate. Accumulating ϵ through
EMA is also an unconventional approach.

Algorithm 3 Adam Kingma & Ba (2014)
1: given β1 = 0.9, β2 = 0.999, ϵ = 10−8, c = 1, λ = 0.001, ηt
2: initialize θ0, t← 0, m0 ← 0N , f0 ← 0N
3: repeat
4: t← t+ 1
5: gt ← ∇θ logPt(θt−1)
6: ft ← (β2ft−1 + (1− β2)g

2
t )/(1− βt

2)
7: mt ← (β1mt−1 + (1− β1)gt)/(1− βt

1)
8: ḡt ←mt/(

√
ft + ϵ)

9: ḡt ← ḡt/max(1,RMS(ḡt)/c)
10: θt ← θt−1 − ηt(ḡt + λθt−1)
11: until stopping criterion is met
12: return optimized parameters θt

B.6 CONVERGENCE PROOF

While the original Adam paper Kingma & Ba (2014) presented a convergence proof, Reddi et al.
(2019) later demonstrated that this proof was flawed. Subsequently, Défossez et al. (2020) provided
a corrected convergence proof for Adam. Our analysis follows the approach of Défossez et al.
(2020).
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Algorithm 4 Adafactor Shazeer & Stern (2018); Shazeer (2018)
1: given β1 = 0.9, β2 = 0.999, ϵ = 10−30, c = 1, λ = 0.001, ηt
2: initialize θ0, t← 0, m0 ← 0n×m, R0 ← 0n, C0 ← 0⊤m
3: repeat
4: t← t+ 1
5: gt ← ∇θ logPt(θt−1)

6: β̂2 ← β2(1− βt−1
2 )/(1− βt

2)

7: Rt ← β̂2Rt−1 + (1− β̂2)(g
2
t + ϵ1n1

⊤
m)1m

8: Ct ← β̂2Ct−1 + (1− β̂2)1
⊤
n (g

2
t + ϵ1n1

⊤
m)

9: ft ← RtCt/1
⊤
nRt

10: ḡt ← gt/
√
ft

11: ḡt ← ḡt/max(1,RMS(ḡt)/c)
12: mt ← β1mt−1 + (1− β1)ηtḡt
13: θt ← θt−1 − (mt + λθt−1)
14: until stopping criterion is met
15: return optimized parameters θt

To the best of our knowledge, there is no existing convergence proof for Adam with clipping, despite
its widespread use in practice. This is likely due to the non-trivial nature of incorporating clipping
into the analysis. Existing convergence proofs only cover SGD with clipping Mukherjee & Tucat
(2024). Therefore, we also present a convergence proof that excludes the effects of clipping.

The convergence proof for FAdam is simpler than that of Adam. Adam’s convergence proof needs
to consider both the 1st and 2nd momentums simultaneously, as they both influence the gradient up-
date. In contrast, FAdam first computes the natural gradient using FIM and then applies momentum
to the natural gradient. This process of applying momentum to the natural gradient is analogous to
Polyak momentum applied to SGD. It is well-known that Polyak momentum tightens the conver-
gence bound Bottou et al. (2018). Since FAdam’s momentum is analogous to Polyak momentum,
FAdam’s momentum also tightens the convergence bound. Therefore, the convergence bound for
the natural gradient without momentum is looser than the convergence bound for FAdam. For the
sake of simplicity, we focus on deriving the convergence bound for the natural gradient without mo-
mentum. A tighter theoretical convergence bound, incorporating the effects of momentum, is left
for future work.

FAdam without the effects of momentum is equivalent to the Adam algorithm with β1 = 0. The
convergence of Adam under this condition is shown in Eq. (15) of Défossez et al. (2020) as follows:

E
[
∥∇F (xτ )∥2

]
≤ F (x0)− F∗

α1

√
N

+
1√
N

(4dR2 + α1dRL)

(
ln

(
1 +

RN

ϵ

)
+

N

N − 1

)
(61)

∼ O(d ln(N)/
√
N) (62)

In Eq. (61), x ∈ Rd represents the model parameters θ, α1 is the learning rate, N represents the
number of iterations, and τN denotes a random index within the set {0, . . . , N − 1}. To derive the
equation, the following assumptions are made:

The function F is bounded below by F∗, that is:

F (x) ≥ F∗ for all x ∈ Rd.

The l∞ norm of the stochastic gradients is uniformly almost surely bounded, meaning there exists
R ≥

√
ϵ such that:

∥∇F (x)∥∞ ≤ R−
√
ϵ for all x ∈ Rd.

The objective function is smooth, specifically, its gradient is L-Lipschitz continuous with respect to
the l2-norm:
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∥∇F (x)−∇F (y)∥2 ≤ L∥x− y∥2 for all x, y ∈ Rd.

Therefore, from Eq. (62), as the number of iterations N increases, the expected value of the squared
norm of the gradient diminishes, indicating that F converges to the optimal value F∗.

C EXPERIMENT

C.1 ABLATION STUDY

C.1.1 EXPONENT OF FIM

In Section 3.4.1, we provided a theoretical explanation for the use of the square root in FIM, as
shown in Eq. (27). To explore alternative exponent values, we conducted experiments, the results
of which are presented in Fig. 1d and Table 2. Exponents above 0.5 exhibit relative stability, while
values below 0.3 demonstrate a sharp decline in performance. The standard value of 0.5 for the FIM
exponent in Adam Kingma & Ba (2014) appears to be a well-justified choice.

Model Metric Steps ρ=0.3 ρ=0.4 ρ=0.5 ρ=0.6 ρ=0.7 ρ=0.8 ρ=0.9 ρ=1.0
LLM 1B loss 1.5k 5.4 3.9 3.8 3.9 4.2 4.3 4.3 4.3
ASR 100M WER 8k 43.9 11.2 6.04 6.08 6.04 6.08 6.23 6.33

Table 2: Effects of Varying FIM Exponent on LLM and ASR Model Performance

C.1.2 EPSILON

Our experiments examined the effect of different epsilon values on the performance of LLM (1B),
ASR (600M), and VQ-VAE (100M) models. We observed that the optimal epsilon value varied
across models of different sizes and domains. However, optimal values tended to be near 1e-15. In
some domains, extremely small epsilon values (1e-20 or 1e-30) caused training to diverge.

Model Metric Steps 1e-8 1e-12 1e-15 1e-20 1e-30
LLM 1B loss 80k 2.47 2.42 2.46 NaN NaN
ASR 600M WER 8k 2.08 2.05 2.08 2.05 2.13
VQ-VAE 100M FID 50k 20.9 19.9 19.6 19.7 NaN

Table 3: Impact of Epsilon on Model Performance (Lower is Better)

C.1.3 WEIGHT DECAY

As shown in Eq. (28), the most significant algorithmic change in FAdam compared to Adam is the
weight decay mechanism. Therefore, we conducted experiments for weight decay.

In the ASR experiments described in Section 4.2, the baseline model utilized Adam, and we found
that the weight decay parameter (λ) used in Adam could generally be reused for FAdam. Our
enhanced weight decay mechanism played a significant role in improving FAdam’s performance, as
shown in Table 4.

LibriSpeech WERs dev dev-other test test-other avg
Adam λ=0 1.31 2.55 1.34 2.57 1.94
Adam λ=0.001 1.30 2.54 1.33 2.59 1.93
FAdam λ=0 1.30 2.43 1.34 2.63 1.92
FAdam λ=0.001 1.29 2.49 1.34 2.49 1.89

Table 4: LibriSpeech WERs of 600M ASRs with Varying Weight Decay Parameter (λ)
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In the LLM experiments described in Section 4.1, the baseline model utilized Adafactor, which
decouples weight decay from the learning rate, as shown in Algorithm 4. Interestingly, despite
the fact that Adafactor and FAdafactor have quite different weight decay mechanisms, the optimal
weight decay value of 1e-3 for Adafactor also is optimal for FAdafactor in Table 5.

λ 1e-2 1e-3 1e-4 1e-5
LLM 1B 3.007 2.875 2.998 3.004

Table 5: Eval loss of 1B LLMs with Varying Weight Decay Parameter (λ)

C.2 EXPERIMENTS COMPUTE RESOURCES

FAdam and Adam exhibited nearly identical computational and memory complexity. During TPU
training, both optimizers achieved very similar steps/sec.

The LLM 1B model was trained on 16 TPUv5 Jouppi et al. (2023) devices (80GB HBM) for one
day. Each training example consisted of 2k tokens with a global batch size of 256. The ASR 600M
model was fine-tuned on 32 TPUv3 devices (8GB HBM) for half a day. Each utterance had an
average duration of 12 seconds with a global batch size of 512. The VQ-VAE 100M model was
trained on 16 TPUv4 devices (16GB HBM) for one day. Training was performed using images with
a resolution of 256x256 and a global batch size of 256.
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