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Abstract. This paper presents SAT-Nano-JDT, an approach for the
CVPR 2025 Text-guided 3D Biomedical Segmentation Challenge, involv-
ing fine-tuning the SAT-Nano baseline with JDTLoss (Dice Semimet-
ric Loss). Pre-trained on 10% of challenge data, SAT-Nano was further
trained using a composite loss including JDTLoss, aiming to directly op-
timize Dice scores and enhance segmentation. On the validation coreset,
SAT-Nano-JDT showed mixed results: CT semantic DSC improved to
0.644 (vs. 0.643 baseline) and Microscopy instance DSC TP to 0.310 (vs.
0.292). However, MRI and PET performance did not exceed the baseline.
This empirical study explores JDTLoss’s utility in refining foundation
models, noting the challenges in surpassing strong baselines. The code is
available at https://github.com/ricoleehduu/SAT-Nano-JDTLoss.git.
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1 Introduction

3D biomedical image segmentation is vital for quantitative medical image anal-
ysis but is challenged by data complexity and laborious annotation [7]. Text-
guided segmentation offers an intuitive alternative, using natural language prompts
to define targets [13]. The CVPR 2025 Challenge, "Foundation Models for Text-
guided 3D Biomedical Image Segmentation," promotes models for robustly seg-
menting diverse structures in large-scale 3D datasets. Key challenges include gen-
eralization across numerous image-mask pairs, interpreting nuanced text prompts,
and developing adaptable foundation models.

Foundation models like SAM ([5], SAM2 [8]) spurred medical adaptations
(MedSAM [6], MedSAM2 [7]), though often with limited text-prompt capabili-
ties. While interactive methods (SegVol [1], SAM-Med3D [9], VISTA3D [3], nnIn-
teractive [2]) improved user-guided 3D segmentation using non-textual cues, ded-
icated text-guided models (BioMedParse [12], CAT [4]) also emerged. The Seg-
ment Anything in Radiology (SAT) model [13] is a pivotal, knowledge-enhanced
universal model for text-prompted segmentation of 497 classes from 72 datasets,
forming the challenge baseline. The provided SAT-Nano, a compact version pre-
trained on 10% of competition data, offers a strong starting point for further
refinement through targeted fine-tuning.
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Our work investigates enhancing the SAT-Nano baseline via alternative loss
formulations for fine-tuning. While SAT’s architecture [13] is robust, the loss
function critically impacts segmentation accuracy, especially for complex bound-
aries and class imbalances, and standard losses may not directly optimize metrics
like the Dice score. We fine-tuned SAT-Nano by incorporating JDTLoss (Dice
Semimetric Loss) [10] into a composite loss function. JDTLoss directly optimizes
the Dice score and is theoretically sound for soft labels (performing identically
to soft Dice loss with hard labels). We hypothesized this could yield more refined
segmentations. The resulting model is termed SAT-Nano-JDT.

Our contributions are: (1) Applying and systematically evaluating JDTLoss
within a composite loss for fine-tuning SAT-Nano for text-guided 3D biomedical
segmentation. (2) Detailing a fine-tuning methodology on the challenge coreset.
(3) Empirically analyzing SAT-Nano-JDT’s performance, offering insights into
JDTLoss’s practical effects on a strong baseline.

2 Method

Our methodology, SAT-Nano-JDT, enhances the official SAT-Nano baseline [13]
for the CVPR 2025 Text-guided 3D Biomedical Image Segmentation Challenge
by fine-tuning it with a composite loss function incorporating JDTLoss (Dice
Semimetric Loss) [10]. This section outlines the baseline architecture, prompt
handling, our loss integration, and training.

2.1 Baseline Model: SAT-Nano Architecture

We build upon the official SAT-Nano model provided by the challenge organizers.
SAT (Segment Anything in Radiology) [13] is a knowledge-enhanced universal
segmentation model designed to segment a wide array of anatomical structures
from 3D medical images across various modalities, guided by text prompts. The
SAT-Nano variant used as our starting point is a more compact version of the
full SAT model, pre-trained on 10% of the challenge’s training data.

The general architecture of SAT, which we retain, consists of three main com-
ponents:Text Encoder, Vision Backbone and Decoder. A conceptual overview of
our fine-tuning pipeline, which leverages the SAT architecture, is shown in Fig-
ure 1. We do not modify the core network architecture of the SAT-Nano base-
line; our primary intervention lies in the loss function used during the continued
training phase.

2.2 Segmentation Decoder and JDTLoss Function

The decoder component of SAT is responsible for generating pixel-wise (or voxel-
wise in 3D) segmentation masks based on the integrated image features and text
prompt embeddings.

Loss Function: While the original SAT model likely employs a combination
of standard segmentation losses, our primary contribution is the adoption of the
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Fig. 1. Overview of our fine-tuning pipeline. The pre-trained SAT-Nano model (com-
prising a text encoder, a 3D U-Net vision backbone, and a segmentation decoder) is
further trained on the challenge dataset using the JDTLoss. Text prompts guide the
segmentation of target anatomical structures within 3D biomedical images.

JDTLoss (Dice Semimetric Loss) [10] for fine-tuning the SAT-Nano baseline.
The Dice Score is a critical metric for evaluating segmentation performance, and
loss functions that directly optimize it are often preferred. The standard Soft
Dice Loss (SDL) is defined for a prediction x̃ ∈ [0, 1]p and a hard binary ground
truth y ∈ {0, 1}p as:

∆SDL,L1(x̃, y) = 1− 2⟨x̃, y⟩
∥x̃∥1 + ∥y∥1

A limitation of SDL and similar L1-based losses is their incompatibility with
soft labels (where y ∈ [0, 1]p). Although our ground truth labels are hard, the
JDTLoss formulation offers a robust alternative that is theoretically sound for
soft labels and, importantly, identical to SDL when hard labels are used. This
provides a well-grounded optimization objective. We specifically employ one of
the Dice Semimetric Losses (DMLs) proposed by Wang et al. [10]. For instance,
∆DML2 is defined as:

∆DML2(x̃, y) = 1− 2⟨x̃, y⟩
2⟨x̃, y⟩+ ∥x̃− y∥1

where x̃ represents the voxel-wise probabilities from the model’s output, y is
the ground truth segmentation mask, ⟨·, ·⟩ denotes the dot product (sum of
element-wise products), and ∥ · ∥1 is the L1 norm. According to [10] (Theorem
2), for hard labels y ∈ {0, 1}p, ∆DML1 = ∆DML2 = ∆SDL,L1 . Thus, by using
JDTLoss, we are effectively optimizing the Soft Dice Loss, which is directly
related to the Dice score, a primary evaluation metric for this challenge. We
hypothesize that this direct optimization, leveraging the well-behaved properties
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of DMLs (semimetrics, satisfying reflexivity and positivity), leads to improved
segmentation accuracy. In our implementation, JDTLoss replaces or augments
the default segmentation loss of the SAT baseline for the final segmentation
head.

Handling Large 3D Inputs: Medical images, especially 3D volumes, can
be very large, exceeding typical GPU memory capacities. The SAT framework,
and our fine-tuning process, addresses this using a patch-based approach. During
training, crops of size 256×256×96 are extracted from the full-resolution images.
The network then processes these crops, which are further divided into patches
of size 32 × 32 × 32 internally by the U-Net architecture if it employs a patch-
based mechanism or if this refers to the receptive field granularity. This strategy
allows for efficient processing of large volumes while maintaining a manageable
memory footprint. During inference, a similar strategy (e.g., sliding window with
overlap) is typically used to generate segmentations for the entire volume, which
are then aggregated.

2.3 Coreset selection strategy

We adopted the official Coreset training dataset for the whole training process.

2.4 Post-processing

No specific model-output post-processing steps.

3 Experiments

3.1 Dataset and evaluation metrics

The development set for the CVPR 2025 Foundation Models for Text-guided
3D Biomedical Image Segmentation Challenge encompasses a broader range of
3D cases sourced from numerous public datasets3, covering commonly used 3D
modalities such as Computed Tomography (CT), Magnetic Resonance Imaging
(MRI), Positron Emission Tomography (PET), Ultrasound, and Microscopy im-
ages. Our work utilizes the provided 10% coreset of the total training cases for
model fine-tuning.

The text-guided segmentation task, which is the focus of our work, includes
both semantic segmentation and instance segmentation aspects. For the semantic
segmentation task, the primary evaluation metrics are the Dice Similarity Co-
efficient (DSC) and Normalized Surface Distance (NSD). These metrics assess
the segmentation region overlap and boundary distance, respectively, providing
a comprehensive measure of segmentation quality. For the instance segmentation
task, the evaluation involves computing the F1 score at an overlapping threshold
of 0.5, alongside DSC scores for true positive instances. A critical constraint for
the challenge is the algorithm runtime, which is limited to 60 seconds per class
during inference. Exceeding this time limit results in all DSC and NSD metrics
for that specific test case being set to 0.
3 A complete list is available at https://medsam-datasetlist.github.io/

https://medsam-datasetlist.github.io/
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3.2 Implementation details

Preprocessing No additional preprocessing strategies were introduced beyond
those inherent in the SAT baseline pipeline. For handling large-scale datasets, the
SAT framework employs a patch-based approach during training, where crops
of size 256× 256× 96 are extracted from the images. Data loading is facilitated
by 16 worker processes to ensure efficient batch preparation.

Environment settings The development and training of our model were con-
ducted in the environment detailed in Table 1.

Table 1. Development environments and requirements.

Component Specification
System Ubuntu 22.04 LTS
CPU 20 vCPU Intel(R) Xeon(R) Platinum 8457C
RAM 200GB
GPU (number and type) 1 × NVIDIA H20 (96GB HBM, NVLink)
CUDA version 12.4
Programming language Python 3.12
Deep learning framework PyTorch 2.5.1, Torchvision
Storage System Disk: 30GB; Data Disk: 50GB

Training protocols Our fine-tuning procedure commenced from the official
SAT-Nano baseline model pre-trained on 10% of the challenge data. The specifics
of our training protocol are summarized in Table 2. We utilized nnU-Net style
data augmentations as configured in the baseline training script. These augmen-
tations typically include random rotations, scaling, elastic deformations, gamma
correction, and mirroring, enhancing the model’s robustness and ability to gen-
eralize to unseen data.

Our core modification to the training protocol was the integration of the
JDTLoss. The overall loss function is a weighted sum of Dice loss, Binary Cross-
Entropy (BCE) loss, and JDTLoss, applied at each output layer of the deeply
supervised U-Net decoder.

4 Results and discussion

4.1 Quantitative results on validation set

We evaluated SAT-Nano-JDT, our JDTLoss-enhanced SAT-Nano model, on the
CVPR 2025 Challenge coreset-data track. Table 3 benchmarks our approach
against the official SAT and CAT baselines.
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Table 2. Training protocols. (This table summarizes key parameters used for fine-
tuning the SAT-Nano baseline with JDTLoss.)

Parameter Details
Pre-trained Model SAT-Nano (official baseline, pre-trained on 10% chal-

lenge data)
Batch size (3D) 4
Patch size (Input Crop) 256× 256× 96
Internal Patch Size (U-Net) 32× 32× 32

Total steps Stage 1: 260,000; Stage 2: 100,000
Optimizer Adam (implied by typical deep learning practices, not

explicitly stated in script)
Initial learning rate (lr) Stage 1: 1× 10−4; Stage 2: 1× 10−5

Lr decay schedule Two-stage schedule with warmup (10,000 steps per
stage)

Training time (approx.) [To be filled based on actual training duration, e.g., XX
hours on 1xH20]

Loss function Sum of Dice Loss, BCEWithLogitsLoss, and JDTLoss
(DML variant), applied with deep supervision. Each
component (Dice, BCE, JDT) is equally weighted per
deep supervision layer.

Number of model parameters SAT-Nano: 110M (as per SAT paper [13])

Table 3. Quantitative evaluation on the validation set (coreset-data track). SAT-Nano-
JDT refers to our fine-tuned SAT-Nano with JDTLoss.

Modality Method Semantic Segmentation Instance Segmentation
DSC NSD F1 DSC TP

CT
CAT Baseline 0.604 0.598 0.287 0.328
SAT Baseline 0.643 0.638 0.132 0.145
SAT-Nano-JDT 0.644 0.638 0.126 0.141

MRI
CAT Baseline 0.426 0.488 0.185 0.283
SAT Baseline 0.453 0.528 0.059 0.067
SAT-Nano-JDT 0.448 0.516 0.056 0.066

Microscopy
CAT Baseline - - 0.023 0.554
SAT Baseline - - 0.087 0.292
SAT-Nano-JDT - - 0.087 0.310

PET
CAT Baseline - - 0.017 0.168
SAT Baseline - - 0.113 0.234
SAT-Nano-JDT - - 0.012 0.029

Ultrasound
CAT Baseline 0.818 0.812 - -
SAT Baseline 0.755 0.719 - -
SAT-Nano-JDT 0.712 0.733 - -
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SAT-Nano-JDT demonstrated a marginal improvement in CT semantic DSC
(0.644) and microscopy instance DSC TP (0.310) over the SAT baseline. How-
ever, the performance in semantic segmentation of MRI (DSC 0.448 vs. 0.453)
and segmentation of PET instances (F1 0.012 vs. 0.113) was lower. For Ul-
trasound, SAT-Nano-JDT showed improved NSD (0.733 vs. 0.719) but lower
DSC (0.712 vs. 0.755). These mixed results indicate that while JDTLoss aims to
directly optimize Dice-related metrics, its integration into the SAT-Nano fine-
tuning pipeline did not yield uniform enhancements across all modalities and
tasks compared to the already strong baseline.

4.2 Qualitative results on validation set

Visual assessment of the performance of SAT-Nano-JDT is provided through
examples from the validation set, comparing the predictions with ground truth4.
Fig. 2 will show representative good and challenging segmentations for each
modality (CT, MRI, Microscopy, PET, Ultrasound).

Fig. 2. Qualitative CT segmentation by SAT-Nano-JDT. Top row(s) display successful
segmentations; bottom row(s) illustrate challenging scenarios.

Discussion of Failed Cases: Suboptimal segmentations typically arise
from: (i) inherent ambiguity in anatomical boundaries or challenging image con-
trast, particularly in [mention a specific example if you have one, for example,
low contrast MRI lesions]; (ii) potential limitations in generalizing from the 10%
4 Ground truth available at https://huggingface.co/datasets/junma/
CVPR-BiomedSegFM/tree/main/3D_val_gt

https://huggingface.co/datasets/junma/CVPR-BiomedSegFM/tree/main/3D_val_gt
https://huggingface.co/datasets/junma/CVPR-BiomedSegFM/tree/main/3D_val_gt
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coreset to diverse validation cases, especially for underrepresented structures or
imaging variations like those observed in PET; (iii) difficulties in accurately dis-
tinguishing closely located instances solely from text prompts. The performance
drop in PET suggests a particular sensitivity, possibly due to the unique char-
acteristics of tracer uptake or the specificity required by text prompts for PET
targets not fully captured during fine-tuning with JDTLoss on the coreset.

4.3 Results on final testing set

This is a placeholder. No need to show testing results now. We will announce the
testing results during CVPR (6.11) then you can add them during the revision
phase.

4.4 Limitation and Future Work

Our study highlights the nuanced impact of integrating JDTLoss into a pre-
trained foundation model. Limitations include: (1) The JDTLoss did not uni-
formly outperform the SAT baseline, suggesting the need for more extensive
tuning or that the baseline’s original loss configuration is highly optimized. (2)
Our exploration was confined to the 10% coreset and a specific JDTLoss inte-
gration strategy.

Future Work will focus on: (1) Comprehensive hyperparameter optimiza-
tion for the JDTLoss component within the composite loss. (2) Evaluation of
the approach on the complete training data set to assess scalability and broader
impact.

5 Conclusion

We presented SAT-Nano-JDT, an adaptation of the SAT-Nano baseline fine-
tuned with JDTLoss for text-guided 3D biomedical image segmentation. On
the CVPR 2025 Challenge coreset validation set, SAT-Nano-JDT yielded incre-
mental improvements in specific areas like CT semantic DSC and Microscopy
instance DSC TP, but did not consistently surpass the strong SAT baseline
across all modalities and metrics. This underscores the complexity of enhancing
highly optimized foundation models through isolated loss function modifications
without extensive re-tuning. Our findings contribute to the understanding of
the application of specialized loss functions, indicating that, while theoretically
beneficial, their practical efficacy requires careful calibration within the broader
training paradigm of large-scale models.
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Ablation study Page 6
Efficiency evaluation results are provided None
Visualized segmentation example is provided Figure 2
Limitation and future work are presented Yes
Reference format is consistent. Yes
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