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ABSTRACT

Graph Neural Networks (GNNs) have shown remarkable capabilities in learning
from graph-structured data with various applications such as social analysis and
bioinformatics. However, the presence of label noise in real scenarios poses a sig-
nificant challenge in learning robust GNNs, and their effectiveness can be severely
impacted when dealing with noisy labels on graphs, often stemming from anno-
tation errors or inconsistencies. To address this, in this paper we propose a novel
approach called ICGNN that harnesses the structure information of the graph to
effectively alleviate the challenges posed by noisy labels. Specifically, we first de-
sign a novel noise indicator that measures the influence contradiction score (ICS)
based on the graph diffusion matrix to quantify the credibility of nodes with clean
labels, such that nodes with higher ICS values are more likely to be detected as
having noisy labels. Then we leverage the Gaussian mixture model to precisely
detect whether the label of a node is noisy or not. Additionally, we develop a
soft strategy to combine the predictions from neighboring nodes on the graph to
correct the detected noisy labels. At last, pseudo-labeling for abundant unlabeled
nodes is incorporated to provide auxiliary supervision signals and guide the model
optimization. Experiments on benchmark datasets show the superiority of our ap-
proach over competitive baselines in noisy label scenarios.

1 INTRODUCTION

Graphs have emerged as a foundational paradigm in machine learning and data mining recently,
capturing intricate relationships among entities in diverse domains such as social networks, biology,
recommender systems, and knowledge graphs. Graph Neural Networks (GNNs) have revolutionized
the field by enabling effective learning from graph data, whose key idea is to iteratively update node
representations based on the information propagated from neighboring nodes (Gilmer et al., 2017),
effectively exploring complex relationships and patterns within graph-structured data.

While GNNs have demonstrated impressive performance in various tasks, they typically hinge on
the assumption of clean and accurate class labels. However, real-world graph-structured data often
exhibit noisy labels, stemming from reasons such as human errors, inconsistencies in data collection,
or subjective interpretations (Song et al., 2022). Consider a recommender system operating on a
user-item interaction graph: noisy labels might arise from incorrect user feedback or mismatches
between user preferences and actual behavior. Similarly, in a molecular graph, errors in chemical
annotation could lead to misclassification of compounds. Such noisy labels can severely undermine
the robustness of GNNs and lead to poor generalization. Moreover, obtaining ground-truth labels
for graphs can be expensive and labor-intensive (Hao et al., 2020), particularly when dealing with
graphs with complex topological structures. Thus, a robust algorithm that effectively handles noisy
labels and label scarcity is crucial to fully unlock the potential of GNNs in real-worlds.

Actually, there are a variety of strategies in computer vision to mitigate the effects of noisy labels
effectively, which can be categorized into three groups: sample selection, loss correction and label
correction. The sample selection strategy (Han et al., 2018; Yu et al., 2019; Liang et al., 2024; Pan
et al., 2025) aims to filter out noisy samples during training. The loss correction strategy (Wang
et al., 2019; Wilton & Ye, 2024; Nagaraj et al., 2025) modifies the loss function to penalize the
influence of noisy labels. And label correction techniques (Sheng et al., 2017; Song et al., 2019; Li
et al., 2024a) attempt to directly modify noisy labels to improve accuracy.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

However, these algorithms often struggle to adapt seamlessly to the graph-structured data due to
the complex topological structures, and only a handful of approaches have been developed to tackle
noisy labels on graphs (Dai et al., 2021; Du et al., 2023; Qian et al., 2023; Chen et al., 2024; Ding
et al., 2024; Li et al., 2025). For example, NRGNN (Dai et al., 2021) constructs edges between
unlabeled nodes and labeled nodes with similar features, thereby facilitating predictive precision
and credibility of label information. Building on this, RTGNN (Qian et al., 2023) proposes self-
reinforcement and consistency regularization as auxiliary supervision to achieve better robustness.
Meanwhile, CGNN (Yuan et al., 2023) enhances node representation robustness via contrastive
learning and effectively detects noisy labels using a homophily-driven sample selection strategy
on graphs. Most recently, ProCon (Li et al., 2025) identifies mislabeled nodes by measuring label
consistency among feature- and adjacency-based peers, using prototype-derived pseudo-labels to
iteratively refine clean samples and prototypes.

Despite their efficacy for handling noisy labels on graphs, there still exist some inherent issues: (i)
they lack an effective mechanism to accurately identify nodes with noisy labels and often fail to
explicitly incorporate the characteristics of graph structures. For instance, NRGNN overlooks
the issue of noisy label detection by simply connecting unlabeled nodes with similar labeled nodes.
It alleviates the impact of noisy labels, but it does not actively detect or address noise in the labels.
In contrast, RTGNN and CGNN employ traditional prediction consistency techniques for detection
in a direct manner which fail to leverage the rich structural information inherent in graphs, resulting
in sub-optimal results; (ii) these methods lack a robust strategy for correcting noisy labels. For
example, RTGNN and ProCon merely reduces the weights of detected noisy labels, which can miti-
gate their impact but doesn’t directly correct the underlying label noise. On the other hand, CGNN
employs a neighbor voting mechanism that depends heavily on class distribution and can suffer from
sample imbalance, thus easily leading to confirmation errors (Nickerson, 1998). Hence, there is an
urgent demand for a detection approach that explicitly incorporates graph structural information
and a more rational correction strategy to enhance the robustness of GNNs in noisy label scenarios.

To address these issues, in this paper we present a novel graph neural network, referred to as ICGNN,
which quantifies the influence contradiction among diverse classes of nodes built upon the intricate
graph structure. Specifically, to accurately detect potential noisy labels on the graph, we develop an
effective noise indicator that employs the graph diffusion matrix to measure the influence contradic-
tion score (ICS) of a node based on interactions with nodes of different classes at both the structure
and attribute levels, thereby assessing the credibility of nodes with clean labels. In this way, nodes
with higher ICS values are more likely to be identified as having noisy labels. Afterward, the Gaus-
sian mixture model (GMM, (Richardson & Green, 1997)) is adopted to precisely detect the presence
of noisy labels for nodes. Moreover, based on the detected noisy labels, we design a soft and thus
robust correction strategy that integrates predictions from neighboring nodes in the graph to rectify
incorrect labels, thus effectively alleviating the impacts posed by noisy labels. Lastly, we incorpo-
rate pseudo-labeling techniques for abundant unlabeled nodes to provide additional supervision and
overcome the effects of label scarcity. Experimental results across various benchmark graph datasets
showcases the effectiveness of our ICGNN in handling label noise under different noise rates and
label rates, and achieving superior performance compared to competitive baseline approaches.

2 PROBLEM DEFINITION & PRELIMINARIES

Notations. Let G = {V,A,X,YL} denote a graph with N nodes and C classes, where V =
VL ∪VU = {v1, . . . , vN} is the node set containing limited labeled nodes in VL = {v1, . . . , vL} and
abundant unlabeled nodes in VU = {vL+1, . . . , vN} (N − L ≫ L), and X ∈ RN×F is the node
feature matrix. A is adjacency matrix where Aij = 1 if there is an edge between nodes i and j.
YL = {y1, . . . ,yL} ∈ {0, 1}C is one-hot labels of labeled nodes in VL, which is disturbed by noise.

Problem Definition. Given a graph G = {V,A,X,YL} where the labels YL are contaminated by
noise and the labeled nodes in VL is limited. This paper studies the problem of node classification in
semi-supervised scenarios where the goal is to learn a robust GNN, such that the trained GNN can
accurately make predictions on unlabeled nodes in VU.

GNN-based Encoder. The fundamental concept of GNNs (Kipf & Welling, 2017) involves updating
node representations by aggregating messages from neighboring nodes using a graph convolution
operation through the graph structure, following the message-passing mechanisms (Gilmer et al.,
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Figure 1: An overview of our ICGNN. Our model consists of two steps: (a) Noise detection by
influence contradiction: the original graph and KNN-based representation affinity graph undergo
graph diffusion from attribute and structure levels. From these two perspectives, the ICS values
are calculated and fused, followed by a Gaussian mixture model for accurately identifying potential
noisy labels; (b) Noise cleaning and pseudo-labeling by neighbor aggregation: robust noise cleaning
strategy and pseudo-labeling technique integrate predictions from neighboring nodes to correct the
detected noisy labels and provides additional supervision.

2017). Formally, the node representations Z = [z1, . . . , z|V|]
⊤ ∈ R|V|×d can be updated as:

Z = σ(ÂXW), Â = D̃− 1
2 ÃD̃− 1

2 , (1)

where Ã = A + I, D̃ is the degree matrix of Ã. d denotes the dimension of the hidden node
representations, W is the trainable weight matrix, and σ(·) is the activation function.

3 METHODOLOGY

3.1 NOISE DETECTION BY INFLUENCE CONTRADICTION

To alleviate the negative effect of the noisy labels, how to effectively detect them is a key factor in
the graph with a complex topology. Due to the inherent edge connections, each node in the graph
can influence its surrounding neighbors through message passing (Gilmer et al., 2017). Moreover,
the homophily assumption in the graph domain states that connected nodes tend to belong to the
same class. Hence, based on the above fact and assumption, we reasonably claim that if a labeled
node v ∈ V encounters strong influence from the nodes belonging to other classes, that is, the node v
is subject to a large influence contradiction in the message passing process, then we hold the opinion
that the node possibly possesses a noisy label. Based on this hypothesis, we propose a novel noise
indicator called influence contradiction score to quantify the credibility of nodes with clean labels.
The smaller the influence contradiction score, the more likely the node label is to be clean.

Technically, we first leverage the idea of graph diffusion (Klicpera et al., 2019) to globally acquire
each node’s influence on other nodes based on the graph topology, i.e., the graph diffusion matrix is
defined as:

T = ϵ(I− (1− ϵ)Â)−1, (2)
where the personalized PageRank (Page et al., 1999) is adopted with teleport probability ϵ ∈ (0, 1).
Â is the normalized adjacency matrix in Equation 1. Each row in the graph diffusion matrix T can
be regarded as the influence distribution exerted outward from each node (Bojchevski et al., 2020).
Grounded in this, we develop the influence contradiction score (ICS) for the i-th node in VL:

ICSi(T) =
∑C

j=1,j ̸=yi

1

|Cj |
∑

k∈Cj

Tki, (3)

where yi is the noisily annotated label of the i-th node, Cj contains the indices of nodes belonging
to the j-th class, and Tki is the (k, i)-th entry in matrix T. The normalization term 1/|Cj | is used
to eliminate the effect of the number of nodes belonging to different classes, which makes the ICSs
from different classes comparable. In this way, the value of ICSi(T) aggregates the influence from
the labeled nodes in other classes to the i-th node, which granularly characterizes the contradictory
influence between the i-th node and the nodes annotated by other labels.

3
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However, such a definition in Equation 3 only relies on the graph structure, while overlooking the
effect of the node attribute information. To address this issue, we leverage the node representations
to achieve the influence contradiction at the attribute level. Specifically, after feeding given graph
G into a GNN-based encoder (e.g., GCN (Kipf & Welling, 2017)) to extract the labeled node rep-
resentations ZL = {z1, . . . , zL}, we construct the representation affinity graph based on ZL, whose
adjacent matrix Ar ∈ {0, 1}L×L is built by selecting each node representation’s K nearest neigh-
bors. We utilize graph diffusion again as Equation 2 except that A is replaced by Ar, resulting in the
attribute-level diffusion matrix R. Then we define the corresponding ICS for the i-th node in VL:

ICSi(R) =
∑C

j=1,j ̸=yi

1

|Cj |
∑

k∈Cj

Rki, (4)

where Rki is the (k, i)-th entry in matrix R.

To fuse the structural and attributive information, we combine Equation 3 and Equation 4 to derive
the final ICS measurement to assist in noise detection, which is formulated as:

ICSi = (1− α)ICSi(T) + αICSi(R), (5)

where α is the hyper-parameter to adjust the relative importance of the structure- and attribute-level
ICS values, setting 0.5 in experiments. Based on the aforementioned discussion, we can effectively
use ICS to determine the credibility of a node’s label, whether it is clean or potentially contaminated.
In other words, the larger the value of ICSi, the less confident the label of the i-th node is clean.

Furthermore, to more precisely detect noisy labels, we adopt a GMM to fit the ICS values, where the
expectation-maximization (EM) algorithm (Dempster et al., 1977) is employed to achieve the assign-
ment probability (i.e., confidence) that a node has a clean label. EM has the advantage of enabling
learnable soft-threshold clustering, avoiding the need for manually-set hard thresholds. Specifically,
we consider a two-component GMM, and introduce the latent variables aiq , i = 1, . . . , L; q = 1, 2
to optimize the model using EM, where aiq represents the probability of the i-th node being assigned
to the q-th component. In the E step, we compute the posterior assignment probability by:

β(aiq) = p(aiq = 1|ICSi,θ) =
πqN (ICSi|µq, σq)∑2

q′=1 πq′N (ICSi|µq′ , σq′)
;

In the M step, we update the mean parameter as:

µq =
1∑L

i=1 β(aiq)

∑L

i=1
β(aiq)ICSi,

where N (·|µq, σq) denotes the probability density function of the q-th Gaussian, the updates of the
assignment parameter πq and variance parameter σq are omitted for space saving. After several iter-
ations of the E step and M step, the algorithm will converge eventually with theoretical guarantees.
We leverage the well-trained posterior assignment probability β̂i = β̂(aiq̂) as the confidence that the
i-th labeled node has a clean label, where q̂ = argminq µ̂q , µ̂q is the converged mean parameters for
q = 1, 2. Such an operation relies on the previous analysis that nodes with smaller ICSs are more
likely to have a clean label.

3.2 NOISE CLEANING BY NEIGHBOR AGGREGATION

Based on the detection results, how to correct these noisy labels is crucial to improve the perfor-
mance and robustness of the model. Instead of adopting neighbor voting (Yuan et al., 2023) to
compulsively correct them, we consider a softer approach that combines the noisy labels (for la-
beled nodes) and the neighbors’ prediction information. It is a conservative and cautious strategy
and thus a robust way, which helps alleviate the confirmation bias problem.

Concretely, at the t-th epoch, for the i-th (i ∈ {1, . . . , L}) labeled node in VL, we consider a convex
combination of the one-hot noisy label yi and the neighbor prediction information h(t)(zi) with
zi ∈ ZL as follows,

l
(t)
i = β̂

(t)
i yi + (1− β̂

(t)
i )h(t)(zi), (6)

where we utilize the trained confidence β̂
(t)
i , which represents the credibility of a node having a

clean label at the t-th epoch, as the weight of keeping the original annotated label in the updated
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label l(t)i . As for the expression of h(t)(zi), we aggregate the prediction information of the neighbors
of the node. Mathematically, denote by p

(t)
i the classifier’s softmax-based prediction derived from

zi at the t-th epoch , and then h(t)(zi) is defined as:

h(t)(zi) = softmax

(∑
k∈I(i)

Tkip
(t)
k

)
, (7)

where softmax(·) represents the softmax operation, Tki is the (k, i)-th entry in the graph diffusion
matrix T in Equation 2 to assign weights of other connected nodes, and I(i) is the set of indices
sampled from the i-th row of T, which has been normalized into a distribution. Such a definition in
Equation 7 encourages the updated label can be corrected by its global neighbors’ predictions.

In addition to noise cleaning, due to limited labels, we also strive to fully exploit the unlabeled
nodes in VU for better model robustness. At the t-th epoch, based on the node representations
ZU = zL+1, . . . , zN from the GNN-based encoder, we leverage the same strategy as Equation 7 to
annotate those unlabeled nodes with pseudo labels h(t)(zi), i = L + 1, . . . , N , which can provide
auxiliary supervision signals to better guide model optimization, as discussed in the next section.

3.3 OPTIMIZATION AGAINST NOISY LABELS

Depending on the proposed noise cleaning for noisily labeled nodes and pseudo-labeling for abun-
dant unlabeled nodes, we utilize the cross-entropy loss to guide the model training, i.e., at the t-th
epoch, the training is optimized by:

L =
∑L

i=1
l
(t)
i logp

(t)
i +

∑N

i=L+1
h(t)(zi) logp

(t)
i , (8)

where {p(t)
i , i = 1, . . . , N} are the classifier’s softmax-based predictions of all nodes in the t-th

epoch. After converging, we make predictions on the unlabeled nodes in VU based on the node
representations ZU. The optimization process is summarized in Algorithm 1 in the Appendix A.

Complexity Analysis. Assume the edge number is E and the iteration number in fitting GMM is T .
We compute the ICSs in O(EN + NL + L3) time. Since L ≪ N , the process does not consume
too much time. Based on ICSs, the complexities of training GMM, label cleaning, and calculating
loss are O(LT ), O(CN), and O(CN), respectively. Hence, the overall complexity of ICGNN is
O(EN + L3 + CN), which scales linearly with the sample size.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. We use six benchmark datasets for evaluation, including one author network: Coauthor
CS, one co-purchase network: Amazon Photo (Shchur et al., 2018), and four citation networks:
Cora, Pubmed, Citeseer (Sen et al., 2008), and DBLP (Pan et al., 2016). Following Dai et al.
(2021), 80% of the nodes are designated for the test set, and 10% for the validation set. For the
training set, we randomly select 1% of nodes for the large datasets (Coauthor CS, Amazon Photo,
Pubmed, and DBLP), and 5% of nodes for small-scale datasets (Cora and Citeseer) as the labeled
nodes. We employ two types of label noise and introduce label noise in the datasets following Yu
et al. (2019); Dai et al. (2021): (i) uniform noise, where labels flip to any other class with probability
p/(C − 1), and (ii) pair noise, where labels only flip to their closest class with probability p.
Baselines. To show the superiority of our ICGNN, we conduct comparisons with GNNs such as
GCN (Kipf & Welling, 2017), as well as other methods designed for noisy labels, namely For-
ward (Patrini et al., 2017), Coteaching+ (Yu et al., 2019), NRGNN (Dai et al., 2021), RTGNN (Qian
et al., 2023), CGNN (Yuan et al., 2023), CR-GNN (Li et al., 2024b), DND-NET (Ding et al., 2024),
and ProCon (Li et al., 2025). For a fair comparison, all methods use GCN as the default backbone.
Implementation Details. In the experiments, all baseline methods are re-run under the same settings
to ensure a fair comparison. For all datasets and methods, we set the rate of noisy labels to the default
value of 20%. For our ICGNN, we assign a teleport probability ϵ of 0.85 and select K = 5 as the
number of nearest neighbors. The trade-off hyper-parameter α is set to the default value of 0.5. The
maximum number of training epochs is 200. Following Dai et al. (2021), each method is replicated
for 5 runs to calculate mean accuracy and standard deviation on the test set for evaluation.
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Table 1: Performance on six datasets (mean±std). The best and runner-up results in all the methods
are highlighted with bold and underline, respectively. The noise rate is set to 20% as default.

Methods GCN Forward Coteaching+ NRGNN RTGNN CGNN CR-GNN DND-NET ProCon ICGNN
Year ICLR’17 CVPR’17 ICML’19 KDD’21 WSDM’23 ICASSP’23 NN’24 KDD’24 IJCAI’25 (Ours)

U
ni

fo
rm

N
oi

se Coauthor CS 80.3±1.4 80.5±1.2 80.7±1.4 83.2±0.5 86.7±0.9 84.1±0.4 82.9±2.3 86.2±2.7 85.4±1.8 87.4±0.8
Amazon Photo 82.2±0.9 82.1±0.4 78.5±0.6 83.7±3.9 84.8±3.3 85.3±0.9 81.5±4.6 82.3±1.6 83.5±2.2 87.3±0.5
Cora 70.3±1.8 73.7±0.7 73.6±1.7 80.0±0.5 79.1±0.5 76.8±0.5 79.1±4.2 76.5±2.0 78.6±1.6 80.9±0.8
Pubmed 77.3±0.9 77.4±0.5 78.6±0.4 79.0±1.6 79.8±1.3 78.1±0.4 80.1±0.9 79.4±2.2 79.1±1.2 80.3±0.5
DBLP 71.0±1.5 72.4±0.7 73.5±1.3 79.3±0.8 79.0±1.1 78.9±0.6 79.2±1.3 77.0±1.5 77.2±1.4 80.1±0.6
Citeseer 64.9±1.7 65.7±2.1 66.4±1.3 70.1±1.7 68.2±3.8 69.7±1.3 69.3±2.1 70.4±3.4 68.4±0.9 71.5±0.5

Pa
ir

N
oi

se

Coauthor CS 79.5±1.1 80.5±0.8 77.6±3.3 83.7±0.9 83.8±2.1 81.0±1.1 81.7±3.1 84.0±3.6 82.6±1.9 85.9±0.8
Amazon Photo 80.9±1.2 78.7±0.3 75.5±1.8 83.5±3.6 84.2±2.7 85.1±0.7 78.1±5.2 80.1±2.4 81.4±2.5 86.3±0.6
Cora 74.1±0.7 76.0±0.7 73.8±1.4 78.6±0.4 77.8±0.7 77.5±0.4 78.2±3.2 75.1±2.7 76.3±2.0 79.4±0.7
Pubmed 78.0±0.4 79.6±0.2 78.5±0.1 79.2±0.7 80.4±1.6 78.6±0.4 80.1±1.2 77.8±1.4 76.8±1.7 80.6±0.3
DBLP 72.5±1.2 74.4±0.5 72.7±1.2 79.3±0.9 78.4±2.6 79.6±0.5 78.9±1.7 76.5±2.3 77.1±1.3 80.2±0.4
Citeseer 60.3±1.0 61.6±0.4 65.1±2.1 67.8±3.0 67.0±2.8 66.0±1.7 68.6±1.9 69.6±1.8 67.8±1.1 70.7±0.7

4.2 EXPERIMENTAL RESULTS

Table 2: Statistical signif-
icance (Uniform Noise).

Datasets p-value

Coauthor CS 0.0473
Amazon Photo 0.0061
Cora 0.0468
Pubmed 0.1474
DBLP 0.0718
Citeseer 0.0712

In this section, we evaluate the performance of our ICGNN along with
all baselines for node classification in graphs. The results conducted
on six datasets, considering two types of label noises (20% noise rates
as default), are presented in Table 1. Based on the quantitative results,
we can observe: (i) Classic GNNs (GCN) show poorer performance
compared to methods specifically designed for noisy labels, indicat-
ing a potential vulnerability to overfitting erroneous labels. (ii) The
last six baselines (NRGNN ∼ ProCon) surpass Forward and Coteach-
ing+, highlighting the effectiveness of graph-specific methods in ex-
tracting meaningful features and semantics from graph data. Among
these methods, DDN-NET achieves the best performance by avoiding
noise propagation and fully exploiting unlabeled data. (iii) Across all datasets and noise types, our
ICGNN consistently attains the highest performance. It attributes to our noise detection via influ-
ence contradiction and GMM to effectively identify noisy labels, and ICGNN exploit higher-order
structure to learn from unlabeled nodes. (iv) We conduct Wilcoxon rank-sum tests to assess statis-
tical significance between our ICGNN and runner-up results, as described in Table 2. At the 0.1
significance level, the differences between ICGNN and runner-up results are statistically significant
in most cases. The same significance on pair noise is demonstrated in Table 4 of the Appendix.

4.3 ABLATION STUDY

Table 3: Ablation study against several variants.

Methods
Cora DBLP

Uniform Pair Uniform Pair

ICGNN w/o s-ICS 79.4±0.9 78.1±0.9 78.1±1.7 79.0±0.6
ICGNN w/o a-ICS 79.2±1.0 77.9±1.1 78.3±0.7 78.6±0.5
ICGNN w/o NC 78.7±1.0 76.9±1.2 77.4±0.8 77.1±0.8
ICGNN w/o PL 79.5±1.2 77.2±1.0 77.5±1.1 78.1±0.4
ICGNN w A 79.6±0.9 78.2±1.1 78.2±1.0 78.7±0.6

ICGNN 80.9±0.8 79.4±0.7 80.1±0.6 80.2±0.4

We conduct ablation studies on the Cora
and DBLP datasets to show the effective-
ness of ICGNN. We examine five vari-
ants: (i) ICGNN w/o s-ICS: excludes
structure-level ICS; (ii) ICGNN w/o a-
ICS: excludes attribute-level ICS; (iii)
ICGNN w/o NC: trains a GNN without
noise cleaning; (iv) ICGNN w/o PL: re-
moves the pseudo-labeling loss for unla-
beled nodes; and (v) ICGNN w A: re-
places the graph diffusion matrix T with the adjacency matrix A.

From Table 3, it is evident that the accuracy drops when either s-ICS or a-ICS is removed. This
highlights their complementary nature in capturing the contradiction between nodes in structural
and attribute levels, which aids in noise detection and cleaning. We also notice a significant drop in
performance when removing the noise cleaning process, which underscores the importance of the
noise cleaning process in enhancing the model’s robustness against label noise. Moreover, the use
of pseudo-labeling loss proves to be beneficial for overall performance by leveraging unlabeled data
to provide additional supervision. Finally, we find that compared to the local information provided
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Figure 3: Robustness analysis against different levels of label noises on DBLP and Pubmed.

by the adjacency matrix A, the global information offered by the graph diffusion matrix T makes
detecting noisy labels through node influence assessment more effective.

4.4 COMPARISONS OF DIFFERENT NOISE INDICATORS
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Figure 2: Loss distribution (a and c) and confi-
dence distribution (b and d) when training a GCN.

We compare our ICGNN with the widely-used
small-loss criterion (Gui et al., 2021) on on
Amazon Photo dataset to validate the effec-
tiveness of our approach in accurately distin-
guishing noise in training data. Figure 2a
and 2c illustrate histograms and kernel den-
sity estimation curves of normalized losses dur-
ing GCN training at the 50-th epoch. Ad-
ditionally, we present the distribution of con-
fidences estimated by our ICGNN in Figure
2b and 2d. It is clearly evident that the loss
distributions of clean and noisy samples ex-
hibit considerable overlap, underscoring the
limited effectiveness of the small-loss criterion
in distinguishing between clean and noisy la-
bels. This challenge becomes even more pro-
nounced when pair noise corrupts the dataset.
In sharp contrast, the confidences assigned to
clean and noisy samples by ICGNN establish
well-separated discrete clusters, resulting in a
clear and reliable differentiation between them. These results underscore the robust capability of
our influence contradiction score and GMM in effectively detecting and mitigating noise.

4.5 ROBUSTNESS ANALYSIS

To validate the robustness of our ICGNN, we conduct experiments from two perspectives: varying
the label noise rate and varying the training label rate. Here we compare our approach against four
competitive baselines (NRGNN, RTGNN, CGNN, and DND-NET). Note that CRGNN and ProCon
is excluded from the comparison due to its relatively weak performance and unstable fluctuations.

Impacts of Noisy Label Rates. To showcase the robust resilience of our ICGNN across various
degrees of label noise, we adjust the noise rate in 10%, 20%, 30%, 40%, while maintaining a fixed
label rate of 1%. We evaluate the results on DBLP and Pubmed datasets, as reported in Figure 3.
With the increase of label noise levels, there is a substantial performance decline across all baseline
methods. While our ICGNN also experiences reduced performance, it consistently demonstrates
greater resilience in the face of pronounced label noise. This highlights the robust efficacy of our
ICGNN in identifying noise through the contradictory influences among nodes and purifying nodes
through reliable higher-order neighborhood supervision.

Impacts of Training Label Rates. Here we explore the impact of distinct label rates by varying the
label rates in 0.5%, 1%, 1.5%, 2%, while keeping both types of noise rates fixed at 20%. The results
on DBLP and Pubmed datasets are shown in Figure 4. With increasing rates, all methods exhibit
notable performance improvements owing to the availability of more sufficient supervisory signals.
Nevertheless, the efficacy of RTGNN’s noise detection through the small-loss criterion might sig-
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Figure 4: The comparison w.r.t. different label rates on DBLP and Pubmed.

Table 4: Comparison w.r.t. learnable and fixed α on different datasets.

Uniform Noise Coauthor CS Amazon Photo Cora Pubmed DBLP Citeseer

Learned α 87.0±0.7 86.9±0.5 80.5±0.9 79.6±0.8 80.3±0.7 71.1±0.8

α = 0.5 87.4±0.8 87.3±0.5 80.9±0.8 80.3±0.5 80.1±0.6 71.5±0.5

nificantly diminish when labeled nodes are scarce, leading to error accumulation during subsequent
training and notably low accuracy at a 0.5% label rate. Additionally, our ICGNN consistently sur-
passes others, even with higher label rates that inevitably involve more noisy labels. This suggests
that our ICGNN effectively alleviates the negative effects of a substantial quantity of noisy labels.

4.6 IMPACTS OF HYPER-PARAMETER α
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Figure 5: Comparison w.r.t. different α on Coau-
thor CS, Amazon Photo, DBLP, Pubmed datasets.

To verify the relative importance of structural
and attributive information in the final ICS
value, we analyze the effect of the hyperpa-
rameter α in Equation 5. We set α to values
from {0, 0.25, 0.5, 0.75, 1.0} and Figure 5
present the results on Coauthor CS, Amazon
Photo, DBLP, and Pubmed datasets under uni-
form noise. It can be seen that relying solely on
either structural or attributive information (α =
0 or 1) is suboptimal for detecting noisy labels.
In most datasets, α = 0.5 yields the best results,
indicating that both structural and attributive
information are crucial and indispensable for
noise label detection. Additionally, we observe
that their relative importance depends on the
dataset’s topological density. For example, the
Pubmed dataset has a relatively sparse structure
compared to the others, leading to better perfor-
mance with attributive information alone than
with structural information, whereas the opposite is true for the other datasets.

Furthermore, we also experiment with defining α as an attention score between the structural and
attributive information, making it a learnable parameter. However, as shown in Table 4, the results
are not as good as using a fixed value, which is why we opt for a fixed value.

4.7 COMPARISON OF RUNTIME AND MEMORY COST

In this section, we compare the training time and memory cost of different methods to demonstrate
efficiency. Let N represents the total number of nodes in the graph, and L represents the number
of labeled nodes. For large-scale datasets, L = 0.01N , and for small-scale datasets, L = 0.05N .
Additionally, the complexity of training the GMM using the EM algorithm is very low, i.e., O(LT ),
where T is the number of EM iterations. In the experiments, when T is set to 10 or fewer, the
performance is typically optimal. Therefore, the term O(LT ) is omitted in the overall complexity
analysis in Section 3.3, as it is negligible.
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(a) Runtime (Cora) (b) Memory (Cora) (c) Runtime (DBLP) (d) Memory (DBLP)

Figure 6: Comparisons of average training time per epoch and memory cost.

Here we provide a detailed comparison of the training time in millisecond (ms) and memory con-
sumption in mega bytes (MiB) for our ICGNN and the competitive baselines (NRGNN, RTGNN,
CGNN and DND-NET). As shown in Figure 6, our method achieves higher computational efficiency
and comparable memory consumption while maintaining excellent performance.

4.8 PERFORMANCE ON LARGE-SCALE AND HETEROPHILOUS DATASETS

Table 5: Performance on OGBN-arxiv,
Cornell datasets.

Dataset OGBN-arxiv Cornell

NRGNN OOM 40.4±2.0

RTGNN OOM 42.3±1.2

CGNN 21.8 31.8±1.2

DND-NET 25.9 38.3±0.9

ICGNN (Ours) 28.3 44.7±1.6

In addition to the six benchmarks considered in the main
experiments, we add a large-scale dataset OGBN-Arxiv,
a heterophilous network dataset Cornell, to demonstrate
the broad scalability and generalizability of our proposed
ICGNN. The experimental results under uniform noise
are shown in Table 5. On OGBN-Arxiv dataset, it can
be observed that both NRGNN and RTGNN suffer from
direct memory allocation issues, while our ICGNN sig-
nificantly outperforms CGNN and DND-NET. It demon-
strates the flexibility, effectiveness, and scalability of our
approach. On the heterophilous dataset Cornell, com-
pared to highly competitive baselines, our method ICGNN still achieves the best performance, which
further verify the broad applicability across different types of graphs.

4.9 VISUALIZATION ANALYSIS
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Figure 7: Effectiveness of influence contradiction
score as noise indicator (t-SNE visualization of
Amazon Photo dataset with 40% uniform noise ).

We present a visual representation of node em-
beddings and their corresponding labels using
t-SNE in Figure 7. In addition, we color the
nodes in the training set differently based on
two distinct noise indicators: ICS and loss. As
shown in Figure 7a, nodes with lower influence
contradiction (darker color) are positioned far-
ther away from class boundaries compared to
nodes with higher conflict (lighter color), high-
lighting the fact that nodes close to class bound-
aries are more prone to be noisy. On the con-
trary, when employing loss as the noise indi-
cator (Figure 7b), the differentiation between
clean and noisy nodes is less significant. The
findings emphasize that ICS excels in revealing conflicts between nodes at both the structural and
attribute levels, making it a more suitable choice as the noise indicator.

5 CONCLUSION

In this study, we present a robust GNN named ICGNN to handle noisy and limited labels. To ef-
fectively detect noisy labels on the graph, we design a noise indicator to measure the influence
contradiction score from both structure- and attribute-level. Moreover, we develop a soft strategy to
cautiously correct detected noisy labels by combining predictions from neighboring nodes. Pseudo
labels are also generated for unlabeled nodes to further provide sufficient supervision signals. Em-
pirical studies on multiple datasets confirm the effectiveness of our ICGNN against label noise.
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A PSEUDO-CODE OF OUR FRAMEWORK

Algorithm 1 The Optimization Algorithm of ICGNN
Input: Graph G = {V,A,X,YL}; Maximum number of iterations Imax.
Output: Predictions on the unlabeled nodes in VU.

1: Initialize the trainable parameters in the GNN encoder;
2: Calculate the structure-level ICS values: ICSi(T), i = 1, . . . , L;
3: Set t = 0;
4: while t ≤ Imax do
5: Update the node representations {ZL,ZU} from the GNN-based encoder;
6: Calculate the ICS values by Equation 5;
7: Implement the EM algorithm to achieve the confidence β̂

(t)
i , i = 1, . . . , L;

8: Update the labels for the labeled nodes by Equation 6;
9: Annotate pseudo-labels for unlabeled nodes by Equation 7;

10: Calculate the total loss L by Equation 8;
11: Conduct back-propagation and update the whole network in ICGNN by minimizing L;
12: t = t+ 1;
13: end while
14: Obtain the labels of unlabeled nodes in VU by making predictions based on the learned repre-

sentations ZU.

The whole optimization process of our proposed ICGNN is summarized in Algorithm 1. The source
code is available for reproducibility at: https://anonymous.4open.science/r/ICGNN/.

B RELATED WORK

B.1 GRAPH NEURAL NETWORKS

GNNs have gained remarkable success and popularity in various domains, and the research land-
scape can be broadly categorized into two primary directions: spectral-based and spatial-based (Ju
et al., 2024a). For spectral-based methods, researchers have focused on leveraging graph Lapla-
cians or graph Fourier transforms to embed nodes in a lower-dimensional space. For example,
ChebNet (Defferrard et al., 2016) utilizes Chebyshev polynomials to efficiently approximate graph
convolutions and capture spectral information, enabling the model to learn meaningful representa-
tions of nodes in the graph. In contrast, spatial-based methods involve GNNs that directly process
node feature representations and their neighbors, enabling localized message passing (Gilmer et al.,
2017). Benefiting from their excellent performance, GNNs have found extensive applications in
tasks such as node classification (Luo et al., 2024; Wen et al., 2025; Zhao et al., 2025), link pre-
diction (Subramonian et al., 2023; Shi et al., 2024), and graph classification (Ju et al., 2024b; Sui
et al., 2025). However, GNNs typically assume a clean annotation environment, and still struggle
with handling noisy and limited labels, while our ICGNN overcomes these issues by designing an
effective noise indicator and developing a robust correction strategy against label noise and scarcity.

B.2 NEURAL NETWORKS WITH NOISY LABELS

Deep learning powered by neural networks has achieved impressive performance across diverse
domains. However, the notorious issue of noisy labels poses a significant challenge to their effi-
cacy (Zhang et al., 2021). To tackle this, various approaches in vision domains have been proposed
to address the challenge of noisy labels, which can be broadly categorized into three classes: sample
selection (Han et al., 2018; Yu et al., 2019; Li et al., 2020; Pan et al., 2025), loss correction (Ghosh
et al., 2017; Wang et al., 2019; Zhang & Sabuncu, 2018; Wilton & Ye, 2024; Nagaraj et al., 2025),
and label correction (Sheng et al., 2017; Song et al., 2019; Li et al., 2024a). For example, as a
representative work, Co-teaching (Han et al., 2018) employs two networks that are trained to iden-
tify clean samples, and iteratively exchange and refine each other. Nagaraj et al. (2025) introduce
the problem of temporal label noise in time series classification and develop methods that estimate
time-dependent noise functions to train more robust classifiers. However, these methods encounter
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obstacles when applied to graph data due to the intricate graph structures. To address these issues,
recently there are a handful of algorithms have been proposed to address noisy labels on graphs (Dai
et al., 2021; 2022; Li et al., 2024b; Qian et al., 2023; Xia et al., 2023; Yuan et al., 2023; Ding
et al., 2024; Li et al., 2025). Grounded in these advanced works, Wang et al. (2024) and Kim et al.
(2025) introduce comprehensive benchmarks for GNNs under label noise, enabling fair comparisons
and yielding new insights for future research. Among these competitive approaches, PI-GNN (Du
et al., 2023) proposes a pairwise framework for noisy node classification, combining confidence-
aware PI estimation with decoupled training to enhance robustness via pairwise node interactions.
ERASE (Chen et al., 2023) enhances label noise tolerance via structural denoising and decoupled
label propagation, combining prototype pseudo-labels with denoised labels for robust node clas-
sification. DND-NET (Ding et al., 2024) introduces a noise-robust GNN that avoids label noise
propagation and a reliable pseudo-labeling algorithm to leverage unlabeled nodes while mitigating
noise effects. Wu et al. (2024) and Cheng et al. (2024) further extend learning against label noise to
heterophilic graphs, demonstrating their effectiveness under challenging graph structures. However,
these approaches struggle to effectively detect whether a node is noisy and lack a robust algorithm
for label correction. Our framework ICGNN goes further and develops an effective detection ap-
proach as well as a rational correction strategy to enhance the robustness of GNNs.

C FURTHER DISCUSSION ON OUR PROPOSED ICGNN

C.1 HANDLING OF NOISY NODES DIFFICULT TO DETECT BY ICS

In situations where it is difficult to determine whether there is noise through ICS, it is more likely
to occur near class boundaries, where samples from different categories are closely distributed and
harder to separate. In these regions, the challenge lies in accurately distinguishing whether the
observed noise is due to mislabeling or if it naturally arises from the intrinsic ambiguity of the class
boundary. A potentially effective solution is to incorporate local structural information (such as
node degree, random walks, etc.) or to synthesize virtual nodes to make the decision boundaries
between different classes more distinct. It could enhance the effectiveness of our detection strategy
in distinguishing whether a label is noisy.

C.2 GRADIENT PROPAGATION OF ICGNN

In the implementation of ICGNN, noise detection and label correction are implemented outside the
direct gradient computation path to ensure that the primary model’s training process remains entirely
unaffected. Specifically, ICS calculation, GMM-based noise confidence assignment, and the overall
label correction process are all designed as auxiliary operations to iteratively refine the training
labels and provide improved supervision by accurately identifying and adjusting noisy labels. These
operations do not backpropagate gradients to the model parameters. Instead, they act as a separate
preprocessing step that dynamically adjusts the labels used for training while keeping the gradient
flow strictly intact through the primary model architecture. This design ensures that the detection
and correction mechanisms do not interfere with the model’s gradient-based optimization process.

D EXTRA EXPERIMENTAL ANALYSIS

D.1 STATISTICAL SIGNIFICANCE TEST OF EXPERIMENTAL RESULTS

Table 6: Statistical significance (pair noise).

Dataset Coauthor CS Amazon Photo Cora Pubmed DBLP Citeseer

p-value 0.0718 0.0184 0.0468 0.1050 0.0718 0.0108

To demonstrate the statistical significance of the results, we performed a Wilcoxon rank-sum tests to
assess whether the distributions of our experimental results and the best baseline results are signifi-
cantly different under the pair noise for each dataset.
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The Wilcoxon rank-sum tests is advantageous as it effectively handles small sample sizes and non-
normal data. If the p-value of the test is less than 0.1 (significance level), we consider the two
distributions to be significantly different. The p-value results of the Wilcoxon rank-sum tests are
shown in Table 6, leading us to conclude that our results are statistically significantly better than the
comparative baseline results in 5 out of 6 datasets. On the Pubmed dataset, although the result is
slightly above the significance level, the variance (1.6) of the best baseline is much larger than that
of our ICGNN (0.3), indicating the strong robustness of our approach under noisy labels.

D.2 PERFORMANCE EVALUATION ON DIFFERENT GNNS

Table 7: Performance of ICGNN with different GNN backbones.

Coauthor CS Amazon Photo Cora Pubmed DBLP Citeseer

GCN 87.4±0.8 87.3±0.5 80.9±0.8 80.3±0.5 80.1±0.6 71.5±0.5
GAT 86.8±1.2 87.4±0.7 80.2±1.1 80.1±0.7 79.8±0.7 71.0±0.7

GIN 87.1±0.7 87.0±0.6 80.6±0.9 79.9±0.5 80.3±0.6 71.3±0.4

Note that our method ICGNN does not use the graph diffusion within a specific GNN but rather
employs it as a tool to capture finer global neighbor relationships for designing noisy label detection
criterion and correction strategies. As such, our proposed method is GNN-agnostic, allowing users
to substitute any GNN model to adapt our approach.

In the main experiments, our method is implemented with GCN (Kipf & Welling, 2017) as the
backbone. Additionally, we include two other GNN variants (GAT (Veličković et al., 2018) and
GIN (Xu et al., 2018)) under uniform noise for comparison, shown in Table 7. The performance
fluctuations across different GNN variants in our method are relatively small, which demonstrates
the robustness of our method to various GNN architectures. Moreover, GCN achieves the best results
on most datasets, which explains our choice of GCN as the backbone.

D.3 ROBUSTNESS ANALYSIS AGAINST DIFFERENT LEVELS OF LABEL NOISES
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Figure 8: Robustness analysis against different levels of label noises on four datasets.

To illustrate the robustness of our proposed ICGNN under varying degrees of label noise, we sys-
tematically adjust the noise rate in increments of {10%, 20%, 30%, 40%}, while maintaining a
fixed label rate of 1%. Our evaluation focuses on comparing the performance of our ICGNN against
leading baselines (NRGNN, RTGNN, CGNN and DND-NET) across four datasets (Coauthor CS,
Amazon Photo, Cora and Citeseer). The experimental results are depicted in Figure 8.

From the figure, we can see a noticeable decline in performance across all baseline methods as the
level of noise rates increase. While ICGNN also experiences a reduction in performance, it distin-
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guishes itself by exhibiting remarkable resilience in the presence of substantial label noise. Notably,
as the label noise intensifies, the performance gap between ICGNN and the baselines widens, un-
derscoring the effectiveness of our proposed approach.

This observed resilience is primarily attributed to ICGNN’s remarkable ability to identify and miti-
gate noise through the intricate interplay of contradictory influences among nodes. The incorpora-
tion of higher-order neighborhood supervision further enhances the purification process, solidifying
the efficacy of our proposed ICGNN in navigating and mitigating the impact of label noise.

D.4 SENSITIVITY ANALYSIS AGAINST DIFFERENT LABEL RATES

0.5 1 1.5 2
Label Rate (%)

80.0

82.5

85.0

87.5

90.0

A
cc

ur
ac

y 
(%

)

NRGNN
RTGNN
CGNN
DND-NET
Ours

(a) Coauthor CS (Uniform)

0.5 1 1.5 2
Label Rate (%)

82.0

84.0

86.0

88.0
A

cc
ur

ac
y 

(%
)

NRGNN
RTGNN
CGNN
DND-NET
Ours

(b) Coauthor CS (Pair)

0.5 1 1.5 2
Label Rate (%)

80.0

82.0

84.0

86.0

88.0

90.0

A
cc

ur
ac

y 
(%

)

NRGNN
RTGNN
CGNN
DND-NET
Ours

(c) Amazon Photo (Uni-
form)

0.5 1 1.5 2
Label Rate (%)

80.0

82.0

84.0

86.0

88.0

A
cc

ur
ac

y 
(%

)

NRGNN
RTGNN
CGNN
DND-NET
Ours

(d) Amazon Photo (Pair)

2.5 5 7.5 10
Label Rate (%)

72.5

75.0

77.5

80.0

82.5

85.0

A
cc

ur
ac

y 
(%

)

NRGNN
RTGNN
CGNN
DND-NET
Ours

(e) Cora (Uniform)

2.5 5 7.5 10
Label Rate (%)

70.0

75.0

80.0

85.0

A
cc

ur
ac

y 
(%

)

NRGNN
RTGNN
CGNN
DND-NET
Ours

(f) Cora (Pair)

2.5 5 7.5 10
Label Rate (%)

62.5

65.0

67.5

70.0

72.5

75.0

A
cc

ur
ac

y 
(%

)
NRGNN
RTGNN
CGNN
DND-NET
Ours

(g) Citeseer (Uniform)

2.5 5 7.5 10
Label Rate (%)

55.0

60.0

65.0

70.0

75.0

A
cc

ur
ac

y 
(%

)

NRGNN
RTGNN
CGNN
DND-NET
Ours

(h) Citeseer (Pair)

Figure 9: Sensitivity analysis against different label rates on four datasets.

In this part, we investigate the impact of varying label rates by manipulating the label rates within
{0.5%, 1%, 1.5%, 2%} for Coauthor CS and Amazon Photo datasets, and {2.5%, 5%, 7.5%, 10%}
for Cora and Citeseer datasets, while maintaining a fixed 20% for both types of noise rates. The
results, shown in Figure 9, provide insights into the performance variations of different methods
under these conditions, evaluated on the Coauthor CS, Amazon Photo, Cora, and Citeseer datasets.

As label rates increase, the performance of all methods improves significantly due to the increased
availability of supervison signals. Remarkably, NRGNN consistently outperforms RTGNN and
CGNN, especially in scenarios characterized by a scarcity of labeled nodes (0.5%). It underscores
the effectiveness of NRGNN in generating accurate pseudo-labels, thereby augmenting the overall
supervision. Interestingly, the efficacy of RTGNN in noise detection, reliant on the small-loss cri-
terion, appears to diminish when labeled nodes are sparse, resulting in error accumulation during
subsequent training and notably diminished accuracy at a 0.5% label rate.

In contrast, our proposed ICGNN consistently surpasses other methods, even when confronted with
higher label rates that entail a greater proportion of noisy labels. This compelling performance sug-
gests that our ICGNN effectively mitigates the adverse effects associated with a substantial quantity
of noisy labels via our effective detection mechanism and correction strategy.

D.5 EXTREME SCENARIOS WITH HIGH NOISE RATES

To verify the robust performance of our method ICGNN in more extreme scenarios, we include the
results of our method and three competitive baseline methods on the DBLP dataset under uniform
noise levels of 60% and 80% in Table 8.

It is evident that when the noise ratio exceeds 50%, the performance of all methods drops signifi-
cantly. However, our method still maintains a certain degree of superior robustness compared to the
baselines. At the same time, we realize that when the noise ratio becomes excessively high, utilizing
these incorrect label information may do more harm than good. In such cases, it is crucial to extract
more effective discriminative information from the data itself for learning node representations.
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Table 8: Performance on DBLP under
uniform noise levels of 60% and 80%.

Noise Rate 60% 80%

NRGNN 42.2±3.1 24.9±4.0

RTGNN 45.3±2.9 20.2±4.5

CGNN 41.7±4.6 19.8±2.4

DND-NET 44.6±3.4 24.4±4.5

ICGNN w/o PL 43.6±2.5 23.6±3.1

ICGNN (Ours) 47.0±2.7 26.0±3.2

In addition, we also test the performance of the pseudo-
labeling module in high-noise scenarios. We include a
variant without pseudo-label loss on the DBLP dataset
in the second-to-last row of Table 8. When the noise
ratio becomes too high, although the pseudo-labeling
technique inevitably generates incorrect labels, we ob-
served that removing the pseudo-label loss results in
even worse performance. It demonstrates the effective-
ness of our pseudo-labeling approach. Furthermore, our
proposed pseudo-labeling technique relies on predictions
from neighboring nodes, rather than directly from the tar-
get node, which effectively helps mitigate the negative
impact of incorrect labels being introduced.

E PERFORMANCE COMPARISONS WITH MORE APPROACHES

To more comprehensively validate the superiority of our proposed ICGNN, we conduct comparisons
on three datasets (Cora, Pubmed, Citeseer) against 12 additional competitive approaches, including
six Learning with Label Noise (LLN) methods (Backward (Patrini et al., 2017), Coteaching (Han
et al., 2018), SCE (Wang et al., 2019), JoCoR (Wei et al., 2020), APL (Ma et al., 2020), and
S-model (Goldberger & Ben-Reuven, 2017)) and six Graph Neural Networks under Label Noise
(GLN) methods (CP (Zhang et al., 2020), D-GNN (NT et al., 2019), UnionNET (Li et al., 2021),
CLNode (Wei et al., 2023), PIGNN (Du et al., 2023), and RNCGLN (Zhu et al., 2024)). The exper-
imental results are shown in Table 9 and Table 10.

Table 9: Performance on three datasets (mean±std). The best results in all the methods are high-
lighted with bold. The noise rate is set to 20% as default.

Methods Backward Coteaching SCE JoCoR APL S-model ICGNN

U
ni

fo
rm Cora 75.9±1.5 66.7±4.2 76.1±1.4 76.3±1.7 76.0±1.6 75.9±1.3 80.9±0.8

Pubmed 69.7±3.9 68.9±2.9 71.3±3.2 61.2±6.9 70.9±3.4 70.5±3.6 80.3±0.5
Citeseer 62.4±2.6 50.9±4.2 62.5±2.9 65.9±2.5 60.7±2.6 61.1±3.1 71.5±0.5

Pa
ir

Cora 73.1±3.2 64.6±2.6 73.7±1.9 71.5±6.8 73.6±2.2 73.0±2.3 79.4±0.7
Pubmed 71.0±6.4 68.6±3.8 72.1±5.2 61.8±7.4 71.1±6.0 70.8±6.7 80.6±0.3
Citeseer 58.5±3.4 50.7±4.7 58.9±3.2 61.1±5.6 56.7±4.4 57.8±3.7 70.7±0.7

Table 10: Performance on three datasets (mean±std). The best results in all the methods are high-
lighted with bold. The noise rate is set to 20% as default.

Methods CP D-GNN UnionNET CLNode PIGNN RNCGLN ICGNN

U
ni

fo
rm Cora 76.7±1.5 64.7±4.0 76.1±1.7 73.5±1.9 74.1±2.0 76.9±1.2 80.9±0.8

Pubmed 68.4±9.0 65.2±4.4 70.2±3.9 67.7±3.8 71.8±2.4 N/A 80.3±0.5
Citeseer 61.4±3.0 52.2±3.6 66.5±3.6 59.6±3.2 64.1±1.7 65.3±4.4 71.5±0.5

Pa
ir

Cora 72.7±3.3 64.6±3.1 73.0±3.0 71.8±1.5 70.7±1.3 75.3±2.8 79.4±0.7
Pubmed 68.6±4.4 67.2±4.0 71.4±6.6 69.6±7.1 72.1±5.0 N/A 80.6±0.3
Citeseer 57.3±3.0 51.5±3.4 61.5±5.0 58.4±4.3 61.3±4.0 61.1±7.2 70.7±0.7

From the above tables, it can be clearly observed that our method consistently outperforms both cat-
egories (LLN methods and GLN methods) across all datasets, which demonstrates its effectiveness
in handling noisy labels in graph data. By detecting noisy labels through the influence contradic-
tion score and GMM, and further applying a neighbor-based soft correction strategy, our approach
maximally alleviates the adverse effects of incorrect labels during training.
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F DATASET DETAILS

For our comprehensive evaluation, we employ six datasets across diverse domains. These datasets
encompass a range of network types, such as an author network Coauthor CS (Shchur et al., 2018),
a co-purchase network Amazon Photo (Shchur et al., 2018), and four citation networks: Cora,
Pubmed, Citeseer (Sen et al., 2008), and DBLP (Pan et al., 2016).

Coauthor CS (Shchur et al., 2018): This dataset represents a co-authorship network in the field
of computer science. Nodes typically represent authors, and edges indicate collaboration between
authors on scholarly publications.

Amazon Photo (Shchur et al., 2018): This dataset consists of product images and metadata from
Amazon, focused on photo-related products. It captures user interactions, including product co-
purchases, and is used for tasks like recommendation and item classification in e-commerce.

Cora (Sen et al., 2008): It is a citation network derived from a computer science paper repository.
Nodes represent papers, and edges denote citations between them. It serves as a common benchmark
for evaluating graph-based algorithms in information retrieval and recommender systems.

Pubmed (Sen et al., 2008): Similar to Cora, Pubmed is another citation network originating from
the biomedical domain. Nodes represent scientific articles, and edges signify citations. It is widely
used in research for evaluating algorithms in the biomedical and healthcare domains.

Citeseer (Sen et al., 2008): It consists of scientific publications in computer science, with each paper
represented as a node. The dataset includes citation relationships between papers, and the features
represent word occurrences, widely used for graph-based classification tasks.

DBLP (Pan et al., 2016): This dataset is a citation network encompassing computer science and
related fields. Nodes represent publications, and edges represent citations. It is a widely used dataset
for evaluating algorithms in bibliographic analysis and citation recommendation.

G BASELINE DETAILS

To showcase the effectiveness of our proposed ICGNN, we perform comprehensive comparisons
with several state-of-the-art GNN-based methods. This includes well-established GNNs such as
GCN (Kipf & Welling, 2017). Additionally, we evaluate our method against other models specifi-
cally designed to handle noisy labels, namely Forward (Patrini et al., 2017), Coteaching+ (Yu et al.,
2019), NRGNN (Dai et al., 2021), RTGNN (Qian et al., 2023), CGNN (Yuan et al., 2023), CR-
GNN (Li et al., 2024b), DND-NET (Ding et al., 2024), and ProCon (Li et al., 2025).

GCN (Kipf & Welling, 2017): It is a foundational graph neural network architecture widely adopted.
It leverages graph convolutional layers to capture node representations by aggregating information
from neighboring nodes.

Forward (Patrini et al., 2017): This method is designed to address noisy labels by employing a
forward correction mechanism during training. It iteratively updates the estimated labels to minimize
the impact of noisy annotations.

Coteaching+ (Yu et al., 2019): This method is a noise-robust training strategy that involves two
networks, each learning from the other’s more confident predictions. It aims to reduce the influence
of noisy labels during training.

NRGNN (Dai et al., 2021): This method learns a robust GNN with noisy, limited labels by linking
unlabeled nodes to labeled ones with high feature similarity, providing clean labels and generating
pseudo labels for extra supervision.

RTGNN (Qian et al., 2023): This method governs label noise by adaptively applying self-
reinforcement and consistency regularization, correcting noisy labels and generating pseudo-labels
to focus on clean labels while reducing noisy ones.

CGNN (Yuan et al., 2023): This method employs graph contrastive learning and a homophily-based
sample selection technique to enhance the robustness of node representations against label noise and
purify noisy labels for efficient graph learning.
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CR-GNN (Li et al., 2024b): This method tackles sparse and noisy labels by integrating neighbor
contrastive loss, a dynamic cross-entropy loss that selects reliable nodes, and a cross-space consis-
tency constraint to enhance robustness.

DND-NET (Ding et al., 2024): This method develops a simple yet effective label noise propagation-
free GNN backbone and a novel reliable graph pseudo-labeling algorithm to prevent overfitting and
leverage unlabeled nodes.

ProCon (Li et al., 2025): This method identifies mislabeled nodes by measuring their label consis-
tency with semantically similar peers and employs a Gaussian Mixture Model to distinguish clean
samples, which iteratively refines the prototypes for improved detection.
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