

000 001 002 003 004 005 IDENTIFYING AND CORRECTING LABEL NOISE FOR 006 ROBUST GNNs VIA INFLUENCE CONTRADICTION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028
029
030
031
032 Graph Neural Networks (GNNs) have shown remarkable capabilities in learning
033 from graph-structured data with various applications such as social analysis and
034 bioinformatics. However, the presence of label noise in real scenarios poses a sig-
035 nificant challenge in learning robust GNNs, and their effectiveness can be severely
036 impacted when dealing with noisy labels on graphs, often stemming from anno-
037 tation errors or inconsistencies. To address this, in this paper we propose a novel
038 approach called ICGNN that harnesses the structure information of the graph to
039 effectively alleviate the challenges posed by noisy labels. Specifically, we first de-
040 sign a novel noise indicator that measures the influence contradiction score (ICS)
041 based on the graph diffusion matrix to quantify the credibility of nodes with clean
042 labels, such that nodes with higher ICS values are more likely to be detected as
043 having noisy labels. Then we leverage the Gaussian mixture model to precisely
044 detect whether the label of a node is noisy or not. Additionally, we develop a
045 soft strategy to combine the predictions from neighboring nodes on the graph to
046 correct the detected noisy labels. At last, pseudo-labeling for abundant unlabeled
047 nodes is incorporated to provide auxiliary supervision signals and guide the model
048 optimization. Experiments on benchmark datasets show the superiority of our ap-
049 proach over competitive baselines in noisy label scenarios.
050
051

1 INTRODUCTION

052
053 Graphs have emerged as a foundational paradigm in machine learning and data mining recently,
054 capturing intricate relationships among entities in diverse domains such as social networks, biology,
055 recommender systems, and knowledge graphs. Graph Neural Networks (GNNs) have revolutionized
056 the field by enabling effective learning from graph data, whose key idea is to iteratively update node
057 representations based on the information propagated from neighboring nodes (Gilmer et al., 2017),
058 effectively exploring complex relationships and patterns within graph-structured data.
059

060 While GNNs have demonstrated impressive performance in various tasks, they typically hinge on
061 the assumption of clean and accurate class labels. However, real-world graph-structured data often
062 exhibit noisy labels, stemming from reasons such as human errors, inconsistencies in data collection,
063 or subjective interpretations (Song et al., 2022). Consider a recommender system operating on a
064 user-item interaction graph: noisy labels might arise from incorrect user feedback or mismatches
065 between user preferences and actual behavior. Similarly, in a molecular graph, errors in chemical
066 annotation could lead to misclassification of compounds. Such noisy labels can severely undermine
067 the robustness of GNNs and lead to poor generalization. Moreover, obtaining ground-truth labels
068 for graphs can be expensive and labor-intensive (Hao et al., 2020), particularly when dealing with
069 graphs with complex topological structures. Thus, a robust algorithm that effectively handles noisy
070 labels and label scarcity is crucial to fully unlock the potential of GNNs in real-worlds.
071

072 Actually, there are a variety of strategies in computer vision to mitigate the effects of noisy labels
073 effectively, which can be categorized into three groups: *sample selection*, *loss correction* and *label*
074 *correction*. The sample selection strategy (Han et al., 2018; Yu et al., 2019; Liang et al., 2024; Pan
075 et al., 2025) aims to filter out noisy samples during training. The loss correction strategy (Wang
076 et al., 2019; Wilton & Ye, 2024; Nagaraj et al., 2025) modifies the loss function to penalize the
077 influence of noisy labels. And label correction techniques (Sheng et al., 2017; Song et al., 2019; Li
078 et al., 2024a) attempt to directly modify noisy labels to improve accuracy.
079

054 However, these algorithms often struggle to adapt seamlessly to the graph-structured data due to
 055 the complex topological structures, and only a handful of approaches have been developed to tackle
 056 noisy labels on graphs (Dai et al., 2021; Du et al., 2023; Qian et al., 2023; Chen et al., 2024; Ding
 057 et al., 2024; Li et al., 2025). For example, NRGNN (Dai et al., 2021) constructs edges between
 058 unlabeled nodes and labeled nodes with similar features, thereby facilitating predictive precision
 059 and credibility of label information. Building on this, RTGNN (Qian et al., 2023) proposes self-
 060 reinforcement and consistency regularization as auxiliary supervision to achieve better robustness.
 061 Meanwhile, CGNN (Yuan et al., 2023) enhances node representation robustness via contrastive
 062 learning and effectively detects noisy labels using a homophily-driven sample selection strategy
 063 on graphs. Most recently, ProCon (Li et al., 2025) identifies mislabeled nodes by measuring label
 064 consistency among feature- and adjacency-based peers, using prototype-derived pseudo-labels to
 065 iteratively refine clean samples and prototypes.

066 Despite their efficacy for handling noisy labels on graphs, there still exist some inherent issues: **(i)**
 067 **they lack an effective mechanism to accurately identify nodes with noisy labels and often fail to**
 068 **explicitly incorporate the characteristics of graph structures.** For instance, NRGNN overlooks
 069 the issue of noisy label detection by simply connecting unlabeled nodes with similar labeled nodes.
 070 It alleviates the impact of noisy labels, but it does not actively detect or address noise in the labels.
 071 In contrast, RTGNN and CGNN employ traditional prediction consistency techniques for detection
 072 in a direct manner which fail to leverage the rich structural information inherent in graphs, resulting
 073 in sub-optimal results; **(ii) these methods lack a robust strategy for correcting noisy labels.** For
 074 example, RTGNN and ProCon merely reduces the weights of detected noisy labels, which can miti-
 075 gate their impact but doesn't directly correct the underlying label noise. On the other hand, CGNN
 076 employs a neighbor voting mechanism that depends heavily on class distribution and can suffer from
 077 sample imbalance, thus easily leading to confirmation errors (Nickerson, 1998). Hence, *there is an*
 078 *urgent demand for a detection approach that explicitly incorporates graph structural information*
 079 *and a more rational correction strategy to enhance the robustness of GNNs in noisy label scenarios.*

080 To address these issues, in this paper we present a novel graph neural network, referred to as ICGNN,
 081 which quantifies the influence contradiction among diverse classes of nodes built upon the intricate
 082 graph structure. Specifically, to accurately detect potential noisy labels on the graph, we develop an
 083 effective noise indicator that employs the graph diffusion matrix to measure the influence contradic-
 084 tion score (ICS) of a node based on interactions with nodes of different classes at both the structure
 085 and attribute levels, thereby assessing the credibility of nodes with clean labels. In this way, nodes
 086 with higher ICS values are more likely to be identified as having noisy labels. Afterward, the Gaus-
 087 sian mixture model (GMM, (Richardson & Green, 1997)) is adopted to precisely detect the presence
 088 of noisy labels for nodes. Moreover, based on the detected noisy labels, we design a soft and thus
 089 robust correction strategy that integrates predictions from neighboring nodes in the graph to rectify
 090 incorrect labels, thus effectively alleviating the impacts posed by noisy labels. Lastly, we incorpo-
 091 rate pseudo-labeling techniques for abundant unlabeled nodes to provide additional supervision and
 092 overcome the effects of label scarcity. Experimental results across various benchmark graph datasets
 093 showcases the effectiveness of our ICGNN in handling label noise under different noise rates and
 094 label rates, and achieving superior performance compared to competitive baseline approaches.

094 2 PROBLEM DEFINITION & PRELIMINARIES

095 **Notations.** Let $\mathcal{G} = \{\mathcal{V}, \mathbf{A}, \mathbf{X}, \mathbf{Y}_L\}$ denote a graph with N nodes and C classes, where $\mathcal{V} = \mathcal{V}_L \cup \mathcal{V}_U = \{v_1, \dots, v_N\}$ is the node set containing limited labeled nodes in $\mathcal{V}_L = \{v_1, \dots, v_L\}$ and
 096 abundant unlabeled nodes in $\mathcal{V}_U = \{v_{L+1}, \dots, v_N\}$ ($N - L \gg L$), and $\mathbf{X} \in \mathbb{R}^{N \times F}$ is the node
 097 feature matrix. \mathbf{A} is adjacency matrix where $\mathbf{A}_{ij} = 1$ if there is an edge between nodes i and j .
 098 $\mathbf{Y}_L = \{y_1, \dots, y_L\} \in \{0, 1\}^C$ is one-hot labels of labeled nodes in \mathcal{V}_L , which is disturbed by noise.

099 **Problem Definition.** Given a graph $\mathcal{G} = \{\mathcal{V}, \mathbf{A}, \mathbf{X}, \mathbf{Y}_L\}$ where the labels \mathbf{Y}_L are contaminated by
 100 noise and the labeled nodes in \mathcal{V}_L is limited. This paper studies the problem of node classification in
 101 semi-supervised scenarios where the goal is to learn a robust GNN, such that the trained GNN can
 102 accurately make predictions on unlabeled nodes in \mathcal{V}_U .

103 **GNN-based Encoder.** The fundamental concept of GNNs (Kipf & Welling, 2017) involves updating
 104 node representations by aggregating messages from neighboring nodes using a graph convolution
 105 operation through the graph structure, following the message-passing mechanisms (Gilmer et al.,

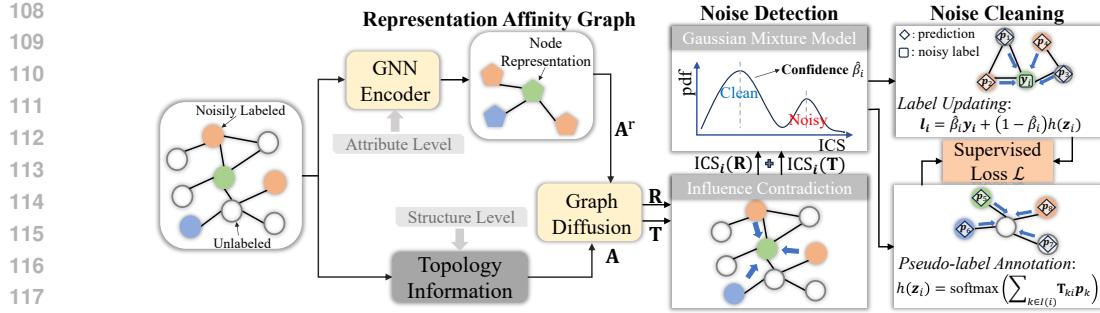


Figure 1: An overview of our ICGNN. Our model consists of two steps: (a) *Noise detection by influence contradiction*: the original graph and K NN-based representation affinity graph undergo graph diffusion from attribute and structure levels. From these two perspectives, the ICS values are calculated and fused, followed by a Gaussian mixture model for accurately identifying potential noisy labels; (b) *Noise cleaning and pseudo-labeling by neighbor aggregation*: robust noise cleaning strategy and pseudo-labeling technique integrate predictions from neighboring nodes to correct the detected noisy labels and provides additional supervision.

2017). Formally, the node representations $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_{|\mathcal{V}|}]^\top \in \mathbb{R}^{|\mathcal{V}| \times d}$ can be updated as:

$$\mathbf{Z} = \sigma(\hat{\mathbf{A}}\mathbf{X}\mathbf{W}), \quad \hat{\mathbf{A}} = \tilde{\mathbf{D}}^{-\frac{1}{2}}\tilde{\mathbf{A}}\tilde{\mathbf{D}}^{-\frac{1}{2}}, \quad (1)$$

where $\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}$, $\tilde{\mathbf{D}}$ is the degree matrix of $\tilde{\mathbf{A}}$. d denotes the dimension of the hidden node representations, \mathbf{W} is the trainable weight matrix, and $\sigma(\cdot)$ is the activation function.

3 METHODOLOGY

3.1 NOISE DETECTION BY INFLUENCE CONTRADICTION

To alleviate the negative effect of the noisy labels, how to effectively detect them is a key factor in the graph with a complex topology. Due to the inherent edge connections, each node in the graph can influence its surrounding neighbors through message passing (Gilmer et al., 2017). Moreover, the homophily assumption in the graph domain states that connected nodes tend to belong to the same class. Hence, based on the above fact and assumption, we reasonably claim that if a labeled node $v \in \mathcal{V}$ encounters strong influence from the nodes belonging to other classes, that is, the node v is subject to a large influence contradiction in the message passing process, then we hold the opinion that the node possibly possesses a noisy label. Based on this hypothesis, we propose a novel noise indicator called *influence contradiction score* to quantify the credibility of nodes with clean labels. The smaller the influence contradiction score, the more likely the node label is to be clean.

Technically, we first leverage the idea of graph diffusion (Klicpera et al., 2019) to globally acquire each node's influence on other nodes based on the graph topology, i.e., the graph diffusion matrix is defined as:

$$\mathbf{T} = \epsilon(\mathbf{I} - (1 - \epsilon)\hat{\mathbf{A}})^{-1}, \quad (2)$$

where the personalized PageRank (Page et al., 1999) is adopted with teleport probability $\epsilon \in (0, 1)$. $\hat{\mathbf{A}}$ is the normalized adjacency matrix in Equation 1. Each row in the graph diffusion matrix \mathbf{T} can be regarded as the influence distribution exerted outward from each node (Bojchevski et al., 2020). Grounded in this, we develop the *influence contradiction score* (ICS) for the i -th node in \mathcal{V}_L :

$$\text{ICS}_i(\mathbf{T}) = \sum_{j=1, j \neq y_i}^C \frac{1}{|\mathcal{C}_j|} \sum_{k \in \mathcal{C}_j} \mathbf{T}_{ki}, \quad (3)$$

where y_i is the noisily annotated label of the i -th node, \mathcal{C}_j contains the indices of nodes belonging to the j -th class, and \mathbf{T}_{ki} is the (k, i) -th entry in matrix \mathbf{T} . The normalization term $1/|\mathcal{C}_j|$ is used to eliminate the effect of the number of nodes belonging to different classes, which makes the ICSs from different classes comparable. In this way, the value of $\text{ICS}_i(\mathbf{T})$ aggregates the influence from the labeled nodes in other classes to the i -th node, which granularly characterizes the contradictory influence between the i -th node and the nodes annotated by other labels.

162 However, such a definition in Equation 3 only relies on the graph structure, while overlooking the
 163 effect of the node attribute information. To address this issue, we leverage the node representations
 164 to achieve the influence contradiction at the attribute level. Specifically, after feeding given graph
 165 \mathcal{G} into a GNN-based encoder (e.g., GCN (Kipf & Welling, 2017)) to extract the labeled node rep-
 166 resentations $\mathbf{Z}_L = \{\mathbf{z}_1, \dots, \mathbf{z}_L\}$, we construct the representation affinity graph based on \mathbf{Z}_L , whose
 167 adjacent matrix $\mathbf{A}^r \in \{0, 1\}^{L \times L}$ is built by selecting each node representation's K nearest neigh-
 168 bors. We utilize graph diffusion again as Equation 2 except that \mathbf{A} is replaced by \mathbf{A}^r , resulting in the
 169 attribute-level diffusion matrix \mathbf{R} . Then we define the corresponding ICS for the i -th node in \mathcal{V}_L :

$$170 \quad 171 \quad \text{ICS}_i(\mathbf{R}) = \sum_{j=1, j \neq y_i}^C \frac{1}{|\mathcal{C}_j|} \sum_{k \in \mathcal{C}_j} \mathbf{R}_{ki}, \quad (4)$$

172 where \mathbf{R}_{ki} is the (k, i) -th entry in matrix \mathbf{R} .

174 To fuse the structural and attributive information, we combine Equation 3 and Equation 4 to derive
 175 the final ICS measurement to assist in noise detection, which is formulated as:

$$176 \quad 177 \quad \text{ICS}_i = (1 - \alpha) \text{ICS}_i(\mathbf{T}) + \alpha \text{ICS}_i(\mathbf{R}), \quad (5)$$

178 where α is the hyper-parameter to adjust the relative importance of the structure- and attribute-level
 179 ICS values, setting 0.5 in experiments. Based on the aforementioned discussion, we can effectively
 180 use ICS to determine the credibility of a node's label, whether it is clean or potentially contaminated.
 181 In other words, the larger the value of ICS_i , the less confident the label of the i -th node is clean.

182 Furthermore, to more precisely detect noisy labels, we adopt a GMM to fit the ICS values, where the
 183 expectation-maximization (EM) algorithm (Dempster et al., 1977) is employed to achieve the assign-
 184 ment probability (i.e., confidence) that a node has a clean label. EM has the advantage of enabling
 185 learnable soft-threshold clustering, avoiding the need for manually-set hard thresholds. Specifically,
 186 we consider a two-component GMM, and introduce the latent variables a_{iq} , $i = 1, \dots, L; q = 1, 2$
 187 to optimize the model using EM, where a_{iq} represents the probability of the i -th node being assigned
 188 to the q -th component. In the E step, we compute the posterior assignment probability by:

$$189 \quad 190 \quad \beta(a_{iq}) = p(a_{iq} = 1 | \text{ICS}_i, \boldsymbol{\theta}) = \frac{\pi_q \mathcal{N}(\text{ICS}_i | \mu_q, \sigma_q)}{\sum_{q'=1}^2 \pi_{q'} \mathcal{N}(\text{ICS}_i | \mu_{q'}, \sigma_{q'})};$$

192 In the M step, we update the mean parameter as:

$$193 \quad 194 \quad \mu_q = \frac{1}{\sum_{i=1}^L \beta(a_{iq})} \sum_{i=1}^L \beta(a_{iq}) \text{ICS}_i,$$

196 where $\mathcal{N}(\cdot | \mu_q, \sigma_q)$ denotes the probability density function of the q -th Gaussian, the updates of the
 197 assignment parameter π_q and variance parameter σ_q are omitted for space saving. After several iter-
 198 ations of the E step and M step, the algorithm will converge eventually with theoretical guarantees.
 199 We leverage the well-trained posterior assignment probability $\hat{\beta}_i = \hat{\beta}(a_{i\hat{q}})$ as the confidence that the
 200 i -th labeled node has a clean label, where $\hat{q} = \operatorname{argmin}_q \hat{\mu}_q$, $\hat{\mu}_q$ is the converged mean parameters for
 201 $q = 1, 2$. Such an operation relies on the previous analysis that nodes with smaller ICSs are more
 202 likely to have a clean label.

203 3.2 NOISE CLEANING BY NEIGHBOR AGGREGATION

205 Based on the detection results, how to correct these noisy labels is crucial to improve the per-
 206 formance and robustness of the model. Instead of adopting neighbor voting (Yuan et al., 2023) to
 207 compulsively correct them, we consider a softer approach that combines the noisy labels (for la-
 208 beled nodes) and the neighbors' prediction information. It is a conservative and cautious strategy
 209 and thus a robust way, which helps alleviate the confirmation bias problem.

210 Concretely, at the t -th epoch, for the i -th ($i \in \{1, \dots, L\}$) labeled node in \mathcal{V}_L , we consider a convex
 211 combination of the one-hot noisy label \mathbf{y}_i and the neighbor prediction information $h^{(t)}(\mathbf{z}_i)$ with
 212 $\mathbf{z}_i \in \mathbf{Z}_L$ as follows,

$$213 \quad 214 \quad \mathbf{l}_i^{(t)} = \hat{\beta}_i^{(t)} \mathbf{y}_i + (1 - \hat{\beta}_i^{(t)}) h^{(t)}(\mathbf{z}_i), \quad (6)$$

215 where we utilize the trained confidence $\hat{\beta}_i^{(t)}$, which represents the credibility of a node having a
 216 clean label at the t -th epoch, as the weight of keeping the original annotated label in the updated

216 label $\mathbf{l}_i^{(t)}$. As for the expression of $h^{(t)}(\mathbf{z}_i)$, we aggregate the prediction information of the neighbors
 217 of the node. Mathematically, denote by $\mathbf{p}_i^{(t)}$ the classifier’s softmax-based prediction derived from
 218 \mathbf{z}_i at the t -th epoch, and then $h^{(t)}(\mathbf{z}_i)$ is defined as:
 219

$$220 \quad h^{(t)}(\mathbf{z}_i) = \text{softmax} \left(\sum_{k \in I(i)} \mathbf{T}_{ki} \mathbf{p}_k^{(t)} \right), \quad (7)$$

222 where $\text{softmax}(\cdot)$ represents the softmax operation, \mathbf{T}_{ki} is the (k, i) -th entry in the graph diffusion
 223 matrix \mathbf{T} in Equation 2 to assign weights of other connected nodes, and $I(i)$ is the set of indices
 224 sampled from the i -th row of \mathbf{T} , which has been normalized into a distribution. Such a definition in
 225 Equation 7 encourages the updated label can be corrected by its global neighbors’ predictions.
 226

227 In addition to noise cleaning, due to limited labels, we also strive to fully exploit the unlabeled
 228 nodes in \mathcal{V}_U for better model robustness. At the t -th epoch, based on the node representations
 229 $\mathbf{Z}_U = \mathbf{z}_{L+1}, \dots, \mathbf{z}_N$ from the GNN-based encoder, we leverage the same strategy as Equation 7 to
 230 annotate those unlabeled nodes with pseudo labels $h^{(t)}(\mathbf{z}_i), i = L+1, \dots, N$, which can provide
 231 auxiliary supervision signals to better guide model optimization, as discussed in the next section.
 232

3.3 OPTIMIZATION AGAINST NOISY LABELS

234 Depending on the proposed noise cleaning for noisily labeled nodes and pseudo-labeling for abundant
 235 unlabeled nodes, we utilize the cross-entropy loss to guide the model training, i.e., at the t -th
 236 epoch, the training is optimized by:
 237

$$\mathcal{L} = \sum_{i=1}^L \mathbf{l}_i^{(t)} \log \mathbf{p}_i^{(t)} + \sum_{i=L+1}^N h^{(t)}(\mathbf{z}_i) \log \mathbf{p}_i^{(t)}, \quad (8)$$

239 where $\{\mathbf{p}_i^{(t)}, i = 1, \dots, N\}$ are the classifier’s softmax-based predictions of all nodes in the t -th
 240 epoch. After converging, we make predictions on the unlabeled nodes in \mathcal{V}_U based on the node
 241 representations \mathbf{Z}_U . The optimization process is summarized in Algorithm 1 in the Appendix A.
 242

243 **Complexity Analysis.** Assume the edge number is E and the iteration number in fitting GMM is T .
 244 We compute the ICSs in $O(EN + NL + L^3)$ time. Since $L \ll N$, the process does not consume
 245 too much time. Based on ICSs, the complexities of training GMM, label cleaning, and calculating
 246 loss are $O(LT)$, $O(CN)$, and $O(CN)$, respectively. Hence, the overall complexity of ICGNN is
 247 $O(EN + L^3 + CN)$, which scales linearly with the sample size.
 248

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

252 **Datasets.** We use six benchmark datasets for evaluation, including one author network: Coauthor
 253 CS, one co-purchase network: Amazon Photo (Shchur et al., 2018), and four citation networks:
 254 Cora, Pubmed, Citeseer (Sen et al., 2008), and DBLP (Pan et al., 2016). Following Dai et al.
 255 (2021), 80% of the nodes are designated for the test set, and 10% for the validation set. For the
 256 training set, we randomly select 1% of nodes for the large datasets (Coauthor CS, Amazon Photo,
 257 Pubmed, and DBLP), and 5% of nodes for small-scale datasets (Cora and Citeseer) as the labeled
 258 nodes. We employ two types of label noise and introduce label noise in the datasets following Yu
 259 et al. (2019); Dai et al. (2021): (i) uniform noise, where labels flip to any other class with probability
 260 $p/(C-1)$, and (ii) pair noise, where labels only flip to their closest class with probability p .
 261

262 **Baselines.** To show the superiority of our ICGNN, we conduct comparisons with GNNs such as
 263 GCN (Kipf & Welling, 2017), as well as other methods designed for noisy labels, namely For-
 264 ward (Patrini et al., 2017), Coteaching+ (Yu et al., 2019), NRGNN (Dai et al., 2021), RTGNN (Qian
 265 et al., 2023), CGNN (Yuan et al., 2023), CR-GNN (Li et al., 2024b), DND-NET (Ding et al., 2024),
 266 and ProCon (Li et al., 2025). For a fair comparison, all methods use GCN as the default backbone.
 267

268 **Implementation Details.** In the experiments, all baseline methods are re-run under the same settings
 269 to ensure a fair comparison. For all datasets and methods, we set the rate of noisy labels to the default
 270 value of 20%. For our ICGNN, we assign a teleport probability ϵ of 0.85 and select $K = 5$ as the
 271 number of nearest neighbors. The trade-off hyper-parameter α is set to the default value of 0.5. The
 272 maximum number of training epochs is 200. Following Dai et al. (2021), each method is replicated
 273 for 5 runs to calculate mean accuracy and standard deviation on the test set for evaluation.
 274

270 Table 1: Performance on six datasets (mean \pm std). The best and runner-up results in all the methods
 271 are highlighted with **bold** and underline, respectively. The noise rate is set to 20% as default.
 272

Methods	GCN	Forward	Coteaching+	NRGNN	RTGNN	CGNN	CR-GNN	DND-NET	ProCon	ICGNN	
Year	ICLR'17	CVPR'17	ICML'19	KDD'21	WSDM'23	ICASSP'23	NN'24	KDD'24	IJCAI'25	(Ours)	
Uniform Noise	Coauthor CS	80.3 \pm 1.4	80.5 \pm 1.2	80.7 \pm 1.4	83.2 \pm 0.5	<u>86.7\pm0.9</u>	84.1 \pm 0.4	82.9 \pm 2.3	86.2 \pm 2.7	85.4 \pm 1.8	87.4\pm0.8
	Amazon Photo	82.2 \pm 0.9	82.1 \pm 0.4	78.5 \pm 0.6	83.7 \pm 3.9	84.8 \pm 3.3	<u>85.3\pm0.9</u>	81.5 \pm 4.6	82.3 \pm 1.6	83.5 \pm 2.2	87.3\pm0.5
	Cora	70.3 \pm 1.8	73.7 \pm 0.7	73.6 \pm 1.7	<u>80.0\pm0.5</u>	79.1 \pm 0.5	76.8 \pm 0.5	79.1 \pm 4.2	76.5 \pm 2.0	78.6 \pm 1.6	80.9\pm0.8
	Pubmed	77.3 \pm 0.9	77.4 \pm 0.5	78.6 \pm 0.4	79.0 \pm 1.6	79.8 \pm 1.3	78.1 \pm 0.4	<u>80.1\pm0.9</u>	79.4 \pm 2.2	79.1 \pm 1.2	80.3\pm0.5
	DBLP	71.0 \pm 1.5	72.4 \pm 0.7	73.5 \pm 1.3	<u>79.3\pm0.8</u>	79.0 \pm 1.1	78.9 \pm 0.6	79.2 \pm 1.3	77.0 \pm 1.5	77.2 \pm 1.4	80.1\pm0.6
	Citeseer	64.9 \pm 1.7	65.7 \pm 2.1	66.4 \pm 1.3	70.1 \pm 1.7	68.2 \pm 3.8	69.7 \pm 1.3	69.3 \pm 2.1	<u>70.4\pm3.4</u>	68.4 \pm 0.9	71.5\pm0.5
Pair Noise	Coauthor CS	79.5 \pm 1.1	80.5 \pm 0.8	77.6 \pm 3.3	83.7 \pm 0.9	83.8 \pm 2.1	81.0 \pm 1.1	81.7 \pm 3.1	<u>84.0\pm3.6</u>	82.6 \pm 1.9	85.9\pm0.8
	Amazon Photo	80.9 \pm 1.2	78.7 \pm 0.3	75.5 \pm 1.8	83.5 \pm 3.6	84.2 \pm 2.7	<u>85.1\pm0.7</u>	78.1 \pm 5.2	80.1 \pm 2.4	81.4 \pm 2.5	86.3\pm0.6
	Cora	74.1 \pm 0.7	76.0 \pm 0.7	73.8 \pm 1.4	<u>78.6\pm0.4</u>	77.8 \pm 0.7	77.5 \pm 0.4	78.2 \pm 3.2	75.1 \pm 2.7	76.3 \pm 2.0	79.4\pm0.7
	Pubmed	78.0 \pm 0.4	79.6 \pm 0.2	78.5 \pm 0.1	<u>79.2\pm0.7</u>	<u>80.4\pm1.6</u>	78.6 \pm 0.4	80.1 \pm 1.2	77.8 \pm 1.4	76.8 \pm 1.7	80.6\pm0.3
	DBLP	72.5 \pm 1.2	74.4 \pm 0.5	72.7 \pm 1.2	79.3 \pm 0.9	78.4 \pm 2.6	<u>79.6\pm0.5</u>	78.9 \pm 1.7	76.5 \pm 2.3	77.1 \pm 1.3	80.2\pm0.4
	Citeseer	60.3 \pm 1.0	61.6 \pm 0.4	65.1 \pm 2.1	67.8 \pm 3.0	67.0 \pm 2.8	66.0 \pm 1.7	68.6 \pm 1.9	<u>69.6\pm1.8</u>	67.8 \pm 1.1	70.7\pm0.7

285 286 4.2 EXPERIMENTAL RESULTS 287

288 In this section, we evaluate the performance of our ICGNN along with
 289 all baselines for node classification in graphs. The results conducted
 290 on six datasets, considering two types of label noises (20% noise rates
 291 as default), are presented in Table 1. Based on the quantitative results,
 292 we can observe: (i) Classic GNNs (GCN) show poorer performance
 293 compared to methods specifically designed for noisy labels, indicating
 294 a potential vulnerability to overfitting erroneous labels. (ii) The
 295 last six baselines (NRGNN ~ ProCon) surpass Forward and Coteach-
 296 ing+, highlighting the effectiveness of graph-specific methods in ex-
 297 tracting meaningful features and semantics from graph data. Among
 298 these methods, DDN-NET achieves the best performance by avoiding
 299 noise propagation and fully exploiting unlabeled data. (iii) Across all datasets and noise types, our
 300 ICGNN consistently attains the highest performance. It attributes to our noise detection via influ-
 301 ence contradiction and GMM to effectively identify noisy labels, and ICGNN exploit higher-order
 302 structure to learn from unlabeled nodes. (iv) We conduct *Wilcoxon rank-sum tests* to assess statis-
 303 tical significance between our ICGNN and runner-up results, as described in Table 2. At the 0.1
 304 significance level, the differences between ICGNN and runner-up results are statistically significant
 305 in most cases. The same significance on pair noise is demonstrated in Table 4 of the Appendix.

306 4.3 ABLATION STUDY 307

308 We conduct ablation studies on the Cora
 309 and DBLP datasets to show the effective-
 310 ness of ICGNN. We examine five vari-
 311 ants: (i) ICGNN w/o s-ICS: excludes
 312 structure-level ICS; (ii) ICGNN w/o a-
 313 ICS: excludes attribute-level ICS; (iii)
 314 ICGNN w/o NC: trains a GNN without
 315 noise cleaning; (iv) ICGNN w/o PL: re-
 316 moves the pseudo-labeling loss for unla-
 317 beled nodes; and (v) ICGNN w A: re-
 318 places the graph diffusion matrix \mathbf{T} with the adjacency matrix \mathbf{A} .

319 From Table 3, it is evident that the accuracy drops when either s-ICS or a-ICS is removed. This
 320 highlights their complementary nature in capturing the contradiction between nodes in structural
 321 and attribute levels, which aids in noise detection and cleaning. We also notice a significant drop in
 322 performance when removing the noise cleaning process, which underscores the importance of the
 323 noise cleaning process in enhancing the model's robustness against label noise. Moreover, the use
 324 of pseudo-labeling loss proves to be beneficial for overall performance by leveraging unlabeled data
 325 to provide additional supervision. Finally, we find that compared to the local information provided

Table 2: Statistical significance (Uniform Noise).

Datasets	p-value
Coauthor CS	0.0473
Amazon Photo	0.0061
Cora	0.0468
Pubmed	0.1474
DBLP	0.0718
Citeseer	0.0712

Table 3: Ablation study against several variants.

Methods	Cora		DBLP	
	Uniform	Pair	Uniform	Pair
ICGNN w/o s-ICS	79.4 \pm 0.9	78.1 \pm 0.9	78.1 \pm 1.7	79.0 \pm 0.6
ICGNN w/o a-ICS	79.2 \pm 1.0	77.9 \pm 1.1	78.3 \pm 0.7	78.6 \pm 0.5
ICGNN w/o NC	78.7 \pm 1.0	76.9 \pm 1.2	77.4 \pm 0.8	77.1 \pm 0.8
ICGNN w/o PL	79.5 \pm 1.2	77.2 \pm 1.0	77.5 \pm 1.1	78.1 \pm 0.4
ICGNN w A	79.6 \pm 0.9	78.2 \pm 1.1	78.2 \pm 1.0	78.7 \pm 0.6
ICGNN	80.9\pm0.8	79.4\pm0.7	80.1\pm0.6	80.2\pm0.4

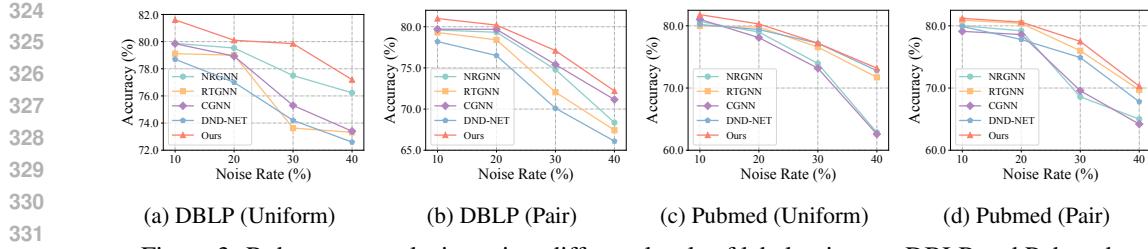


Figure 3: Robustness analysis against different levels of label noises on DBLP and Pubmed.

by the adjacency matrix \mathbf{A} , the global information offered by the graph diffusion matrix \mathbf{T} makes detecting noisy labels through node influence assessment more effective.

4.4 COMPARISONS OF DIFFERENT NOISE INDICATORS

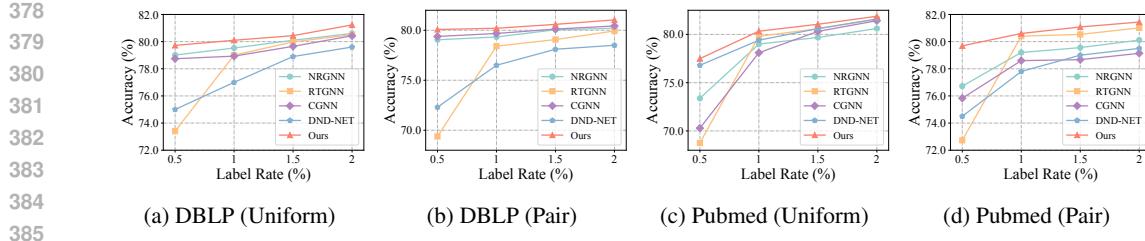
We compare our ICGNN with the widely-used small-loss criterion (Gui et al., 2021) on the Amazon Photo dataset to validate the effectiveness of our approach in accurately distinguishing noise in training data. Figure 2a and 2c illustrate histograms and kernel density estimation curves of normalized losses during GCN training at the 50-th epoch. Additionally, we present the distribution of confidences estimated by our ICGNN in Figure 2b and 2d. It is clearly evident that the loss distributions of clean and noisy samples exhibit considerable overlap, underscoring the limited effectiveness of the small-loss criterion in distinguishing between clean and noisy labels. This challenge becomes even more pronounced when pair noise corrupts the dataset. In sharp contrast, the confidences assigned to clean and noisy samples by ICGNN establish well-separated discrete clusters, resulting in a clear and reliable differentiation between them. These results underscore the robust capability of our influence contradiction score and GMM in effectively detecting and mitigating noise.

4.5 ROBUSTNESS ANALYSIS

To validate the robustness of our ICGNN, we conduct experiments from two perspectives: varying the label noise rate and varying the training label rate. Here we compare our approach against four competitive baselines (NRGNN, RTGNN, CGNN, and DND-NET). Note that CRGNN and ProCon is excluded from the comparison due to its relatively weak performance and unstable fluctuations.

Impacts of Noisy Label Rates. To showcase the robust resilience of our ICGNN across various degrees of label noise, we adjust the noise rate in 10%, 20%, 30%, 40%, while maintaining a fixed label rate of 1%. We evaluate the results on DBLP and Pubmed datasets, as reported in Figure 3. With the increase of label noise levels, there is a substantial performance decline across all baseline methods. While our ICGNN also experiences reduced performance, it consistently demonstrates greater resilience in the face of pronounced label noise. This highlights the robust efficacy of our ICGNN in identifying noise through the contradictory influences among nodes and purifying nodes through reliable higher-order neighborhood supervision.

Impacts of Training Label Rates. Here we explore the impact of distinct label rates by varying the label rates in 0.5%, 1%, 1.5%, 2%, while keeping both types of noise rates fixed at 20%. The results on DBLP and Pubmed datasets are shown in Figure 4. With increasing rates, all methods exhibit notable performance improvements owing to the availability of more sufficient supervisory signals. Nevertheless, the efficacy of RTGNN’s noise detection through the small-loss criterion might sig-

Figure 4: The comparison *w.r.t.* different label rates on DBLP and Pubmed.Table 4: Comparison *w.r.t.* learnable and fixed α on different datasets.

Uniform Noise	Coauthor CS	Amazon Photo	Cora	Pubmed	DBLP	Citeseer
Learned α	87.0 \pm 0.7	86.9 \pm 0.5	80.5 \pm 0.9	79.6 \pm 0.8	80.3\pm0.7	71.1 \pm 0.8
$\alpha = 0.5$	87.4\pm0.8	87.3\pm0.5	80.9\pm0.8	80.3\pm0.5	80.1 \pm 0.6	71.5\pm0.5

nificantly diminish when labeled nodes are scarce, leading to error accumulation during subsequent training and notably low accuracy at a 0.5% label rate. Additionally, our ICGNN consistently surpasses others, even with higher label rates that inevitably involve more noisy labels. This suggests that our ICGNN effectively alleviates the negative effects of a substantial quantity of noisy labels.

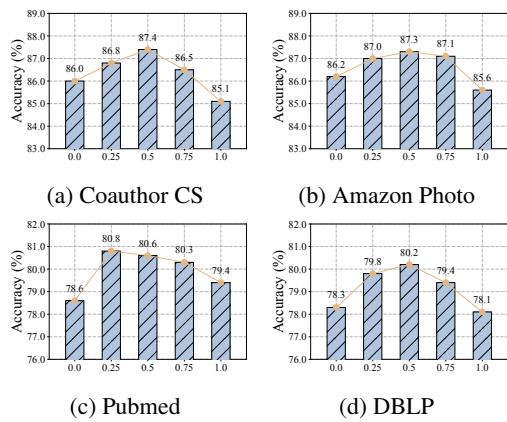
4.6 IMPACTS OF HYPER-PARAMETER α

To verify the relative importance of structural and attributive information in the final ICS value, we analyze the effect of the hyperparameter α in Equation 5. We set α to values from $\{0, 0.25, 0.5, 0.75, 1.0\}$ and Figure 5 present the results on Coauthor CS, Amazon Photo, DBLP, and Pubmed datasets under uniform noise. It can be seen that relying solely on either structural or attributive information ($\alpha = 0$ or 1) is suboptimal for detecting noisy labels. In most datasets, $\alpha = 0.5$ yields the best results, indicating that both structural and attributive information are crucial and indispensable for noise label detection. Additionally, we observe that their relative importance depends on the dataset's topological density. For example, the Pubmed dataset has a relatively sparse structure compared to the others, leading to better performance with attributive information alone than with structural information, whereas the opposite is true for the other datasets.

Furthermore, we also experiment with defining α as an attention score between the structural and attributive information, making it a learnable parameter. However, as shown in Table 4, the results are not as good as using a fixed value, which is why we opt for a fixed value.

4.7 COMPARISON OF RUNTIME AND MEMORY COST

In this section, we compare the training time and memory cost of different methods to demonstrate efficiency. Let N represents the total number of nodes in the graph, and L represents the number of labeled nodes. For large-scale datasets, $L = 0.01N$, and for small-scale datasets, $L = 0.05N$. Additionally, the complexity of training the GMM using the EM algorithm is very low, i.e., $O(LT)$, where T is the number of EM iterations. In the experiments, when T is set to 10 or fewer, the performance is typically optimal. Therefore, the term $O(LT)$ is omitted in the overall complexity analysis in Section 3.3, as it is negligible.

Figure 5: Comparison *w.r.t.* different α on Coauthor CS, Amazon Photo, DBLP, Pubmed datasets.

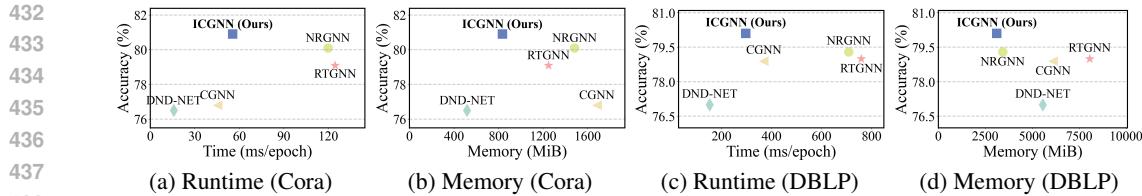


Figure 6: Comparisons of average training time per epoch and memory cost.

Here we provide a detailed comparison of the training time in millisecond (ms) and memory consumption in mega bytes (MiB) for our ICGNN and the competitive baselines (NRGNN, RTGNN, CGNN and DND-NET). As shown in Figure 6, our method achieves higher computational efficiency and comparable memory consumption while maintaining excellent performance.

4.8 PERFORMANCE ON LARGE-SCALE AND HETEROGENEOUS DATASETS

In addition to the six benchmarks considered in the main experiments, we add a large-scale dataset OGBN-Arxiv, a heterophilous network dataset Cornell, to demonstrate the broad scalability and generalizability of our proposed ICGNN. The experimental results under uniform noise are shown in Table 5. On OGBN-Arxiv dataset, it can be observed that both NRGNN and RTGNN suffer from direct memory allocation issues, while our ICGNN significantly outperforms CGNN and DND-NET. It demonstrates the flexibility, effectiveness, and scalability of our approach. On the heterophilous dataset Cornell, compared to highly competitive baselines, our method ICGNN still achieves the best performance, which further verify the broad applicability across different types of graphs.

4.9 VISUALIZATION ANALYSIS

We present a visual representation of node embeddings and their corresponding labels using t-SNE in Figure 7. In addition, we color the nodes in the training set differently based on two distinct noise indicators: ICS and loss. As shown in Figure 7a, nodes with lower influence contradiction (darker color) are positioned farther away from class boundaries compared to nodes with higher conflict (lighter color), highlighting the fact that nodes close to class boundaries are more prone to be noisy. On the contrary, when employing loss as the noise indicator (Figure 7b), the differentiation between clean and noisy nodes is less significant. The findings emphasize that ICS excels in revealing conflicts between nodes at both the structural and attribute levels, making it a more suitable choice as the noise indicator.

Table 5: Performance on OGBN-Arxiv, Cornell datasets.

Dataset	OGBN-Arxiv	Cornell
NRGNN	OOM	40.4±2.0
RTGNN	OOM	42.3±1.2
CGNN	21.8	31.8±1.2
DND-NET	25.9	38.3±0.9
ICGNN (Ours)	28.3	44.7±1.6

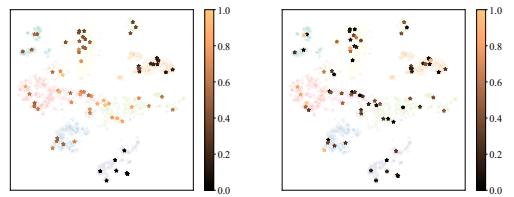


Figure 7: Effectiveness of influence contradiction score as noise indicator (t-SNE visualization of Amazon Photo dataset with 40% uniform noise).

5 CONCLUSION

In this study, we present a robust GNN named ICGNN to handle noisy and limited labels. To effectively detect noisy labels on the graph, we design a noise indicator to measure the influence contradiction score from both structure- and attribute-level. Moreover, we develop a soft strategy to cautiously correct detected noisy labels by combining predictions from neighboring nodes. Pseudo labels are also generated for unlabeled nodes to further provide sufficient supervision signals. Empirical studies on multiple datasets confirm the effectiveness of our ICGNN against label noise.

486 REFERENCES
487

488 Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek
489 Rózemberczki, Michal Lukasik, and Stephan Günnemann. Scaling graph neural networks with
490 approximate pagerank. In *Proceedings of the 26th ACM SIGKDD International Conference on*
491 *Knowledge Discovery & Data Mining*, pp. 2464–2473, 2020.

492 Ling-Hao Chen, Yuanshuo Zhang, Taohua Huang, Liangcai Su, Zeyi Lin, Xi Xiao, Xiaobo Xia, and
493 Tongliang Liu. Erase: Error-resilient representation learning on graphs for label noise tolerance.
494 *arXiv preprint arXiv:2312.08852*, 2023.

495 Ling-Hao Chen, Yuanshuo Zhang, Taohua Huang, Liangcai Su, Zeyi Lin, Xi Xiao, Xiaobo Xia,
496 and Tongliang Liu. Erase: Error-resilient representation learning on graphs for label noise toler-
497 ance. In *Proceedings of the 33rd ACM International Conference on Information and Knowledge*
498 *Management*, pp. 270–280, 2024.

499 Yao Cheng, Caihua Shan, Yifei Shen, Xiang Li, Siqiang Luo, and Dongsheng Li. Resurrecting
500 label propagation for graphs with heterophily and label noise. In *Proceedings of the 30th ACM*
501 *SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 433–444, 2024.

502 Enyan Dai, Charu Aggarwal, and Suhang Wang. NRGNN: Learning a label noise resistant graph
503 neural network on sparsely and noisily labeled graphs. In *Proceedings of the 27th ACM SIGKDD*
504 *Conference on Knowledge Discovery & Data Mining*, pp. 227–236, 2021.

505 Enyan Dai, Wei Jin, Hui Liu, and Suhang Wang. Towards robust graph neural networks for noisy
506 graphs with sparse labels. In *Proceedings of the Fifteenth ACM International Conference on Web*
507 *Search and Data Mining*, pp. 181–191, 2022.

508 Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
509 on graphs with fast localized spectral filtering. In *Advances in Neural Information Processing*
510 *Systems*, volume 29, 2016.

511 Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
512 via the EM algorithm. *Journal of the Royal Statistical Society Series B: Statistical Methodology*,
513 39(1):1–22, 1977.

514 Kaize Ding, Xiaoxiao Ma, Yixin Liu, and Shirui Pan. Divide and denoise: Empowering simple
515 models for robust semi-supervised node classification against label noise. In *Proceedings of the*
516 *30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 574–584, 2024.

517 Xuefeng Du, Tian Bian, Yu Rong, Bo Han, Tongliang Liu, Tingyang Xu, Wenbing Huang, Yix-
518 uan Li, and Junzhou Huang. Noise-robust graph learning by estimating and leveraging pairwise
519 interactions. *Transactions on Machine Learning Research*, 2023.

520 Aritra Ghosh, Himanshu Kumar, and P Shanti Sastry. Robust loss functions under label noise for
521 deep neural networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol-
522 ume 31, 2017.

523 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
524 message passing for quantum chemistry. In *International Conference on Machine Learning*, pp.
525 1263–1272. PMLR, 2017.

526 Jacob Goldberger and Ehud Ben-Reuven. Training deep neural-networks using a noise adaptation
527 layer. In *International Conference on Learning Representations*, 2017.

528 Xian-Jin Gui, Wei Wang, and Zhang-Hao Tian. Towards understanding deep learning from noisy
529 labels with small-loss criterion. In *Proceedings of the Thirtieth International Joint Conference on*
530 *Artificial Intelligence*, pp. 2469–2475, 2021.

531 Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
532 Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In
533 *Advances in Neural Information Processing Systems*, volume 31, 2018.

540 Zhongkai Hao, Chengqiang Lu, Zhenya Huang, Hao Wang, Zheyuan Hu, Qi Liu, Enhong Chen, and
 541 Cheekong Lee. Asgn: An active semi-supervised graph neural network for molecular property
 542 prediction. In *Proceedings of the 26th ACM SIGKDD international conference on knowledge*
 543 *discovery & data mining*, pp. 731–752, 2020.

544 Wei Ju, Zheng Fang, Yiyang Gu, Zequn Liu, Qingqing Long, Ziyue Qiao, Yifang Qin, Jianhao Shen,
 545 Fang Sun, Zhiping Xiao, et al. A comprehensive survey on deep graph representation learning.
 546 *Neural Networks*, 173:106207, 2024a.

547 Wei Ju, Zhengyang Mao, Siyu Yi, Yifang Qin, Yiyang Gu, Zhiping Xiao, Yifan Wang, Xiao Luo,
 548 and Ming Zhang. Hypergraph-enhanced dual semi-supervised graph classification. *arXiv preprint*
 549 *arXiv:2405.04773*, 2024b.

550 Suyeon Kim, SeongKu Kang, Dongwoo Kim, Jungseul Ok, and Hwanjo Yu. Delving into instance-
 551 dependent label noise in graph data: A comprehensive study and benchmark. In *Proceedings of*
 552 *the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V*. 2, pp. 5539–
 553 5550, 2025.

554 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
 555 works. In *International Conference on Learning Representations*, 2017.

556 Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learn-
 557 ing. *arXiv preprint arXiv:1911.05485*, 2019.

558 Jichang Li, Guanbin Li, Hui Cheng, Zicheng Liao, and Yizhou Yu. Feddiv: Collaborative noise
 559 filtering for federated learning with noisy labels. In *Proceedings of the AAAI Conference on*
 560 *Artificial Intelligence*, volume 38, pp. 3118–3126, 2024a.

561 Junnan Li, Richard Socher, and Steven CH Hoi. Dividemix: Learning with noisy labels as semi-
 562 supervised learning. *arXiv preprint arXiv:2002.07394*, 2020.

563 Kailai Li, Jiawei Sun, Jiong Lou, Zhanbo Feng, Hefeng Zhou, Chentao Wu, Guangtao Xue, Wei
 564 Zhao, and Jie Li. Leveraging peer-informed label consistency for robust graph neural networks
 565 with noisy labels. In *Proceedings of the Thirty-Fourth International Joint Conference on Artificial*
 566 *Intelligence*, pp. 5598–5606, 2025.

567 Xianxian Li, Qiyu Li, Haodong Qian, Jinyan Wang, et al. Contrastive learning of graphs under label
 568 noise. *Neural Networks*, 172:106113, 2024b.

569 Yayong Li, Jie Yin, and Ling Chen. Unified robust training for graph neural networks against
 570 label noise. In *Pacific-Asia Conference on Knowledge Discovery and Data Mining*, pp. 528–540.
 Springer, 2021.

571 Chao Liang, Linchao Zhu, Humphrey Shi, and Yi Yang. Combating label noise with a general
 572 surrogate model for sample selection. *International Journal of Computer Vision*, pp. 1–14, 2024.

573 Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Classic gnns are strong baselines: Reassessing gnns
 574 for node classification. In *Advances in Neural Information Processing Systems*, volume 37, pp.
 575 97650–97669, 2024.

576 Xingjun Ma, Hanxun Huang, Yisen Wang, Simone Romano, Sarah Erfani, and James Bailey. Nor-
 577 malized loss functions for deep learning with noisy labels. In *International Conference on Ma-*
 578 *chine Learning*, pp. 6543–6553. PMLR, 2020.

579 Sujay Nagaraj, Walter Gerych, Sana Tonekaboni, Anna Goldenberg, Berk Ustun, and Thomas
 580 Hartvigsen. Learning under temporal label noise. In *International Conference on Learning Rep-*
 581 *resentations*, 2025.

582 Raymond S Nickerson. Confirmation bias: A ubiquitous phenomenon in many guises. *Review of*
 583 *general psychology*, 2(2):175–220, 1998.

584 Hoang NT, Choong Jun Jin, and Tsuyoshi Murata. Learning graph neural networks with noisy
 585 labels. *arXiv preprint arXiv:1905.01591*, 2019.

594 Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
 595 Bringing order to the web. Technical report, Stanford InfoLab, 1999.
 596

597 Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. Tri-party deep network repre-
 598 sentation. *Network*, 11(9):12, 2016.

599 Weiran Pan, Wei Wei, Feida Zhu, and Yong Deng. Enhanced sample selection with confidence
 600 tracking: Identifying correctly labeled yet hard-to-learn samples in noisy data. In *Proceedings of*
 601 *the AAAI Conference on Artificial Intelligence*, volume 39, pp. 19795–19803, 2025.

602

603 Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making
 604 deep neural networks robust to label noise: A loss correction approach. In *Proceedings of the*
 605 *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1944–1952, 2017.

606

607 Siyi Qian, Haochao Ying, Renjun Hu, Jingbo Zhou, Jintai Chen, Danny Z Chen, and Jian Wu.
 608 Robust training of graph neural networks via noise governance. In *Proceedings of the Sixteenth*
 609 *ACM International Conference on Web Search and Data Mining*, pp. 607–615, 2023.

610

611 Sylvia Richardson and Peter J Green. On Bayesian analysis of mixtures with an unknown number
 612 of components (with discussion). *Journal of the Royal Statistical Society Series B: Statistical*
 613 *Methodology*, 59(4):731–792, 1997.

614

615 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
 616 Collective classification in network data. *AI magazine*, 29(3):93–93, 2008.

617

618 Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
 619 of graph neural network evaluation. *arXiv preprint arXiv:1811.05868*, 2018.

620

621 Victor S Sheng, Jing Zhang, Bin Gu, and Xindong Wu. Majority voting and pairing with multiple
 622 noisy labeling. *IEEE Transactions on Knowledge and Data Engineering*, 31(7):1355–1368, 2017.

623

624 Lei Shi, Bin Hu, Deng Zhao, Jianshan He, Zhiqiang Zhang, and Jun Zhou. Structural information
 625 enhanced graph representation for link prediction. In *Proceedings of the AAAI Conference on*
 626 *Artificial Intelligence*, volume 38, pp. 14964–14972, 2024.

627

628 Hwanjun Song, Minseok Kim, and Jae-Gil Lee. Selfie: Refurbishing unclean samples for robust
 629 deep learning. In *International Conference on Machine Learning*, pp. 5907–5915. PMLR, 2019.

630

631 Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy
 632 labels with deep neural networks: A survey. *IEEE Transactions on Neural Networks and Learning*
 633 *Systems*, 2022.

634

635 Arjun Subramonian, Levent Sagun, and Yizhou Sun. Networked inequality: Preferential attachment
 636 bias in graph neural network link prediction. *arXiv preprint arXiv:2309.17417*, 2023.

637

638 Yongduo Sui, Jie Sun, Shuyao Wang, Zemin Liu, Qing Cui, Longfei Li, and Xiang Wang. A unified
 639 invariant learning framework for graph classification. In *Proceedings of the 31st ACM SIGKDD*
 640 *International Conference on Knowledge Discovery & Data Mining*, pp. 1301–1312, 2025.

641

642 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 643 Bengio. Graph attention networks. In *International Conference on Learning Representations*,
 644 2018.

645

646 Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Symmetric cross
 647 entropy for robust learning with noisy labels. In *Proceedings of the IEEE/CVF International*
 648 *Conference on Computer Vision*, pp. 322–330, 2019.

649

650 Zhonghao Wang, Danyu Sun, Sheng Zhou, Haobo Wang, Jiapei Fan, Longtao Huang, and Jiajun Bu.
 651 Noisygl: A comprehensive benchmark for graph neural networks under label noise. In *Advances*
 652 *in Neural Information Processing Systems*, volume 37, pp. 38142–38170, 2024.

653

654 Hongxin Wei, Lei Feng, Xiangyu Chen, and Bo An. Combating noisy labels by agreement: A
 655 joint training method with co-regularization. In *Proceedings of the IEEE/CVF Conference on*
 656 *Computer Vision and Pattern Recognition*, pp. 13726–13735, 2020.

648 Xiaowen Wei, Xiuwen Gong, Yibing Zhan, Bo Du, Yong Luo, and Wenbin Hu. Clnode: Curriculum
 649 learning for node classification. In *Proceedings of the Sixteenth ACM International Conference*
 650 *on Web Search and Data Mining*, pp. 670–678, 2023.

651

652 Wen Wen, Han Li, Tieliang Gong, and Hong Chen. Towards generalization bounds of gcns for ad-
 653 versarially robust node classification. In *International Conference on Learning Representations*,
 654 2025.

655 Jonathan Wilton and Nan Ye. Robust loss functions for training decision trees with noisy labels.
 656 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 15859–15867,
 657 2024.

658

659 Junhang Wu, Ruimin Hu, Dengshi Li, Zijun Huang, Lingfei Ren, and Yilong Zang. Robust het-
 660 erophilic graph learning against label noise for anomaly detection. *Structure*, 4(v5):v6, 2024.

661

662 Jun Xia, Haitao Lin, Yongjie Xu, Cheng Tan, Lirong Wu, Siyuan Li, and Stan Z Li. Gnn cleaner:
 663 Label cleaner for graph structured data. *IEEE Transactions on Knowledge and Data Engineering*,
 36(2):640–651, 2023.

664

665 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 666 networks? In *International Conference on Learning Representations*, 2018.

667

668 Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama. How does dis-
 669 agreement help generalization against label corruption? In *International Conference on Machine*
Learning, pp. 7164–7173. PMLR, 2019.

670

671 Jingyang Yuan, Xiao Luo, Yifang Qin, Yusheng Zhao, Wei Ju, and Ming Zhang. Learning on graphs
 672 under label noise. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech*
and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

673

674 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 675 deep learning (still) requires rethinking generalization. *Communications of the ACM*, 64(3):107–
 115, 2021.

676

677 Mengmei Zhang, Linmei Hu, Chuan Shi, and Xiao Wang. Adversarial label-flipping attack and
 678 defense for graph neural networks. In *2020 IEEE International Conference on Data Mining*
 679 (*ICDM*), pp. 791–800. IEEE, 2020.

680

681 Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
 682 with noisy labels. In *Advances in Neural Information Processing Systems*, volume 31, 2018.

683

684 Jianan Zhao, Zhaocheng Zhu, Mikhail Galkin, Hesham Mostafa, Michael Bronstein, and Jian Tang.
 685 Fully-inductive node classification on arbitrary graphs. In *International Conference on Learning*
Representations, 2025.

686

687 Yonghua Zhu, Lei Feng, Zhenyun Deng, Yang Chen, Robert Amor, and Michael Witbrock. Ro-
 688 bust node classification on graph data with graph and label noise. In *Proceedings of the AAAI*
conference on artificial intelligence, volume 38, pp. 17220–17227, 2024.

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A PSEUDO-CODE OF OUR FRAMEWORK
703704
705 **Algorithm 1** The Optimization Algorithm of ICGNN706 **Input:** Graph $\mathcal{G} = \{\mathcal{V}, \mathbf{A}, \mathbf{X}, \mathbf{Y}_L\}$; Maximum number of iterations I_{\max} .707 **Output:** Predictions on the unlabeled nodes in \mathcal{V}_U .

```

708 1: Initialize the trainable parameters in the GNN encoder;
709 2: Calculate the structure-level ICS values:  $\text{ICS}_i(\mathbf{T})$ ,  $i = 1, \dots, L$ ;
710 3: Set  $t = 0$ ;
711 4: while  $t \leq I_{\max}$  do
712 5:   Update the node representations  $\{\mathbf{Z}_L, \mathbf{Z}_U\}$  from the GNN-based encoder;
713 6:   Calculate the ICS values by Equation 5;
714 7:   Implement the EM algorithm to achieve the confidence  $\hat{\beta}_i^{(t)}$ ,  $i = 1, \dots, L$ ;
715 8:   Update the labels for the labeled nodes by Equation 6;
716 9:   Annotate pseudo-labels for unlabeled nodes by Equation 7;
717 10:  Calculate the total loss  $\mathcal{L}$  by Equation 8;
718 11:  Conduct back-propagation and update the whole network in ICGNN by minimizing  $\mathcal{L}$ ;
719 12:   $t = t + 1$ ;
720 13: end while
721 14: Obtain the labels of unlabeled nodes in  $\mathcal{V}_U$  by making predictions based on the learned representations  $\mathbf{Z}_U$ .

```

722
723 The whole optimization process of our proposed ICGNN is summarized in Algorithm 1. The source
724 code is available for reproducibility at: <https://anonymous.4open.science/r/ICGNN/>.
725726 B RELATED WORK
727728 B.1 GRAPH NEURAL NETWORKS
729730 GNNs have gained remarkable success and popularity in various domains, and the research landscape
731 can be broadly categorized into two primary directions: spectral-based and spatial-based (Ju
732 et al., 2024a). For spectral-based methods, researchers have focused on leveraging graph Lapla-
733 cians or graph Fourier transforms to embed nodes in a lower-dimensional space. For example,
734 ChebNet (Defferrard et al., 2016) utilizes Chebyshev polynomials to efficiently approximate graph
735 convolutions and capture spectral information, enabling the model to learn meaningful represen-
736 tations of nodes in the graph. In contrast, spatial-based methods involve GNNs that directly process
737 node feature representations and their neighbors, enabling localized message passing (Gilmer et al.,
738 2017). Benefiting from their excellent performance, GNNs have found extensive applications in
739 tasks such as node classification (Luo et al., 2024; Wen et al., 2025; Zhao et al., 2025), link pre-
740 diction (Subramonian et al., 2023; Shi et al., 2024), and graph classification (Ju et al., 2024b; Sui
741 et al., 2025). However, GNNs typically assume a clean annotation environment, and still struggle
742 with handling noisy and limited labels, while our ICGNN overcomes these issues by designing an
743 effective noise indicator and developing a robust correction strategy against label noise and scarcity.
744745 B.2 NEURAL NETWORKS WITH NOISY LABELS
746747 Deep learning powered by neural networks has achieved impressive performance across diverse
748 domains. However, the notorious issue of noisy labels poses a significant challenge to their effi-
749 cacy (Zhang et al., 2021). To tackle this, various approaches in vision domains have been proposed
750 to address the challenge of noisy labels, which can be broadly categorized into three classes: *sample*
751 *selection* (Han et al., 2018; Yu et al., 2019; Li et al., 2020; Pan et al., 2025), *loss correction* (Ghosh
752 et al., 2017; Wang et al., 2019; Zhang & Sabuncu, 2018; Wilton & Ye, 2024; Nagaraj et al., 2025),
753 and *label correction* (Sheng et al., 2017; Song et al., 2019; Li et al., 2024a). For example, as a
754 representative work, Co-teaching (Han et al., 2018) employs two networks that are trained to iden-
755 tify clean samples, and iteratively exchange and refine each other. Nagaraj et al. (2025) introduce
time-dependent noise functions to train more robust classifiers. However, these methods encounter

756 obstacles when applied to graph data due to the intricate graph structures. To address these issues,
 757 recently there are a handful of algorithms have been proposed to address noisy labels on graphs (Dai
 758 et al., 2021; 2022; Li et al., 2024b; Qian et al., 2023; Xia et al., 2023; Yuan et al., 2023; Ding
 759 et al., 2024; Li et al., 2025). Grounded in these advanced works, Wang et al. (2024) and Kim et al.
 760 (2025) introduce comprehensive benchmarks for GNNs under label noise, enabling fair comparisons
 761 and yielding new insights for future research. Among these competitive approaches, PI-GNN (Du
 762 et al., 2023) proposes a pairwise framework for noisy node classification, combining confidence-
 763 aware PI estimation with decoupled training to enhance robustness via pairwise node interactions.
 764 ERASE (Chen et al., 2023) enhances label noise tolerance via structural denoising and decoupled
 765 label propagation, combining prototype pseudo-labels with denoised labels for robust node clas-
 766 sification. DND-NET (Ding et al., 2024) introduces a noise-robust GNN that avoids label noise
 767 propagation and a reliable pseudo-labeling algorithm to leverage unlabeled nodes while mitigating
 768 noise effects. Wu et al. (2024) and Cheng et al. (2024) further extend learning against label noise to
 769 heterophilic graphs, demonstrating their effectiveness under challenging graph structures. However,
 770 these approaches struggle to effectively detect whether a node is noisy and lack a robust algorithm
 771 for label correction. Our framework ICGNN goes further and develops an effective detection ap-
 772 proach as well as a rational correction strategy to enhance the robustness of GNNs.
 773

C FURTHER DISCUSSION ON OUR PROPOSED ICGNN

C.1 HANDLING OF NOISY NODES DIFFICULT TO DETECT BY ICS

774 In situations where it is difficult to determine whether there is noise through ICS, it is more likely
 775 to occur near class boundaries, where samples from different categories are closely distributed and
 776 harder to separate. In these regions, the challenge lies in accurately distinguishing whether the
 777 observed noise is due to mislabeling or if it naturally arises from the intrinsic ambiguity of the class
 778 boundary. A potentially effective solution is to incorporate local structural information (such as
 779 node degree, random walks, etc.) or to synthesize virtual nodes to make the decision boundaries
 780 between different classes more distinct. It could enhance the effectiveness of our detection strategy
 781 in distinguishing whether a label is noisy.

C.2 GRADIENT PROPAGATION OF ICGNN

782 In the implementation of ICGNN, noise detection and label correction are implemented outside the
 783 direct gradient computation path to ensure that the primary model’s training process remains entirely
 784 unaffected. Specifically, ICS calculation, GMM-based noise confidence assignment, and the overall
 785 label correction process are all designed as auxiliary operations to iteratively refine the training
 786 labels and provide improved supervision by accurately identifying and adjusting noisy labels. These
 787 operations do not backpropagate gradients to the model parameters. Instead, they act as a separate
 788 preprocessing step that dynamically adjusts the labels used for training while keeping the gradient
 789 flow strictly intact through the primary model architecture. This design ensures that the detection
 790 and correction mechanisms do not interfere with the model’s gradient-based optimization process.

D EXTRA EXPERIMENTAL ANALYSIS

D.1 STATISTICAL SIGNIFICANCE TEST OF EXPERIMENTAL RESULTS

802 Table 6: Statistical significance (pair noise).
 803

Dataset	Coauthor CS	Amazon Photo	Cora	Pubmed	DBLP	Citeseer
p-value	0.0718	0.0184	0.0468	0.1050	0.0718	0.0108

804 To demonstrate the statistical significance of the results, we performed a *Wilcoxon rank-sum tests* to
 805 assess whether the distributions of our experimental results and the best baseline results are signifi-
 806 cantly different under the pair noise for each dataset.

The *Wilcoxon rank-sum tests* is advantageous as it effectively handles small sample sizes and non-normal data. If the p-value of the test is less than 0.1 (significance level), we consider the two distributions to be significantly different. The p-value results of the *Wilcoxon rank-sum tests* are shown in Table 6, leading us to conclude that our results are statistically significantly better than the comparative baseline results in 5 out of 6 datasets. On the Pubmed dataset, although the result is slightly above the significance level, the variance (1.6) of the best baseline is much larger than that of our ICGNN (0.3), indicating the strong robustness of our approach under noisy labels.

D.2 PERFORMANCE EVALUATION ON DIFFERENT GNNs

Table 7: Performance of ICGNN with different GNN backbones.

	Coauthor CS	Amazon Photo	Cora	Pubmed	DBLP	Citeseer
GCN	87.4±0.8	87.3±0.5	80.9±0.8	80.3±0.5	80.1±0.6	71.5±0.5
GAT	86.8±1.2	87.4±0.7	80.2±1.1	80.1±0.7	79.8±0.7	71.0±0.7
GIN	87.1±0.7	87.0±0.6	80.6±0.9	79.9±0.5	80.3±0.6	71.3±0.4

Note that our method ICGNN does not use the graph diffusion within a specific GNN but rather employs it as a tool to capture finer global neighbor relationships for designing noisy label detection criterion and correction strategies. As such, our proposed method is GNN-agnostic, allowing users to substitute any GNN model to adapt our approach.

In the main experiments, our method is implemented with GCN (Kipf & Welling, 2017) as the backbone. Additionally, we include two other GNN variants (GAT (Veličković et al., 2018) and GIN (Xu et al., 2018)) under uniform noise for comparison, shown in Table 7. The performance fluctuations across different GNN variants in our method are relatively small, which demonstrates the robustness of our method to various GNN architectures. Moreover, GCN achieves the best results on most datasets, which explains our choice of GCN as the backbone.

D.3 ROBUSTNESS ANALYSIS AGAINST DIFFERENT LEVELS OF LABEL NOISES

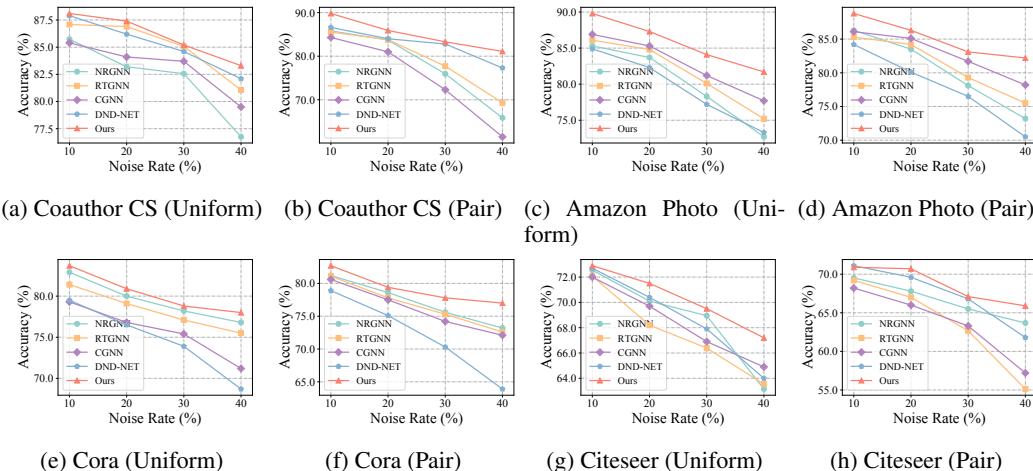


Figure 8: Robustness analysis against different levels of label noises on four datasets.

To illustrate the robustness of our proposed ICGNN under varying degrees of label noise, we systematically adjust the noise rate in increments of $\{10\%, 20\%, 30\%, 40\%\}$, while maintaining a fixed label rate of 1%. Our evaluation focuses on comparing the performance of our ICGNN against leading baselines (NRGNN, RTGNN, CGNN and DND-NET) across four datasets (Coauthor CS, Amazon Photo, Cora and Citeseer). The experimental results are depicted in Figure 8.

From the figure, we can see a noticeable decline in performance across all baseline methods as the level of noise rates increase. While ICGNN also experiences a reduction in performance, it distin-

guishes itself by exhibiting remarkable resilience in the presence of substantial label noise. Notably, as the label noise intensifies, the performance gap between ICGNN and the baselines widens, underscoring the effectiveness of our proposed approach.

This observed resilience is primarily attributed to ICGNN’s remarkable ability to identify and mitigate noise through the intricate interplay of contradictory influences among nodes. The incorporation of higher-order neighborhood supervision further enhances the purification process, solidifying the efficacy of our proposed ICGNN in navigating and mitigating the impact of label noise.

D.4 SENSITIVITY ANALYSIS AGAINST DIFFERENT LABEL RATES

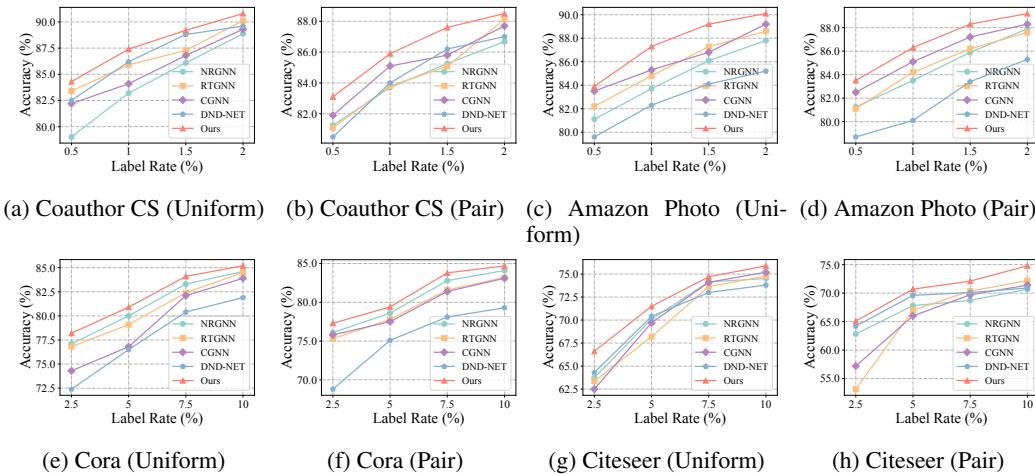


Figure 9: Sensitivity analysis against different label rates on four datasets.

In this part, we investigate the impact of varying label rates by manipulating the label rates within $\{0.5\%, 1\%, 1.5\%, 2\%\}$ for Coauthor CS and Amazon Photo datasets, and $\{2.5\%, 5\%, 7.5\%, 10\%\}$ for Cora and Citeseer datasets, while maintaining a fixed 20% for both types of noise rates. The results, shown in Figure 9, provide insights into the performance variations of different methods under these conditions, evaluated on the Coauthor CS, Amazon Photo, Cora, and Citeseer datasets.

As label rates increase, the performance of all methods improves significantly due to the increased availability of supervision signals. Remarkably, NRGNN consistently outperforms RTGNN and CGNN, especially in scenarios characterized by a scarcity of labeled nodes (0.5%). It underscores the effectiveness of NRGNN in generating accurate pseudo-labels, thereby augmenting the overall supervision. Interestingly, the efficacy of RTGNN in noise detection, reliant on the small-loss criterion, appears to diminish when labeled nodes are sparse, resulting in error accumulation during subsequent training and notably diminished accuracy at a 0.5% label rate.

In contrast, our proposed ICGNN consistently surpasses other methods, even when confronted with higher label rates that entail a greater proportion of noisy labels. This compelling performance suggests that our ICGNN effectively mitigates the adverse effects associated with a substantial quantity of noisy labels via our effective detection mechanism and correction strategy.

D.5 EXTREME SCENARIOS WITH HIGH NOISE RATES

To verify the robust performance of our method ICGNN in more extreme scenarios, we include the results of our method and three competitive baseline methods on the DBLP dataset under uniform noise levels of 60% and 80% in Table 8.

It is evident that when the noise ratio exceeds 50%, the performance of all methods drops significantly. However, our method still maintains a certain degree of superior robustness compared to the baselines. At the same time, we realize that when the noise ratio becomes excessively high, utilizing these incorrect label information may do more harm than good. In such cases, it is crucial to extract more effective discriminative information from the data itself for learning node representations.

918
 919 In addition, we also test the performance of the pseudo-
 920 labeling module in high-noise scenarios. We include a
 921 variant without pseudo-label loss on the DBLP dataset
 922 in the second-to-last row of Table 8. When the noise
 923 ratio becomes too high, although the pseudo-labeling
 924 technique inevitably generates incorrect labels, we ob-
 925 served that removing the pseudo-label loss results in
 926 even worse performance. It demonstrates the effective-
 927 ness of our pseudo-labeling approach. Furthermore, our
 928 proposed pseudo-labeling technique relies on predictions
 929 from neighboring nodes, rather than directly from the tar-
 930 get node, which effectively helps mitigate the negative
 931 impact of incorrect labels being introduced.
 932

E PERFORMANCE COMPARISONS WITH MORE APPROACHES

934
 935 To more comprehensively validate the superiority of our proposed ICGNN, we conduct comparisons
 936 on three datasets (Cora, Pubmed, Citeseer) against 12 additional competitive approaches, including
 937 six Learning with Label Noise (LLN) methods (Backward (Patrini et al., 2017), Coteaching (Han
 938 et al., 2018), SCE (Wang et al., 2019), JoCoR (Wei et al., 2020), APL (Ma et al., 2020), and
 939 S-model (Goldberger & Ben-Reuven, 2017)) and six Graph Neural Networks under Label Noise
 940 (GLN) methods (CP (Zhang et al., 2020), D-GNN (NT et al., 2019), UnionNET (Li et al., 2021),
 941 CLNode (Wei et al., 2023), PIGNN (Du et al., 2023), and RNCGLN (Zhu et al., 2024)). The exper-
 942 imental results are shown in Table 9 and Table 10.
 943

Table 9: Performance on three datasets (mean \pm std). The best results in all the methods are high-
 lighted with **bold**. The noise rate is set to 20% as default.

	Methods	Backward	Coteaching	SCE	JoCoR	APL	S-model	ICGNN
Uniform	Cora	75.9 \pm 1.5	66.7 \pm 4.2	76.1 \pm 1.4	76.3 \pm 1.7	76.0 \pm 1.6	75.9 \pm 1.3	80.9\pm0.8
	Pubmed	69.7 \pm 3.9	68.9 \pm 2.9	71.3 \pm 3.2	61.2 \pm 6.9	70.9 \pm 3.4	70.5 \pm 3.6	80.3\pm0.5
	Citeseer	62.4 \pm 2.6	50.9 \pm 4.2	62.5 \pm 2.9	65.9 \pm 2.5	60.7 \pm 2.6	61.1 \pm 3.1	71.5\pm0.5
Pair	Cora	73.1 \pm 3.2	64.6 \pm 2.6	73.7 \pm 1.9	71.5 \pm 6.8	73.6 \pm 2.2	73.0 \pm 2.3	79.4\pm0.7
	Pubmed	71.0 \pm 6.4	68.6 \pm 3.8	72.1 \pm 5.2	61.8 \pm 7.4	71.1 \pm 6.0	70.8 \pm 6.7	80.6\pm0.3
	Citeseer	58.5 \pm 3.4	50.7 \pm 4.7	58.9 \pm 3.2	61.1 \pm 5.6	56.7 \pm 4.4	57.8 \pm 3.7	70.7\pm0.7

Table 10: Performance on three datasets (mean \pm std). The best results in all the methods are high-
 lighted with **bold**. The noise rate is set to 20% as default.

	Methods	CP	D-GNN	UnionNET	CLNode	PIGNN	RNCGLN	ICGNN
Uniform	Cora	76.7 \pm 1.5	64.7 \pm 4.0	76.1 \pm 1.7	73.5 \pm 1.9	74.1 \pm 2.0	76.9 \pm 1.2	80.9\pm0.8
	Pubmed	68.4 \pm 9.0	65.2 \pm 4.4	70.2 \pm 3.9	67.7 \pm 3.8	71.8 \pm 2.4	N/A	80.3\pm0.5
	Citeseer	61.4 \pm 3.0	52.2 \pm 3.6	66.5 \pm 3.6	59.6 \pm 3.2	64.1 \pm 1.7	65.3 \pm 4.4	71.5\pm0.5
Pair	Cora	72.7 \pm 3.3	64.6 \pm 3.1	73.0 \pm 3.0	71.8 \pm 1.5	70.7 \pm 1.3	75.3 \pm 2.8	79.4\pm0.7
	Pubmed	68.6 \pm 4.4	67.2 \pm 4.0	71.4 \pm 6.6	69.6 \pm 7.1	72.1 \pm 5.0	N/A	80.6\pm0.3
	Citeseer	57.3 \pm 3.0	51.5 \pm 3.4	61.5 \pm 5.0	58.4 \pm 4.3	61.3 \pm 4.0	61.1 \pm 7.2	70.7\pm0.7

958
 959 From the above tables, it can be clearly observed that our method consistently outperforms both cat-
 960 egories (LLN methods and GLN methods) across all datasets, which demonstrates its effectiveness
 961 in handling noisy labels in graph data. By detecting noisy labels through the influence contradic-
 962 tion score and GMM, and further applying a neighbor-based soft correction strategy, our approach
 963 maximally alleviates the adverse effects of incorrect labels during training.
 964

972 **F DATASET DETAILS**
973974 For our comprehensive evaluation, we employ six datasets across diverse domains. These datasets
975 encompass a range of network types, such as an author network Coauthor CS (Shchur et al., 2018),
976 a co-purchase network Amazon Photo (Shchur et al., 2018), and four citation networks: Cora,
977 Pubmed, Citeseer (Sen et al., 2008), and DBLP (Pan et al., 2016).
978979 **Coauthor CS** (Shchur et al., 2018): This dataset represents a co-authorship network in the field
980 of computer science. Nodes typically represent authors, and edges indicate collaboration between
981 authors on scholarly publications.
982983 **Amazon Photo** (Shchur et al., 2018): This dataset consists of product images and metadata from
984 Amazon, focused on photo-related products. It captures user interactions, including product co-
985 purchases, and is used for tasks like recommendation and item classification in e-commerce.
986987 **Cora** (Sen et al., 2008): It is a citation network derived from a computer science paper repository.
988 Nodes represent papers, and edges denote citations between them. It serves as a common benchmark
989 for evaluating graph-based algorithms in information retrieval and recommender systems.
990991 **Pubmed** (Sen et al., 2008): Similar to Cora, Pubmed is another citation network originating from
992 the biomedical domain. Nodes represent scientific articles, and edges signify citations. It is widely
993 used in research for evaluating algorithms in the biomedical and healthcare domains.
994995 **Citeseer** (Sen et al., 2008): It consists of scientific publications in computer science, with each paper
996 represented as a node. The dataset includes citation relationships between papers, and the features
997 represent word occurrences, widely used for graph-based classification tasks.
998999 **DBLP** (Pan et al., 2016): This dataset is a citation network encompassing computer science and
1000 related fields. Nodes represent publications, and edges represent citations. It is a widely used dataset
1001 for evaluating algorithms in bibliographic analysis and citation recommendation.
10021003 **G BASELINE DETAILS**
10041005 To showcase the effectiveness of our proposed ICGNN, we perform comprehensive comparisons
1006 with several state-of-the-art GNN-based methods. This includes well-established GNNs such as
1007 GCN (Kipf & Welling, 2017). Additionally, we evaluate our method against other models specific-
1008 ally designed to handle noisy labels, namely Forward (Patrini et al., 2017), Coteaching+ (Yu et al.,
1009 2019), NRGNN (Dai et al., 2021), RTGNN (Qian et al., 2023), CGNN (Yuan et al., 2023), CR-
1010 GNN (Li et al., 2024b), DND-NET (Ding et al., 2024), and ProCon (Li et al., 2025).
10111012 **GCN** (Kipf & Welling, 2017): It is a foundational graph neural network architecture widely adopted.
1013 It leverages graph convolutional layers to capture node representations by aggregating information
1014 from neighboring nodes.
10151016 **Forward** (Patrini et al., 2017): This method is designed to address noisy labels by employing a
1017 forward correction mechanism during training. It iteratively updates the estimated labels to minimize
1018 the impact of noisy annotations.
10191020 **Coteaching+** (Yu et al., 2019): This method is a noise-robust training strategy that involves two
1021 networks, each learning from the other's more confident predictions. It aims to reduce the influence
1022 of noisy labels during training.
10231024 **NRGNN** (Dai et al., 2021): This method learns a robust GNN with noisy, limited labels by linking
1025 unlabeled nodes to labeled ones with high feature similarity, providing clean labels and generating
1026 pseudo labels for extra supervision.
10271028 **RTGNN** (Qian et al., 2023): This method governs label noise by adaptively applying self-
1029 reinforcement and consistency regularization, correcting noisy labels and generating pseudo-labels
1030 to focus on clean labels while reducing noisy ones.
10311032 **CGNN** (Yuan et al., 2023): This method employs graph contrastive learning and a homophily-based
1033 sample selection technique to enhance the robustness of node representations against label noise and
1034 purify noisy labels for efficient graph learning.
1035

1026 **CR-GNN** (Li et al., 2024b): This method tackles sparse and noisy labels by integrating neighbor
1027 contrastive loss, a dynamic cross-entropy loss that selects reliable nodes, and a cross-space consis-
1028 tency constraint to enhance robustness.

1029 **DND-NET** (Ding et al., 2024): This method develops a simple yet effective label noise propagation-
1030 free GNN backbone and a novel reliable graph pseudo-labeling algorithm to prevent overfitting and
1031 leverage unlabeled nodes.

1032 **ProCon** (Li et al., 2025): This method identifies mislabeled nodes by measuring their label consis-
1033 tency with semantically similar peers and employs a Gaussian Mixture Model to distinguish clean
1034 samples, which iteratively refines the prototypes for improved detection.

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079