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Abstract

Learning in biological systems involves the intricate modeling of diverse entities and their
interrelations, leading to the evolution of logical knowledge networks with accumulating
experience. Analogously, knowledge graphs serve as semantic representations of entity
relationships, playing a vital role in natural language processing and graph representa-
tion learning. However, contemporary knowledge graph embedding models often neglect
real-world event updates, while existing continual knowledge graph research predominantly
relies on conventional learning methods that inadequately leverage graph structure, thereby
compromising their continual learning capabilities. This study introduces a novelContinual
mask Knowledge Graph Embedding framework (CMKGE), designed to address these limi-
tations. CMKGE integrates semantic attributes, network structure, and continual learning
mechanisms to capture the dynamic evolution of knowledge. Inspired by biological signal
propagation and Dale’s principle, we introduce a dual-mask mechanism for neuronal inhibi-
tion and activation. This mechanism automatically filters critical old knowledge, enhancing
model plasticity and stability. Through comprehensive evaluations on four datasets, we
demonstrate CMKGE’s superiority over state-of-the-art continual embedding models.

Keywords: Knowledge graph, Knowledge graph embedding, Graph Continual learning

1. Introduction

For humans, learning is an abstract modeling of intricate entities and relationships Illeris
(2018) organized by the graph structure. And the way of learning is always accumulated.
Similarly, the knowledge graph(KG) is a semantic network recording the complex relation-

1The two authors contribute equally to this work.
∗Corresponding authors.

© 2024 A. Song1, Y. Chen1, Y. Wang, S. Zhong∗ & M. Xu∗.



Song1 Chen1 Wang Zhong∗ Xu∗

ships between different entities in the real world Zou (2020). Some datasets like WordNet,
a comprehensive English lexicon, it includes the intricate semantic relationships among di-
verse words Fellbaum (1998). Specifically, the KG dataset comprises triplets(head entity,
relationship, tail entity), where the relationship is unidirectional, such as (Beijing, located
in, China). Meanwhile, knowledge graph embedding is a reasonable technique to project
nodes and relationships into high-dimensional vector spaces to encode the relationships be-
tween entities numerically Liu et al. (2023). The application of knowledge graph embedding
is vast and diverse, including various fields such as natural language processing Wang et al.
(2021, 2023b), information retrieval Zheng et al. (2020); Li et al. (2023), and recommender
systems Mezni et al. (2021). Human has strong adaptability to continually update, accu-
mulate, and exploit knowledge Wang et al. (2023a). Similarly, the knowledge graph which
has the dynamism of entities and relationships in the real world is continually expanding.
Facing the great information of knowledge graph, retraining has huge time and computation
consumption when the data is dynamically updated. Therefore the research on continual
learning of knowledge graph has great significance Daruna et al. (2021).

However, neural networks Neural is difficult to handle continual data streams because
new data learning often affects old data, leading to a deterioration in the processing effec-
tiveness of old data. Specifically, learning new data may overwrite the old information. This
phenomenon is catastrophic forgetting De Lange et al. (2021). The continual knowledge
graph embedding learning is designed to mitigate catastrophic forgetting, effectively acquire
novel knowledge, and preserve existing knowledge. Although, currently, several continual
knowledge graph learning methods Omeliyanenko et al. (2023) have achieved significant
success, two unresolved limitations remain. Firstly, these methods often design specific
mechanisms to extract crucial prior knowledge, but they always lack a way to quantify the
continual importance of embeddings. Second, they overlook the potential of explicit graph
structures in accurately representing the dynamic nature of the evolving knowledge graph,
only using the local semantic information of triples.

To deal with these limitations, we propose a biologically plausible framework called
Continual Masked Knowledge Graph Embedding learning (CMKGE). This framework is
mainly composed of four modules, bio-inspired masked data filtering, local semantic at-
tributes, global graph network structure, and knowledge continual learning to orchestrate
plasticity and stability. CMKGE has two well-designed components: the first component
designed to preserve the stability by leveraging the randomness and controllability of synap-
tic excitation and inhibition, thereby automatically discriminating between crucial and less
significant knowledge, which design is inspired by the finding of Ipsen and Peterson Ipsen
and Peterson (2020) that synaptic excitation and inhibition plays a crucial role in the
processing and regulation of information. The second component combines local semantic
attributes and global semantic structures within the knowledge graph to represent explicit
graph structures. The integration of local attributes and global structure is effective. It not
only learning but also integrating previous and new knowledge in the knowledge continual
learning framework, thereby facilitating a balance between plasticity and stability.

Specifically, from randomness and control, we set up a novelty dual-mask mechanism
with learnable weights to facilitate the selective filtering of significant historical knowledge,
based on spontaneous asynchronous irregularities in neural activity Roland (2017) and con-
trolled states of excitation and inhibition of synapses Denève et al. (2017). This mechanism
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accommodates the integration of new important information, resulting in a robust and
adaptive continual knowledge graph representation. Then, we capture and fuse both local
and global semantic attributes as the node representation. In continual knowledge learning,
the importance of previous representations is determined not only by neighbor information
but also by their position with the structure of the knowledge graph. Furthermore, we use
weighted regularization to punish knowledge change. This design enables our framework to
capture the contextual relevance of representations, bolstering its ability to retain significant
historical knowledge while accommodating new information.

Our main contributions are summarized as follows:

• CMKGE proposes a novelty framework. Learning continual knowledge embedding
from four modules: data filtering, knowledge fusion, knowledge learning, and knowl-
edge forgetting to orchestrate plasticity and stability.

• CMKGE innovatively realizes automatic parameter filtering from the biological per-
spective in continual knowledge graph learning to effectively enhance the robustness
of the framework, achieving the filter of important embeddings.

• CMKGE combines the information of the whole graph structure with fine-grained
local attributes, enhancing the feature representations to retain both historical and
new knowledge.

• CMKGE outperforms state-of-the-art(SOTA) methods in link prediction on four bench-
marks across a range of comprehensive experiments, demonstrating its effectiveness.

2. Related Work

2.1. Knowledge Graph Embedding

Knowledge graph embedding transforms entities and their relations into a vector space,
representing head, tail entities, and relations as vectors that capture their inherent con-
nections. At present, the mainstream methods of knowledge graph embedding learning
include translation, bilinear, neural network, rotation and so on. Translation models, such
as TransE Bordes et al. (2013), TransH Wang et al. (2014), etc. define relationships as
translational shifts between head and tail entities. Bilinear models compute the confi-
dence of the semantics of entities and relations in vector Spaces, including models such
as RESCAL Nickel et al. (2011), DisMult Yang et al. (2014), ComplEx Trouillon et al.
(2016), etc. Neural network models such as ConvE Dettmers et al. (2018), CapsE Nguyen
et al. (2018), etc. Combine the idea of convolution with embedded learning of KG. Rotation
models treat relationships as rotations between head and tail entities, including RotatE Sun
et al. (2019), QuatE Zhang et al. (2019), etc. Additionally, some recent methods have ex-
plored the utilization of graph neural networks to enrich the comprehension of knowledge
graph embeddings Molokwu and Kobti (2021); Wang et al. (2024). Liang et al. Liang (2023)
introduced a self-supervised learning method that integrates both the comprehensive graph
structure and semantic information, resulting in robust and effectively embeddings.
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Figure 1: Schematic diagram of CMKGE framework. The framework consists of four parts.
Neuronal Inhibition and Excitatory take advantage of the regulating effect of bi-
ological synapses on neuronal signal transmission. A learnable mask is designed
to automatically extract key information of old knowledge and mask marginal
information as the pre-input of new knowledge learning. Global Graph Network
Structure and Local Semantic Attributes learn knowledge embedding from both
global structure and local attributes. Continual Learning uses weighted regular-
ization and knowledge fusion to mitigate the effects of catastrophic forgetting.

2.2. Continual Knowledge Graph Embedding

Continual learning requires constant adaptation to new information and tasks, thus elim-
inating the need to retrain from scratch. Recently, continual knowledge graph embedding
methods can be categorized into three groups. Dynamic architecture approaches: They dy-
namically adapt their neural architecture to accommodate new information while retaining
old parameters Zhang et al. (2023). By adjusting architecture, they respond to changes
in the knowledge graph and incorporate new knowledge effectively. Memory approaches:
These methods retain learned important knowledge, where past experiences are replayed
during training to reinforce retention of old knowledge Liu et al. (2024); Omeliyanenko
et al. (2023). Regularization approaches: These methods impose constraints on updat-
ing neural weights during training Yang et al. (2023); Chen et al. (2023). They expect
the model to learn new information without forgetting important knowledge. Recently,
Cui Cui et al. (2023) et al. proposed a lifelong knowledge graph embedding model called
LKGE. It considers knowledge transfer and retention of the learning on growing snapshots
of a KG without learning embeddings from scratch. It includes a masked KG autoencoder,
an embedding transfer strategy and a regularization method. However, these methods are
based on the conventional knowledge graph embedding techniques, which mainly rely on
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local triplet information while overlooking the crucial structural information of the entire
KG. Furthermore, in the realm of traditional continual learning, these methods focus on
capturing important old knowledge but overlook the significance of parameter selection.

3. Preliminaries

The knowledge graph dataset comprises triplets(head entity, relationship, tail entity), where
the relationship is unidirectional. One prominent approach for knowledge graph embedding
is TransE Bordes et al. (2013), which defines relations as translational transformations
within the low-dimensional embeddings of entities. By employing vector addition, TransE
effectively captures the interdependency among the three constituents of a triplet: the head
entity, the relationship, and the tail entity, as demonstrated in Formula (1).

o ≈ s+ r, (1)

s, r, and o denote the vector of the head entity, relationship, and tail entity respectively.
In the context of traditional continual learning, regularization techniques play a sig-

nificant role in enhancing the generalization ability of models and preventing overfitting.
Regularization is typically achieved by imposing constraints on the model parameters or
introducing additional penalty terms into the loss function. Two commonly employed reg-
ularization methods are L1 regularization and L2 regularization.

L1 =

N∑
i=1

|wi| = ∥W∥1, (2)

L1 regularization as demonstrated in Formula (2) involves adding the absolute values of the
weight parameters to the loss function. The model’s weights follow a Laplace distribution,
resulting in sparse parameters that are often beneficial for feature selection. Where w
denotes the elements of weight vector W, and N means the number of vector’s elements.

L2 =

√√√√ N∑
i=1

|w2
i | = ∥W∥2, (3)

On the other hand, L2 regularization as demonstrated in Formula (3) introduces the squared
values of the weight parameters into the loss function. This approach encourages the model’s
weights to follow a Gaussian distribution, often leading to smaller parameter values. The
resulting model is typically more robust and less prone to overfitting.

4. Methods

This method delves into knowledge embedding and accurately captures the dynamic evolu-
tion of knowledge through four interconnected dimensions: the fine-grained local semantic,
the comprehensive global structure, the continual learning, and the biological neuron.
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4.1. Notation

This section introduces the basic notation used in the method. Knowledge graph consists of
individual triplets T = (s, r, o), where s denotes the head entity, r denotes the relationship,
and o denotes the tail entity. As the continual learning process, the knowledge graph
generates a sequence of knowledge snapshots S = {S1,S2, ...St}. St represents the total
dataset at moment t. We utilize graphs to describe the structure of the knowledge graph
as Gt = {Vt, Et,Xt,Rt}. t represents the time scale, V means the set of nodes, and E means
the set of edges. X ∈ Rn×d is the feature matrix of nodes, where n represents the number
of vertex and d represents the embedding size. And R ∈ Rr×d denotes the feature matrix
of edges where r represents the number of relations and d represents the embedding size.

4.2. Local Semantic Attributes

Firstly, to learn the fine-grained representations we refine our attention to a single snapshot,
specifically on an individual triplet relationship. Inspired by the idea of the TransE Bordes
et al. (2013), we envision this relationship as a translation pipeline connecting the head
entity to the tail entity. The knowledge of multi-dimensional vectors of representation
follows the principle of vector addition, as demonstrated in Formula (4).

Hv = f(s, r) = Hs +Hr, (4)

where Hs ∈ Rn×d is a vertex feature matrix, with each row corresponding to the features
of the head node of the triples. Hr ∈ Rr×d as same as Hs is the features of the relation.
Hv ∈ Rn×d is the feature matrix of node set V after calculating. Vertically concatenating
triples (s, r, o) and their inverse relationships (o, r, s) in a dataset. n represents the node in
the first column. r represents the edge of the second column. Therefore, their numbers are
equal and satisfy the conditions for matrix addition. Then we construct a score function
using L1 norm to compute the difference between the translated embeddings and tail entity
embeddings, as demonstrated in Formula (5).

S(s, r, o) = ∥Hv −Ho∥1, (5)

Furthermore, to enhance the robustness of the learned representations, we construct nega-
tive groups labeled for comparison. By evaluating the score difference between positive and
negative groups, we compute the loss, as demonstrated in Formula (6).

Llocal =
1

|Tt|
∑

(s,r,o)∈T

max(0, S− − S+ + α), (6)

where α is the margin parameter. |Tt| denotes the number of triples at time t. The S+

denotes the scores assigned to positive samples, whereas S− corresponds to the scores of
negative samples. Taking into account the aforementioned principles, the optimal scenario
would involve minimizing S+ towards zero while maximizing S−, ensuring a clear separation
between positive and negative representations.
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4.3. Global Graph Network Structure

Furthermore, to facilitate a more comprehensive study of embeddings and mitigate the
impact of negative triple groups, we adopt a global perspective in our learning approach.
Considering the adjacency relations among entities within the overarching graph structure
of the knowledge graph. We draw inspiration from Graph Convolutional Networks(GCN)
and construct a message propagation network designed to aggregate information from neigh-
boring entities for each entity, as elucidated in Formula (7).

Hfv = fmessage(A,Hv) = σ(D−1AHv), (7)

where Hfv ∈ R|Tt|×d means the fused vertex features matrix, A ∈ Rn×n is the adjacency
matrices on one snapshot of knowledge graph. D ∈ Rn×n is a diagonal matrix recording
the node degrees. σ(·) is the activate function.

Because there is no edge-relationship aggregation in GCN. The fusion of edge features
inherit the idea of local semantic learning, as demonstrated in Formula (8).

Hfe = f(s, o) = Hs −Ho, (8)

where Hfe ∈ R|Tt|×d denotes the fused edge features matrix.
Considering the continual learning process, we not only account for newly emerging

graph relationships but also seamlessly integrate them with the preexisting network for
message aggregation, as detailed in Formula (9).

Ht = σ(W ·Ht−1 + (1−W)Ht). (9)

Ht denotes the node feature matrix or edge feature matrix at the current moment in time.
Ht−1 denotes the previous moment. To mitigate the potential for catastrophic forgetting of
prior knowledge by incoming knowledge embeddings, we adopt a weighted fusion vectorW ∈
R1×|Tt| = {w1,w2, ...wi}, merging the embeddings of new knowledge with the previously
learned old knowledge, as detailed in Formula (10).

wi =
(di)t−1

(di)t−1 + (di)t
, (10)

where di denotes the degree of vertex i. In this formula, we utilize the ratio of the vertex’s
degree at the previous time step to its current degree as the weight associated with vertex i.
For edges, the weighting scheme remains analogous, with the weight reflecting the number
of edges present. The define of loss as detailed Formula (11).

Lglobal =
∥Hfv −Hv∥22

|Vt|
+

∥Hfe −He∥22
|Et|

, (11)

where |Vt| and |Et| represents the number of vertex and edge.

4.4. Continual Learning

In each individual learning snapshot, we focus on capturing both local and global per-
spectives of new knowledge. In the ever-expanding landscape of the knowledge graph, we



Song1 Chen1 Wang Zhong∗ Xu∗

Datasets S1 S2 S3 S4 S5

T1 E1 R1 T2 E2 R2 T3 E3 R3 T4 E4 R4 T5 E5 R5

ENTITY 46,388 2.909 233 72,111 5,817 236 73,785 8,275 236 70,506 11,633 237 47,326 14,541 237

RELATION 98,819 11,560 48 95,535 13,343 96 66,136 13,754 143 30,032 14,387 190 21,594 14,541 237

FACT 62,024 10,513 237 62,023 12,779 237 62,023 13,586 237 62,023 13,894 237 62,023 14,541 237

HYBRID 57,561 8,628 86 20,837 10,040 102 88,017 12,779 151 103,339 14,393 209 40,326 14,541 237

Table 1: A brief description of the datasets.

meticulously examine the intricate interplay between old and new knowledge. To mitigate
the risk of catastrophic forgetting, we introduce a regularization mechanism imposing penal-
ties on changes made by new knowledge to old knowledge, thereby preserving the integrity
of previously learned concepts, as captured in Formula (12).

Lregulation =
v∑

i=0

∥(wv)i(xt − xt−1)∥22 +
e∑

i=0

∥(wr)i(rt − rt−1)∥22. (12)

x denotes the features vector of vertex, and r denodes the features of edge. We implement a
weighted penalty to the alteration of the embeddings, thereby achieving a more harmonious
balance between the retention of old knowledge and the assimilation of new knowledge.
Without losing newly learned knowledge or adding to catastrophic forgettin. The define of
(wv)i and (wr)i as same as the Formula (10).

4.5. Neuronal Inhibition and Excitatory

Undeniably, not all old weights are equally significant, identifying and filtering crucial pa-
rameters for propagation is imperative. Inspired by neuroscience, we introduce synaptic
excitation and inhibition mask mechanisms to mimic the inherent randomness and plastic-
ity of human cognition, as captured in Formula (13).

Xt+1 = Mmask(Xold∥Xnew). (13)

Xold ∈ Rnt×d is embeddedness of knowledge learned at the present moment, and Xnew ∈
R(nt+1−nt)×d is embeddedness of new knowledge entering at the next moment.

Mmask = Mrandom · fheaviside(Xt − β). (14)

The neuronal activity exhibits spontaneous, asynchronous, and irregular firing patterns Roland
(2017), yet these are continually balanced through intricate excitatory and inhibitory mech-
anisms between neurons Denève et al. (2017). Drawing inspiration from biological ran-
domness and controllability, we introduce a dual-mask mechanism that integrates random
masking Mrandom and weighted masking function fheaviside(Xt−β) strategies to mimic the
knowledge learning functions of the human brain, ultimately aiming to mitigate the adverse
effects of catastrophic forgetting. Mrandom is initialized by a full 1 matrix, with partial
values assigned to 0 in a 10% ratio. fheaviside() is the Heaviside Step Function. Xt is the
learned feature vector at the current moment. And β is a learnable threshold parameter.

These mechanisms make CMKGE to selectively emphasize and suppress weights. Not
only augments the flexibility and precision of the learning process but also brings the
knowledge-embedding procedure into closer alignment with the brain learning mechanisms.
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Model ENTITY RELATION FACT HYBRID

Metric MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

Fine-tune 0.168 0.087 0.190 0.323 0.089 0.039 0.101 0.183 0.178 0.095 0.199 0.347 0.133 0.069 0.147 0.256

PNN 0.229 0.131 0.264 0.423 0.168 0.098 0.192 0.306 0.160 0.088 0.189 0.292 0.186 0.104 0.215 0.348

CWR 0.089 0.028 0.115 0.205 0.022 0.010 0.024 0.043 0.086 0.032 0.098 0.194 0.040 0.016 0.050 0.081

SI 0.155 0.074 0.179 0.310 0.113 0.056 0.130 0.223 0.177 0.094 0.199 0.346 0.108 0.046 0.123 0.224

EWC 0.230 0.131 0.264 0.424 0.154 0.084 0.178 0.293 0.201 0.113 0.229 0.382 0.170 0.087 0.198 0.333

GEM 0.165 0.086 0.188 0.318 0.089 0.039 0.101 0.184 0.173 0.092 0.194 0.341 0.127 0.065 0.141 0.246

EMR 0.173 0.092 0.195 0.332 0.111 0.052 0.125 0.225 0.169 0.089 0.189 0.334 0.137 0.074 0.151 0.259

LKGE 0.234 0.136 0.269 0.425 0.180 0.096 0.207 0.347 0.209 0.121 0.235 0.386 0.201 0.114 0.230 0.374

CMKGE 0.247 0.146 0.285 0.444 0.210 0.112 0.239 0.389 0.212 0.120 0.235 0.390 0.210 0.122 0.245 0.396

Table 2: The performance of the tested four datasets.

5. Experiments Setting

5.1. Dataset

The datasets is FB15K-237 a subset extracted from the Freebase Knowledge Base, which
is widely used in knowledge graphs. The datasets are divided into four sections Cui et al.
(2023): ENTITY, RELATION, FACT, and HYBRID focusing on their respective dynamic
growth. For each temporal snapshot, the training dataset, validation set, and test set
are partitioned in a 3:1:1. ENTITY encapsulates the dynamic transformations of entity
objects in the real world. RELATION encapsulates the dynamic semantic associations.
FACT captures the dynamic evolution of knowledge triples. HYBRID is the randomized
and dynamic variations in knowledge triples.

5.2. Comparison Algorithm

The details of the comparison algorithm are as follows, uniformly based on the TransE Bor-
des et al. (2013) model. Fine-tuning. Conversely, this strategy aims to maintain the
integrity of all existing data. It selectively initializes only the parameters pertinent to the
new triplet relationships. Regularization. We compared it with EWC and SI models.
Both use loss functions to limit the updating of important parameters when learning new
tasks. EWC directly penalizes all changes in old weights, while SI takes into account the
importance of different parameters and minimizes changes in important parameters. Re-
play. GEM and EMR selectively store part of the data for use. In the GEM, this data
is used to limit the gradient update of new tasks to ensure that the loss of old tasks does
not increase. In EMR, this data is stored in a playback buffer and used for playback train-
ing when learning new tasks. Dynamic Structure. We compare with PNN and CWR
methods. Both modify the model parameters and reduce the influence of new knowledge
on the model parameters by selectively freezing the model parameters. Or to preserve the
information of old parameters through the fusion of new and old model parameters to cope
with catastrophic forgetting. Continual Knowledge Graph Learning. We compare
it with the state-of-the-art continual Knowledge Graph Learning(LKGE) Cui et al. (2023)
approach. This model includes a masked KG autoencoder for embedding learning and
updating, with an embedding transfer strategy and an embedding regularization method.



Song1 Chen1 Wang Zhong∗ Xu∗

5.3. Evaluation Metrics

We use MRR and Hit@n (n ∈ {1, 3, 10}) as the evaluation metrics. They are commonly used
in recommender systems and link prediction. Specifically, MRR indicates Mean Reciprocal
Rank. Hit@n(n ∈ {1, 3, 10}) means the average percentage of triples that rank less than n
in the link prediction, considering the n triples that are most related to entity1. Calculate
the correct proportion. For fair comparison, we set the same batch size 2048, mask ratio of
0.001. Use Adam as an optimizer. The other hyperparameters are fine-tuned for best results.
Embedding dimension in {100, 200}, learning rate in {0.001,0.0001}, and the proportion of
regularization in the loss calculation in {0.1, 0.01}.

(a) ENTITY (b) RELATION

(c) FACT (d) HYBRID

Figure 2: Continual learning ability of CMKGE on four datasets. CMKGE, the red line,
achieves the best results in terms of smoothing and downward trend.

6. Experiments

The experiment mainly compares from four aspects: performance, continual learning ability,
robustness test, and loss convergence.

6.1. Performance Comparison

We evaluate the effectiveness of ours compared with several classical and state-of-the-art
methods in Table 2, where the best performance is highlighted in bold and the second-best
results are underlined. From Table 2, the proposed method reflects a promising performance.

We introduce weighted regularization, which provides flexibility compared to EWC’s
direct penalty on weight changes. Compared to the biological mechanism of SI, the ability
to enhance important weights. Our dual-mask mechanism selects important weights and
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Figure 3: Performance and Consumption. The red triangle represents the coordinate posi-
tion of our framework. Our framework is in the bottom right corner.

enhances their impact from the perspectives of randomness and controllability. It is more
lightweight and efficient. Compared to replay-based GEM and EMR, we automatically
filter out important information to retain. This mechanism employs updatable parameter
control to enable the model to adaptively adjust the masking ratio, thus preserving crucial
information, enhancing computational efficiency, and balancing the plasticity and stability.
Compared with the dynamic structure, instead of freezing the old weights, we effectively fuse
the old and new weights for training, which can better capture the relationship between
the old and new knowledge. And the dynamic growth of the model structure needs to
consider the memory and computation consumption problem. Furthermore, we analyze the
activation patterns of neurons in the human brain and, in comparison to existing continual
knowledge graph embedding models such as LKGE, propose a dual masking mechanism
that simulates the guiding role of synaptic excitation and inhibition on neurons.

6.2. Continual Learning Ability

We confirm the continual learning ability of the proposed method by recording the perfor-
mance of each new time the training is completed in Figure 2. We determine the continual
learning capability of the model by recording changes in the MRR metrics as the data grows.

Compared to the other method, our approach leverages an automatic dual-mask filtering
mechanism to retain crucial information from old knowledge selectively. When compared
to regularization techniques like EWC and SI, our method employs knowledge fusion to en-
hance the retention of old knowledge based on regularization. Unlike replay-based methods
such as GEM and EWR, we utilize a dual-mask mechanism to automatically filter edge
information, thereby minimizing the negative impact of irrelevant information on newly
acquired knowledge at subsequent time steps. Concurrently, we preserve significant infor-
mation from old knowledge, mitigating the disastrous forgetting of key historical data. In
contrast to the LKGE model, which primarily focuses on the embedding and transfer of
local knowledge, our approach fully utilizes graph structural information, enabling a more
comprehensive representation of the knowledge.
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6.3. Performance and Consumption

We tested the time performance comparison of the compared algorithms in Figure 3. The
graph illustrates the performance and consumption of our method on the ENTITY dataset,
using the Hits@10 metric. We recorded the training time for each model as a basis for time
consumption for model comparison. During new knowledge learning and fusion, the need
to aggregate global structural information elevates the model’s computational complexity
compared to fine-tuned, which predominantly focuses on local information. However, our
model’s dual-mask mechanism automatically filters out redundant information while re-
taining critical knowledge. This significantly reduces the model’s floating-point calculation
complexity. Simultaneously, it eliminates the interference of edge data on new knowledge,
enhancing the efficiency of knowledge learning.

(a) ENTITY (a) RELATION

(c) FACT (d) HYBRID

Figure 4: Robustness test on four datasets. “Difference” means the performance degrada-
tion of each model after adding wrong data. It is the difference from the original.
Although the difference in CWR is smaller, the original performance of the CWR
model was much lower than CMKGE, see Table 2.

6.4. Robustness Test

In this subsection, we assess the robustness of the proposed model by introducing a 10% neg-
ative triples in the training set. The wrong data is added directly to the training set means
that the model does not know what is wrong. The performance change of the CMKGE and
the comparison algorithm is documented in Figure 4. Compared with other methods, our
method is more robust. When learning new knowledge, we synthesize the representation
of the learning knowledge graph by integrating fine-grained local semantic attributes with
global structure details. The incorrect triples in the dataset exerts a more significant influ-
ence on local attributes. For instance, EWC regularization methods can wrongly penalize
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Ablation ENTITY RELATION FACT HYBRID

Metrics MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10

Regularization 0.131(-0.116) 0.269(-0.175) 0.124(-0.086) 0.250(-0.139) 0.103(-0.109) 0.063(-0.327) 0.107(-0.103) 0.147(-0.249)
Global 0.224(-0.023) 0.408(-0.036) 0.184(-0.026) 0.360(-0.029) 0.123(-0.089) 0.278(-0.112) 0.176(-0.034) 0.304(-0.092)
Local 0.107(-0.140) 0.209(-0.235) 0.047(-0.163) 0.107(-0.282) 0.098(-0.114) 0.092(-0.298) 0.034(-0.176) 0.078(-0.318)
Mask 0.227(-0.020) 0.405(-0.039) 0.198(-0.012) 0.375(-0.014) 0.164(-0.048) 0.322(-0.068) 0.190(-0.020) 0.361(-0.035)

Table 3: Ablation experiments.

weight changes in an inappropriate direction. EMR’s replay-based approach may retain
incorrect information, thereby consistently interfering with the newly learned knowledge.
Although the CWR method exhibits good robustness, its initial learning performance is
notably low compared to the performance Table 2. On the contrary, while retaining old
knowledge, our dual mask considers both a random and weighted perspective. Random
masks can mitigate the influence of old knowledge to a degree. Weighted mask employs
a learnable threshold to adaptively set mask bounds. CMKGE constrains the impact of
erroneous data during new task learning and further masks the retention of incorrect infor-
mation during knowledge transfer, ultimately enhancing the model’s robustness.

6.5. Ablation experiments

Experiments in Table 3 show local learning and regularization to be more useful for methods.
a) The local module plays a primary role in knowledge learning, while the global module
plays a complementary role. On the one hand, GCN constructs the adjacency matrix
unifying all the edge relations, and the edge feature information is not used in the actual
training, so it mainly plays an auxiliary role in the global results. On the other hand, in
the loss calculation, we set 1 weight for the local learning module and 0.1 for the global
learning module to mitigate its influence on learning. b) Regularization plays a primary
role in continual learning and the dual masking plays a complementary role. Regularization
is directly calculating the loss of distance difference between old and new knowledge to
constrain the influence of new knowledge on old knowledge, and plays a major role in old
knowledge retention. The dual-masking mechanism mainly uses masks to retain important
information in the knowledge and filters irrelevant information to set them to 0, which is
further integrated with the new knowledge information. The ratio of masks is low, and its
key lies in knowledge filtering and knowledge fusion.

7. Conclusion

Introducing a pioneering framework, this study advances traditional continual learning
methods by integrating a dual-mask mechanism, which autonomously identifies and pre-
serves critical knowledge. Besides, harnessing the intrinsic architecture of knowledge graphs,
our proposed framework integrates both local attributes and global structural insights to
finely tune the delicate balance between plasticity and stability in continual learning sce-
narios involving knowledge graphs. In contrast to conventional continual learning method-
ologies and existing knowledge graph continual learning strategies, our proposed framework
showcases superior efficacy across all four evaluation benchmarks. Moreover, the model
exhibits exceptional resilience and computational efficiency. The perpetual learning capac-
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ity of our framework harbors immense promise for domains characterized by ongoing data
accumulation, such as recommendation systems and link prediction tasks. In the future,
we aspire to transcend traditional methodologies by delving into the intricate architecture
of temporal knowledge graphs and integrating them with biologically plausible learning
paradigms, such as spiking neural networks, to engineer more efficacious models.
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