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Abstract
Adversarial patch attacks pose a major threat
to vision systems by embedding localized per-
turbations that mislead deep models. Tradi-
tional defense methods often require retrain-
ing or fine-tuning, making them impractical
for real-world deployment. We propose a
training-free Visual Retrieval-Augmented Gen-
eration (VRAG) framework that integrates Vision-
Language Models (VLMs) for adversarial patch
detection. By retrieving visually similar patches
and images that resemble stored attacks in a
continuously expanding database, VRAG per-
forms generative reasoning to identify diverse
attack types—all without additional training
or fine-tuning. We extensively evaluate open-
source large-scale VLMs—including Qwen-VL-
Plus, Qwen2.5-VL-72B, and UI-TARS-72B-
DPO—alongside Gemini-2.0, a closed-source
model. Notably, the open-source UI-TARS-72B-
DPO model achieves up to 95% classification ac-
curacy, setting a new state-of-the-art for open-
source adversarial patch detection. Gemini-2.0
attains the highest overall accuracy, 98%, but
remains closed-source. Experimental results
demonstrate VRAG’s effectiveness in identifying
a variety of adversarial patches with minimal hu-
man annotation, paving the way for robust, prac-
tical defenses against evolving adversarial patch
attacks.

1. Introduction
Deep learning models, particularly convolutional neural net-
works (CNNs) (Krizhevsky et al., 2012; He et al., 2016; Si-
monyan & Zisserman, 2014) and vision transformers (ViTs)
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(Dosovitskiy et al., 2020), have demonstrated remarkable
success in computer vision tasks such as object detection
(Girshick, 2015; Ren et al., 2016; Redmon et al., 2016), im-
age classification (Krizhevsky et al., 2012; Dosovitskiy et al.,
2020), and segmentation (Long et al., 2015; Ronneberger
et al., 2015). However, despite advances, these models
remain highly vulnerable to adversarial attacks (Szegedy,
2013; Lapid & Sipper, 2023; Lapid et al., 2022; Alter et al.,
2025; Goodfellow et al., 2014; Madry et al., 2017; Tamam
et al., 2023; Lapid et al., 2024b), where small perturbations
or carefully crafted patches manipulate predictions.

Adversarial patch attacks (Brown et al., 2017; Lapid et al.,
2024c; Liu et al., 2018; Wei et al., 2023) introduce local-
ized perturbations that persist across different transforma-
tions, making them significantly more challenging to mit-
igate using conventional defense mechanisms (Wei et al.,
2022). Unlike traditional adversarial perturbations that in-
troduce subtle noise across an image, adversarial patches are
structured, high-magnitude perturbations, which are often
physically realizable (Lee & Kolter, 2019; Hu et al., 2021).
These patches can be printed, placed in real-world environ-
ments, and still cause misclassification or mislocalization
in deployed deep learning models. Their adversarial effect
remains robust under different lighting conditions, transfor-
mations, and occlusions, allowing them to be successfully
deployed in real world scenarios (Liu et al., 2024; Deng
et al., 2023). Furthermore, retraining-based defenses re-
quire extensive, labeled adversarial data, which is expensive
to obtain and generalizes poorly to novel attack strategies
(Wei et al., 2022).

Traditional adversarial detection methods typically fall into
one of three categories, (1) supervised learning-based de-
fenses, (2) unsupervised defenses and (3) adversarial train-
ing. Supervised learning-based defenses (Pinhasov et al.,
2024; Papernot et al., 2016) use deep learning classifiers
trained on labeled adversarial and non-adversarial samples.
These methods are data-dependent and do not adapt well to
adversarial attacks outside the training distribution. Unsu-
pervised defenses (Xu et al., 2018; Papernot & McDaniel,
2018; Sotgiu et al., 2020; Mizrahi et al., 2025), typically
rely on analyzing the intrinsic structure or distribution of
unlabeled data to detect anomalous inputs. For example,
Feature Squeezing (Xu et al., 2018) reduces input dimen-
sionality (e.g., through bit-depth reduction or smoothing) to
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Figure 1: Illustration of three different settings for detecting adversarial patches. (Left) The zero-shot baseline, in which
the model is directly prompted to determine if the image is adversarial but incorrectly concludes it is benign. (Center)
Our VRAG-based approach on a benign image; as the database does not contain benign exemplars, no relevant references
are retrieved. Consequently, the classification relies solely on the prompt content and remains accurate. (Right) Our
VRAG-based approach on an adversarial image, which leverages relevant references from the database to enhance the
prompt, ultimately yielding a correct detection of the adversarial patch.

reveal suspicious high-frequency artifacts; (Papernot & Mc-
Daniel, 2018) use deep generative models to flag inputs with
high reconstruction error as potential adversarial samples.
Although these methods can detect novel or previously un-
seen attack strategies without relying on adversarial labels,
they often require carefully chosen hyperparameters and re-
main vulnerable to adaptive attacks that mimic the statistics
of benign inputs. In contrast to the supervised detection
methods, which separately classify inputs as adversarial
or benign, adversarial training (Madry et al., 2017; Lapid
et al., 2024a) augments the training data with adversarial
examples to directly improve model robustness. Rather than
solely learning to detect adversarial inputs, this approach
modifies the model parameters and decision boundaries to
make correct classification more likely under attack. How-
ever, adversarial training is computationally expensive and
risks overfitting to specific attack types, leading to weaker
defenses against unseen attacks (Liang et al., 2024).

In this paper, we introduce a retrieval-augmented adversarial
patch detection framework that dynamically adapts to evolv-
ing threats without necessitating retraining. The method
integrates visual retrieval-augmented generation (VRAG)

with a vision-language model (VLM) for context-aware de-
tection. As illustrated in Figure 1, visually similar patches
are retrieved from a precomputed database using semantic
embeddings from grid-based image regions, and structured
natural language prompts guide the VLM to classify suspi-
cious patches.

This paper makes the following contributions:

1. A training-free retrieval-based pipeline that dynami-
cally matches adversarial patches against a precom-
puted (and expandable) database.

2. The integration of existing VLMs with generative rea-
soning for context-aware patch detection through struc-
tured prompts.

3. A comprehensive evaluation demonstrating robust de-
tection across diverse adversarial patch scenarios, all
without additional training or fine-tuning.

Experimental results confirm that our retrieval-augmented
detection approach not only outperforms traditional classi-
fiers, but also achieves state-of-the-art detection across a va-
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riety of threat scenarios. This method offers higher accuracy
and reduces dependence on labeled adversarial datasets, un-
derscoring the practicality of incorporating retrieval-based
strategies alongside generative reasoning to develop scal-
able, adaptable defenses for real-world security applica-
tions (Kazoom et al., 2024).

2. Related Work
Adversarial attacks exploit neural network vulnerabilities
through carefully crafted perturbations. Early works focused
on small, imperceptible ℓp-bounded perturbations such as
FGSM (Goodfellow et al., 2014) and PGD (Madry et al.,
2017). In contrast, adversarial patch attacks apply localized,
high-magnitude changes that remain effective under trans-
formations and pose a threat in real-world scenarios (Hwang
et al., 2023; Liu et al., 2024; Deng et al., 2023).

Defenses fall into reactive and proactive categories. Reac-
tive methods like JPEG compression (Dziugaite et al., 2016)
and spatial smoothing (Xu et al., 2017) attempt to remove
adversarial patterns at inference time but struggle against
adaptive attacks. Diffusion-based methods, such as DIFF-
ender (Kang et al., 2024) and purification models (Lin et al.,
2023), leverage generative models to restore clean content
but are often computationally intensive.

Another line of work focuses on patch localization and
segmentation, e.g., SAC (Liu et al., 2022), which detects
and removes patches using segmentation networks. These
approaches are limited by their reliance on training and
struggle with irregular or camouflaged patches. Patch-
Cleanser (Xiang et al., 2022) offers certifiable robustness
but assumes geometrically simple patches.

Proactive defenses like adversarial training (Wei et al., 2022)
aim to increase robustness through exposure to adversarial
examples. While effective against known attacks, they gen-
eralize poorly and are resource-intensive.

We propose a retrieval-augmented framework that detects
a wide range of patch types—including irregular and nat-
uralistic ones (Figure 6) —without degrading input qual-
ity or relying on segmentation or geometric assumptions.
Our method leverages a diverse patch database and vision-
language reasoning to dynamically adapt to unseen attacks.

3. Preliminaries
We briefly review core paradigms relevant to our defense
framework: vision-language foundation models, zero- and
few-shot learning, adversarial attacks and defenses, and
RAG.

3.1. Vision-Language Foundation Models and Zero- and
Few-Shot Learning

Foundation models leverage large-scale transformer (Doso-
vitskiy et al., 2020) architectures and self-attention (Vaswani
et al., 2017) to learn general-purpose representations from
massive image-text data. A typical VLM consists of two
encoders, fθ for images I and gϕ for text T , projecting them
into a shared embedding space:

EI = fθ(I), ET = gϕ(T ), S(I, T ) =
EI · ET

∥EI∥∥ET ∥
.

(1)
Models like CLIP (Radford et al., 2021) and Flamingo
(Alayrac et al., 2022) align image-text pairs via contrastive
objectives, enabling flexible zero-shot capabilities:

g(I,Q)→ A, (2)

where Q is a textual query and A is the inferred label
without explicit task-specific training. Few-shot learn-
ing refines zero-shot by supplying a small support set
{(I1, y1), . . . , (Ik, yk)}:

g
(
I,Q

∣∣ {(Ii, yi)}ki=1

)
→ A, (3)

allowing adaptation to novel tasks with limited labeled data.

3.2. Adversarial Attacks and Defense Strategies

Adversarial Attacks. Formally, an adversary seeks a pertur-
bation δ subject to ∥δ∥p ≤ ϵ that maximizes a loss function
ℓ for a model fθ with true label y:

δ∗ = arg max
∥δ∥p≤ϵ

ℓ
(
fθ(I + δ), y

)
. (4)

Patch-based attacks instead replace a localized region using
a binary mask M ∈ {0, 1}H×W :

I ′ = I ⊙ (1−M) + P ⊙M, (5)

where P is a high-magnitude patch. Since the threat model
is specified solely by the support of M , no ϵ–norm con-
straint is imposed on the pixel values inside the patch; the
perturbation can therefore have unbounded ℓp magnitude
within M while remaining spatially confined (Hwang et al.,
2023; Liu et al., 2024; Deng et al., 2023).

Preprocessing and Detection. A common defense strat-
egy is to apply a transformation g(·) to I ′, yielding g(I ′),
with the goal of suppressing adversarial noise (e.g., blurring,
smoothing (Kim et al., 2022)). Detection can be formulated
by a function D

(
g(I ′)

)
∈ {0, 1} that flags anomalous in-

puts based on statistical or uncertainty-based criteria (Chua
et al., 2022).

Generative Reconstruction. Diffusion-based de-
fenses (Kang et al., 2024) iteratively denoise adversarial
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inputs by reversing a noisy forward process:

xt =
√
αt xt−1 +

√
1− αt ϵt, ϵt ∼ N (0, I), (6)

often guided by patch localization (Liu et al., 2022). Al-
though effective, these approaches can falter against unseen
attacks or large patch perturbations, making robust general-
ization challenging in practice.

3.3. Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) (Lewis et al., 2020)
integrates external knowledge into a generative model to
improve both its generative capacity and semantic coherence.
Formally, given a query Q, the model retrieves the top-k
most relevant documents or embeddings Rk from a database
D:

Rk = arg max
Ri∈D

S(Q,Ri), (7)

where S(·, ·) is a similarity function. The query Q is then
combined with Rk within a generative function:

A = G(Q,Rk). (8)

In our approach, this retrieval phase facilitates access to
known adversarial patches, thereby enabling a more robust
generative reasoning process. By incorporating historical
data on diverse attack patterns, RAG-based defenses can
dynamically adapt to novel threats while sustaining high
efficacy against existing adversaries.

4. Methodology
This section details our VRAG-based approach for adversar-
ial patch detection using a vision-language model. We de-
scribe the construction of a comprehensive adversarial patch
database (§4.1), and then present our end-to-end detection
pipeline (§4.2). We discuss how the framework generalizes
to diverse patch shapes in §A.6. To enable scalability, we
parallelize patch embedding and augmentation—see Ap-
pendix A.1 for runtime benchmarks across varying numbers
of workers.

4.1. Database Creation

To handle a wide variety of adversarial patch attacks, we
build a large-scale database of patched images and their
corresponding patch embeddings. We aggregate patches
generated by SAC (Liu et al., 2022), BBNP (Lapid et al.,
2024c), and standard adversarial patch attacks (Brown et al.,
2017), placing each patch onto diverse natural images at
random positions and scales. This process, summarized in
Algorithm 1, ensures that the database spans different patch
configurations and visual contexts.

Algorithm 1 Adversarial Patch Database Creation with Po-
sitional Augmentation

1: Input: Set of patches {Pi}mi=1, set of natural images
{Ij}qj=1, embedding model f , grid size n× n, number
of placement variations A

2: Output: Database D
3: Initialize database D ← ∅
4: for i = 1 to m do
5: Compute patch embedding EPi = f(Pi)
6: Store (Pi, EPi) in D
7: for j = 1 to q do
8: for a = 1 to A do
9: Randomly select position (xa, ya) in image

Ij
10: Apply patch Pi at (xa, ya) to obtain patched

image I
(a)
j

11: Divide I
(a)
j into grid cells {C(a)

j,k }n
2

k=1

12: for k = 1 to n2 do
13: Compute embedding E

(a)
j,k = f(C

(a)
j,k )

14: if C(a)
j,k overlaps with Pi then

15: Store (C
(a)
j,k , E

(a)
j,k ) in D

16: end if
17: end for
18: end for
19: end for
20: end for
21: return D

Concretely, each patched image is subdivided into an n× n
grid, yielding localized regions {C1, . . . , Cn2} that spatially
partition the image. For each region Ci, we compute a dense
visual embedding using a pre-trained vision encoder f(·):

ECi
= f(Ci),

which captures high-level semantic and structural features
of the corresponding image patch. In parallel, we encode
each adversarial patch Pj into its own latent representation
EPj = f(Pj) to ensure embeddings are in the same feature
space. These patch embeddings act as keys, while the embed-
dings of overlapping regions serve as their corresponding
values in a key-value database. This design enables efficient
and scalable nearest-neighbor retrieval at inference time,
allowing the system to match visual evidence in test images
with known adversarial patterns from the database.

4.2. VRAG-Based Detection Pipeline

System Overview. Our detection system (illustrated in
Figure 2) identifies adversarial patches in a query image
by leveraging the patch database as retrieval context for a
vision-language model. The process involves four main
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steps:

1. Image Preprocessing: Divide the input image I into
an n × n grid of regions {C1, . . . , Cn2} to enable lo-
calized inspection of each part of the image.

2. Feature Extraction: Encode each region Ci into an
embedding Ei = f(Ci) using a pre-trained vision
encoder (e.g., CLIP). These embeddings capture high-
level semantic features.

3. Retrieval Step: For each Ei, perform a nearest-
neighbor search in the patch database D. Retrieve
the top-k most similar patch embeddings to form a con-
text set Ri = Top-k({d(Ei, EPj )}). Appendix A.3
presents an ablation study comparing cosine similarity
with alternative distance metrics for this retrieval step.

4. Generative Reasoning with a VLM: Combine each
region Ci with its retrieved examples Ri and short
textual cues to construct a multimodal prompt. This
prompt is passed to a vision-language model g(·) to
answer:

g(Ci)→ “Does this region contain an adversarial patch?”

We summarize the overall detection procedure in Algo-
rithm 2.

Algorithm 2 Adversarial Patch Detection via VRAG

1: Input: Image I , VLM V , Database D, Embedding
function f , threshold τ , top-m patches, top-k images

2: Output: Decision: Attacked or Not Attacked
3: Divide I into grid cells {Ci}n

2

i=1, compute embeddings
Ei = f(Ci)

4: for each Ei do
5: Compute max similarity Si = maxEd∈D

Ei·Ed

∥Ei∥∥Ed∥
6: end for
7: Select candidates C = {Ci | Si ≥ τ}, choose top-m

patches
8: Retrieve top-k similar attacked images from D
9: Build context T with top-m patches and top-k images

as examples
10: Query VLM with T : R = V(T , I)
11: return R ∈ {Attacked,Not Attacked}

Decision Mechanism (Zero-Shot and Few-Shot). After
retrieving similar patches and attacked images, the VLM
is prompted to judge the query image under zero-shot or
few-shot conditions:

• Zero-Shot Detection: The model relies on pre-trained
knowledge and textual prompts to classify each region
Ci as adversarial or benign, without additional fine-
tuning.

• Few-Shot Adaptation: A small, labeled set of adver-
sarial examples, denoted as {Ai}, along with their
corresponding patches {Pi}, is incorporated into the
retrieved context to refine the model’s decision-making
process. This integration enhances the model’s ro-
bustness to previously unseen attacks by explicitly ex-
posing the VLM to representative instances of patch-
induced behavior.

A sample query prompt for the VLM might be:

“Here are examples of adversarial
patches: [Patch 1], [Patch 2].
Here are images that contain
these patches: [Image 1], [Image
2]. Based on this context, does
the following image contain an
adversarial patch? Answer ’yes’
or ’no’.”

The model’s answer is then used to decide whether the
image is Attacked or Not Attacked.

Optimal Threshold Selection. We determine the optimal
threshold based on ROC-AUC analysis of cosine similarity
scores computed from embedding vectors. Specifically, the
optimal cosine similarity threshold identified was 0.77, pro-
viding the best trade-off between sensitivity and specificity.
We observed that for thresholds approaching 1.0, the similar-
ity criterion becomes overly permissive, resulting in nearly
every image retrieving similar images, thereby substantially
increasing the false-positive rate.

5. Experimental Evaluation
We conduct extensive experiments to assess the robustness
and efficiency of our adversarial patch detection framework
across diverse datasets, models, attack types, and defenses,
simulating realistic deployment scenarios.

Vision Language Models. For generative reasoning, we
use several VLMs g(·), including Qwen-VL-Plus (Cloud,
2023), Qwen2.5-VL-Instruct (Cloud, 2024), UI-TARS-72B-
DPO (Research, 2024), and Gemini (DeepMind, 2024).
These were chosen for their strong multimodal reasoning
in zero- and few-shot settings. While Gemini 2.0 yields
the highest accuracy, it is proprietary. UI-TARS-72B-DPO,
meanwhile, offers competitive performance and sets a strong
benchmark among open-source models.

Classification Models. To evaluate the impact of adver-
sarial patches across diverse architectures, we consider four
representative image classification models: (1) ResNet-50
(He et al., 2016), (2) ResNeXt-50 (Xie et al., 2017), (3)
EfficientNet-B0 (Tan & Le, 2019), and (4) ViT-B/16 (Doso-
vitskiy et al., 2020). These models span both convolutional
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Figure 2: Overview of our VRAG framework for adversarial patch detection. Given a query image, we extract grid-based
embeddings and retrieve the top-k visually similar adversarial patches from our database. These patches and their associated
attacked images form a few-shot context for a vision-language model that decides whether the query contains an adversarial
patch.

and transformer-based paradigms and offer a clear com-
parison across varying robustness profiles and architectural
biases. For all models, we report clean and attacked accu-
racies under each defense method, using the same attack
configuration and patch size distribution.

Datasets and Attacks. We evaluate on both synthetic and
real-world patch benchmarks: (1) ImageNet-Patch (Pintor,
2023), a 50/50 balanced dataset of attacked and clean Ima-
geNet samples, comprising 400 test images, where attacks
are applied to exactly 50% of the data to ensure balanced
evaluation; and (2) APRICOT (Liu et al., 2022), a real-world
dataset of 873 images, each containing a physically applied
adversarial patch.

We test two strong attacks: the classical adversarial
patch (Brown et al., 2017) targeting CNNs, and Patch-
Fool (Fu, 2022) targeting vision transformers. Patches are
randomly placed and vary in size from 25× 25 to 65× 65.

Defense Mechanisms. We compare against several meth-
ods: (1) JPEG compression (Dziugaite et al., 2016), (2)
Spatial smoothing (Xu et al., 2017), (3) SAC (Liu et al.,
2022), and (4) DIFFender (Kang et al., 2024), a recent
diffusion-based approach. We also evaluate a retrieval-only
baseline that flags regions as adversarial based on visual
similarity, without using VLM reasoning.

Evaluation Protocol. On ImageNet-Patch, we report clas-
sification accuracy over a balanced 50/50 clean/attacked
split. On APRICOT, we report binary accuracy (presence vs.
absence of a patch) across three settings: (1) Clean, (2) Un-
defended, and (3) Defended. Candidate regions are retrieved

using top-k = 2 cosine similarity and verified via VLM
prompts. Thresholds are calibrated on a held-out validation
set to ensure fair comparisons across all methods.

6. Results
Table 1 presents the accuracy performance of various de-
fense mechanisms on the APRICOT dataset (Braunegg
et al., 2020) under adversarial patch attacks of varying sizes
(25 × 25 to 65 × 65). Traditional defenses such as JPEG
compression (Dziugaite et al., 2016), spatial smoothing (Xu
et al., 2017), and SAC (Liu et al., 2022) provide only modest
improvements, particularly as patch size increases. DIFF-
ender (Kang et al., 2024) shows stronger robustness, achiev-
ing better accuracy across all patch sizes.

Our approach not only consistently outperforms these 0-shot
baselines but also shows increasing advantage as patch size
grows—demonstrating better scalability under high-strength
attacks. Notably, even the 0-shot version of our method
achieves competitive results, while the 4-shot configuration
delivers substantial gains, outperforming all baselines by
a large margin. It maintains high classification accuracy
even under challenging conditions, as shown in the confu-
sion matrix visualizations in Appendix 8, reinforcing the
effectiveness of combining retrieval with generative vision-
language reasoning in real-world adversarial settings.

Table 2 reports defense accuracy under adversarial patch
attacks of varying sizes. As expected, performance drops
sharply without defense. Traditional methods like JPEG
compression (Dziugaite et al., 2016), spatial smoothing (Xu
et al., 2018), and SAC (Liu et al., 2022) show limited robust-
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Table 1: Accuracy (%) on APRICOT (Braunegg et al., 2020) with adversarial patches of varying sizes. Methods are
evaluated in 0-shot (0S), 2-shot (2S), and 4-shot (4S) settings; methods without few-shot use show “–”. Gray indicates the
best 0S result, underline the second-best overall, and bold the best overall.

Method 25 × 25 50 × 50 55 × 55 65 × 65

0S 2S 4S 0S 2S 4S 0S 2S 4S 0S 2S 4S

Undefended 34.59 – – 32.18 – – 30.24 – – 28.55 – –
JPEG (Dziugaite et al., 2016) 29.35 – – 32.53 – – 35.28 – – 41.11 – –
Spatial Smoothing (Xu et al., 2017) 33.56 – – 36.19 – – 39.17 – – 42.26 – –
SAC (Liu et al., 2022) 45.93 – – 48.22 – – 49.14 – – 52.80 – –
DIFFender (Kang et al., 2024) 65.06 – – 66.32 – – 68.61 – – 70.90 – –
Baseline 56.81 – – 59.56 – – 60.59 – – 69.64 – –
Ours (Qwen-VL-Plus) 45.37 76.18 87.64 46.40 77.90 88.78 47.55 79.62 90.50 50.98 81.91 92.22
Ours (Qwen2.5-VL-72B) 47.37 78.18 89.64 48.40 79.90 90.78 49.55 81.62 92.50 52.98 83.91 94.22
Ours (UI-TARS-72B-DPO) 49.37 80.18 91.64 50.40 81.90 92.78 51.55 83.62 94.50 54.98 85.91 96.22
Ours (Gemini) 56.24 82.59 93.92 57.16 85.11 96.33 58.76 86.94 96.79 63.12 90.26 97.93

ness, while DIFFender (Kang et al., 2024) performs better
through generative reconstruction.

Our retrieval-only baseline outperforms these, highlighting
the value of visual similarity. The full method—combining
retrieval with VLM reasoning—achieves the best results,
with the 4-shot variant nearly restoring clean accuracy un-
der large patches. This demonstrates the effectiveness of
retrieval-augmented generative reasoning for adaptive patch
detection.

We further analyze the effect of prompt design on detection
performance. As shown in Appendix 7, incorporating visual
examples of both adversarial patches and attacked images
into the prompt significantly improves detection accuracy,
with the combined prompt format achieving the best results
across multiple models and patch sizes. This finding high-
lights the importance of structured, context-rich prompts in
maximizing the reasoning capabilities of VLMs. Specifi-
cally, prompts that present both the cause (adversarial patch)
and the effect (altered image behavior) enable the VLM to
better associate visual cues with adversarial intent, even in
zero-shot settings. This insight suggests that prompt engi-
neering is not merely a cosmetic component but a critical
design factor in VLM-driven adversarial detection pipelines.
It also opens the door to automated or learned prompt op-
timization strategies that could further boost performance
under different deployment scenarios. Additionally, Ap-
pendix A.8 presents a comprehensive ablation study that
quantifies the impact of key system components. We analyze
the trade-offs introduced by retrieval strategy choices (e.g.,
key/value formulation, embedding granularity), prompt for-
mulations (e.g., descriptive vs. direct), few-shot context
sizes (0-shot, 2-shot, 4-shot), and inference-time efficiency.
These experiments offer actionable insights into which de-
sign choices yield the best accuracy-performance trade-off
and help identify bottlenecks in system scalability. Together,
these findings reinforce the critical role of retrieval and
prompt design in enabling robust, generalizable adversarial
patch detection without the need for retraining.

7. Discussion and Conclusion
We introduced a training-free framework for adversarial
patch detection that integrates visual retrieval-augmented
generation with vision-language models. By leveraging a
precomputed and expandable database of diverse adversarial
patches, our method enables dynamic retrieval and context-
aware reasoning without any model retraining or fine-tuning.
This makes our approach both scalable and deployment-
ready in dynamic or resource-constrained environments. In
contrast to many prior defenses that rely on task-specific
training regimes or assumptions about patch geometry, our
method generalizes effectively to a broad range of patch
types—including naturalistic, camouflaged, and physically
realizable attacks.

Extensive evaluations on two complementary
datasets—ImageNet-Patch, a synthetic benchmark with
clean/attacked image pairs, and APRICOT, a real-world
dataset with 873 physically attacked images—demonstrate
the robustness of our framework. Across varying patch sizes
and attack methods, our method consistently outperforms
traditional defenses such as JPEG compression (Dziugaite
et al., 2016), spatial smoothing (Xu et al., 2017), SAC (Liu
et al., 2022), and DIFFender (Kang et al., 2024), as well as
a retrieval-only baseline that lacks the reasoning capabilities
of VLMs. Our full system achieves detection rates of up
to 98%, and crucially, maintains performance as the threat
severity increases.

Beyond raw accuracy, we conducted thorough ablation stud-
ies (Appendix A.2) to isolate the contributions of retrieval
strategies, similarity metrics, prompt engineering, and few-
shot context size. These experiments highlight the impor-
tance of structured prompts and representative visual context
in enabling reliable VLM-based reasoning. We also report
inference-time performance and parallelization trade-offs to
assess real-world feasibility. Appendix 7 and Appendix A.6
provide qualitative comparisons, confusion matrices, and
generalization analysis to diverse patch shapes and designs,
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Table 2: Accuracy (%) of four models under adversarial patch attacks of varying sizes. Each method is evaluated under
three configurations: 0-shot (0S), 2-shot (2S), and 4-shot (4S), reflecting increasing levels of visual context provided to the
vision-language model. For methods that do not support few-shot adaptation, results for 2S and 4S are omitted and marked
with “–”. Gray indicates the best-performing method in the 0-shot setting, underline highlights the second-best overall result
across all configurations, and bold denotes the highest overall accuracy. This presentation enables a clear comparison of
zero- and few-shot performance across varying patch sizes and models.

Model Method Clean 25× 25 50× 50 55× 55 65× 65

0S 2S 4S 0S 2S 4S 0S 2S 4S 0S 2S 4S

ResNet-50 (He et al., 2016)

Undefended

97.50

7.50 – – 9.25 – – 8.75 – – 6.95 – –
JPEG (Dziugaite et al., 2016) 50.75 – – 51.75 – – 49.25 – – 49.00 – –
Spatial Smoothing (Xu et al., 2017) 55.50 – – 58.25 – – 55.25 – – 50.75 – –
SAC (Liu et al., 2022) 64.75 – – 66.75 – – 68.00 – – 69.50 – –
Baseline 58.50 – – 59.75 – – 62.00 – – 62.50 – –
Ours (Qwen-VL-Plus) 49.75 70.00 85.25 54.00 73.00 86.50 62.50 75.00 87.25 79.00 79.50 88.00
Ours (Qwen2.5-VL-72B) 55.25 82.00 88.25 60.00 84.00 89.25 79.75 86.00 90.50 91.00 91.25 91.50
Ours (UI-TARS-72B-DPO) 54.50 83.00 89.50 55.50 87.75 90.50 57.50 86.25 89.75 57.50 87.50 94.00
Ours (Gemini) 56.25 87.25 93.25 58.50 89.75 93.75 59.75 90.25 96.25 60.25 91.25 99.25

ResNeXt-50 (Xie et al., 2017)

Undefended

97.50

9.25 – – 11.00 – – 10.75 – – 8.95 – –
JPEG (Dziugaite et al., 2016) 48.75 – – 50.75 – – 47.75 – – 46.50 – –
Spatial Smoothing (Xu et al., 2017) 55.75 – – 57.50 – – 55.75 – – 50.25 – –
SAC (Liu et al., 2022) 64.75 – – 66.25 – – 68.00 – – 66.75 – –
Baseline 56.50 – – 58.50 – – 60.25 – – 61.75 – –
Ours (Qwen-VL-Plus) 48.25 68.50 83.00 52.00 71.25 84.50 58.00 72.75 85.25 74.25 77.00 86.25
Ours (Qwen2.5-VL-72B) 53.25 78.25 85.75 58.50 80.75 87.00 76.00 84.00 88.25 89.25 90.00 90.75
Ours (UI-TARS-72B-DPO) 52.50 80.75 85.75 55.25 85.00 89.25 55.25 86.25 91.00 59.25 84.75 93.25
Ours (Gemini) 55.50 85.00 91.25 57.75 87.50 92.75 58.75 88.50 94.75 60.75 89.75 98.50

EfficientNet (Tan & Le, 2019)

Undefended

95.50

24.25 – – 25.75 – – 24.00 – – 21.50 – –
JPEG (Dziugaite et al., 2016) 51.00 – – 53.75 – – 50.75 – – 49.25 – –
Spatial Smoothing (Xu et al., 2017) 60.50 – – 63.25 – – 61.75 – – 57.50 – –
SAC (Liu et al., 2022) 58.25 – – 60.75 – – 63.25 – – 67.25 – –
Baseline 54.75 – – 56.75 – – 58.25 – – 61.00 – –
Ours (Qwen-VL-Plus) 50.25 69.25 84.00 53.00 72.25 85.50 59.50 74.00 86.25 76.00 78.75 87.75
Ours (Qwen2.5-VL-72B) 54.50 79.50 87.00 59.25 82.00 89.00 78.25 85.00 90.50 90.50 91.00 92.00
Ours (UI-TARS-72B-DPO) 49.75 80.50 85.25 52.25 83.00 88.75 54.75 82.75 91.00 57.75 86.00 95.00
Ours (Gemini) 53.00 84.25 91.25 55.50 85.75 93.50 57.00 88.00 95.75 59.75 89.75 97.50

ViT-B-16 (Fu, 2022)

Undefended

97.75

27.75 – – 29.25 – – 27.00 – – 24.25 – –
JPEG (Dziugaite et al., 2016) 57.75 – – 58.75 – – 55.50 – – 51.00 – –
Spatial Smoothing (Xu et al., 2017) 66.75 – – 67.25 – – 64.00 – – 61.25 – –
SAC (Liu et al., 2022) 63.25 – – 64.75 – – 65.75 – – 69.25 – –
Baseline 59.50 – – 61.50 – – 62.75 – – 64.00 – –
Ours (Qwen-VL-Plus) 51.25 69.50 84.25 55.00 72.50 85.75 60.50 76.00 86.75 74.00 79.00 87.25
Ours (Qwen2.5-VL-72B) 56.75 78.75 87.00 60.75 81.00 88.75 78.00 84.50 90.50 90.25 91.00 91.75
Ours (UI-TARS-72B-DPO) 53.25 82.00 89.75 54.75 84.25 91.00 56.75 85.50 93.25 59.50 88.75 95.25
Ours (Gemini) 58.75 86.75 93.50 60.75 89.00 95.25 61.25 90.75 98.75 63.00 93.00 99.00

further reinforcing the robustness of our method.

Limitations and Future Work. While effective, our
method currently assumes access to a representative patch
database. Future work will focus on automatically identi-
fying and augmenting missed or novel adversarial patterns
using generative models and self-supervised learning. We
also aim to incorporate uncertainty quantification into VLM
outputs to better handle ambiguous or borderline cases. Fur-
thermore, improving inference speed—particularly for high-
resolution images and real-time applications—remains an
important direction for deployment at scale.

Conclusion. Our VRAG-based framework combines
retrieval-based search with generative vision-language rea-
soning to offer a robust, adaptive, and training-free solution
to adversarial patch detection. It achieves high accuracy,
generalizes across patch types, and requires minimal super-
vision—making it a practical and scalable defense strategy
for modern vision systems.
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A. Appendix: Ablation Study
We perform all evaluations on the ImageNet-Patch (Pintor,
2023) dataset.

A.1. Effect of Parallelization

Parallelization significantly improves the efficiency of adver-
sarial patch database creation. Since the application of each
patch to each image—and the subsequent embedding com-
putation—are independent operations, the process can be
parallelized across multiple workers (Kazoom et al., 2022).
This enables rapid generation and encoding of large-scale
patched image datasets.

In our setup, we applied adversarial patches to a collection
of clean images, using a key-value approach where each
image was divided into a 5 × 5 grid. Patch embeddings
served as keys, while embeddings of image regions acted as
values for retrieval. The end result was a database of 3,500
patch-image pairs with corresponding embeddings. To eval-
uate scalability, we measured execution time with varying
levels of parallelism, confirming substantial speedups as the
number of workers increased.

Table 3: Execution time for adversarial patch detection with
different numbers of workers. Results are reported as mean
± standard deviation, in minutes.

Number of Workers Execution Time (min)

1 24.57 ± 0.07
2 12.12 ± 0.10
3 8.11 ± 0.16
4 6.14 ± 0.26
5 4.59 ± 0.40
6 3.58 ± 0.54

As shown in Table 3, using a single worker resulted in an
average execution time of 24.57 minutes, whereas increas-
ing the number of workers to six reduced the execution
time to 3.58 minutes, demonstrating a 6.86× speedup. The
results indicate that distributing the workload across mul-
tiple processes significantly reduces execution time while
maintaining detection accuracy.

These findings validate the effectiveness of parallelization in
our method, allowing it to scale efficiently for larger datasets.
The speedup enables the rapid processing of extensive adver-
sarial patch collections, making real-time detection feasible.

A.2. Embedding Distance Analysis

We evaluate the effectiveness of our retrieval mechanism
through an ablation study comparing several distance met-
rics for nearest-neighbor retrieval, including cosine simi-
larity, L1 distance, L2 distance, and Wasserstein distance.
All experiments in this subsection were conducted on the
ImageNet-Patch dataset. Rather than relying solely on co-
sine similarity for retrieving stored adversarial patches, we
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also assess alternative metrics using embeddings extracted
via CLIP (Radford et al., 2021).

Given an input image I , we partition it into grid-based
regions and extract feature embeddings using CLIP’s image
encoder:

EI = f(I), ED = {f(Di) | Di ∈ D}, (9)

where f(·) denotes the CLIP embedding function and D
represents the precomputed adversarial patch database.

For cosine similarity-based retrieval, the similarity score is
computed as:

S(EI , ED) =
EI · ED

∥EI∥ ∥ED∥
, (10)

with a stored adversarial patch retrieved if S(EI , ED) ex-
ceeds a similarity threshold τs.

We also evaluate L1 and L2 distances. The L1 distance is
defined as:

dL1(EI , ED) =
∑
|EI − ED|, (11)

and the L2 distance is given by:

dL2(EI , ED) = ∥EI − ED∥2. (12)

For both L1 and L2 distances, retrieval is triggered when
the computed distance falls below a threshold (τL1 or τL2,
respectively).

Additionally, we examine the Wasserstein distance, which
measures the optimal transport cost between distributions.
For two distributions P and Q over the embedding space,
the Wasserstein distance is defined as:

W (EI , ED) = inf
γ

E(x,y)∼γ [∥x− y∥], (13)

where γ is a joint distribution with marginals P and Q. This
metric quantifies the minimal effort required to transport
mass between the two embedding distributions.

We compare the retrieval effectiveness of these four metrics
using Gemini-2.0 (DeepMind, 2024) for final classification.
The cosine similarity-based approach achieves the highest
classification accuracy at 98.00%, followed by L2 distance
(89.75%), L1 distance (86.25%), and Wasserstein distance
(84.25%). These results are visualized in Figure 3a.

These results indicate that cosine similarity most effectively
captures the high-dimensional semantic relationships es-
sential for robust adversarial patch retrieval, while the al-
ternative metrics, although reasonable, perform less effec-
tively—particularly the Wasserstein distance, which strug-
gles to model distributional similarity from limited embed-
ding samples.
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A.3. Inference Time Analysis

All experiments in this subsection were conducted on the
ImageNet-Patch dataset. In addition to detection perfor-
mance, we assess the inference time required for each de-
fense mechanism. For an input image I , the processing time
for a defense mechanism D is defined as:

TD =
1

N

N∑
i=1

ti, (14)

where ti is the processing time for the i-th image and N is
the total number of test images.

We analyze the trade-off between inference time TD and
classification accuracy AD, which is calculated as:

AD =
Ccorrect

Ctotal
× 100, (15)
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with Ccorrect representing the number of correctly classified
images and Ctotal the total number of images.

As shown in Figure 3b, JPEG compression (Dziugaite et al.,
2016) and Spatial Smoothing (Xu et al., 2017) offer the
fastest inference times (0.92s and 0.97s, respectively), albeit
with limited accuracy improvements (49.25% and 55.25%).
SAC (Liu et al., 2022) requires 1.58s while achieving an
accuracy of 68.00%, and DIFFender (Kang et al., 2024)
attains an accuracy of 70.90% with an inference time of
7.98s.

Our method, leveraging Qwen-VL-Plus (Cloud, 2023),
Qwen2.5-VL-72B-Instruct (Cloud, 2024), UI-TARS-72B-
DPO (Research, 2024), and Gemini-2.0 (DeepMind, 2024),
achieves superior classification accuracy (79.00%, 91.00%,
95.00%, and 98.00%, respectively) with inference times of
1.97s, 2.09s, 2.17s, and 2.25s.

These findings highlight a clear performance–efficiency
trade-off: higher detection accuracy generally demands
increased computational cost. Our approach effectively
balances these aspects by leveraging retrieval-augmented
detection while maintaining inference times that remain
competitive with existing defense mechanisms.

A.4. Prompt Engineering Analysis

All experiments in this subsection were conducted on the
ImageNet-Patch dataset. To investigate the impact of prompt
design (Gu et al., 2023) on adversarial patch detection, we
conducted an ablation study evaluating five distinct prompt-
ing strategies. Each strategy aims to guide the VLM in
classifying whether an image contains an adversarial patch.
Given an input image I , the VLM is provided with a textual
prompt T and returns a classification response:

R = V(T , I), (16)

where V represents the VLM inference function.

To enhance context, we leverage a retrieved set of adver-
sarial patch examples {P1, . . . , Pm}, where each Pi is an
adversarial patch stored in the database, and a set of attacked
images {I1, . . . , Ik}, where each Ij is a full image contain-
ing an applied adversarial patch. These elements provide
additional visual references during inference.

The prompting strategies evaluated are as follows, along
with the specific examples used:

1. Instruction-only: A generic instruction without exam-
ples:

“Adversarial physical attacks
involve placing random
patches on images. You are

an expert in identifying such
patches. Is the following
image attacked? Answer ’yes’
or ’no’.”

2. Attacked Images: The instruction followed by exam-
ples of attacked images {I1, . . . , Ik}:

“Here are examples of images
that have been attacked:
[Image 1], [Image 2], [Image
3]. Given the next image, is
it attacked? Answer ’yes’ or
’no’.”

3. Patch Examples: The instruction followed by exam-
ples of extracted adversarial patches {P1, . . . , Pm}:

“Here are examples of
adversarial patches: [Patch
1], [Patch 2], [Patch 3].
Given the next image, is it
attacked? Answer ’yes’ or
’no’.”

4. Chain-of-Thought (CoT): The instruction augmented
with reasoning:

“Adversarial attacks often
involve adding suspicious
patches. First, analyze if
there are irregular regions.
Then, decide if an attack is
present. Is the following
image attacked? Answer ’yes’
or ’no’.”

5. Combined (Final, Without CoT): The instruction
with both attacked images and patch examples:

“Adversarial physical attacks
involve random patches on
images. You are an expert
at detecting them. Here
are examples of adversarial
patches: [Patch 1], [Patch
2]. Here are examples of
attacked images: [Image
1], [Image 2]. Given the
above context, is this image
attacked? Please answer
’yes’ or ’no’.”

To quantify the effectiveness of each prompt type, we mea-
sured the detection accuracy AT obtained under each con-
figuration. The final selected prompt, as presented in Al-
gorithm 2, corresponds to the Combined (Final) strategy,
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which achieved the highest detection accuracy of 98.00%.
The complete results are summarized in Figure 4, where
we observe that simple instructional prompts result in
low accuracy (58.00%), while adding contextual examples
(patches and attacked images) significantly improves perfor-
mance. The CoT-based prompt further enhances accuracy to
91.25%, whereas the combined strategy achieves the highest
overall detection rate.
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Figure 4: Effect of prompt engineering on adversarial patch
classification accuracy.

This ablation study highlights that careful prompt engineer-
ing, particularly including few-shot visual examples and
reasoning, is critical for maximizing VLM-based adversar-
ial patch detection.

A.5. Impact of Few-Shot Context Size on Classification
Accuracy

All experiments in this subsection were conducted on the
ImageNet-Patch dataset. To evaluate the effect of context
size on adversarial patch detection, we conducted an abla-
tion study by varying the number of few-shot examples pro-
vided to the VLM during inference. Let k ∈ {0, 1, . . . , 6}
denote the number of retrieved examples (i.e., the few-shot
shots). For each k-shot configuration, we measured the
classification accuracy Ak of the VLM in detecting adver-
sarial patches across four different models: Qwen-VL-Plus,
Qwen2.5-VL-Instruct, UI-TARS-72B-DPO, and Gemini-
2.0.

Figure 5 illustrates the trend of Ak as a function of k. Across
all models, we observe a consistent improvement in detec-
tion accuracy with increasing values of k, indicating that pro-
viding more contextual examples strengthens the model’s
ability to generalize and distinguish adversarial patterns.
Notably, UI-TARS-72B-DPO consistently achieves inter-
mediate performance, surpassing Qwen-based models and
closely approaching Gemini-2.0 accuracy.

These results suggest that larger few-shot contexts allow the
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Figure 5: Few-shot detection accuracy across varying con-
text sizes k.

VLM to better align the input query with prior adversarial
patterns stored in the retrieval database. However, the per-
formance gains tend to plateau beyond k = 4, highlighting a
saturation effect where additional examples yield diminish-
ing returns. The comparison also reveals that more capable
VLMs (e.g., Gemini-2.0 and UI-TARS-72B-DPO) benefit
more rapidly from few-shot conditioning than smaller mod-
els such as Qwen-VL-Plus and Qwen2.5-VL-Instruct, al-
though Gemini-2.0 still demonstrates superior performance
overall.

A.6. Generalization to Diverse Patch Shapes

Real-world adversarial patches appear in many shapes and
textures, from geometric (square, round, triangular) to nat-
uralistic or camouflage-like forms. To ensure robustness
against these diverse patterns, we incorporate a range of
patch types in the database creation phase. Concretely, each
patch Pi ∈ P may be:

square, round, triangle, realistic, . . .

Since detection relies on embedding-based similarity rather
than geometric assumptions, unusual or irregular patch
shapes remain identifiable as long as their embeddings lie
above a retrieval threshold τ . In practice, this approach
allows our VRAG-based framework to detect both canon-
ical patches and highly unobtrusive, adaptive adversarial
artifacts designed to evade simpler defenses.

By collectively leveraging a rich database of patch embed-
dings, a retrieval-augmented paradigm, and a capable vision-
language model, our method achieves robust generalization
in adversarial patch detection across a wide spectrum of
attack strategies.
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Realistic Patches Round Square Triangle

Figure 6: Examples of adversarial patch masks used in our
dataset. We consider four types: realistic, round, square, and
triangle. This diversity improves robustness across patch
shapes.

A.7. Qualitative Results

In addition to quantitative evaluations, we present qualita-
tive results highlighting the effectiveness of our proposed
framework compared to existing defenses. Figure 7 illus-
trates visual comparisons across various defense mecha-
nisms: Undefended, JPEG compression (Dziugaite et al.,
2016), Spatial Smoothing (Xu et al., 2017), SAC (Liu et al.,
2022), DIFFender (Kang et al., 2024), and our method.

Adversarial patches remain clearly visible and disruptive in
both Undefended and JPEG-compressed images, indicating
that these methods fail to mitigate patch attacks effectively.
SAC partially reduces the visibility of adversarial patches
but does not consistently eliminate them, often leaving resid-
ual disruptions. DIFFender (Kang et al., 2024) demonstrates
improved effectiveness compared to SAC by further reduc-
ing patch visibility, though residual disturbances remain
apparent.

In contrast, our method reliably identifies and neutralizes ad-
versarial patches, effectively mitigating their influence while
preserving image integrity. However, our approach also has
specific failure modes, particularly evident when the adver-
sarial patch blends seamlessly into the noisy background
of an image, matching its distribution. In such challenging
cases (e.g., the last row of the right-hand table in Figure 7),
the model may struggle to accurately differentiate between
patch and background noise, highlighting a limitation to be

addressed in future research.

A.8. Impact of Few-Shot Retrieval on VLM Accuracy

To further understand performance across different vision-
language models (VLMs), Figure 8 shows confusion matri-
ces for Qwen-VL-Plus (Bai et al., 2024), Qwen2.5-VL-72B
(Bai et al., 2025), UI-TARS-72B-DPO (Research, 2024),
and Gemini-2.0 (Team et al., 2023) under 0-shot, 2-shot,
and 4-shot configurations. Increasing the number of re-
trieved examples consistently improves both true-positive
and true-negative rates. Notably, the 4-shot configuration
with Gemini-2.0 yields near-perfect separation between ad-
versarial and clean samples. While Gemini-2.0 remains the
top-performing model, UI-TARS-72B-DPO achieves highly
competitive results, outperforming all other open-source
VLMs by a significant margin.

These findings highlight the power of retrieval-augmented
prompting for adversarial patch detection—especially when
representative visual-textual context is injected via advanced
VLMs.
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Figure 7: Qualitative comparison of different defense mechanisms. From left to right: Undefended, JPEG compression
(Dziugaite et al., 2016), Spatial Smoothing (Xu et al., 2017), SAC (Liu et al., 2022), DIFFender (Kang et al., 2024) and our
method.
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Figure 8: Confusion matrices across three few-shot configurations (rows) and four VLMs (columns). Axes represent
predicted and actual classes (“Attack” vs. “Not Attack”). Gemini-2.0 achieves the best overall accuracy, while UI-TARS-
72B-DPO offers the strongest open-source performance.
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