
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

LIFT: Improving Long Context Understanding of Large Language Models
through Long Input Fine-Tuning

Anonymous Authors1

Abstract
Long context understanding remains challenging
for large language models due to their limited
context windows. This extended abstract presents
Long Input Fine-Tuning (LIFT), a novel frame-
work for long-context modeling that can improve
the long-context performance of arbitrary short-
context LLMs by dynamically adapting model
parameters based on the long input. Importantly,
LIFT, rather than endlessly extending the context
window size to accommodate increasingly longer
inputs in context, chooses to store and absorb the
long input in parameter. By absorbing the long
input into model parameters, LIFT allows short-
context LLMs to answer questions even when the
required information is not provided in the con-
text during inference. Furthermore, we introduce
Gated Memory, a specialized attention adapter
that automatically balances long input memoriza-
tion and the original in-context learning (ICL)
capabilities. We provide a comprehensive anal-
ysis of the strengths and limitations of LIFT on
long context understanding, offering valuable di-
rections for future research.

1. Introduction
Large Language Models (LLMs), such as GPT-4 (Achiam
et al., 2023), have revolutionized the field of natural lan-
guage processing. Long input, which can span up to mil-
lions of tokens, is common in real-world applications, in-
cluding long books (Kočiskỳ et al., 2018), accounting doc-
uments (Li et al., 2024), high-resolution videos (Wu et al.,
2024; Tapaswi et al., 2016), and audio signals (Yang et al.,
2024). However, it’s hard for LLMs to capture the overall in-
formation within long input due to the quadratic complexity
of the attention mechanism and the heavy memory overhead

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

caused by storing KV cache. Moreover, it is challenging to
capture long dependencies (Li et al., 2023) among pieces of
information scattered throughout long inputs.

To address these challenges: long-context post-
training (Chen et al., 2023; Peng et al., 2023) adapts
LLMs to long context via fine-tuning them on corpora
of long sequences, but both the post-training and the
inference of these models are resource-intensive; Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020; Xu
et al., 2023) and prompt compression (Jiang et al., 2023;
El-Kassas et al., 2021) preprocess long input via retrieval
or compression, but the effectiveness is limited by the
quality of the retrieved/compressed information; memory-
augmented LLMs (Wang et al., 2023; 2024b; 2025) usually
memorize previous hidden states with external modules.
Please refer to Appendix A for a detailed discussion of
related work.

In this extended abstract, we present a novel framework,
Long Input Fine-Tuning (LIFT), designed to enhance the
long-context capabilities of arbitrary short-context models
by adapting model parameters to the long input at test time.
With our proposed Gated Memory adapter, LIFT allows
LLMs to efficiently fine-tuning and decoding, and balanc-
ing in-parameter and in-context knowledge. Empirically,
it improves LLMs’ performance on popular long-context
tasks.

2. Method
In this section, we introduce LIFT, a framework improving
LLMs’ long context understanding through long input fine-
tuning (Figure 1 (a)). The details are in Appendix B.

2.1. Training with segmented long inputs

We propose a novel way to memorize long inputs by storing
them into LLMs’ parameters via fine-tuning. We formulate
the memorization task as a language modeling task. How-
ever, it is challenging for short-context LLMs to adapt to
a long sequence. Besides, it leads to quadratic complexity
w.r.t. the input length. Let the tokenized long input be x
of length L. One straightforward way is to cut x into non-
overlapping short segments. However, it fails to capture the

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

LIFT (Extended Abstract)

Long Inputs

Short Segments

Auxiliary Tasks

Short-Context
Model

LIFT

Question

LIFTed 
Model

Answer

Truncation

Synthesize

Overlapping segment

Truncate to fit in the 
context window

In-Context Learning

Full long input → 

ℓ

Non-overlapping segments → ℓ , unordered

ℓ

Overlapping segments → ℓ / = , ordered

(a) (b)
Figure 1: (a) The workflow of LIFT. (b) A comparison among the segmentation methods. LIFT adopts overlapping
segmentation to avoid quadratic complexity while preserving the order.

sequentiality of the long input since the model cannot infer
the correct order of the segments.

To address this, we alter the long-input segmentation with
certain overlaps between the adjacent segments as illustrated
in Figure 1 (b). By overlapping the tail of one segment with
the head of the next, the model can better preserve the
sequential structure of the input while maintaining linear
complexity w.r.t. the input length. Ideally, if the model
learns to generate the tail of a segment, it should be able to
seamlessly continue into the next segment. Let the segments
be xl1:r1 , . . . ,xlK :rK . The objective is

LS = −
K∑
i=1

ri∑
j=li

logP (xj |xli:j−1; θ). (1)

2.2. Joint training with auxiliary tasks

While training on the long input helps the model memo-
rize the input, it probably degrades other abilities, such as
instruction-following. Moreover, successfully memorizing
the input does not necessarily indicate that the model can
reason effectively based on it.

It is shown that reading while questioning is an effective
method for improving the comprehension of knowledge for
humans (Robinson, 1946). Motivated by this, we propose
synthesizing auxiliary question-answering (QA) tasks based
on the long input, denoted as (qi,ai)

m
i=1, and training the

LLM on them. These QAs can be simple details such as
specific people, time, locations of events, or more general
reading comprehension ones. The objective function of the
auxiliary tasks is

LAT = −
m∑
i=1

logP (ai | qi; θ). (2)

Following the mechanism of mix training (Allen-Zhu & Li,
2023), which asserts that LLMs can only learn to perform
inference based on x when trained simultaneously on both

x and (qi,ai)
m
i=1, we propose jointly optimizing the two

objective functions, i.e.,

LMIX = LS(x; θ) + LAT ((qi,ai)
m
i=1; θ) (3)

In our experiments, we extract several short segments from
x and use a pretrained LLM to generate QA pairs based on
the segments. The prompts to generate such QAs are given
in Appendix B.

To align the formats of segmented language modeling and
auxiliary tasks as well as maximally leverage the in-context
knowledge, we further propose a Contextualized Training
(CT) method which provides a piece of context from the
original long input for both the language modeling and
auxiliary tasks. The details are included in Appendix D. CT
further improves the downstream performance.

2.3. Gated Memory Architecture

To efficiently apply LIFT, we aim to use a parameter-
efficient fine-tuning (PEFT) rather than full-parameter fine-
tuning. Existing representative PEFT methods such as
LoRA (Hu et al., 2021) and PiSSA (Meng et al., 2024)
are not specifically designed for long context tasks. There-
fore, we propose a novel Gated Memory adapter working
very well in the LIFT framework.

One key intuition behind LIFT is to store long input that
cannot fit into the context window into model parameters.
To achieve this, we hypothesize that the model has access
to the long input x′ and the prompt x during inference
and the tokens of x can attend to the tokens of x′ in the
attention modules. We decompose the attention output in
the hypothetical theme into parts related to x only and the
other parts related to both x and x′.

attn(q,k′,k,v′,v) = gk′(q)⊙mk′,v′(q)+(
1− gk′(q)

)
⊙ attn(q,k,v),

(4)

where (q′,k′,v′) and (q,k,v) are the query-, key- and
value-vectors of x′ and x, respectively.

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

LIFT (Extended Abstract)

Table 1: Performance on LooGLE. We evaluate the accuracy of the methods on LooGLE short-dependency QA (ShortQA)
and long-dependency QA (LongQA). Comprehension & reasoning, multiple info retrieval, computation, and timeline reorder
are the subtasks in LongQA and we evaluate the accuracy on each of them.

Methods ShortQA LongQA
Comprehension

& Reasoning
Multiple info

retrieval Computation
Timeline
reorder

MemoryLLM 33.06 20.44 29.31 15.53 8.00 18.14
LlamaIndex(Llama-3) 41.93 21.07 33.00 17.11 12.00 9.77
LlamaIndex(Gemma-2) 42.95 22.98 31.03 18.16 11.00 21.86
ICL(Llama-3) 44.49 15.44 25.37 15.26 5.00 1.86
LIFT(Llama-3) 47.51 29.97 39.90 27.89 17.00 17.21
ICL(Gemma-2) 37.37 29.79 36.95 21.58 10.0 40.00
LIFT(Gemma-2) 50.33 31.24 40.39 27.11 12.00 30.23

Table 2: Performance on LongBench. The scores of MemoryLLM marked with ∗ are the reused experimental results from
the original paper.

Methods Musique NarrativeQA Qmsum GovReport PassageRetrievalEN

MemoryLLM 13.47∗ 20.64∗ 20.98 20.89 9.03
LlamaIndex(Llama-3) 18.23 17.21 21.95 28.03 59.38
ICL(Llama-3) 26.89 19.45 21.64 30.18 58.33
LIFT(Llama-3) 21.19 23.33 23.07 33.62 62.50

By absorbing x′, as well as q′,k′,v′, into the parameters
of g and m, we derive the following Gated Memory adapter
for attention modules:

fϕ(q,k,v) = gϕ(q)⊙mϕ(q)+(1−gϕ
(
q)
)
⊙attn(q,k,v),

where attn is the original attention module and ϕ are the
parameters of the Gated Memory adapter. The architecture
is illustrated in Figure 2. Please refer to Appendix C for the
details of the derivation of Gated Memory.

One can use Equation (4) as the distillation targets to train g
and m, yet this way is too expensive as it requires computing
attention over the long input. Alternatively, we choose to
train these adapters end-to-end using the LIFT objective
in Equation (3), i.e., just use them normally as standard
adapters.

Compared to LoRA, Gated Memory allows the model to
recover the original model by setting gϕ(q) to 0 when the
prompt is irrelative to the long input, thereby solving the task
using only the in-context knowledge. In contrast, existing
PEFT methods like LoRA and PiSSA fail to control the
influence of adapters, risk overfitting the long input, and
may damage the original capabilities too much.

3. Experiments
3.1. Setup

We evaluate LIFT on two popular long-context benchmarks,
LooGLE (Li et al., 2023) and LongBench (Bai et al., 2023),

covering a wide variety of application scenarios. LIFT is
compared with baselines including truncated ICL, RAG
(represented by LlamaIndex (Liu, 2022)), and memory-
augmented models (represented by MemoryLLM (Wang
et al., 2024b)). To evaluate the universality of LIFT across
different models, we select two foundation models, Llama-3
and Gemma-2, both of which have 8K context windows.
Please refer to Appendix G, F for the details about the eval-
uation metrics, the reproduction of the baselines,

We use ICL to denote truncating the long input by retain-
ing only the beginning and end of texts within the context
window of the base model, and use LIFT to denote first
fine-tuning the base LLM using the Gated Memory adapter
with the objective in Equation (3) and then use the above
truncated ICL.

3.2. Results on LooGLE and LongBench

As shown in Table 1, LIFT consistently outperforms ICL of-
ten by large margins on the overall scores on both LongQA
and ShortQA tasks across the two LLMs. Particularly, it
shows notable improvement in GPT4-score from 15.44 to
29.97 on Llama-3 in LongQA and from 37.37 to 50.33
on Gemma-2 in ShortQA. Notably, Llama-3 benefits more
from LIFT than from LlamaIndex, consistently outperform-
ing LlamaIndex and improving the GPT4-score on LongQA
from 21.07 to 29.97. Moreover, compared to ICL, LIFT
significantly improves the LLMs performance on LongQA,
where Llama-3 improves with over 50% gain on all the sub-

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

LIFT (Extended Abstract)

ℎ

Memory
MLP

Gate
MLP Attn

⋅
Gated memory

⋅
Gated attn

1 −
+

and concate

Original MLP

ℎ

Original Attn Module

Gated Memory

Figure 2: The architecture of Gated Memory. The purple
part is the added adapter “gated memory” to fit the out-of-
context attention; the green part is the original attention
module. During training, only the gated memory part is
trained. Other parameters are fixed.

tasks and Gemma-2 outperforms ICL on 3 out of 4 subtasks.

Table 2 presents the results across five representative tasks
with extremely long inputs in LongBench. LIFT outper-
forms ICL and other baselines on 4 out of 5 subtasks. Please
refer to Appendix I for additional analysis to the results on
LooGLE and LongBench.

3.3. Efficiency and Ablation Study

We perform additional experiments to verify the efficiency
of LIFT and the effectiveness of the designs.

To evaluate the efficiency of LIFT, we compare the follow-
ing settings: LIFT with truncated ICL (denoted as LIFT),
which is the same setting as that in LooGLE and Long-
Bench test, LIFT without ICL (denoted as LIFT (Llama
3.1)), and long-context ICL (denoted as ICL). Empiri-
cally, as illustrated in Figure 3, LIFT starts to outperform
ICL in decoding time when generating more than 1500 to-
kens with an input of 20K tokens. Please refer to Appendix J
for a detailed analysis to the efficiency of LIFT.

For ablation study on Gated Memory, we conduct a com-
parison between Gated Memory, LoRA and PiSSA (Meng
et al.). Specifically, using the same training framework (in-
cluding task designs, objective functions, and scheduling

0 2000 4000 6000 8000 10000
Generation length (token)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ge
ne

ra
tio

n 
tim

e 
(m

s)

1e6
Decoding speed with 20K input

ICL
LIFT
LIFT (Llama 3.1)

Figure 3: The efficiency test. The figure illustrates the
decoding speed comparison between LIFT and ICL given
inputs of length 20K.

configurations) of LIFT, we fine-tune the model separately
with the Gated Memory, LoRA, and PiSSA adapters. To
evalute the effectiveness of auxiliary tasks, we compare
LIFT with 0, 10, and 20 auxiliary tasks on LooGLE. At last,
we compare LIFT with contextualized training and LIFT
with conventional language modeling. Empirically, the re-
sults suggest each of our design is effective. Please refer to
Appendix E for the details of the ablation study.

4. Conclusion, Limitations, and Future Work
We proposed a novel framework, Long-Input Fine-Tuning
(LIFT), to enhance LLMs’ long-context understanding.
LIFT dynamically adapts LLMs to long inputs by effi-
ciently fine-tuning the model parameters and utilizing the
in-parameter knowledge to improve long-context perfor-
mance. Experimental results across popular benchmarks
like LooGLE and LongBench demonstrate that LIFT greatly
improves short-context LLMs’ ability to solve long-context
tasks.

However, LIFT with truncated ICL is insufficient for tasks
that demand precise information extraction from extended
contexts, such as the Needle in a Haystack (NIAH) task
(Appendix K). Although LIFT allows LLMs to memorize
the input via contextualized training, the LLMs can not ex-
tract their parametric knowledge effectively, with accuracy
lower than 50% on LooGLE. While auxiliary tasks help
LLMs to extract parametric knowledge, the benefit comes
with extensive computational costs and they must be aligned
with test tasks to achieve optimal performance. LIFT is
a fascinating concept because humans similarly transform
short-term memory into long-term memory, much like LIFT
converts in-context knowledge into in-parameter knowledge.
We encourage the community to explore LIFT with broader
training corpora, diverse models, advanced auxiliary task
designs, and greater computational resources.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

LIFT (Extended Abstract)

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,
Lebrón, F., and Sanghai, S. Gqa: Training generalized
multi-query transformer models from multi-head check-
points, 2023. URL https://arxiv.org/abs/
2305.13245.

Allen-Zhu, Z. and Li, Y. Physics of language mod-
els: Part 3.1, knowledge storage and extraction.
ArXiv, abs/2309.14316, 2023. URL https:
//api.semanticscholar.org/CorpusID:
262825178.

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z., Du,
Z., Liu, X., Zeng, A., Hou, L., Dong, Y., Tang, J., and Li,
J. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508,
2023.

Behrouz, A., Zhong, P., and Mirrokni, V. Titans: Learning to
memorize at test time. arXiv preprint arXiv:2501.00663,
2024.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Chen, Y., Qian, S., Tang, H., Lai, X., Liu, Z., Han, S., and
Jia, J. Longlora: Efficient fine-tuning of long-context
large language models. arXiv preprint arXiv:2309.12307,
2023.

El-Kassas, W. S., Salama, C. R., Rafea, A. A., and Mo-
hamed, H. K. Automatic text summarization: A compre-
hensive survey. Expert systems with applications, 165:
113679, 2021.

Gandelsman, Y., Sun, Y., Chen, X., and Efros, A. Test-time
training with masked autoencoders. Advances in Neural
Information Processing Systems, 35:29374–29385, 2022.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Hong, J., Lyu, L., Zhou, J., and Spranger, M. Mecta:
Memory-economic continual test-time model adaptation.
In 2023 International Conference on Learning Represen-
tations, 2023.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models, 2021. URL https://arxiv.
org/abs/2106.09685.

Jiang, H., Wu, Q., Luo, X., Li, D., Lin, C.-Y., Yang, Y., and
Qiu, L. Longllmlingua: Accelerating and enhancing llms
in long context scenarios via prompt compression. arXiv
preprint arXiv:2310.06839, 2023.

Jiang, Z., Ma, X., and Chen, W. Longrag: Enhancing
retrieval-augmented generation with long-context llms.
arXiv preprint arXiv:2406.15319, 2024.

Jin, H., Han, X., Yang, J., Jiang, Z., Liu, Z., Chang, C.-
Y., Chen, H., and Hu, X. Llm maybe longlm: Self-
extend llm context window without tuning. arXiv preprint
arXiv:2401.01325, 2024.

Kamradt, G. Llmtest needleinahaystack, 2023. URL
https://github.com/gkamradt/LLMTest_
NeedleInAHaystack/blob/main/README.md.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451,
2020.

Kočiskỳ, T., Schwarz, J., Blunsom, P., Dyer, C., Hermann,
K. M., Melis, G., and Grefenstette, E. The narrativeqa
reading comprehension challenge. Transactions of the
Association for Computational Linguistics, 6:317–328,
2018.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel,
T., et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Pro-
cessing Systems, 33:9459–9474, 2020.

Li, H., Freitas, M. M. d., Lee, H., and Vasarhelyi, M. En-
hancing continuous auditing with large language mod-
els: Ai-assisted real-time accounting information cross-
verification. Available at SSRN 4692960, 2024.

Li, J., Wang, M., Zheng, Z., and Zhang, M. Loogle: Can
long-context language models understand long contexts?
arXiv preprint arXiv:2311.04939, 2023.

Liu, J. LlamaIndex, 11 2022. URL https://github.
com/jerryjliu/llama_index.

Liu, Y., Kothari, P., Van Delft, B., Bellot-Gurlet, B., Mordan,
T., and Alahi, A. Ttt++: When does self-supervised
test-time training fail or thrive? Advances in Neural
Information Processing Systems, 34:21808–21820, 2021.

Liu, Y., Yang, T., Huang, S., Zhang, Z., Huang, H., Wei, F.,
Deng, W., Sun, F., and Zhang, Q. Calibrating llm-based
evaluator, 2023.

Meng, F., Wang, Z., and Zhang, M. Pissa: Principal singular
values and singular vectors adaptation of large language
models. arXiv preprint arXiv:2404.02948, 2024.

5

https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2305.13245
https://api.semanticscholar.org/CorpusID:262825178
https://api.semanticscholar.org/CorpusID:262825178
https://api.semanticscholar.org/CorpusID:262825178
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/blob/main/README.md
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/blob/main/README.md
https://github.com/jerryjliu/llama_index
https://github.com/jerryjliu/llama_index


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

LIFT (Extended Abstract)

Osowiechi, D., Hakim, G. A. V., Noori, M., Cheragha-
likhani, M., Ben Ayed, I., and Desrosiers, C. Tttflow:
Unsupervised test-time training with normalizing flow.
In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 2126–2134, 2023.

Peng, B., Quesnelle, J., Fan, H., and Shippole, E. Yarn:
Efficient context window extension of large language
models. arXiv preprint arXiv:2309.00071, 2023.

Robinson, F. P. Effective study, rev. 1946.

Shen, Z., Zhang, M., Zhao, H., Yi, S., and Li, H. Efficient
attention: Attention with linear complexities. In Proceed-
ings of the IEEE/CVF winter conference on applications
of computer vision, pp. 3531–3539, 2021.

Sun, Y., Li, X., Dalal, K., Xu, J., Vikram, A., Zhang, G.,
Dubois, Y., Chen, X., Wang, X., Koyejo, S., et al. Learn-
ing to (learn at test time): Rnns with expressive hidden
states. arXiv preprint arXiv:2407.04620, 2024.

Suri, G., Slater, L. R., Ziaee, A., and Nguyen, M. Do
large language models show decision heuristics similar
to humans? a case study using gpt-3.5, 2023.

Tapaswi, M., Zhu, Y., Stiefelhagen, R., Torralba, A., Urta-
sun, R., and Fidler, S. Movieqa: Understanding stories
in movies through question-answering. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 4631–4640, 2016.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020.

Wang, W., Dong, L., Cheng, H., Liu, X., Yan, X., Gao, J.,
and Wei, F. Augmenting language models with long-term
memory, 2023. URL https://arxiv.org/abs/
2306.07174.

Wang, W., Dong, L., Cheng, H., Liu, X., Yan, X., Gao, J.,
and Wei, F. Augmenting language models with long-term
memory. Advances in Neural Information Processing
Systems, 36, 2024a.

Wang, Y., Gao, Y., Chen, X., Jiang, H., Li, S., Yang, J.,
Yin, Q., Li, Z., Li, X., Yin, B., Shang, J., and McAuley,
J. Memoryllm: Towards self-updatable large language
models, 2024b. URL https://arxiv.org/abs/
2402.04624.

Wang, Y., Ma, D., and Cai, D. With greater text comes
greater necessity: Inference-time training helps long text
generation. arXiv preprint arXiv:2401.11504, 2024c.

Wang, Y., Krotov, D., Hu, Y., Gao, Y., Zhou, W., McAuley,
J., Gutfreund, D., Feris, R., and He, Z. M+: Extending
memoryllm with scalable long-term memory, 2025. URL
https://arxiv.org/abs/2502.00592.

Wu, D., Wang, H., Yu, W., Zhang, Y., Chang, K.-W.,
and Yu, D. Longmemeval: Benchmarking chat assis-
tants on long-term interactive memory. arXiv preprint
arXiv:2410.10813, 2024.

Xu, P., Ping, W., Wu, X., McAfee, L., Zhu, C., Liu, Z., Sub-
ramanian, S., Bakhturina, E., Shoeybi, M., and Catanzaro,
B. Retrieval meets long context large language models.
arXiv preprint arXiv:2310.03025, 2023.

Yang, Q., Xu, J., Liu, W., Chu, Y., Jiang, Z., Zhou, X.,
Leng, Y., Lv, Y., Zhao, Z., Zhou, C., et al. Air-bench:
Benchmarking large audio-language models via genera-
tive comprehension. arXiv preprint arXiv:2402.07729,
2024.

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and Artzi,
Y. Bertscore: Evaluating text generation with bert, 2020.
URL https://arxiv.org/abs/1904.09675.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E. P., Zhang,
H., Gonzalez, J. E., and Stoica, I. Judging llm-as-a-judge
with mt-bench and chatbot arena, 2023.

6

https://arxiv.org/abs/2306.07174
https://arxiv.org/abs/2306.07174
https://arxiv.org/abs/2402.04624
https://arxiv.org/abs/2402.04624
https://arxiv.org/abs/2502.00592
https://arxiv.org/abs/1904.09675


330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

LIFT (Extended Abstract)

Table 3: Comparison of conventional long context understanding approaches with LIFT.

RAG ICL LIFT

Knowledge storage External data sources Within context window In parameters
Input length Infinite Limited Infinite
Retrieval free ✗ ✓ ✓
Long-context adaptation free ✓ ✗ ✓

A. Related work
Long-context adaptation and efficient architectures. Existing LLMs mostly rely on pure ICL for long-context under-
standing. However, it is challenging for short-context models to process inputs longer than their context window sizes due to
unseen positional encodings during pretraining, resulting in extremely poor performance on downstream tasks. Therefore,
a common practice is to further post-train LLMs on a huge corpus of long texts (which we call long-context adaptation).
Despite the effectiveness, long-context adaptation often requires tremendous computational cost. To cope with the problems,
many works have been developed to accelerate the process of long-context training with efficient Transformer. Sparse
attention (Kitaev et al., 2020; Wang et al., 2020; Beltagy et al., 2020) reduces memory and computation costs by using local
windows or strided attention, allowing to focus on the most relevant inputs for given tasks. Linear attention (Shen et al., 2021)
reduces the quadratic computation to linear by approximating self-attention with kernel functions or low-rank representations.
Other alternatives for Transformer like state-space models (SSMs) (Gu & Dao, 2023) are recently proposed for efficient
training based on dual representations. In this work, we focus on the conventional self-attention architecture (Vaswani,
2017) which is most widely used in current LLMs to validate the effectiveness of LIFT.

Retrieval-Augmented Generation (RAG). RAG (Lewis et al., 2020) improves the performance of long-context un-
derstanding by integrating LLMs with external data sources for retrieval (Xu et al., 2023; Jiang et al., 2024; Wang et al.,
2024a; Jin et al., 2024), thereby avoiding the need to feed the entire long input. Its performance heavily relies on the
quality of retrieved content, which must be relevant and concise enough to fit within models’ short context windows. RAG
can experience significant performance degradation or hallucination issues when the retrieved context is inaccurate or
mismatched. A comparison of our LIFT with RAG and long-context adaptation is in Table 3.

Memory-augmented LLMs. A line of work (Wang et al., 2023; 2024b; 2025) explore augmenting LLMs with a memory
module. Compared to RAG, which builds an offline database and retrieves from it during inference, memory-augmented
LLMs emphasize continual updates of the memory module, enabling them to process long inputs sequentially. Wang et al.
(2023) design a memory module that memorizes the hidden states as the LLM processes a long input and exponentially
forgets past knowledge. While most memory-augmented LLMs memorize hidden states with an external module, our work
explores directly storing incoming knowledge within model parameters.

Test-time training. Test-time training (TTT) (Liu et al., 2021; Gandelsman et al., 2022; Osowiechi et al., 2023; Hong et al.,
2023) has emerged as a promising approach to adapt models to unseen data distributions during deployment, leveraging test
data to fine-tune the model at inference time. Recent works have applied similar ideas to improve model adaptability when
dealing with lengthy, context-rich inputs (Sun et al., 2024; Behrouz et al., 2024), yet focus on proposing new architectures to
replace Transformer and require pretraining from scratch. Our work, in contrast, focuses on improving arbitrary pretrained
models’ long-context capabilities by fine-tuning them on the long input, which is not restricted to specific models or layers.
Wang et al. (2024c) explore how TTT can enhance LLMs in long generation tasks such as novel writing and translation
through iteratively fine-tuning a LoRA adapter to memorize the previously generated tokens. While sharing a similar idea to
store context knowledge in LLM parameters, LIFT focuses on long-context understanding which poses different challenges,
such as accurate memorization of details and capturing intricate long/short dependencies. Another important difference is
that LIFT adopts a novel Gated Memory Adapter instead of LoRA. Traditional adapters like LoRA modifies model weights
by directly adding delta weights, which unanimously changes the outputs for all inputs. In contrast, our Gated Memory
Adapter uses a gate to control how much to use the original model and the adapter, dynamically determining whether to use
pre-trained knowledge or new knowledge.

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

LIFT (Extended Abstract)

B. Implementation details of LIFT
B.1. Training data

The training data of LIFT includes contextualized input segments (Sections 2.1 and auxiliary tasks (Section 2.2). For
contextualized input segments, the length of each input segment is ℓ = 2048, and the offset between two segments is
s = 3

8ℓ = 768 (Figure 1). We affiliate each segment with an extra context to simulate ICL during testing. We randomly
select r ∈ [0, 4096] (r is sampled independently for each segment) and concatenate the first r tokens and the last (4096− r)
tokens of the long input as the context. The prompt is as follows:

{First r tokens}...{Last (4096− r) tokens}Given above context, please recite following segment of the context:
{The segment}

Only {The segment} is supervised during fine-tuning.

For each subtask of LooGLE and LongBench, except PassageRetrievalEN, to generate auxiliary tasks, we randomly select
16 consecutive sentences from the long input as the context and prompt LLM to synthesize a question and the corresponding
answer based on the context. The prompts are as follows:

Instruction for LooGLE:
You are given a piece of text as the context. You should generate ONLY one question and the corresponding answer
according to the context. You should also select one or more sentences directly from the original context as the
evidence. The evidences must be EXACTLY SAME ADJACENT sentences retrieved from the context; KEEP the
special tokens in the sentences. Please answer in the following format:
Question: [question]
Answer: [answer]
Evidence: [evidence]
Please DON’T output quotes when outputting evidences.
The following is the piece of text: {Context}

Instruction for Musique:
You are given a piece of text as the context. You should generate ONLY one question and the corresponding answer
according to the context. You should also select one or more sentences directly from the original context as the
evidence. The evidences must be EXACTLY SAME ADJACENT sentences retrieved from the context; KEEP the
special tokens in the sentences. Please answer in the following format:
Question: [question]
Answer: [answer]
Evidence: [evidence]
Please DON’T output quotes when outputting evidences. The question should focus on the details like names, dates,
e.t.c., and the answer should be as brief as possible. The following is the piece of text: {Context}

Instruction for Narrativeqa:
You are given a piece of text as the context. You should generate ONLY one question and the corresponding answer
according to the context. You should also select one or more sentences directly from the original context as the
evidence. The evidences must be EXACTLY SAME ADJACENT sentences retrieved from the context; KEEP the
special tokens in the sentences. Please answer in the following format:
Question: [question]
Answer: [answer]
Evidence: [evidence]
Please DON’T output quotes when outputting evidences. The question should focus on the details like names, dates,
e.t.c. The following is the piece of text: {Context}

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

LIFT (Extended Abstract)

For PassageRetrievalEN in LongBench, we imitate the generation process of the test set by randomly selecting a passage
and summarize the passage by LLM. The auxiliary task is to answer the index of the passage given the generated summary.

Instruction for passage summarization:
Please summarize the following text in 4 to 6 sentences: {Context}

B.2. Training process and hyperparameters

We design a two-stage training paradigm for both Gated Memory and PiSSA. In the first stage, the model is trained solely
on contextualized input segments and optimizes the loss function LS (Equation 1). In the second stage, auxiliary tasks
(Section 2.2) are incorporated with contextualized input segments as the training data, and the model optimizes the loss
function L (Equation 3).

We adopted different sets of hyperparameters during testing on LooGLE and LongBench. When testing on LooGLE,
empirically, the Gated Memory architecture causes small updating steps and requires a higher learning rate and more training
steps than PiSSA. The important hyperparameters for both methods are detailed in Table 4. When testing on LongBench
with Gated Memory, we carefully select hyperparameters for each subtask, detailed in Table 5.

Besides, we put all the samples including the context segments and the auxiliary tasks into a single batch through gradient
accumulation to stabilize gradients. The batch size per device is 1 to reduce memory costs. The other hyperparameters are
kept the same for all the experiments: the context window lengths are limited to 8000 to guarantee fair comparison, which is
the context window lengths of Llama 3 and Gemma 2, but shorter than that of GPT-3.5.

During generation, we adopt greedy decoding for Llama 3 and Gemma 2 to avoid randomness, while adopt sampling for
GPT-3.5. For GPT-3.5, the temperature is set to 0, top p is set to 1.0, and we adopt no frequency nor presence penalty.

Table 4: The hyperparameters employed during testing on LooGLE.

Hyperparameter Gated Memory PiSSA

learning rate 1.0× 10−3 3.0× 10−5

weight decay 1.0× 10−4 1.0× 10−4

max grad norm 1.0 1.0
β1 0.9 0.9
β2 0.98 0.98
ϵ 1.0× 10−8 1.0× 10−8

stage 1 #epochs 3 1
stage 2 #epochs 5 3

Table 5: The hyperparameters employed during testing on LongBench with Gated Memory. #QA denotes the number of
auxiliary tasks used. ∗ We adopt 4 warmup steps to adjust the corresponding learning rates.

Hyperparameter Musique Narrativeqa Qmsum GovReport PassageRetrievalEN

learning rate 3.0× 10−3 ∗ 3.0× 10−3 ∗ 3.0× 10−3 3.0× 10−3 3.0× 10−3 ∗

weight decay 1.0× 10−4 1.0× 10−4 1.0× 10−4 1.0× 10−4 1.0× 10−4

max grad norm 1.0 1.0 1.0 1.0 1.0
β1 0.9 0.9 0.9 0.9 0.9
β2 0.98 0.98 0.98 0.98 0.98
ϵ 1.0× 10−8 1.0× 10−8 1.0× 10−8 1.0× 10−8 1.0× 10−8

#QA 10 30 0 0 60
stage 1 #epochs 3 3 8 8 3
stage 2 #epochs 5 5 0 0 5

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

LIFT (Extended Abstract)

Table 6: Performance of GPT-3.5 on LooGLE. FT stands for ”fine-tuned”.

Mothods ShortQA LongQA
Comprehension

& Reasoning
Multiple info

retrieval Computation
Timeline
reorder

ICL(GPT-3.5) 66.82 44.82 52.67 40.77 27.55 45.19
FT(GPT-3.5) 69.66 45.76 53.44 40.50 26.53 49.52

Table 7: Performance of GPT-3.5 on LongBench. FT stands for ”fine-tuned”.

Methods Musique NarrativeQA Qmsum GovReport PassageRetrievalEN

ICL(GPT-3.5) 26.33 25.67 22.09 25.30 79.17
FT(GPT-3.5) 27.20 26.53 22.23 25.01 79.17

B.3. Gated Memory Architecture

Gated Memory is implemented as an adapter attached to the attention modules. Consider a multi-head attention module
with Hq query heads (Ainslie et al., 2023). We attach a memory projection and a gate projection, which are token-wise
MLPs as illustrated in Figure 4, to each of the query heads. These projections are independent across heads and do not share
parameters. Denote the dimension of a query vector in a query head as dh. The memory projection has a hidden dimension
of 2dh and an output dimension of dh, while the gate projection has a hidden dimension of ⌊

√
dh⌋ and an output dimension

of 1.

The memory and gate projections are implemented as simple MLPs to ensure low latency. We consider exploring advanced
architectures for gate and memory projections as future work.

B.4. Hardwares

All the experiments, including the main experiments on LooGLE (Section 3.2) and LongBench (Section 3.2), the efficiency
test (Section 3.3), and the Needle-in-A-Haystack task (Section K), are conducted on a single NVIDIA A800 Tensor Core
GPU. We intentionally select this resource-constrained hardware setup, where full-parameter fine-tuning is impractical. This
necessitates the use of parameter-efficient fine-tuning (PEFT) methods, which optimize both time and memory efficiency.

The resource costs (GPU hours) of the experiments, which are mainly dependent on the PEFT methods (the Gated Memory
architecture or PiSSA), the sizes of the models, and the sizes of the datasets, are presented in Table 8.

Table 8: Resource costs (GPU hours) of the experiments.

Models Methods
LooGLE
ShortQA

LooGLE
LongQA LongBench

Llama3
ICL 3 3 2
PiSSA 20 42 24
Gated Memory 15 33 21

Gemma2 ICL 2 3 \
PiSSA 44 64 \

C. Details of the derivation of Gated Memory
To recover the attention output when the long input is accessible during inference, we propose Gated Memory. For a
hypothetical complete input (x′,x) where x′ is the long input that we aim to absorb into model parameters and x represents
the in-context tokens (such as downstream questions/prompts about the long input), we let their hidden states after the
(t− 1)-th layer be (ĥ

′(t−1), ĥ(t−1)), where the length of x′ is l′ and the length of x is l. An ideal model with a long-enough
context window will just take (x′,x) as input and output answers. However, a practical model may only be able to take x as

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

LIFT (Extended Abstract)

SiLU

Linear

Linear

SiLU

Sigmoid

Linear

Linear

(a) Memory projection (b) Gate projection

Figure 4: Architectures of the memory projection (a) and gate projection (b). Both projections are applied token-wise to the
query vectors of a query head. The memory projection outputs a vector of the same dimensionality as its inputs, while the
gate projection produces a scalar.

input—the goal of LIFT is to store x′ into adapter parameters and make the adapted model have similar behaviors to the
original model with complete (hypothetical) input. Let the hidden states of the real input x after the (t − 1)-th layer be
h(t−1). We expect the following equation to hold in each layer:

ϕ
(t)
x′ (h

(t−1)) = f (t)(ĥ
′(t−1), ĥ(t−1)),

where f is the original layer that takes the complete input (x′,x) as the context. The adapted layer ϕx′ , on the other hand,
takes only x as the context while absorbing x′ into its parameters.

Let’s first examine the hypothetical complete attention over (ĥ
′(t−1), ĥ(t−1)), where ĥ′(t−1) is positioned from 1 to l′ and

ĥ(t−1) is positioned from l′ + 1 to l′ + l. The attention output at position L (l′ + 1 ≤ L ≤ l′ + l) is:

attn(q̂L, k̂1:L, v̂1:L) =

∑L
i=1 exp(⟨q̂L, k̂i⟩)v̂i∑L
j=1 exp(⟨q̂L, k̂j⟩)

, (5)

We aim at splitting the attention output into two components: one corresponding to the out-of-context k̂1:l′ , v̂1:l′ , and
the other corresponding to the in-context k̂l′+1:L, v̂l′+1:L. Define the gate function g(q̂L, k̂1:L) and the memory function
m(q̂L, k̂1:l′ , v̂1:l′):

g(q̂L, k̂1:L) =

∑l′

i=1 exp(⟨q̂L, k̂i⟩)∑L
i=1 exp(⟨q̂L, k̂i⟩)

, m(q̂L, k̂1:l′ , v̂1:l′) =

∑l′

i=1 exp(⟨q̂L, k̂i⟩)v̂i∑l′

i=1 exp(⟨q̂L, k̂i⟩)
. (6)

g(q̂L, k̂1:L) determines the proportion of attention allocated to the out-of-context part at position L, and m(q̂L, k̂1:l′ , v̂1:l′)
is the out-of-context representation which can be understood as performing cross attention between the current in-context
token q̂L and all the out-of-context tokens k̂1:l′ , v̂1:l′ . Then the attention output in Equation (5) can be reformulated as:

attn(q̂L, k̂1:L, v̂1:L)=g(q̂L, k̂1:L)·m(q̂L, k̂1:l′ , v̂1:l′) +
(
1−g(q̂L, k̂1:L)

)
·attn(q̂L, k̂l′+1:L, v̂l′+1:L),

where attn(q̂L, k̂l′+1:L, v̂l′+1:L) is the attention output with the same attention parameters operated on the in-context part’s
hidden states ĥ(t−1) (instead of the complete hidden state (ĥ

′(t−1), ĥ(t−1))). Let g and m be implemented as neural
networks. When the out-of-context input x′ is considered a constant and has been absorbed into the parameters of g and m,
k̂1:l′ and v̂1:l′ can be removed from g and m. We further adopt an approximation to let g only depend on q̂L. Consequently,
both g(q̂L, k̂1:L) and m(q̂L, k̂1:L, v̂1:L) become functions of q̂L only. The attention output simplifies to:

g(q̂L) ·m(q̂L) +
(
1− g(q̂L)

)
· attn(q̂L, k̂l′+1:L, v̂l′+1:L).

Interestingly, the above formula decomposes the hypothetical attention output for position L’s query into two parts: 1)
g(q̂L) · m(q̂L) which retrieves in-parameter knowledge (i.e., those memorized out-of-context tokens) from memory m

according to q̂L, and 2)
(
1− g(q̂L)

)
· attn(q̂L, k̂l′+1:L, v̂l′+1:L) which computes the standard attention of q̂L only with the

in-context tokens k̂l′+1:L, v̂l′+1:L, where a gate function g(q̂L) controls the proportion of contribution from the two parts.

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

LIFT (Extended Abstract)

Table 9: Ablation study on contextualized training on LooGLE.

Datasets w/o CT w/ CT

ShortQA 43.98 47.51

LongQA 27.07 29.97

Table 10: Ablation study on contextualized training on LooGLE.

Datasets w/o QA 10 QA 30 QA

ShortQA 47.21 47.51 48.84

LongQA 29.25 29.97 30.70

D. Contextualized Training and Task Alignment
As discussed in Sections 2.1 and 2.2, we adapt an LLM to handle a long input through two objectives: language modeling on
segments of the long input and auxiliary QA tasks. While these tasks align with our objectives of memorizing the long input
and enhancing reasoning based on the long input, the model may still struggle with the semantic divergence (memorization
vs. reasoning) and structural divergence (language modeling vs. supervised fine-tuning) between different tasks. To address
these challenges, we propose a contextualized training (CT) method for long input segments, shifting from the language
modeling paradigm to a supervised fine-tuning paradigm and more closely aligning the task of input segment memorization
and the auxiliary QA tasks.

Our contextualized training method involves 1) providing the model with a piece of context when asking it to memorize
the segments, typically selected from the beginning and ending portions of the long input, and 2) prompting the model to
generate the target segments based on the provided context. Formally, we modify the objective function (1) for the long
input memorization part to the following:

LS(x; θ) = −
K∑

k=1

logP(xlk:rk |concat(ck,p); θ), (7)

where ck represents the given context, and p is a prompt instructing the model to recite the segment based on ck. For the
QA tasks, we also modify the objective (2) by concatenating the questions with a context cq:

LAT ((qi,ai)
m
i=1; θ) = −

m∑
i=1

logP(ai |concat(cq,qi); θ) (8)

where cq keeps the same during training on different segments, which is only related to the test question. In this way,
both the input memorization and QA tasks share a similar SFT format. In addition, they both align better with the real
testing scenario, where given a LIFTed LLM, we can still fill the context window with the long input as much as possible
to maximally leverage the in-context knowledge, instead of only filling in the testing question. Such a technique greatly
improves practical performance of LIFT.

To mitigate the risk of overfitting, instead of using the same ck for all the segments xlk:rk , we further regularize ck by
randomly sampling ck for each segment xlk:rk from both the beginning and ending of the long input with a total length of L.
Specifically, we select consecutive sentences from the beginning and ending respectively compositing ck with a fixed length
l to align with the usages of contexts in real testing scenarios.

By employing CT, we align the input memorization task with the auxiliary QA tasks better within a closer semantic space,
and unify the training and testing formats, thereby greatly enhancing the generalization capabilities of LIFT, as evidenced by
our ablation study in Table 9.

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

LIFT (Extended Abstract)

Table 11: Ablation study on Gated Memory on LooGLE.

Datasets LoRA PiSSA Gated Memory

ShortQA 43.31 42.03 47.51

LongQA 29.15 29.06 29.97

E. Ablation study
Ablation on contextualized training. We evaluate the effectiveness of contextualized training (CT) (discussed in Ap-
pendix D) on LooGLE. By providing a piece of input context for both the language modeling and auxiliary QAs, CT aligns
the two tasks within the same semantic space and task format. As demonstrated in Table 9, the inclusion of contextualized
training significantly enhances model performance on both the LooGLE ShortQA and LongQA tasks compared to the
version without this component. This improvement underscores the critical role of contextualized training in achieving
robust and effective long-context understanding.

Ablation on number of auxiliary QAs. Another important technique to improve LIFT’s effectiveness is the auxiliary
QA task introduced in Section 2.2. Here, we compare three settings: no auxiliary QA, 10 auxiliary QA pairs (default),
and 30 pairs for each long input article. The results, shown in Table 10, suggest that increasing the number of auxiliary
QA pairs improves performance. However, more QA pairs also mean more forward passes, and the 30 QA pair setting
consumes roughly twice the training time of the 10 QA pair setting. Therefore, we choose 10 pairs as the default, balancing
performance and efficiency.

Ablation on Gated Memory. As discussed in Section 2.3, our Gated Memory module acts as a specialized attention
adapter, parallel to the original attention mechanism. Here, we compare it with standard LoRA (Hu et al., 2021) and
PiSSA (Meng et al., 2024) adapters on LooGLE. The hyperparameters (learning rate and early-stop epochs) for both models
are individually tuned to achieve optimal performance. Table 11 shows that Gated Memory outperforms both LoRA and
PiSSA, demonstrating its superior ability to balance in-parameter and in-context information.

F. Baseline reproduction details
F.1. MemoryLLM

Generally, we adopt the official checkpoint memoryllm-8b-chat and the same method to process the documents in
LooGLE and LongBench as the official implementation of MemoryLLM. For LooGLE, we split the tokenized document
into consecutive segments of length of 512 tokens and inject the segments sequentially into the model memory, and prompt
the model to answer the question without providing the document in the context. The prompt is as follows:

Please answer the following question: {Question}

For Musique and NarrativeQA of LongBench, we reuse the scores reported in Wang et al. (2024b). For Qmsum, GovReport,
and PassageRetrievalEN, following the official implementation, the entire input (The input format is assigned by LongBench)
is split into the context and the prompt as follows:

For Qmsum:
Context:
You are given a meeting transcript and a query containing a question or instruction. Answer the query in one or more
sentences.

Transcript:
{Context}
Prompt:
Now, answer the query based on the above meeting transcript in one or more sentences.

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

LIFT (Extended Abstract)

Query: {Input}
Answer:

For GovReport:
Context:
You are given a report by a government agency. Write a one-page summary of the report.

Report:
{Context}
Prompt:
Now, write a one-page summary of the report.

Summary:

For PassageRetrievalEN:
Context:
Here are 30 paragraphs from Wikipedia, along with an abstract. Please determine which paragraph the abstract is
from.
{Context}
Prompt:
The following is an abstract.

{Input}

Please enter the number of the paragraph that the abstract is from. The answer format must be like ”Para-
graph 1”, ”Paragraph 2”, etc.

The answer is:

The context is injected into the model memory the same as the process of the LooGLE documents and the model respond to
the prompt without access to the context.

F.2. LlamaIndex

We adopt bge-small-en-v1.5 as the embedding model and Llama-3-8B-Instruct as the generator for LlamaIn-
dex. Since each task of LooGLE and LongBench are based on a single context, we provide the context (without prompts) to
LlamaIndex as a single document, and evaluate its ability to answer questions given only the prompt.

G. Evaluation metrics
In the reported results, the evaluation metrics are consistent with those used in the original benchmarks. For LongBench, the
evaluation metrics are task-specific (Zhang et al., 2020). For LooGLE, since most automatic evaluation metrics are sensitive
to semantic expression, output format, and length, we utilize GPT4-0613 (Achiam et al., 2023) as recommended in the paper
to judge whether the two answers are semantically the same or not, noted as GPT4-score. It has been proven to exhibit high
consistency with human evaluation and can serve as a reliable annotator to a great extent (Suri et al., 2023; Liu et al., 2023;
Zheng et al., 2023). The prompt is as follows:

Given one question, there is a groundtruth and a predict answer. Please decide whether they are the same or not in
semantic. Please only output ’True’ or ’False’ .
Question: {Question}
groundtruth = {Ground-truth answer}
predict answer = {LLM response}

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

LIFT (Extended Abstract)

0 2000 4000 6000 8000 10000
Generation length (token)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ge
ne

ra
tio

n 
tim

e 
(m

s)

1e6

(a)

Decoding speed with 20K input
ICL
LIFT
LIFT (Llama 3.1)

0 2500 5000 7500 10000 12500 15000
Generation length (token)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ge
ne

ra
tio

n 
tim

e 
(m

s)

1e6

(b)

Decoding speed with 50K input
ICL
LIFT
LIFT (Llama 3.1)

0 5000 10000 15000 20000 25000
Generation length (token)

0

1

2

3

4

5

Ge
ne

ra
tio

n 
tim

e 
(m

s)

1e6

(c)

Decoding speed with 100K input
ICL
LIFT
LIFT (Llama 3.1)

0 2000 4000 6000
0

1

2

3

4

5 1e5

Figure 5: Subfigures (a)-(c) illustrate the decoding speed comparison between LIFT and ICL given inputs of length 20K,
50K, and 100K.

H. Empirical validation of intuition
The intuition behind LIFT is that storing in-context knowledge allows models to better understand the long input. We
empirically validate our intuition by fine-tuning GPT-3.5 on the input segments (Section 2.1) and the auxiliary tasks
(Section 2.2) with its API, as illustrated in Tables 6 and 7.

Similar to the standard LIFT training flow, the dataset consists of overlapping input segments and auxiliary tasks. However,
we did not incorporate the Gated Memory adapter or the two-stage training flow, since the API provides no control over the
PEFT adapter or the training pipeline. Overall, GPT-3.5 fine-tuned on the input outperforms the pretrained GPT-3.5 on
both LongQA and ShortQA of LooGLE, as well as on most subtasks of LongBench, validating that storing the in-context
knowledge within model parameters via fine-tuning improves the model’s understanding of the input.

I. Additional analysis to the main results
For LooGLE, we further investigate the performance on the four LongQA subtasks including comprehension & reasoning,
multiple info retrieval, computation and timeline reorder introduced in LooGLE in Table 1. As we can see, LIFT greatly
enhances the two base LLMs in most subtasks. For example, LIFT improves the performance of Llama-3 on all the four
subtasks with over 50% gain. These results demonstrate that LIFT enhances ICL across different models and tasks by
facilitating a more holistic understanding of the entire lengthy input, which is effectively captured in the model parameters.

For LongBench, we make in-depth analysis to figure out the impact of LIFT on different subtasks. LIFT consistently
outperforms the baselines on Qmsum, GovReport, and PassageRetrievalEN, all of which require the model to capture the
overall gist of the article, instead of the details. LIFT stores new knowledge via fine-tuning, compressing long inputs into
model parameters. As a consequence, it may generate a better overall understanding of the input, while ICL and LlamaIndex
has access to only parts of the long input during inference, and MemoryLLM may forget the previous knowledge due to
its updating mechanism. In contrast, Musique and NarrativeQA focus on the details of the inputs. LIFT outperforms the
baselines on NarrativeQA underperforms ICL on Musique, probably because the input of Musique consists of multiple
passages and LIFT fails to memorize the details of all the passages.

J. Additional efficiency analysis
By transferring input tokens into LLM parameters, LIFT alleviates the need to compute the attention score over all the
input tokens when generating a token. Consequently, the decoding speed of LIFT is expected to be much faster than that of
long-context ICL. We measure the total time cost (including fine-tuning) of generating y tokens with x tokens as the input.
Empirically, as illustrated in Figure 5 (a)-(c), LIFT starts to outperform ICL in decoding time when generating more than
1500 tokens. This is because, LIFT only needs to fine-tune on the long input once, and later fully becomes a short-context
model with very short decoding time per token. In contrast, ICL puts all the long input in the context, and every new token
generation needs to compute the attention of the last token to all the previous tokens, incurring great latency in every new
token generation.

While we deliberately design LIFT–particularly the efficient Gated Memory adapter–to support training and inference on a

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

LIFT (Extended Abstract)

2000 4000 6000 8000
Output length (tokens)

100

200

300

400

500

Ti
m

e 
(s

)

Decoding speed w/ 20K input
ICL
LIFT
LIFT (Llama 3.1)

2000 4000 6000 8000
Output length (tokens)

200

400

600

800

1000

Ti
m

e 
(s

)

Decoding speed w/ 50K input
ICL
LIFT
LIFT (Llama 3.1)

2000 4000 6000 8000
Output length (tokens)

250

500

750

1000

1250

1500

1750

Ti
m

e 
(s

)

Decoding speed w/ 100K input
ICL
LIFT
LIFT (Llama 3.1)

Figure 6: The generation time cost of ICL, LIFT, and LIFT (Llama 3.1), given input length of 20K, 50K, and 100K tokens.

10002000300040005000600070008000
Output length (tokens)

0

100

200

300

400

500

Ti
m

e 
(s

)

Decomposed time cost w/ 20K input
ICL
LIFT [S]
LIFT [T]
LIFT [D]
LIFT (Llama 3.1) [S]
LIFT (Llama 3.1) [T]
LIFT (Llama 3.1) [D]

10002000300040005000600070008000
Output length (tokens)

0

100

200

300

400

500

600

700
Ti

m
e 

(s
)

Decomposed time cost w/ 50K input
ICL
LIFT [S]
LIFT [T]
LIFT [D]
LIFT (Llama 3.1) [S]
LIFT (Llama 3.1) [T]
LIFT (Llama 3.1) [D]

10002000300040005000600070008000
Output length (tokens)

0

200

400

600

800

1000

Ti
m

e 
(s

)

Decomposed time cost w/ 100K input
ICL
LIFT [S]
LIFT [T]
LIFT [D]
LIFT (Llama 3.1) [S]
LIFT (Llama 3.1) [T]
LIFT (Llama 3.1) [D]

Figure 7: Breakdown of the time cost of LIFT. [S], [T], and [D] represent auxiliary task synthesizing, training, and decoding,
respectively. The cost of auxiliary task synthesizing is negligible (less than 3 seconds) and the figure mainly illustrate the
cost of training and decoding.

single GPU, LIFT can also be accelerated using multiple GPUs. Following the same setting as the previous efficiency test,
except that LIFT and LIFT (Llama 3.1) are evaluated on 4 A800 GPUs with data parallelism and ICL is evaluated on 4
A800 GPUs, we conduct additional experiments to demonstrate that LIFT is even more efficient than long-context ICL in
terms of decoding speed. The results are illustrated in Figure 6.

Empirically, with data parallelism, LIFT yields an even faster decoding speed as the generation length increases. Since
ICL is also accelerated by tensor parallelism with multiple GPUs, the overall trend remains the same as that illustrated in
Figure 3. However, when the generation length is short (e.g., 1K tokens), the total time cost for both LIFT and ICL becomes
higher than that on a single GPU, due to the synchronization overhead introduced by multi-GPU inference.

Moreover, we analyze the time cost of each component of LIFT, as illustrated in Figure 7. The workflow of LIFT can be
decomposed into three stages: auxiliary task synthesis, training, and decoding. The cost of synthesizing auxiliary tasks is
negligible, since it is accelerated by vLLM. As the input length increases, the training stage occupies a larger proportion
of the total time cost, suggesting that improving the training efficiency is the key to further accelerating LIFT. We leave
exploration of faster-converging training methods and advanced parallelism techniques for future work.

K. Results on Needle-in-a-Haystack (NIAH)
We present the experimental results in the NIAH (Kamradt, 2023) task in Figure 8, as further analysis of the pros and cons of
LIFT and directions for future works. The task requires accurate retrieval from the contexts. We adopt a strong long-context
model, Llama-3.1-8B-Instruct, as the baseline and apply the LIFT framework to the model.

The maximum context length of our test is 100K, which is within the 128K context window of Llama-3.1-8B-Instruct. As
expected, the baseline achieves nearly perfect performance. However, LIFT slightly degrades the performance and the
degradation seems irregular.

The reason for the degradation may be that LIFT introduces more noise to the model. While most parts of the context are

16



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

LIFT (Extended Abstract)

�
��

��
���

�

10

20

30

40

50

60

70

80

90

100

0

1000
10900

20800
30700

40600
50500

60400
70300

80200
90100

100000

��������������������

�
������

100%

0%

�
��

��
���

�

10

20

30

40

50

60

70

80

90

100

0

1000
10900

20800
30700

40600
50500

60400
70300

80200
90100

100000

��������������������

�
������

100%

0%

Figure 8: Performance on NIAH: ICL (top) vs. LIFT (bottom).

irrelevant to the answer, LIFT asks the model to memorize all the context. The model is likely to be misled by the large
amount of irrelevant information.

As summarized in Section 4, precise memorization can be challenging for LIFT. On the one hand, LIFT can’t accurately
memorize the context while avoiding overfitting. On the other hand, LIFT is likely to be misled when most information is
irrelevant to the answer. Future works may improve the LIFT framework from these two aspects.

L. Analysis to the end-to-end training of Gated Memory
To train Gated Memory, we learn two MLPs, g(q) and m(q). Suppose we have a complete input (x′,x), where x′ denotes
the full long input (e.g., a long document) and x denotes the prompt (e.g., a question). Let the hidden states of the last layer
be (ĥ′(l−1), ĥ(l)), corresponding to (x′,x), and let the queries, keys, and values be q̂, k̂, v̂. Equation 6 defines the ground
truth for g(qL) and m(qL), where l and l′ are the length of x and x′, respectively. However, directly using Equation 6 as
supervision (distillation) is infeasible as passing the entire long input x′ through the model is too expensive. Instead, we
treat Gated Memory as an adapter similar to LoRA and train it in a SFT manner (end-to-end training).

Empirically, the end-to-end training proves effective, outperforming ICL and PiSSA on most tasks (Tables 1, 2, and 11).
However, it doesn’t fully replicate the theoretical attention mechanism. We adopt Llama-3.1-8B-Instruct with a 128K

17



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

LIFT (Extended Abstract)

0 5 10 15 20 25 30
Layer

0.4

0.5

0.6

0.7

0.8

Co
sin

e 
sim

ila
rit

y

Gated Memory
Base model

Figure 9: The cosine similarity between the Ground-truth attention output and the Gated Memory and Base model output
respectively.

context window and compare the attention outputs under the following settings:

• Ground-truth. The model has access to the complete context.

• Base model. The model can only see the question.

• Gated Memory. The model is fine-tuned using the LIFT training process with the Gated Memory adapter. During
evaluation, the model can only see the question.

In detail, the input text for each setting is as follows:

Ground-truth:
Given the article ”{Title}”: {Context} Based on the article {Title}, please answer the following question: {Question}
Answer: {Answer}
Base model and Gated Memory:
Based on the article {Title}, please answer the following question: {Question}
Answer: {Answer}

In the experiment, {Title} and {Context} are the title and the content of the first document in LooGLE ShortQA dataset, and
{Question} and {Answer} are the questions and ground-truth answers provided by LooGLE. We collect only the attention
outputs of the {Answer} tokens and compute the cosine similarity between the attention output of Ground-truth and
those of Base model and Gated Memory, respectively, as illustrated in Figure 9. The similarity corresponding to Gated
Memory is consistently lower than that corresponding to Base model, suggesting that the end-to-end trained Gated Memory
learns to answer questions through mechanisms other than full-context ICL. We consider conducting more comprehensive
experiments with full-attention distillation as an important direction for future work.

M. Examples of the auxiliary tasks
To enable LLMs to reason based on the learned long inputs, we synthesize auxiliary tasks related to the inputs with the
prompts presented in Appendix B. We randomly sample several auxiliary tasks generated during test on LooGLE and

18



990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

LIFT (Extended Abstract)

LongBench as examples:

LooGLE:
Q1: What was the original intention of the architect, Picardo, when designing the Hosterı́a de Cáceres?
A1: To make the Hosterı́a appear, through imitation, to be an integral historic part of the old city centre.

Q2: What was the year when Picardo’s work for Paradores de Turismo de España ended?
A2: 1985

Q3: Who was commissioned to design a means of displaying the painting Guernica in the Museum’s an-
nexe, the Casón del Buen Retiro?
A3: Picardo and fellow architect José Garcı́a Marı́a de Paredes.

Q4: Where is the Parador at Arcos de la Frontera located?
A4: The Parador at Arcos de la Frontera is located in the centre of the old town, at the top of the cliffs that overhang
the Rio Guadalete.

Q5: What was the initial plan for the number of guest rooms in the Parador building?
A5: 23 double guest rooms and 10 singles.

Musique:
Q1: Who played the role of Syed Modi in the movie Sau Crore?
A1: Raman Kapoor

Q2: When was Grown Ups 2 released?
A2: July 12, 2013

Q3: What is the title of the Christian nu-metal band that inspired the film’s title?
A3: P.O.D.

Q4: Who is Vasudevan’s father?
A4: Kadikalingam

Q5: When did Big Head Todd’s version of ”Boom Boom” start being used as the opening theme of
NCIS: New Orleans?
A5: 2014

NarrativeQA:
Q1: What is the reason for the narrator’s desire to leave?
A1: The narrator wants to get away from his young lady because it would help him not to pretend to satisfy her.

Q2: What was Kent Mulville’s face like when he came back downstairs?
A2: His face told as few tales as I had seen it succeed in telling on the evening I waited in the lecture-room with
Miss Anvoy.

Q3: Who was Lady Coxon’s husband?
A3: The late Sir Gregory.

Q4: When did Ruth ask Mrs. Mulville to ask the narrator to come and see her?
A4: It was not till a day or two ago.

Q5: Who is George Gravener’s wife?
A5: His wife, whose fortune clears the property, is criminally dull.

19



1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

LIFT (Extended Abstract)

PassageRetrievalEN:
Q: Here are 30 paragraphs from Wikipedia, along with an abstract. Please determine which paragraph the abstract is
from.

{Context}

The following is an abstract.

In 887, a mutiny led by Xue Lang forced Zhou to flee to Chang Prefecture, where he sought the protec-
tion of Ding Congshi. Qian, the leader of the Eight Corps, responded by sending three commanders to attack Xue,
but one of them, Du Leng, turned against Zhou and captured Chang Prefecture. Zhou was later escorted to Hang
Prefecture, where he died soon after. Qian then captured Run Prefecture and executed Xue, and went on to capture
Su Prefecture and establish himself as the dominant power in the region. Qian was rewarded by Emperor Zhaozong
with various titles and honors, including the title of military governor of Zhenhai and the honorary chancellor title of
Tong Zhongshu Menxia Pingzhangshi.

Please enter the number of the paragraph that the abstract is from. The answer format must be like ”Para-
graph 1”, ”Paragraph 2”, etc.

The answer is:
A: Paragraph 22

20


