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… … …

What am I holding ?

A wheel.

Where did the wheel 
tool come from?

From the workbench.

Prediction: Table
GPT-4 score: 40

Prediction: Don’t know
GPT-4 score: 0

Prediction: Workbench
GPT-4 score: 100

Previous Datasets

Video LLaVA LLaMA-VID Gemini 1.5 Pro

Figure 1: Examples of LongViTU. The top row shows the video sequence, with the yellow box indicating

the answer and the red box highlighting relevant objects. The middle row presents a video Q&A example,
showing that LongViTU captures fine-grained spatial details and temporal reasoning, whereas previous datasets
focused on static spatial features. The bottom row shows predictions from canonical video understanding models,
evaluated by GPT-4 against ground truth based on a novel predefined scoring criteria we designed.

ABSTRACT

This paper presents LongViTU, a large-scale (~121k QA pairs, ~900h videos),
automatically generated dataset for long-form video understanding. Our key idea
is inspired by the success of Large Language Models (LLMs) and Multimodal Lan-
guage Models (MLMs) that are fueled by machine-generated instruction-following
data (e.g., InstructGPT, LLaVA). We developed a systematic approach to produce
massive question-answeringing pairs tailored to virtually unbounded long videos by
organizing them into a hierarchical tree, incorporating self-revision mechanisms to
guarantee high quality. We curate LongViTU for each QA pair: 1) involves a long
context (average certificate length of 4.6 minutes); 2) requires rich knowledge and
condensed reasoning (commonsense, causality, planning, etc.); 3) explicit labels the
timestamps of relevant events throughout the entire video. Furthermore, LongViTU
provides a benchmark to facilitate future research in instruction-following for
long-form videos. Our experiments first reveal the performance gap between open-
source video MLMs and their commercial counterparts (e.g., Gemini-1.5-Pro) on
this benchmark. Supervised Fine-Tuning (SFT) on open-source models led to
Video-LLaVA achieving the best performance, with a GPT-4 score of 50.7, closely
following 52.3 by the leading closed-source model Gemini-1.5-Pro, underscoring
the substantial challenge posed by our benchmark. Further SFT on LongViTU
with Video-LLaVA resulted in improvements of 30.7% on the In-Distribution (ID)
benchmark EgoSchema; 12.9% and 0.6% on the Out-of-Distribution (OOD) bench-
marks WorldQA and VideoMME, respectively. These outcomes demonstrate the
effectiveness and robust OOD generalizability of our proposed instruction-tuning
scheme for long-form video understanding. The dataset, SFT models, and code are
publicly available on the anonymous page LongViTU.
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1 INTRODUCTION
We introduce LongViTU, a novel dataset tailored for large-scale, long-form video understanding (see
Figure 1 for examples, more in Table 4). In comparison to existing automatically generated Video
question-answeringing (VQA) datasets, such as Otter (Li et al., 2023a), Video-ChatGPT (Maaz et al.,
2023), InternVideo (Wang et al., 2022), VideoChat (Li et al., 2023c), MVBench (Li et al., 2024),
EgoSchema (Mangalam et al., 2024) and CinePile (Rawal et al., 2024), etc., LongViTU incorporates
key advancements that yield a dataset of greater naturalness and diversity. We delineate the primary
advantages of our dataset in contrast to the limitations of prior works downsides below, see Table 1
for a clearer view.

• Diverse real world scenarios. Some prior VQA datasets originate from videos captured in vir-
tual environments, such as Env-QA (Gao et al., 2021) and OpenEQA (Majumdar et al., 2024),
which inherently introduce a domain gap. Many other datasets, despite utilizing real world
videos, often feature limited or homogeneous scenes. For instance, EgoVQA (Fan, 2019) pre-
dominantly includes office scenes, EgoTaskQA (Jia et al., 2022) primarily focuses on home
environments, EgoSchema (Mangalam et al., 2024) encompasses a very limited number of
scenes, WorldQA (Zhang et al., 2024b) is mainly based on YouTube short videos, and both
MovieChat (Song et al., 2024) and CinePile (Rawal et al., 2024) are derived from movie videos. In
contrast, LongViTU leverages the complete Ego4D (Grauman et al., 2022), this extensive dataset
enables VQA tasks to encompass a broad spectrum of real world scenarios.

• Explicit timestamp labels. Previous datasets lack explicit timestamp labels for QA-related events,
meaning that while a video may contain multiple QAs, the precise start and end times for each QA
are not provided. Our hierarchical pipeline organizes video content into a tree structure, enabling
QA generation on subtrees and thereby ensuring explicit, accessible timestamps for each event.
Consequently, LongViTU offers precise start and end timestamps for all QA events, supporting
accurate identification of key events within ultra-long, redundant video sequences, and enabling
comprehensive model performance analysis.

• Long certificate length. The average certificate length (introduced in EgoSchema (Mangalam
et al., 2024), which we adhere to) in most short VQA datasets, such as NextQA (Xiao et al., 2021)
and ActivityNet-QA (Yu et al., 2019), is typically under 10 seconds, despite the total video duration
spanning tens or hundreds of seconds. Some longer datasets, like WorldQA (Zhang et al., 2024b),
still feature an average certificate length of less than 60 seconds, while EgoSchema (Mangalam
et al., 2024) remains below 100 seconds. In contrast, our approach supports the generation of QAs
across a spectrum of durations, from brief to notably extended sequences. As a result, LongViTU
achieving an average certificate length of 276.8 seconds (~4.6 minutes), encompassing a diverse
temporal range from events as brief as 6 seconds to those exceeding 1 hour. For further statistical
details, please refer to Figure 3.

• Fine-grained categorization. Existing VQA datasets often lack comprehensive categorization,
primarily focusing on basic question types that revolve around spatial elements such as objects,
attributes, locations, and states, etc. Although recent efforts like EgoTaskQA (Jia et al., 2022) and
OpenEQA (Majumdar et al., 2024) have introduced categorized questions, these classifications
remain relatively coarse. In contrast, LongViTU places greater emphasis on the spatial-temporal
interplay, providing fine-grained categorization by incorporating detailed spatiotemporal features
intrinsic to video contexts. This includes three primary categories: Spatiotemporal Understanding,
Episodic Reasoning, and Commonsense Inference, as well as more fine-grained categories, as
shown in Figure 3b and Table 4.

• Open-ended precise QA. As opposed to the multiple-choice formats employed in VQA datasets
such as EgoVQA (Fan, 2019), EgoSchema (Mangalam et al., 2024), and CinePile (Rawal et al.,
2024), or despite the open-ended formats in MovieChat (Song et al., 2024), WorldQA (Zhang et al.,
2024b), and OpenEQA (Majumdar et al., 2024), which frequently feature irrelevant or redundant
answers. LongViTU ensures a closer alignment between questions and video content, with answers
being succinct and directly relevant. This is achieved through a self-revision mechanism that refines
the QA by removing redundancies and further aligning questions with the video content, thereby
ensuring concise, relevant, and high-quality QAs, which is detailed in Appendix B.

By preserving these advantages during dataset construction, as a result, the final dataset LongViTU
comprises ~121k high-quality QA pairs within ~900 hours of videos across 3 primary with 12 fine-
grained categories (detailed in Table 4). To the best of our knowledge, LongViTU is the first publicly
available long-form video question-answeringing dataset featuring explicit QA-related timestamp
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Table 1: Comparison with previous datasets. The video sources for each dataset are listed under "Base", where
"N/A" indicates that videos are sourced from a collection of movies without a specific origin. Furthermore, ∗ de-
notes multiple-choice answers, while ∗∗ indicates open-ended answers, LongViTU is the first large-scale dataset
designed for long-form video understanding with explicit timestamp labels. The video durations and the number
of QA pairs are approximate.

Dataset Base Scenario Open-ended
Answer

Fine-grained
Categorization

Explicit
Timestamp

Video
Duration QAs

EgoVQA IU Multiview (Xu et al., 2018) real world ✗∗ ✗ ✗ 10h 600
Env-QA AI2-THOR (Kolve et al., 2017) virtual env ✓∗∗ ✗ ✗ 130h 85.1K
EgoTaskQA LEMMA (Jia et al., 2020) real world ✓ ✓ ✗ 15h 40K

EgoSchema Ego4D (Grauman et al., 2022) real world ✗ ✗ ✗ 250h 5K
MovieChat N/A movie ✓ ✗ ✗ 160h 13K
WorldQA PVSG (Yang et al., 2023b) real world ✓ ✗ ✗ 10h 1K
CinePile N/A movie ✗ ✗ ✗ 420h 303K

OpenEQA ScanNet (Dai et al., 2017)
HM3D (Ramakrishnan et al., 2021) virtual env ✓ ✗ ✗ 3h 1.6K

LongViTU (ours) Ego4D (Grauman et al., 2022) real world ✓ ✓ ✓ 900h 121K

annotations, constructed through a hierarchical pipeline and incorporating self-revision mechanisms.
In summary, our contributions are as follows:

• We propose a novel automatic pipeline to generate Video question-answeringing data, mitigating
several limitations of existing datasets: diverse real world scenarios, explicit timestamp labels, long
certificate length, fine-grained categorization, and open-ended precise QA.

• With our pipeline, we curate LongViTU, a large-scale high-quality dataset and benchmark aimed at
advancing instruction tuning for long-form video understanding.

• We conducted extensive experiments demonstrating the benefits of LongViTU for canonical Vision
Language Models and providing insights into the critical design principles underlying our approach.

2 THE LONGVITU DATASET

We developed a hierarchical approach to process indefinitely long-form video content by organizing
it into a tree structure, enabling the generation of appropriate QA while capturing detailed spa-
tial information from individual frames and the temporal relationships between events or objects
across varying duration scales. This framework facilitates the generation of QA pairs with explicit
timestamps and long certificate length, enabling fine-grained categorization that aligns with the
video content, and also provides open-ended precise QA. To the best of our knowledge, no existing
automated Video question-answeringing dataset generation methods offer these capabilities.

2.1 DATASET PIPELINE

2.1.1 STAGE I: HIERARCHICAL VIDEO TREE CONSTRUCTION

Frame level. Commencing at the frame level, we employ InternLM-XComposer2 (Dong et al.,
2024) to perform multi-frame dense captioning (sampled at 1 fps) across annotated events in the
Ego4D (Grauman et al., 2022). The descriptions of video context at this stage are denoted by
⟨df , tfs , tfe ⟩, where tfs and tfe represent the respective start and end times. Accurate timestamps are
derived from Ego4D’s temporal annotations for each event provided by human annotators.

Event level. Redundant text frequently emerges in the frame level, to mitigate this issue, we employ
GPT-4 (Achiam et al., 2023) for processing both manually annotated events dHf from the original
Ego4D (Grauman et al., 2022), which offer precise temporal contexts, and automatically generated
dense captions ⟨d1f , ..., dFf ⟩, to eliminate redundancy and refine the descriptions at the event level.
GPT-4 then restructures these annotations into succinct event level descriptions, represented as
⟨de, tes, tee⟩, where tes and tee denote the start and end times of the events, respectively.

Segment level. Thereafter, utilizing GPT-4 organizes events into segments within the hierarchical
video tree Tvideo, where closely related consecutive events are merged to form segments, subsequently
summarizing these into segment level descriptions, denoted as ⟨ds, tss, tse⟩. Consequently, the video
content is structured hierarchically with the tree root, segments and events as intermediate nodes, and
frames as leaf nodes.

Video Tree formulation. Drawing on the discussion above, we formalize the hierarchical tree
structure for long-form video content as follows:

3
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Event 1 𝑑!" …

Segment 1 𝑑#"

Video Tree 𝒯$%&'(

Event E 𝑑!)

Rewriting Events

𝑑'*𝑑+,…𝑑+"

Dense Caption Human

, 𝑑'*𝑑+,…𝑑+"

Dense Caption Human

,

Rewriting Segments

Segment S 𝑑#-

Event 1 𝑑!" … Event E 𝑑!)

Rewriting Events

𝑑'*𝑑+,…𝑑+"

Dense Caption Human

, 𝑑'*𝑑+,…𝑑+"

Dense Caption Human

,

…  …

Hierarchical Video Tree Construction

Long-Form QA Generation Self-Revision
Input: <Segment i 𝑑!", ..., Segment S 𝑑!#$%>
Output: <(Q1, A1), …, (Qn, An)>

Input: <(Qi, Ai), Segment 1 𝑑!# , ..., Segment S 𝑑!#$%>
Output: (𝒬#, 𝒜#)

Figure 2: Pipeline of LongViTU. We adopt a hierarchical pipeline that organizes video content into a tree
structure, with subtrees encapsulating information at different temporal scales. This framework facilitates the
generation of QA pairs with explicit timestamps, ensuring adaptability through varying contextual lengths.
Furthermore, by summarizing content across multiple temporal levels (frame level, event level, segment level),
our approach enables LLMs to generate distinct types of questions, resulting in a fine-grained categorization
aligned with the video content. Finally, a self-revision step eliminates redundancy and prior information, thereby
enhancing the overall quality of LongViTU. For more details, please refer to Section 2.

Tvideo =
{
⟨R, {⟨dis, ts

i

s , ts
i

e , {⟨dje, te
j

s , te
j

e , {⟨dkf , tf
k

s , tf
k

e ⟩}Ff=1⟩}Ee=1⟩}Ss=1⟩
}

(1)

where Tvideo represents the hierarchical tree structure of the video, with R as the root node, and
⟨dis, ts

i

s , ts
i

e ⟩ denoting segment level descriptions (children of the root). Each segment contains
multiple event level descriptions ⟨dje, te

j

s , te
j

e ⟩, while each event contains multiple frame level descrip-
tions ⟨dkf , tf

k

s , tf
k

e ⟩. Here, S, E, and F represent the total number of segments, events, and frames,
respectively.

2.1.2 STAGE II: LONG-FORM QA GENERATION

Sliding window. The application of a sliding window approach to any subtree of Tvideo enables
the generation of QAs that adeptly capture both the spatial intricacies of individual frames and the
temporal continuity among segments. In this implementation, the sliding window encompasses five
segments sequentially, integrating descriptions at both the segment and event levels. This method
ensures the capture of continuous events (long-term temporal relevance) and detailed spatial features
(short-term spatial relevance). To prevent premature generation of questions concerning recent
events, GPT-4 is programmed to formulate questions based on critical events identified within the
initial three segments, while deriving answers from the following two segments.

Crucial advantages. This implementation synergizes with the hierarchical structure of the video
tree, yielding several crucial advantages that enhance the efficacy of the LongViTU methodology:

• Explicit timestamp labels: each tree node is clearly marked with event timestamp, thereby improv-
ing the precision of temporal analysis.

• Long certificate length: the capability to engage with various subtrees permits the handling of
QAs across a broad spectrum of durations, ranging from brief to extended periods, thus facilitating
versatile management of content length.

• Fine-grained categorization: Focusing on specific subtrees significantly reduces the input text for
the LLM, enabling it to handle long temporal events while maintaining attention to rich spatial
details. This approach enables generation of QAs across diverse, fine-grained categories

4
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(b) Sunburst of LongViTU
Figure 3: Statistics of LongViTU. Subfigure (a) depicts the distributions of video and QA durations within
LongViTU. The bottom horizontal axis (from left to right) represents QA duration in seconds, while the right
vertical axis (from bottom to top) shows the percentage of the total dataset. QAs predominantly vary from 6 to
500 seconds, with an average duration of 276.8 seconds. The top horizontal axis (from right to left) details the
video durations, and the left vertical axis (from top to bottom) presents the LongViTU’s percentage distribution.
Video lengths mostly range from 5 to 40 minutes, averaging 29.3 minutes, and follow a long-tail distribution.
Subfigure (b) illustrates the QA categorization in LongViTU along with their word frequency distribution. The
outermost ring of the sunburst chart displays the eight most frequent words within each category, with segment
sizes reflecting their proportional frequency within LongViTU. Zoom in for a better view.

QA generation. We generate the QAs from the subtree descriptions within the sliding window,
formalized as:

QAvideo =
{
⟨Q,A, {⟨dis, {⟨dje, ⟨dkf ⟩}Ff=1⟩}Ee=1⟩}5s=1⟩

}
(2)

where QAvideo denotes the generated QA process applied on the Tvideo. The notation {dis} represents
the five segments chosen through the sliding window technique. Each segment encapsulates event
level descriptions {dje} and frame level descriptions {dkf}. The model GPT-4 is tasked with formulat-
ing questions from notable events within the first three segments, while deriving answers from the
remaining two. The parameters S, E, and F signify the total counts of segments, events, and frames,
respectively, with Q and A representing the question-answering pairs generated.

2.1.3 STAGE III: SELF-REVISION

Self-Revision. In this stage, GPT-4 conducts a thorough review of the generated question-answering
pairs. This self-revision is pivotal for maintaining quality of QA pairs. The GPT-4 reviews each
event description associated with the question-answering pairs to verify their consistency with the
underlying video context. It identifies and rectifies any deviations or fabricated elements, extraneous
information is minimized to highlight critical aspects of the question-answeringing, thereby preventing
the inclusion of redundant or overly simplistic responses. Further details regarding the prompts and
human evaluations of this self-revision process are detailed in Appendix B.

2.2 CHARACTERISTICS AND STATISTICS

Duration distribution. The LongViTU dataset comprises 1,833 videos, split into 1,533 for training,
200 for validation, and 100 for testing, totaling ~900 hours. The average video duration is 29.3
minutes, ranging from 3.5 to 120.7 minutes with a standard deviation of 17.5 minutes, and follows a
long-tail distribution (refer to Figure 3a ). QA durations vary between 6 and 1800 seconds, with an
average of 276.8 seconds and a standard deviation of 257.9 seconds, also showing a long-tail pattern.
The average durations of events and segments are 8.5 and 82 seconds, respectively. In total, the
LongViTU dataset includes 121k QA pairs: 101k for training, 14k for validation, and 6k for testing,
which also serve as a benchmark.

Frequency distribution. The sunburst diagram of LongViTU is illustrated in Figure 3b, question-
answeringing pairs are categorized into three primary groups: Spatiotemporal Understanding
(55%), sub-divided into Object (12.2%), Attribute (10.7%), Location (15.5%), Action (16.6%);

5
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Table 2: Quantitative results on LongViTU. All results are derived from evaluations conducted by GPT-
4 (Achiam et al., 2023), the criteria and prompt are detailed in Appendix B. ∗ denotes results obtained in a
zero-shot manner, while ∗∗ indicates fine-tuned results following training on the LongViTU training set,
△ compared highlighting the percentage difference in performance between their. Overall Avg. represents the

average scores across three primary categories. The top-performing open-source model, Video-LLaVA (Lin et al.,
2023), achieved a score of 50.7, approaching the 52.3 score of the best commercial model, Gemini-1.5-pro (Reid
et al., 2024). Frame-based models uniformly sampled 8 frames from videos, while sampling-based models
captured 1 frame per second (1 fps), with the exception of VideoAgent (Fan et al., 2024), which processes 1
frame every 2 seconds (1/2 fps).

Setting Method Overall Avg. Spatiotemporal Understanding

Object Attribute Location Action Avg.

Blind GPT-4 turbo 38.2 26.1 33.2 32.0 29.4 30.2

Frame-Based

mPLUG-OWL∗ 42.4 33.5 37.6 43.6 35.4 37.8
Video-LLaVA∗ 45.9 37.8 46.3 49.1 38.1 42.7
Video-LLaVA∗∗ 50.7 39.3 49.2 49.6 41.8 44.9
△ compared +10.5% +4.0% +6.3% +1.0% +9.7% +5.2%

Sampling-Based

VideoAgent∗ 44.0 35.7 43.1 45.9 36.4 40.2
LLaMA-VID∗ 38.2 29.4 35.6 40.1 31.5 34.3
LLaMA-VID∗∗ 44.5 33.5 37.4 45.7 37.6 39.1
△ compared +16.5% +13.9% +5.1% +14.0% +19.4% +14.0%
Gemini-1.5-Pro∗ 52.3 54.3 58.6 56.3 48.1 54.7

Setting Method Overall Avg. Episodic Reasoning

Transition Interaction Causality Motivation Avg.

Blind GPT-4 turbo 38.2 45.1 47.4 47.7 56.1 49.5

Frame-Based

mPLUG-OWL∗ 42.4 45.8 47.7 47.7 49.4 47.6
Video-LLaVA∗ 45.9 45.6 50.5 48.8 53.2 49.4
Video-LLaVA∗∗ 50.7 50.5 56.4 59.7 64.9 58.0
△ compared +10.5% +10.7% +11.7% +22.3% +22.0% +17.4%

Sampling-Based

VideoAgent∗ 44.0 43.1 45.5 49.9 52.8 48.1
LLaMA-VID∗ 38.2 40.4 46.7 40.5 46.6 43.2
LLaMA-VID∗∗ 44.5 46.7 48.4 54.2 57.7 52.1
△ compared +16.5% +15.6% +3.6% +33.8% +23.8% +20.6%
Gemini-1.5-Pro∗ 52.3 47.8 45.5 47.8 47.5 47.3

Setting Method Overall Avg. Commonsense Inference

Planning Risk Function Affordance Avg.

Blind GPT-4 turbo 38.2 36.5 51.1 55.9 50.9 48.7

Frame-Based

mPLUG-OWL∗ 42.4 42.1 54.6 54.3 51.5 50.3
Video-LLaVA∗ 45.9 41.6 56.8 55.3 54.6 51.7
Video-LLaVA∗∗ 50.7 50.2 62.6 64.0 64.6 59.8
△ compared +10.5% +20.7% +10.2% +15.7% +18.3% +15.7%

Sampling-Based

VideoAgent∗ 44.0 40.0 53.7 55.5 53.1 50.7
LLaMA-VID∗ 38.2 34.9 51.3 46.5 47.2 44.1
LLaMA-VID∗∗ 44.5 43.9 54.5 55.7 53.8 51.7
△ compared +16.5% +25.8% +6.2% +19.8% +14.0% +17.2%
Gemini-1.5-Pro∗ 52.3 43.6 57.5 46.1 43.6 50.3

Episodic Reasoning (24.4%), including Transition (8.1%), Interaction (3.4%), Causality (5.4%),
Motivation (7.5%); and Commonsense Inference (20.6%), composed of Planning (5.4%), Risk
(2.7%), Function (6.4%), and Affordance (4.6%). Additional categorization details and examples are
available in Table 4.

3 EXPERIMENTS

We conducted experiments to evaluate the performance of mainstream Video Language Models
(VLMs) on the testset of LongViTU, after instruction tuning on our training set. The outcomes
illustrate that LongViTU poses distinct challenges to contemporary VLMs, regardless of their
reliance on frame-based or sampling-based models. Moreover, instruction tuning with our training
set improved performance across In-Distribution (ID) and several canonical Out-Of-Distribution
(OOD) benchmarks, highlighting the exceptional generalization and robustness of LongViTU. This
methodology expands the scope of conventional VQA datasets by encompassing a wider range of
knowledge, a detailed analysis of the design principles underlying our dataset is also provided.
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3.1 SETUP

Settings and Baselines. Following the methodology of LLava (Liu et al., 2024b), we utilized the full
LongViTU training set to fine-tune various VLM models, evaluating their efficacy on the testset to
tackle the novel challenges presented by our dataset in the context of long-form video understanding.
The data formats were standardized, with inputs comprising relevant video clips for each task. Frame-
based models such as mPLUG-OWL (Ye et al., 2023) and Video-LLaVA (Lin et al., 2023) uniformly
extracted 8 frames from each input video. In comparison, models like LLaMA-VID (Li et al., 2023d)
and Gemini-1.5-Pro (Reid et al., 2024) sampled one frame per second, whereas VideoAgent (Fan
et al., 2024) opted for one frame every two seconds. These models generated answers to questions
regarding the video content. To ensure fair comparison, a multi-level scoring criteria was designed.
GPT-4 assessed the textual alignment between the generated answers and the ground truth, assigning
scores based on predefined criteria and providing an average score for each subcategory.

Metrics and Benchmarks. In evaluating open-ended questions, traditional reliance on caption
metrics is now considered inadequate. GPT-4 has demonstrated near-human performance in text
comprehension and alignment. Therefore, we developed a multi-level scoring criteria, enabling
GPT-4 to evaluate the correspondence between predicted answers and the ground truth, ensuring
that the essential elements of the question are captured. Hallucinations or irrelevant responses
result in a low score, whereas responses that accurately and concisely address key points receive
a high score, details on the specific prompts are provided in Appendix B. Beyond testing on our
dataset, we fine-tuned all models using the LongViTU training set and performed evaluations on
ID benchmark EgoSchema (Mangalam et al., 2024) and OOD benchmarks VideoMME (Fu et al.,
2024), WorldQA (Zhang et al., 2024b), and OpenEQA (Majumdar et al., 2024). These evaluations
demonstrated enhanced performance compared to baseline models.

3.2 MAIN RESULT I: QUANTITATIVE ANALYSIS OF LONGVITU

The detailed quantitative evaluations of LongViTU are delineated in Table 2, from which we derive
the following insights:

Effective fine-tuning with LongViTU. Upon employing LongViTU for training, all fine-tuned
models exhibit enhanced performance on the testset, surpassing their initial zero-shot outcomes.
Remarkably, the open-source model Video-LLaVa attains an average score of 50.7 post fine-tuning,
approximating the leading commercial model Gemini-1.5-Pro at a dense sampling rate of 1 fps. This
parity between top-tier open-source and commercial models underscores the persistent challenges
posed by LongViTU in mastering long-form video content.

Poor sampling models. At a sampling frequency of 1 fps, the performance of LLaMA-VID is
suboptimal compared to that of mainstream open-source video language models (VLMs), in both
zero-shot and fine-tuned scenarios. This performance gap indicates a deficiency in the representational
capabilities of existing dense sampling strategies, essential for effective long-form video analysis.
LongViTU introduces the inaugural extensive, diverse, and high-quality dataset and benchmark,
catering to this research domain.

Analysis of blind QA. Outcomes from pure text-based blind QA sessions are competitively robust,
suggesting that using text as an intermediary may skew QA systems towards textual domain predic-
tions. This enables a direct inference of questions from answers, we elaborate on the limitations of
our pipeline in Appendix A.

Spatial vs. temporal bias. The noticeable underperformance in Spatiotemporal Understanding
relative to Episodic Reasoning and Commonsense Inference accentuates prevalent issues. Tasks
that require emphasis on spatial details prove exceptionally demanding within the scope of long-
form video understanding, indicating unresolved complexities in this domain. Conversely, Episodic
Memory Reasoning and Commonsense Inference derive benefits from the logical connectivity among
sequential events, thus yielding superior results when leveraging text-based data.

3.3 MAIN RESULT II: QUANTITATIVE ANALYSIS ON BENCHMARKS

This section presents quantitative evaluations conducted on benchmarks that encompass In-
Distribution (ID) and Out-of-Distribution (OOD) scenarios, specifically using the EgoSchema (Man-
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Table 3: Quantitative results on additional benchmarks. The ∗ denotes results obtained in a zero-shot
manner, while ∗∗ indicates fine-tuned results following training on the LongViTU training set, △ compared

highlighting the percentage difference in performance between their. Denote s2 as the stage 2 and s3 as the
stage 3, they are strictly following LLaMA-VID.

Method EgoSchema VideoMME WorldQA OpenEQA

Avg. Short Medium Long Avg. ScanNet HM3D

VideoLLM-online 47.4 13.7 24.3 16.7 0.0 30.0 23.3 24.8 20.4

LLaMA-VID∗s3 23.6 14.6 19.5 12.6 11.5 30.9 31.1 31.0 31.3
LLaMA-VID∗s2 30.4 16.7 22.6 15.3 12.2 32.0 31.9 31.8 32.1
LLaMA-VID∗∗ 34.0 17.2 23.8 15.4 12.2 32.2 33.6 33.5 33.8
△ compared +11.8% +3.0% +5.3% +0.7% +0.0% +0.6% +5.3% +5.3% +5.3%

Video-LLaVA∗ 36.8 32.3 33.7 31.6 31.5 30.2 35.1 37.3 30.9
Video-LLaVA∗∗ 48.1 32.5 30.5 33.7 33.1 34.1 32.6 32.6 32.5
△ compared +30.7% +0.6% -9.5% +6.6% +5.1% +12.9% -7.1% -12.6% +5.2%

galam et al., 2024), VideoMME (Fu et al., 2024), WorldQA (Zhang et al., 2024b), and OpenEQA (Ma-
jumdar et al., 2024) datasets as detailed in Table 3. Significant observations are summarized below:

Failures of sampling models. The LLaMA-VID (Li et al., 2023d) model showcased a notable
decrement in performance during the zero-shot fashion of stage 3, which focuses on fine-tuning for
long-for video, in contrast to its achievements in stage 2 comprising pre-training on images and brief
video sequences. This performance gap reveals critical shortcomings in the strategy adopted for stage
3 of LLaMA-VID. We adjusted the finetuning strategy, with all finetuning on LLaMA-VID based on
the stage 2, all results showed significant improvements over stage 2, with the highest being an 11.8%
increase on EgoSchema.

Better on longer videos. Post fine-tuning, Video-LLaVA’s performance declined mainly on shorter
videos. Fine-tuning with LongViTU on longer videos also showed limited effectiveness on the
VideoMME Short subset. The average video duration in OpenEQA is 49 seconds, which is shorter
than the 83 seconds in the VideoMME Short subset, but much less than the Medium (563 seconds)
and Long (2386 seconds) subsets. These results highlight the importance of LongViTU for improving
understanding across different video durations.

Challenges in long video processing. The VideoLLM-online (Chen et al., 2024a) model demon-
strated incoherent responses during the assessments of the Long subset of VideoMME, with no
measurable predictions across the evaluation metrics. This underscores the significant challenges
inherent in processing and understanding lengthy video content. The LongViTU dataset serves not
only as a substantial foundation for pre-training but also as a crucial benchmark for evaluating the
capabilities in long-form video comprehension.

3.4 QUALITATIVE EVALUATION

We present visualizations of various question-answering types in Figure 4 to facilitate a more thorough
qualitative analysis.

Spatial details. As shown in Figure 4a, the dense distribution of numerous foreground objects within
the scene led to incorrect zero-shot predictions from both Video-LLaVA and LLaMA-VID. After
fine-tuning with LongViTU, the model effectively focused on finer spatial details, resulting in fully
correct answers.

Key moments. In Figure 4b, Video-LLaVA successfully identified a key moment (a fleeting ap-
pearance of "a plant on the windowsill"), and provided a precise and concise response, which was
awarded a perfect score of 100 by GPT-4. In contrast, LLaMA-VID, despite being fine-tuned, failed
to capture sufficient details and received a score of 0.

Temporal localization. In Figure 4c, both Video-LLaVA and LLaMA-VID correctly identified
the presence of "two" plug-in sockets in the kitchen at the end of a long video, providing accurate
and succinct answers. Extracting such spatial information from extended video sequences poses a
significant challenge, highlighting the effectiveness of LongViTU data in improving the generalization
of long-form temporal localization.

8
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What are the red objects on the room ?

… … …

Chairs.

Video LLaVA

Zeroshot
Prediction: Table
GPT-4 score: 0

Finetune
Prediction: Chairs
GPT-4 score: 100

Zeroshot
Prediction: No information …
GPT-4 score: 0

Finetune
Prediction: Red Chairs
GPT-4 score: 100LLaMA-VID

(a) Spatial details. Q: What are the red objects on the room ? A: Chairs.

Where is the plant ?

… … …

On the window sill.

Video LLaVA

Zeroshot
Prediction: In the kitchen
GPT-4 score: 0

Finetune
Prediction: On the windowsill
GPT-4 score: 100

Zeroshot
Prediction: Near the sink
GPT-4 score: 40

Finetune
Prediction: In the kitchen
GPT-4 score: 0LLaMA-VID

On the window sill.

(b) Key moments. Q: Where is the plant ? A: On the window sill.

How many devices can be plugged in on the kitchen counter ?

… … …

Two.

Video LLaVA

Zeroshot
Prediction: No information …
GPT-4 score: 0

Finetune
Prediction: Two
GPT-4 score: 100

Zeroshot
Prediction: 3
GPT-4 score: 0

Finetune
Prediction: 2
GPT-4 score: 100LLaMA-VID

(c) Temporal localization. Q: How many devices can be plugged in on the kitchen counter ? A: Two.

Figure 4: Qualitative results on LongViTU. The yellow box indicates the key frame containing the answer,

while the red box highlights relevant objects.

3.5 FUTURE RESEARCH

Our distinct and rational design endows LongViTU with numerous advantageous properties. Beyond
serving as a pre-training dataset and evaluation benchmark for long-form video understanding,
thereby enhancing generalization to OOD benchmarks, it also contributes groundbreaking insights
into streaming video processing and the exploration of video memory storage mechanisms in end-to-
end models. Future research will extend beyond long-form video understanding to integrate streaming
video processing and question-answering, fostering a more comprehensive approach.

4 RELATED WORK

Large language models. Large language models (LLMs), such as InstructGPT (Ouyang et al.,
2022), GPT-4 (Achiam et al., 2023), LLaMA (Touvron et al., 2023a), and LLaMA-2 (Touvron et al.,
2023b), have demonstrated notable capabilities in text processing, which have motivated their use in
generating large-scale multimodal datasets. These models convert different modalities into structured
textual descriptions, which can then be used to prompt GPT-4 to produce multimodal content. This
process effectively uses text as a bridge to unify various data forms, enabling new approaches in
dataset automation.

9
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Instruction tuning dataset. LLaVA (Liu et al., 2024b) was among the first to leverage foundational
vision models to generate image captions and detect bounding boxes, which were subsequently
processed by ChatGPT or GPT-4 to create QA tasks based on images. Building on this, methods
like Bongard-OpenWorld (Wu et al., 2023), Video-LLaVA (Lin et al., 2023), and VideoChat (Li
et al., 2023c) extended these principles to video data, transitioning from individual image QA to
video-based QA. By sampling multiple frames from videos and applying LLaVA’s procedure, these
approaches generate video QA datasets using structured frame descriptions, object categories, and
attributes. However, this basic repetition across frames, combined with the input length limits of
LLMs, constrains the number of frames that can be analyzed, thereby reducing the comprehensiveness
of the resulting datasets.

Long-context language models. Even the most advanced long-context LLMs, such as GPT-4,
ChatGLM (GLM et al., 2024), Baichuan2 (Yang et al., 2023a), and InternLM2 (Cai et al., 2024b),
capable of handling input sequences beyond 128k tokens, experience substantial performance degra-
dation when confronted with long, intricate texts. They struggle to manage the redundancy and
disorder inherent in detailed descriptions of numerous video frames, limiting their ability to generate
effective video QA. Unlike static images, videos inherently require an understanding of temporal
dynamics, making event correlation crucial for video comprehension. The current frame-based
extension approach fails to address this temporal aspect adequately, often resulting in QA generation
that lacks depth beyond individual frame analysis.

Long-form video understanding. Instruction tuning based on the LLaVA paradigm (Liu et al.,
2024b) has demonstrated strong potential for multimodal alignment and understanding, including
tasks like captioning and visual question-answering (Brown, 2020; Anil et al., 2023; Team et al.,
2023; Li et al., 2023b; Dai et al., 2023; Yang et al., 2024; Alayrac et al., 2022). While these
methods perform effectively for individual images and short videos, extending to long-form video
understanding presents significant challenges (Song et al., 2024; Lin et al., 2023; Maaz et al., 2023;
Zhang et al., 2023; Wang et al., 2024; Zhang et al., 2024a). This difficulty primarily arises due to
the vast number of visual tokens produced by visual encoders, ranging from 576 to 2880 tokens
per image in the case of LLaVA-NeXT (Liu et al., 2024a). As the number of frames increases, the
context-window length of LLMs is quickly exceeded. Recent methods have attempted to reduce the
number of visual tokens via resamplers that connect visual encoders to LLMs (Li et al., 2023b;d; Cai
et al., 2024a; Cheng et al., 2024), but this often compromises the quality of visual representation,
leading to suboptimal outcomes. More refined techniques for pruning or merging visual features
could provide a promising direction to address these limitations (Chen et al., 2024b; Shang et al.,
2024; Jin et al., 2024; Zhou et al., 2024).

5 CONCLUSION

We present LongViTU, a large-scale dataset for long-form video understanding, incorporating video
memory and explicit timestamp annotations. Our approach organizes video content hierarchically
into a tree structure to tackle the complexities of generating QA datasets for extended video content.
Using a sliding window mechanism, we capture both temporal and spatial context, ensuring that QA
pairs align well with video content and cover diverse and informative aspects. A self-evaluation and
revision process further improves QA quality by reducing hallucinations, redundancy, and irrelevant
content. Fine-tuning on the LongViTU training set led to significant performance improvements on
both LongViTU and other benchmarks, demonstrating its efficacy and generalizability. Future work
will explore memory storage strategies using explicit timestamps to further enhance long-form video
understanding and streaming video QA.
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A LIMITATION STATEMENT

We have designed LongViTU, a pretraining dataset and evaluation benchmark for long video under-
standing, presenting significant challenges to current Video Language Models. Neither open-source
nor commercial models have effectively addressed this problem yet, and we continue to explore
potential solutions. In this paper, we present the challenge of long-form video understanding and
memory-based streaming video QA, focusing on how to efficiently integrate detailed visual features in
extended video content. We also highlight the current limitations of existing methods, our automated
pipeline is adaptable to various scenarios. Although self-evaluation and revision improve data quality,
some generated data, while not incorrect, may lack meaningful context, potentially affecting the
model. To address this, we propose refining the pipeline and adding manual inspection to better align
the benchmark with real-world human understanding and QA. This benchmark will help evaluate
progress and performance in this field, and the work is ongoing.

B MORE DETAILS ON BUILDING LONGVITU

B.1 HIERARCHICAL VIDEO TREE CONSTRUCTION

This subsection outlines the hierarchical video tree construction process, with details provided
in Section 2.1.1. Each stage’s corresponding prompts are described in the following sections.

Algorithm 1 Hierarchical Video Tree Construction

Input: Annotated video frames Frames, events Events, segments Segments
Output: Hierarchical video tree Tvideo

1: Tvideo = ∅
2: for s = 1 to len(Segments) do
3: segment = Segments[s]
4: ds = ∅; tss = ∅; tse = ∅
5: for e = 1 to len(segment.events) do
6: event = segment.events[e]
7: de = GPT4(⟨dHf ⟩Ff=1)
8: tes = event.start
9: tee = event.end

10: segment.events[e] = ⟨de, tes, tee⟩
11: end for
12: ds = GPT4({segment.events})
13: tss = segment.start
14: tse = segment.end
15: Tvideo = Tvideo ∪ {⟨ds, tss, tse, segment.events⟩}
16: end for
17: return Tvideo;

Frame level. We utilize the internlm-xcomposer2-vl-7b-4bit model with the following
prompt for dense captioning at the frame level:

<ImageHere>Identify each object in the image, describe their positions, and detail their
appearance.

Event level. We employ the ChatCompletion API of the gpt-4-turbo model with the following
prompt to refine event level descriptions:
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Write a very concise narrative in one sentence, including visual details from "Frames" that
depict an "Event", do not use any unrelated information.

"Event" describes an action in a video, with "C" representing me and other letters like ’X’
and ’Y’ standing for different people, transform these for a smoother narrative.

"Frames" show detailed visuals and space details of objects in each moment during the
"Event".

Event: {event}

Frames: {frames}

Just return narrative that summarizes the episodic memory depicted in this video, only
focuses on spatial details and temporal correlations.

Narrative:

Segment level. We utilize the ChatCompletion API of the gpt-4-turbo model to generate
segment level descriptions:

Integrate sequential event descriptions of video content into a very concise summary in one
sentence, from my perspective for a smoother narrative. Each segment should capture a
sequence of closely related actions, events, or scenes. Using "index" to represent the start and
end of each segment, do not use any unrelated information.

Step-by-step:
1. Review event descriptions and group consecutive events that are closely related into a
segment.
2. For each group of events, write a brief summary.

"index" represents order of event, "event" outlines this moment.

Video Content:
{video content}

Return each segment in JSON format: "start": start index, "end": end index, "segment": brief
description of video segment. Assemble all segments into a single Python list, ensuring
output is neatly organized and strictly adheres to this JSON format.

Segments:

B.2 LONG-FORM QA GENERATION

We utilize the ChatCompletion API of the gpt-4-turbo model to generate QA pairs on the
selected subtree:
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Task:
Construct episodic memory of video content through question-answer pairs that encapsulate
spatial and temporal aspects within selected events.

Step-by-Step Instructions:
1. Selection of Events: Select either a single specific event or a series of interrelated events
from the video content (’Memory Content’). For each selected event or sequence of events,
generate question-answer pairs that reflect their spatial and temporal characteristics. Use
"index" to designate the chronological order of these memory events.
2. Creation of Question-Answer Pairs: From the selected events, formulate questions that
will be posed later in the video related to a single, specific event (’Ask Content’). These
pairs should mimic a retrospective dialogue between me and an AI assistant, where I pose
questions and the AI provides answers based on the video content. Reference events and
segments to make dialogue more naturally narrative, avoiding direct references "index" or
timestamps.
3. Categorization of Questions: Categorize each question under a specific type such as:
Object, Attribute, Location, Action, Function, Affordance, Comparison, Relationship,
Causality, Motivation, Planning, Risk, or any other category you suggest.

Output Format:
Return question-answer pairs in JSON format: "memory": [list of memory events index],
"ask": event index where question is posed, "type": question type, "question": question,
"answer": answer. Assemble all pairs into a single Python list, ensuring the output is neatly
organized and strictly adheres to this JSON format.

Term Definitions of Video Content:
- segment: a brief summary covering a sequence of related events.
- events: multiple related events within a segment.
- index: sequential position of an event within the overall video content.
- event: spatial-temporal details associated with each moment in the video.

Memory Content:
{memory content}

Ask Content:
{ask content}

Question-Answer pairs:

B.3 SELF-REVISION

We utilize the ChatCompletion API of the gpt-4-turbo model to perform self-revision:
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Please review and correct the following question-answer pair about video content. Simplify
the question-answer pair to directly represent the core information without redundant details,
ensuring the question is natural and concise, and the answer is direct and clear.

Identify the correct type of the QA pair: Object, Attribute, Location, Action, Function,
Affordance, Comparison, Relationship, Causality, Motivation, Planning, Risk, or Other. Do
not add or fabricate content. Remove redundant event numbers and express the event directly.

Original QA:
{original qa}

Return the Revised QA as a dict:
{"revised type": revised QA type, "revised question": revised question, "revised answer":
revised answer}

Revised QA:

B.4 EVALUATION METRICS

We use the internlm-xcomposer2-vl-7b-4bit model to perform evaluation by designed
scoring criteria:

As a scoring expert, your responsibility is to evaluate the accuracy of a model’s response to a
specific question about video content. You will be provided with the ’question’ asked about
the video, the ’answer’ which is the correct answer based on the video, and the ’prediction’
which is the model’s response. Your task is to assess how accurately the model’s ’prediction’
answers the ’question’ in relation to the ’answer’.

Question:
{question}

Answer:
{answer}

Prediction:
{prediction}

Scoring Criteria:
Level 1: The ’prediction’ is unrelated to the ’question’ or unintelligible, containing significant
errors or irrelevant characters. Score: 0.
Level 2: The ’prediction’ is completely off-topic, not reflecting the factual content of the
’answer’. Score: 20.
Level 3: The ’prediction’ somewhat response the ’question’ but includes errors or irrelevant
details not found in the ’answer’. Score: 40.
Level 4: The ’prediction’ generally response the ’question’ but has some inaccuracies or
irrelevant details compared to the ’answer’. Score: 60.
Level 5: The ’prediction’ accurately response the ’question’ and is mostly consistent with the
’answer’, with only minor discrepancies. Score: 80.
Level 6: The ’prediction’ perfectly response the ’question’ and fully aligns with the facts
provided in the ’answer’. Score: 100.

Only provide the numerical score based on the criteria above without any additional
commentary.

Score:
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B.5 MORE LONGVITU EXAMPLES

Table 4: Examples of each category in LongViTU. We demonstrate the ratio of each concept category and
more examples of LongViTU. For a more intuitive perspective, you may refer to Figure 3.

QA Category Ratio Question Example

Object
What am I holding in my hand?

12.2% What items are on the table?
What is the object on the ground?

Attribute
What is the color of that clothing?

10.7% What is the material of the cup?
What is the shape of this table?

Location
Where am I in the house right now?

15.5% Where is the key placed in?
Is that woman by the window?

Action
What is that man doing?

16.6% What am I doing by the counter?
What did he do after he came out of the house?

Transition
Where did he go after leaving here?

8.1% What change happened to that cup?
What just appeared on the ground?

Interaction
Which hand did I use to pick up this wrench?

3.4% What did I take out of the microwave?
Am I pushing the bike or riding it?

Causality
What happened after I pressed that button?

5.4% What happened after I opened the box?
What made it move?

Motivation
Why should I leave the room?

7.5% Why does she want to open the cabinet?
Why is he crying?

Planning
How do I get to the backyard?

5.4% How do I repair this house?
How do I get the tool?

Risk
What dangers does that saw pose?

2.7% What dangers are there in the kitchen?
What dangers are nearby I am driving?

Function
What is the function of this tool?

6.4% What is the function of this box?
What is the function of this knife?

Affordance
What can this stone be used for?

4.6% What can this glass bottle be used for?
What can this cloth be used for?
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