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to any specific individual, capture key aspects of contexts and environments
that have direct causal influences on certain attributes of an individual, e.g.,
environmental pollution in an area affects individual’s health condition, and
educational resources in an neighborhood influence individual’s academic
preparedness. Previous algorithmic fairness literature often overlooks social
determinants of opportunity, leading to implications for procedural fairness and
structural justice that are incomplete and potentially even inaccurate. We propose a
modeling framework that explicitly incorporates social determinants of opportunity
and their causal influences on individual-level attributes of interest. To demonstrate
theoretical perspectives and practical applicability of our framework, we consider
college admissions as a running example. Specifically, for three mainstream
admission procedures that have historically been implemented or are still in use
today, we distinguish and draw connections between the outcome of admission
decision-making and the underlying distribution of academic preparedness in the
applicant population. Our findings suggest that mitigation strategies centering
solely around protected features may introduce new procedural unfairness
when addressing existing discrimination. Considering both individual-level
attributes and social determinants of opportunity facilitates a more comprehensive
explication of benefits and burdens experienced by individuals from diverse
demographic backgrounds as well as contextual environments, which is essential
for understanding and achieving procedural fairness effectively and transparently.

1 INTRODUCTION

Structural injustice refers to circumstances in which social practices, social structures, or the
environment reinforce and compound prior histories of injustice (Carmichael et al., 1967; Sowell,
1972; Tilly, 1998; Rothstein, 2017; Alexander, 2020). We use the term “social determinants of
opportunity” to refer to the specific aspects of social practices, social structures, or the environment
that have a profound impact on the opportunities of individuals. When members of specific
demographic groups have been the subject of histories of unjust treatment, their demographic
membership often correlates with circumstances in which they face significant social impediments to
opportunity (Gee & Ford, 2011; Yearby, 2018; Robinson et al., 2020; Yearby et al., 2022; Chetty et al.,
2024). Because the social determinants of opportunity are features of places, institutions, policies,
or practices, they persist even if attitudes that cause unjust treatment have been subject to significant
reform. Their effects may not be tied directly to demographic group membership but to broader traits
(such as income level or job type) or to geographic areas. As a result, individuals within the same
demographic group, depending on their unique circumstances, may experience different impediments
to opportunity due to intersecting social determinants, e.g., various environmental impacts on
health in different geographic locations (Comber et al., 2011; Yeum et al., 2016; Tan et al., 2020).
Conversely, individuals from different demographic groups in the same geographic neighborhood
may encounter similar impediments to opportunity, e.g., poverty and pollution in the neighborhood,
lack of educational resource in the community (Connell, 1994; Tilak, 2002; Rose & Dyer, 2008).

Previous research on algorithmic fairness has focused on protected features, e.g., race, sex, gender,
and age (Romei & Ruggieri, 2014; Loftus et al., 2018; Corbett-Davies & Goel, 2018; Mitchell et al.,
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2018; Narayanan, 2018; Verma & Rubin, 2018; Caton & Haas, 2020; Chouldechova & Roth, 2020;
Makhlouf et al., 2020; Mehrabi et al., 2021; Zhang & Liu, 2021; Pessach & Shmueli, 2022; Tang
et al., 2023b). Various fairness metrics that are directly defined upon protected features are proposed
to estimate or bound empirical violations of fairness, based on observational statistics (Calders et al.,
2009; Hardt et al., 2016; Zafar et al., 2017), causal properties and/or quantities (Kilbertus et al., 2017;
Kusner et al., 2017; Nabi & Shpitser, 2018; Chiappa, 2019; Coston et al., 2020), and dynamic mod-
elings (Liu et al., 2018; Zhang et al., 2020; Tang et al., 2023a). In terms of auditing potential fairness
violations, the focus on protected features is natural since these are the features in virtue of which
individuals might be subject directly to unfair treatment or might experience disproportionate burdens.
However, the goal of mitigation goes beyond auditing fairness violations by seeking to intervene
in ways that will reduce burdens and promote fairer outcomes in the future. Both protected features
and social determinants of opportunity play important roles in the underlying causal mechanism,
and therefore, need to be explicitly addressed when designing and evaluting mitigation strategies.

We consider procedural fairness that pertains directly to the data generating process itself (Rawls,
1971; 2001; Sen, 2011), and propose a framework that incorporates social determinants of opportunity
for understanding and achieving procedural fairness. Our contributions can be summarized as follows:

• We advocate explicitly considering social determinants of opportunity because they capture key
aspects of contexts and environments that have direct causal influences on specific attributes of in-
dividuals, overlooking which may result in incomplete or inaccurate claims for procedural fairness.

• We propose a modeling framework that incorporates social determinants of opportunity, and
demonstrate how our approach facilitates nuanced analyses of benefits and burdens experienced
by individuals with different demographic backgrounds as well as contexts and environments.

• Our findings suggest the importance of recognizing various factors in the underlying data
generating process that have procedural fairness implications, some are individual-level protected
features, others correlate with protected features but do not pertain to any specific individual.

2 PRELIMINARIES

We first provide a brief introduction to causality and causal modeling (Section 2.1), and then, we
present an overview of different procedures in college admissions as a running example (Section 2.2).

2.1 A BRIEF INTRODUCTION TO CAUSAL MODELING

We use uppercase letters to denote random variables, lowercase letters to denote values taken by
variables, and calligraphic letters to denote corresponding domains of values. For instance, for a
random variable Z, it can take a value z from its domain of values Z . For two random variables
W and V , we say that W is a direct cause of V if there is a change in distribution of V when we
apply an intervention on W while holding all other variables fixed (Spirtes et al., 1993; Pearl, 2009).
We can represent causal relations among variables via a directed acyclic graph (DAG), where nodes
correspond to variables, and edges denote causal relations between variables and their direct causes.

2.2 OVERVIEW OF DIFFERENT ADMISSION PROCEDURES

There are three mainstream categories of admission procedures that were implemented in the history
or are still in use today: quota-based admissions, holistic review with plus factors, and top-percentage
plans. Variant forms of these procedures have been evaluated in law cases related to affirmative
actions. At the core of these cases is the “compelling interest,” a legally necessary and highly justified
purpose that must be demonstrated to validate government measures that differentiate individuals
based on race (Supreme Court, 1978; 2003a;b; 2013a;b; 2023a;b). Beyond jurisprudence, it is also
established that the way and the extent to which race and ethnicity is utilized in the admission
procedure should be under strict scrutiny, for instance, the studies on impacts of affirmative actions in
education from economic literature (Sowell, 1972; 2004; Zimmerman, 2014; Bleemer, 2022) and
from algorithmic fairness literature (Kusner et al., 2017; Nabi & Shpitser, 2018; Kannan et al., 2019;
Chiappa, 2019). In this paper, we consider college admissions as a running example and present
nuances in implications on procedural fairness, when employing different admission procedures.

2
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Figure 1: Comparison between different modeling choices when constructing a causal graph for the underlying
data generating process. Panel (a) presents the modeling in previous causal fairness literature, where the color
red denotes problematic edges (Kilbertus et al., 2017; Kusner et al., 2017; Nabi & Shpitser, 2018; Chiappa,
2019; Wu et al., 2019; Nabi et al., 2022). The variable Address is usually omitted in previous literature, as
indicated by squiggles. Employment status and annual income of the applicant are enclosed in dashed boxes as
they are typically not factors considered in college admissions. Panel (b) presents our modeling of influences
from social determinants of opportunity on academic preparedness, corresponding to contexts and environments.

3 SOCIAL DETERMINANTS OF OPPORTUNITY IN CAUSAL MECHANISMS

We discuss in Section 3.1 issues of previous causal modeling for procedural fairness. In Section 3.2,
we present our modeling framework incorporating social determinants of opportunity. 1

Definition 3.1 (Social Determinants of Opportunity). A social determinant of opportunity is a
variable representing an aspect of the data generating process, in which one or more characteristics of
the environment where individuals live or operate, that are not an attribute of any specific individual,
have direct causal influence on the attributes of an individual.

3.1 CAUSAL MODELING IN PREVIOUS WORKS

Previous works in causal fairness represent discriminations in terms of problematic edges or paths
in the causal graph. As shown in Figure 1(a), one can represent causal relations among relevant
variables with a DAG, and further indicate objectionable aspects of data generating process with
red edges or paths originating from protected features (Kilbertus et al., 2017; Kusner et al., 2017;
Nabi & Shpitser, 2018; Chiappa, 2019; Wu et al., 2019; Nilforoshan et al., 2022; Nabi et al., 2022).
Three potential issues may arise from this modeling choice.

The Recapitulation of Inappropriate Stereotypes In Figure 1(a), there are causal edges or paths
originating from protected features to certain other variables, for instance, from sex or gender
to annual income, and from race to educational status. While it seems intuitive to use the edge
Race → Education Status to capture the potential racial discrimination in education (Kusner
et al., 2017; Nabi & Shpitser, 2018; Chiappa, 2019; Nabi et al., 2022), the interpretation of the edge
according to the definition of causal intervention reveals its potential controversies. Specifically,
by definition of causality, this edge asserts that there is a difference in the distribution of education
status, when we “intervene” on individual’s race while keeping all other things unchanged.2 Such
modeling choice, although seemingly neutral from a technical perspective, unintentionally aligns with
the controversial ideology of racial essentialism (racial groups possess underlying intrinsic essences,
e.g., intellectual and biological, that make them different), which has been widely criticized due to the
lack of scientific evidence supporting its claims (Roberts, 2011; Smedley, 2018; Delgado & Stefancic,
2023). If a certain edge or path in the causal model does not reflect an actual real-world causal process,
subsequent causal fairness analyses based on causal effects may not provide informative conclusions.

The Limited Scope of Only Modeling Individual-Level Variables Compared to fairness notions
based on observational statistics, causal fairness notions incorporate causal relations among features
of individuals, such that interventional and counterfactual analyses can be conducted to reason about

1Due to space limit, we provide further discussions on related works in Appendix A.
2Here, we use “intervene” in quotes to signify the need of extra caution when discussing the manipulation of

individual’s race, due to both ethical and practical considerations.

3
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different potential outcomes for specific individuals (Kilbertus et al., 2017; Kusner et al., 2017;
Nabi & Shpitser, 2018; Chiappa, 2019; Wu et al., 2019; Nabi et al., 2022). Recent works have also
utilized (sub)group-level statistics based on causal effects to capture group-level fairness (Zhang &
Bareinboim, 2018b;a; Coston et al., 2020; Imai & Jiang, 2020; Mishler et al., 2021; Nilforoshan et al.,
2022). However, the scope of considered variables is largely limited to attributes directly pertaining
to an individual, e.g., demographic information, education status, and annual income in Figure 1(a).
Other than individual-level variables, contextual environments actually have significant influences
over the individual, for instance, the improvement in physical health observed in a randomized
housing mobility social experiment (Ludwig et al., 2011), and the social determinants of health
(Marmot & Wilkinson, 2005; Braveman & Gottlieb, 2014; Robinson et al., 2020; Yearby et al., 2022).

Omitting Relevant Variables In previous literature, it is a common practice to omit the variable
Address in theoretical and empirical analyses. In particular, previous causal models do not include
Address as a relevant variable (Kilbertus et al., 2017; Kusner et al., 2017; Nabi & Shpitser, 2018;
Chiappa, 2019; Nabi et al., 2022). Furthermore, the empirical analyses tend to drop the Address
information (or its alternatives) during data collection and/or preprocessing. For instance, there is no Reviewer h9Xa: Q5.1

Previous approaches
tend to omit relevant
variables

address information included in the Adult data set (Becker & Kohavi, 1996), the address information
is dropped (Mary et al., 2019) when processing the Communities and Crimes data set (Redmond,
2009), the address-related information is dropped by the Folktables package when retrieving
public-use data products from US Census Bureau and forming Adult-like data sets (Ding et al., 2021).
This is problematic because through Address an individual can be related to a household via the
family relation, and to a geographical location via the residence relation. This seemingly irrelevant
variable (for college admission) actually contains information relevant to an individual’s opportunity,
since factors from contextual environments (e.g., environmental impact on health, educational
resource available in neighboring area) affect academic preparedness of the applicant.

3.2 OUR MODELING APPROACH

Presented in Figure 1(b), we unpack the semantics of edges or paths originating from protected
features in Figure 1(a), and replace them with causal edges from potential social determinants of
opportunity (Definition 3.1) in contextual environments to the individual. For instance, in our running
example of college admissions, instead of using Race → Education Status to model potential
racial discrimination in college admission, we consider the household and geographic location
related to the individual (through applicant’s address) and model causal influences from contextual
environments. Historical or current racial discrimination is not instantiated through inherent biological
or intellectual differences across demographic groups. Instead, it manifests through patterns where
individuals from certain racial backgrounds are more likely to reside in areas with weaker socio-
economic profile and fewer educational resources (Sowell, 2004; Rothstein, 2017; Alexander, 2020).

More generally, disadvantage can perpetuate through many means, which are not necessarily limited
to particular properties of any specific individual. Even if we completely eliminate discrimination
in terms of directly rejecting admission on the basis of group membership, disadvantage can get
perpetuated through social determinants of opportunity (Carmichael et al., 1967; Sowell, 1972; Tilly,
1998; Rothstein, 2017; Young, 2008; Powers & Faden, 2019; Alexander, 2020). As we will see in
Section 4, our approach captures nuances in data generating processes and enables more fine-grained
and to-the-point analyses for procedural fairness.

4 THEORETICAL ANALYSES ON COLLEGE ADMISSION PROCEDURES

In this section, we consider the practical scenario of college admissions and demonstrate the
nuanced analyses our modeling framework can provide. In Section 4.1, we present a summary of
the assumptions we use to facilitate closed-formula theoretical analyses. In Sections 4.2 – 4.4, we
consider three mainstream college admission procedures. We provide discussions in Section 4.5.

4.1 ASSUMPTIONS IN OUR ANALYSES

Beyond the emphasis on the protected feature, race, the influence from social determinants of
opportunity is seldom discussed and somewhat overlooked in current algorithmic fairness literature.

4
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Therefore, in our analyses, we take Address Region as a surrogate for social determinants of
opportunity, and utilize our modeling approach to explicate their influence on individuals’ academic
preparedness.3 For clear illustration through closed-formula theoretical derivation, we incorporate
certain quantitative assumptions in our theoretical analyses of different admission procedures.
Assumption 4.1 (Region-Specific Demographic Makeup). Let us denote the protected feature as
A, where a ∈ A denotes under-represented minority (URM) applicant group, and a′ ∈ A denotes
non-URM applicant group. There are two regions where applicants reside in, rich and poor regions,
with different demographic compositions from URM/non-URM groups,

poor region rich region
URM applicants n

(poor)
a n

(rich)
a

Non-URM applicants n
(poor)
a′ n

(rich)
a′ ,

(1)

where the following inequalities hold true:

(1) disproportionate geographic distribution due to historical injustice, i.e., n(poor)
a > n

(poor)
a′ ,

(2) the definition of “underrepresented minority”, i.e., n(poor)
a + n

(rich)
a < n

(poor)
a′ + n

(rich)
a′ .

Condition (1) specifies that URM applicants are relatively more concentrated in the less well-off region
due to historical injustice (Sowell, 2004; Rothstein, 2017; Alexander, 2020). Condition (2) holds
by definition, i.e., the total number of URM applicants is smaller than that for non-URM applicants.
Assumption 4.2 (Determinant of Academic Preparedness). Conditioning on the affluence of the
region where the applicant resides in, the academic preparedness is conditionally independent from
the protected feature race. In other words, we have the following relation (⊥⊥ denotes independence):

Academic Preparedness ⊥⊥ Race | Address Region. (2)

While there can be dependence between Race and Academic Preparedness (without condi-
tioning on Address Region) due to historical injustice (Sowell, 2004; Rothstein, 2017; Alexander,
2020), such dependence does not indicate that Race is a determinant of applicant’s Academic
Preparedness. Assumption 4.2 specifies that after conditioning on applicant’s address region,
applicant’s academic preparedness is irrelevant to the demographic group. In other words, Address
Region encloses region-specific social determinants of opportunity related to academic prepared-
ness, for instance, the availability of educational resources in the area and the environmental impacts
on applicant’s health, but Race is not an inherent determinant of applicant’s academic preparedness
Assumption 4.3 (Gamma Parameterization of Academic Preparedness Distribution). Let S denote
the non-negative overall academic index score of an applicant’s academic preparedness. Further
let SMAX and SMIN denote the highest and lowest possible values of the score. Within any specific
region r ∈ {poor, rich}, the log-converted relative score Q is Gamma distributed with region-specific
shape and scale parameters, k(r) and θ(r), respectively. Furthermore, the rich region’s cumulative
distribution function (CDF) of log-converted relative score Q dominates that of the poor region:

Q ∼ Γ
(
k(r), θ(r)

)
, where Q := − log

(
S − SMIN

SMAX − SMIN

)
, r ∈ {poor, rich},

∀q ∈ [0,∞), F (rich)(q) ≥ F (poor)(q), where F (r)(q) is the CDF of Γ
(
k(r), θ(r)

)
.

(3)

In Assumption 4.3, the conversion of the score maps the domain of values [SMIN, SMAX] (higher score
S is more competitive) to [0,∞), where the closer to 0 the converted score Q, the more competitive.
The flexibility of Gamma distributions allows us to use combinations of shape and scale parameters
to capture properties of the region-specific academic preparedness distribution.
Assumption 4.4 (Selective Admission and Open Enrollment). The selective college employs thresh-
olds on applicants’ academic preparedness scores and has a limited availability of admissions g:

g < n, where n = n(poor)
a + n(rich)

a + n
(poor)
a′ + n

(rich)
a′ , (4)

and all applicants can get admitted to the open-enrollment college.

3For the purpose of this paper, we aim to demonstrate how our modeling framework dovetails ethical insights,
and we do not intend to make any legal claim.
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(a) Quota-based admission (b) Holistic review with plus factors (c) Top-percentage plan

Figure 2: Procedural fairness implications of different admission strategies. Panel (a): quota-based admission
can introduce additional unfairness against non-URM applicants from the poor region. Panel (b): holistic review
with plus factors tends to benefit URM applicants in the rich region more than these in the poor region. Panel (c):
top-percentage plan transfer admission opportunity from the rich region to the poor region, and the redistribution
is proportional to the natural region-specific demographic compositions.

Assumption 4.4 states that while the open-enrollment college can admit all applicants, the selective
college uses score thresholds to distribute the limited availability of admissions. As we shall see
in Sections 4.2 – 4.4, the exact values of thresholds depend on the admission strategy, and have
procedural fairness implications in terms of the benefits and burdens experienced by individuals from
different demographic groups, as well as regions with varying levels of affluence.4

4.2 QUOTA-BASED ADMISSIONS

The quota-based admission is a type of affirmative-action admission strategy that sets specific limits
on the number of admissions for applicants from different demographic backgrounds. This admission
strategy was originally designed to rectify historical injustice by directly setting aside admission
quotas to increase the representation of URM students. However, due to the rigid nature of the quota-
based mechanism, this admission strategy has been controversial and addressed by the U.S. Supreme
Court in the landmark case University of California Regents v. Bakke (1978) (Supreme Court, 1978).
It was held that the use of strict racial quotas in college admission was unconstitutional, and was
reaffirmed in another landmark case Grutter v. Bollinger (2003) (Supreme Court, 2003b).

Aside from the fact that the quota-based admission procedure is rigid and mechanical, it fails to
account for the role of social determinants of opportunity which vary across regions and influence
applicants’ academic preparedness in different ways. As a result, employing quota-based admission
can further disadvantage non-URM applicants from less well-off areas, effectively introducing
additional unfairness during the attempt to rectify historical racial injustice:
Theorem 4.5 (Quota-Based Admission Incurs Unfairness w.r.t. Non-URM in Poor Region). Under
Assumptions 4.1–4.4, let us denote with ηquota ∈

[
1, n

n
(poor)
a +n

(rich)
a

]
the weighting coefficient over

the natural proportion of URM applicants in population, such that the quota for URM admissions in

the selective college is ηquota · (n
(poor)
a +n(rich)

a

n g). Then, the quota-based admission strategy imposes
a more competitive requirements (in terms of score threshold) for non-URM applicants from the
poor region, than that for URM applicants from the rich region, unless the following condition on
region-specific academic preparedness CDF’s is satisfied:

max
q∈[0,∞)

F (rich)(q)

F (poor)(q)
≥

(n
(poor)
a′ + n

(rich)
a′ )ηquota

(n
(poor)
a + n

(rich)
a )(1− ηquota) + (n

(poor)
a′ + n

(rich)
a′ ) .

(5)

Theorem 4.5 states that, for quota-based admission to rectify historical racial injustice without
introducing additional unfairness against non-URM individuals from less affluent areas, a rather

4Due to the space limit, we present proofs for our theoretical results in Appendix B.
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strong condition must be met involving demographic composition, the academic preparedness across
regions, and the imposed quota-based weighting coefficient ηquota, as summarized in Equation (5). In
particular, the larger the quota (larger ηquota), the more spots are reserved for URM applicants (from
both poor and rich regions), the more challenging for non-URM applicants in the poor region to be
able to attend the selective college. In other words, non-URM applicants in the poor region, who
face the same obstacles and disadvantages in contextual environments as their URM counterparts,
are not reserved additional spots; on top of that, they have to compete with more advantaged peers
(non-URM applicants from the rich region) over the spots that are already more limited. As we
illustrate in Figure 2(a) Scenario (i), quota-based admission may result in a higher score threshold for
non-URM in poor region than that for URM in rich region (since q

(poor)
a′ < q

(rich)
a ).

4.3 HOLISTIC REVIEW WITH PLUS FACTORS

Holistic review with plus factors is another type of affirmative-action admission strategy, involving
consideration of multiple factors that together define each individual applicant. The key element of this
process is the use of plus factors, where certain characteristics, for instance, race and ethnic group, are
given additional weight to promote diversity in the student body and rectify historical disadvantages.
This approach was upheld by the U.S. Supreme Court in Grutter v. Bollinger (2003) (Supreme Court,
2003b), but was overruled in recent decisions for Students for Fair Admissions (SFFA) v. Harvard
& UNC (2023) (Supreme Court, 2023a;b), effectively banning race-conscious admissions.

Putting aside the evolving jurisprudence, we aim to precisely characterize holistic review in terms of
its implications on the distribution of benefits and burdens among individuals, when allocating the
limited spots in selective college admissions. When taking into account of social determinants of
opportunity signified by Address Region, we show that holistic review with plus factors may
benefit applicants from better-off areas more than those from less well-off areas:

Theorem 4.6 (Holistic Review with Plus Factors Benefits URM in Rich Region More). Under
Assumptions 4.1–4.4, let us denote with η† < 1 the multiplicative coefficient on the scale parameter
of Gamma distributions for URM applicants’ academic index scores, such that the perceived scores
of URM applicants shift more probability density towards the high-score end. Let us denote with qo
the default threshold for selective admission, and with q† the threshold if the admission procedure
is a holistic review with plus factors. Further assume that region-specific shape parameters satisfy
k(poor) = k(rich) = ko. Then, the increase in the probability of selective admission for URM
applicants from the rich region, is larger than that for URM applicants from the poor region:

if the selective admission is limited in availability such that qo <
ko ln(θ

(poor)/θ(rich))

1/θ(rich) − 1/θ(poor)
, then

∀η† ∈
[
qo(1/θ

(rich) − 1/θ(poor))

ko ln(θ(poor)/θ(rich))
, 1

)
, F (rich)

( q†
η†

)
− F (rich)(qo) > F (poor)

( q†
η†

)
− F (poor)(qo).

Theorem 4.6 characterizes different levels of benefits for URM applicants from different regions.
Specifically, in terms of the increase in admission probability to the selective college, URM applicants
from the rich region benefit more from the admission procedure that utilizes holistic review with plus
factors, compared to URM applicants from the poor region. To better demonstrate our theoretical
result, we provide illustrations in Figure 2(b).

As presented in top-row subfigures in Figure 2(b), at the original scale, the region-specific distributions
of academic preparedness are the same for URM and non-URM applicants (Assumption 4.2). Holistic
review with plus factors grants preference to URM applicants by perceiving their scores, at the
distribution level, as if they were sampled from a distribution that is more concentrated at the high-
score end (the plus-factor scale).5 Because of the limited availability in selective admissions, the
threshold q† for admission under holistic review with plus factors is more competitive than the
default qo, i.e., q† < qo, for both URM and non-URM applicants. While non-URM applicants
are assessed on the original scale, URM applicants are evaluated on a plus-factor scale. Under the

5For holistic review with plus factors, we model its affirmative-action emphasis on the URM group through
a distribution shift, i.e., from the original scale to the plus-factor scale, instead of an automatic awarding of
points for each URM applicant. Our modeling choice is for the purpose of avoiding the introduction of rigid and
mechanical characteristics to the process, as was addressed in Gratz v. Bollinger (2003) (Supreme Court, 2003a).
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Gamma parameterization (Assumption 4.3), this is equivalent to employing a more competitive
threshold q† for non-URM applicants but a less competitive one q†/η† for URM applicants, where
q† < qo < q†/η†. Although the mathematical form of qo < ko ln(θ(poor)/θ(rich))/(1/θ(rich)−1/θ(poor))

appears convoluted, the condition itself is relatively mild. Graphically speaking, the spots at the
selective college are limited such that the threshold qo does not reach the point where region-specific
Gamma density curves (in the original scale) intersect, as depicted by q̃ in Figure 2(b).

From the shaded areas in bottom-row subfigures in Figure 2(b), we can see that the increased
admission probability for URM groups comes with a corresponding reduction in that for non-URM
groups. However, such redistribution benefits URM applicants in the rich region more than those in
the poor region, essentially disadvantaging URM applicants in less well-off areas.

4.4 TOP-PERCENTAGE PLANS

The top-percentage plans are college admission policies that guarantee admission to students who
graduate in a certain top percentage of their high school classes. The top-percentage plans are
generally not considered traditional affirmative-action admission strategies. Instead, these policies
are race-neutral alternatives aiming to promote diversity by drawing students from a wide range of
schools with different socioeconomic and geographic backgrounds, without explicitly considering
race. A prominent example is the University of Texas’s Top 10% Rule, which guarantees admission to
students in the top 10% of their class. Another is the Eligibility in the Local Context (ELC) program
of University of California, which was introduced after the 1996 California Proposition 209 banned
the use of race, ethnicity, and gender in public university admissions in California.

Taking into account the demographic composition of applicants and the number of available spots
at the selective college, we characterize the difference between top-percentage plans compared to
the default selective admission. When explicitly considering the role of Address Region in
applicants’ academic preparedness, we show that the redistribution of limited selective admissions,
as implied by top-percentage plans, is carried out by reallocating availability from the rich region to
the poor region, regardless of the demographic group of applicants:
Theorem 4.7 (Top-Percentage Plans Reallocate Spots from Rich Region to Poor Region). Under
Assumptions 4.1–4.4, let us denote with qo the default threshold for selective admission, and with
q(poor) and q(rich) the thresholds for poor and rich regions, respectively, if top-percentage plans are
employed. Then, the increase in selective admissions (in terms of counts) for applicants from the
poor region, comes from spots reallocated out of the rich region. This redistribution is a result of the
top-percentage plans, and is not relevant to applicants’ demographic group:(
n(poor)
a +n

(poor)

a′
)[
F (poor)(q(poor))−F (poor)(q(o))

]
=

(
n(rich)
a +n

(rich)

a′
)[
F (rich)(q(o))−F (rich)(q(rich))

]
.

Furthermore, if region-specific shape parameters satisfy k(poor) = k(rich), we additionally have:

q(poor)/q(rich) = θ(poor)/θ(rich).

Theorem 4.7 characterizes the reallocation of the selective admission spots performed by top-
percentage plans. In Figure 2(c), we use shaded areas to illustrate the transfer of admission op-
portunity (in terms of the region-wise probability of selective admission) from the rich region to the
poor region. The additional selective admissions gained by the poor region, compared to the default
setting, are distributed proportionally to the natural demographic composition of each group.

4.5 REMARK ON PROCEDURAL FAIRNESS IMPLICATIONS OF DIFFERENT PROCEDURES

Although all three types of admission procedures share the goal of promoting fairness and diversity
within the student body, the limited availability of selective admissions leads to varying redistributions
of benefits and burdens among applicants. Quota-based admissions, while being rigid and mechanical,
are more direct in reserving spots for URM applicants. However, as an unintended consequence, non-
URM applicants from less well-off areas can be further disadvantaged when quota-based admissions
are employed (Theorem 4.5). Holistic review with plus factors, in comparison, takes a more flexible
approach when granting preferences to URM applicants. However, the increase in selective admission
probability for URM applicants, which is reallocated from non-URM applicants, rewards the rich re-
gion more than the poor region (Theorem 4.6). Top-percentage plans, which provide race-neutral alter-
natives to the previous two affirmative-action strategies, transfer opportunities from rich region to poor
region, operating in proportion to natural region-specific demographic compositions (Theorem 4.7).
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The benefits and burdens experienced by applicants from different backgrounds in college admissions
extend beyond whether or not and how the protected feature race is explicitly used in decision-making.
Our theoretical results demonstrate the crucial role played by social determinants of opportunity
enclosed in Address Region for procedural fairness analysis. Without them, it is impossible to
identify the newly introduced unfairness, since the address variable is absent from the causal graph in
previous literature (Kusner et al., 2017; Nabi & Shpitser, 2018; Chiappa, 2019; Wu et al., 2019).

5 EXPERIMENTS

Commonly used data sets and benchmarks in algorithmic fairness literature tend to omit variables
related to social determinants of opportunity (as we discussed in Section 3.1). However, the relative
absence of comprehensive measurements does not render our framework unnecessary or ineffective.
In this section, we demonstrate how to apply our analytical framework using the information available.
We consider the publicly-available statistics for freshmen admissions to University of California, and
reason about underlying academic preparedness from potential regions.6

5.1 FORMULATION OF THE OPTIMIZATION PROBLEM

Due to legal and ethical considerations (e.g., privacy protection and data confidentiality), the released
data only contains summary statistics, and the detailed application or admission data is not publicly
available. Nevertheless, we aim to utilize the information available and formulate a constrained
optimization problem to estimate region-specific academic preparedness.

We do not regard race as a determinant of academic preparedness (Assumption 4.2), and incorpo-
rate the Gamma parameterization for region-specific distribution of academic preparedness among
applicants (Assumption 4.3). Both the number of regions and demographic groups can take on
values beyond the binary case. After specifying the number of regions, we formulate a constrained
optimization problem to solve for region-specific shape and scale parameters, as well as demographic
compositions across regions, where L(·) denotes the loss function:

min L
(

demographic composition
(application & admission) ,

quantile statistics
(application & admission) ; k

(R), θ(R), q(R), n
(R)
A

)
s.t. ∀ race a ∈ A,

∑
r
n(r)
a matches demographic composition of applicants,

∀ race a ∈ A,
∑

r
n(r)
a · F (r)(q(r)) matches demographic composition of admissions,

∀ specified q∗,
∑

r

[
F (r)(q∗) ·

∑
a
n(r)
a

]
matches application statistics,

∀ specified q∗,
∑

r

[
F (r)

(
min(q∗, q(r))

)
·
∑

a
n(r)
a

]
matches admission statistics,

∀ region r ∈ R, the CDF (irrelevant to race) F (r)(q(r)) :=

∫ q(r)

0

Γ(ξ; k(r), θ(r))dξ.

(6)

Here, q∗’s are certain quantiles specified in the publicly-available statistics provided by University
of California undergrad admissions summary, that (before the relative log conversion) correspond
to capped and weighted high-school GPA scores {4.0, 3.7, 3.3, 3.0}. We consider min(q∗, q(r))
when calculating estimated cumulative probabilities for admissions, F (r)

(
min(q∗, q(r))

)
, because

threshold values may differ across regions as a result of the employed admission procedure.7

5.2 EXPERIMENTAL RESULTS

Despite the various constraints listed in Equation (6), the optimization problem can potentially
remain under-constrained due to the limited information available provided by summary statis-
tics. In practice, we solve the constrained optimization problem to match the estimation with

6The data is obtained from University of California undergrad admissions summary and freshmen fall
admissions summary. We provide data descriptions as well as additional results and analyses in Appendix C.

7The 1996 California Proposition 209 banned the use of race, ethnicity, and gender in public university
admissions. Therefore, thresholds are (potentially) region-specific but race-irrelevant, i.e., q(r) instead of q(r)a .
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Figure 3: Visualization of constrained optimization results fitted on University of California application and
admission summary statistics. Panel (a): region-specific and overall densities of academic preparedness. Panel
(b): for each group, the region-specific compositions of application and admission proportions (left four subplots);
for each region, the demographic composition of applicants (right subplot). Panel (c): for specific quantiles of
interest, the region composition of admitted students (in terms of the proportion among all applicants).

the university-wide statistics of capped and weighted high-school GPA scores (from year 2023).8
We consider demographic groups recorded in the data, and limit the number of potential re-
gions to three to avoid overfitting of summary statistics. In Figure 3, we present visualizations
of the result of the constrained optimization, including the estimated region-wise and demo-
graphic composition of applicants, n(r)

a , the parameters in region-specific Gamma distributions,
k(r) and θ(r), and the corresponding score thresholds q(r), where region r ∈ {0, 1, 2} and race
a ∈ {African American,Asian,Hispanic/Latino(a),White,Other Groups}.

In Figure 3(a), we present region-specific densities of academic preparedness, as well as the overall
density if we consider all applicants. The distinct shapes of region-specific densities reflect the varying
influences on applicants’ academic preparedness across different regions. For instance, the densities
of Region 0 (blue) and Region 2 (green) concentrate more at the high-score end, compared to Region 1
(orange), indicating the more positive influence on applicant’s academic preparedness. In Figure 3(b),
in the left four subplots, for different demographic groups we present region-specific compositions
of application and admission proportions; in the right-hand-side subplot, we present the demographic
composition of applicants within each region. In Figure 3(c), we present the proportion (among all ap-
plicants) of admitted students whose scores are above specific quantiles. As we can see from Figure 3,
there is a correlation between race and social determinants of opportunity, as indicated by different
academic preparedness across regions, and also by the disproportionate demographic compositions
of admission even if the procedure does not utilize race (as per 1996 California Proposition 209).

6 CONCLUDING REMARKS

In this paper, we advocate the explicit consideration of social determinants of opportunity in causal
mechanisms for the purpose of understanding and achieving procedural fairness. We propose
a modeling framework that encompasses variables characterizing influences from contexts and
environments to individuals, namely, social determinants of opportunity. In the running example
of college admissions, we demonstrate nuanced analyses that our framework facilitates, and explicate
procedural fairness implications when different decision-making procedures are employed.

Because social determinants correlate with protected features, explicitly considering social deter-
minants through which structural injustice potentially perpetuates can help us better understand
the underlying data generating process. This, in turn, facilitates more precise and comprehensive
characterizations of procedural fairness implications, and makes it more transparent to see benefits
and burdens experienced by individuals with different demographic backgrounds as well as contexts
and environments, when they are subject to different algorithmic decision-making procedures. Future
works naturally include designing and utilizing appropriate measurements of social determinants of
opportunity to develop fairness auditing and mitigation strategies, so that we can achieve procedural
fairness in an effective, principled, and transparent way.

8Our implementation can be found at the anonymous Github repository https://anonymous.4open.
science/r/ProceduralFairnessSocialDeterminants.
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Table 1: Summary of comparisons between our approach and closely related previous works.

Fairness
considerations

Avoiding (potential)
recapitulation of

inappropriate stereotypes
in causal modeling

Precisely defined
disadvantaged

individuals

Emphasize on
procedural fairness

implications

Include social
determinants of

opportunity

Observational statistics
(Dwork et al., 2012; Hardt
et al., 2016; Zafar et al.,
2017)

not applicable ✘ ✘ ✘

Path-specific
(interventional) causal
effect (Kilbertus et al.,
2017; Zhang et al., 2017;
Nabi & Shpitser, 2018;
Nabi et al., 2019; 2022;
Salimi et al., 2019)

✘ ✘ ✓ ✘

(Path-specific)
counterfactual causal effect
(Kusner et al., 2017;
Chiappa, 2019; Wu et al.,
2019)

✘ ✘ ✓ ✘

Intersectional definition of
subgroups (Kearns et al.,
2018; Foulds et al., 2020)

not applicable ✓ ✘ ✘

Our approach ✓ ✓ ✓ ✓

A FURTHER DISCUSSIONS ON RELATED WORKS

In this section, we present further discussions on related works. In Section A.1, we consider types
of information utilized when characterizing algorithmic fairness, and their relative emphases. In
Section A.2, we provide a detailed comparison between our approach and previous works on causal
fairness. In Section A.3, we present an additional remark on the use of term “structure” in related
disciplines. In Section A.4, we discuss the common presence of social determinants of opportunity
in various practical scenarios. We summarize the comparisons of our approach and the previous
literature in Table 1.

A.1 FAIRNESS NOTIONS BASED ON OBSERVATIONAL STATISTICS AND CAUSAL ANALYSIS

Various notions have been proposed in the algorithmic fairness literature to characterize fairness with
respect to the prediction or the prediction-based decision-making (Dwork et al., 2012; Hardt et al.,
2016; Chouldechova, 2017; Zafar et al., 2017), and also notions that are based on causal modeling
of the data generating process (Kusner et al., 2017; Kilbertus et al., 2017; Nabi & Shpitser, 2018;
Chiappa, 2019; Wu et al., 2019; Coston et al., 2020). Recent survey papers have presented overviews
on fairness notions in static settings (Loftus et al., 2018; Makhlouf et al., 2020; Mehrabi et al., 2021),
dynamic settings (Zhang & Liu, 2021), and also the connection between algorithmic fairness and the
literature from moral and political philosophy (Tang et al., 2023b).

The type of information utilized reflects different emphases of algorithmic fairness studies. Notions
based on observational statistics analyze the fairness implications in terms of the outcome of predic-
tions or decision-making (Dwork et al., 2012; Hardt et al., 2016; Chouldechova, 2017; Zafar et al.,
2017; Kearns et al., 2018; Foulds et al., 2020). Approaches that capture causal influences from the
protected feature to the target variable at the individual-level (Kusner et al., 2017; Kilbertus et al.,
2017; Nabi & Shpitser, 2018; Chiappa, 2019; Wu et al., 2019) and the (sub-)group-level (Coston
et al., 2020; Imai & Jiang, 2020; Mishler et al., 2021) put more emphases on the procedural aspect of
algorithmic fairness inquiries, focusing on the data generating process of interest. Recent work has
also proposed to address procedural fairness over all objectionable data generating components (Tang
et al., 2024) according to John Rawls’s advocacy for pure procedural justice (Rawls, 1971; 2001).
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A.2 DETAILED COMPARISON WITH CAUSAL FAIRNESS APPROACHES

Among previous algorithmic fairness approaches, causal fairness analyses are most closely related
to our work since they also emphasize the role of data generating process (Section A.1). In this
subsection, we provide a detailed comparison between our approach and previous works on causal
fairness, in terms of the question of interest (Section A.2.1), and whether or not our framework are in
tension with previous causal fairness approaches (Section A.2.2). Reviewer h9Xa: Q5.2

We include a detailed
compasion between
our framework and
previous approach.

A.2.1 QUESTION OF INTEREST

To avoid overloading the term “counterfactual” in the causal inference literature (Spirtes et al., 1993;
Pearl, 2009; Peters et al., 2017), we use “counter-factual” (with a hyphen, as an opposite to “factual”)
to denote that something does not happen in the current reality. Previous causal fairness approaches
have utilized interventional (Kilbertus et al., 2017; Nabi & Shpitser, 2018; Nabi et al., 2019; 2022)
and/or counterfactual (Kusner et al., 2017; Chiappa, 2019; Wu et al., 2019) causal effects in the
technical formulation, and aim to answer the following question:
Question A.1 (Counter-Factual Analysis Starting from Protected Features). Under certain
conditions and assumptions, what would happen to the predicted outcome in the factual world and
the counter-factual world, had the protected feature(s) taken different values?

Based on estimating or bounding certain causal effects among variables, including the protected
feature, the (predicted) outcome, and certain variables that are closely related to but not the protected
feature itself, e.g., proxy variables (Kilbertus et al., 2017), redlining attributes (Zhang et al., 2017),
admissible variables (Salimi et al., 2019), and so on, the fairness violation is quantified in terms of
causal effects between the protected feature and the (predicted) outcome. There is a reductive focus
solely upon the protected feature when modeling the discrimination. For instance, it is a common
practice for causal fairness notions to consider varying the value of protected feature (Kilbertus et al.,
2017; Kusner et al., 2017; Nabi & Shpitser, 2018; Nabi et al., 2019; 2022; Chiappa, 2019; Wu et al.,
2019) as the starting point. Recently, Tang et al. (2024) have also proposed to consider not only edges
or paths originating from the protected feature, but also all objectionable components in the data
generating process, to address procedural fairness.

However, the modeling choice of “summarizing” discrimination only through edges/paths originating
from protected feature, or solely among individual-level variables, falls short of the need to capture
procedural unfairness and structural injustice. The characteristics of the environment and the context
that individuals operate in typically do not correspond to individual-level attributes, and are not
considered in previous literature. Different from causal fairness approaches, our framework explicitly
incorporates the influence of contextual environments, and aims to address the following question:
Question A.2 (Factual Analysis Starting from Social Determinants of Opportunity). Under cer-
tain conditions and assumptions, what are the aspects of the data generating process that characterize
the influence from contextual environments to the individual?

As we discussed in Section 3, while social determinants of opportunity often correlate with individual-
level attributes, they cannot be captured by features of any particular individual. Explicit consideration
and modeling of social determinants of opportunity facilitate a more comprehensive understanding of
the benefits and burdens experienced by individuals from diverse demographic backgrounds as well
as contextual environments, which is essential for understanding and achieving procedural fairness
effectively and transparently.

A.2.2 NO CONFLICT IN PRINCIPLE WITH CAUSAL FAIRNESS

In principle, our framework is not in conflict with previous causal fairness approaches, and the two
complement each other. Both our framework and previous causal fairness approaches aim to model
the data generating process, and both emphasize the procedural fairness implications.

However, our framework extends the scope of consideration beyond individual-level variables, and
explicitly incorporates the influence of contextual environments. For instance, when operationalizing
our framework, we do not drop relevant variables, e.g., the Address of an individual, which is often
omitted in previous literature (Kilbertus et al., 2017; Kusner et al., 2017; Nabi & Shpitser, 2018;
Chiappa, 2019; Wu et al., 2019; Mary et al., 2019; Ding et al., 2021). Furthermore, the findings of
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our analyses suggest that we should utilize all information available, and furthermore, actively look
for and develop better measurements for social determinants of opportunity, so that we can better
understand and address procedural unfairness and structural injustice. Future works naturally include
the development of causal effect estimands that incorporate both individual-level attributes and social
determinants of opportunity, and our framework and previous causal fairness approaches can be used
in conjunction to achieve the goal.

A.3 DIFFERENT USES OF TERM “STRUCTURE” IN RELATED DISCIPLINES

The term “structure” and “structural” are utilized in different ways by related disciplines. For the
literature of causal learning and reasoning, the term “structure” and “structural” are often used to
describe how causal structures look like among variables of interest (Spirtes et al., 1993; Pearl, 2009;
Peters et al., 2017; Hernán & Robins, 2020), e.g., in terms of causal graphs and/or structural equation
models (SEMs). For the literature of structural justice and social determinants of health, the term
“structural” is used to denote the systemic ways in which society is organized, e.g., through policies,
laws, and social norms, that perpetuate discrimination and animus towards certain groups (Carmichael
et al., 1967; Sowell, 1972; Tilly, 1998; Yearby, 2018; Robinson et al., 2020; Alexander, 2020; Yearby
et al., 2022). There are interests in the social determinants of health literature to use DAGs as a tool
for illustrative purposes, abstracting key concepts or areas that are interrelated at a high level, and
modeling the mechanism through which structural forms of discriminations get realized (racism,
sexism, etc.) (Robinson et al., 2020; Yearby et al., 2022).

A.4 COMMON PRESENCE OF Social Determinants of Opportunity

To strike a balance between a broad discussion and a case study, we considered a concrete empirical
setting of college admissions in the main paper, and demonstrate the nuanced analyses our framework
facilitates. However, the implications of explicitly and carefully considering social determinants of
opportunity are not limited to the college admissions setting. In this section, we discuss the common
presence of social determinants of opportunity in various practical scenarios, where influence of
contextual environments on individuals is often substantial. Reviewer g5W4: C2

The presence of social
determinants of op-
portunity is ubiquitous
and not limited to col-
lege admissions.

Social Determinants of Opportunity – Health In terms of the influence of environments on
individual’s health, previous literature has considered how environmental hazards disproportionately
affect low-income populations and communities of color (Warren et al., 2002), how indoor air
pollution affects women and children in low-income regions (Manisalidis et al., 2020), and the
structural implications of social determinants of health on how society should be organized (Robinson
et al., 2020; Yearby et al., 2022). More broadly, a review on economic research has also been
conducted to show how environmental changes impact public health in both developed and developing
countries (Remoundou & Koundouri, 2009).

Social Determinants of Opportunity – Education In terms of the influence of environments on
individual’s educational attainments, previous literature has considered how the quality of schools
and the availability of educational resources affect students’ academic performance (Coleman, 1968;
1988), how the family and neighborhood environments influence education (Jencks, 1972), and
implications of various affirmative-action policies (usually under different names) across countries Reviewer g5W4: C3

Similar policies exist
in different countries,
and the implications
of our analyses are not
limited to US.

with different histories and cultures (Sowell, 2004).

Social Determinants of Opportunity – Employment In terms of the influence of environments on
individual’s employment opportunities, previous literature has considered the relation between the
employment of residents and the rationalization and optimization level of region’s industrial structures
(Cao et al., 2017; Qin et al., 2022), the psychological perspective of (e.g., influence from collective
values of community) job search behaviors (van Hooft et al., 2021), and how the employment rate of
residents is influenced by job quality (Howell & Kalleberg, 2019).
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B PROOFS OF THEORETICAL RESULTS

In this section, we present proofs of our theoretical results.

B.1 PROOF OF THEOREM 4.5 IN SECTION 4.2

Theorem (Quota-Based Admission Incurs Unfairness w.r.t. Non-URM in Poor Region). Under
Assumptions 4.1–4.4, let us denote with ηquota ∈

[
1, n

n
(poor)
a +n

(rich)
a

]
the weighting coefficient over

the natural proportion of URM applicants in population, such that the quota for URM admissions in

the selective college is ηquota · (n
(poor)
a +n(rich)

a

n g). Then, the quota-based admission strategy imposes
a more competitive requirements (in terms of score threshold) for non-URM applicants from the
poor region, than that for URM applicants from the rich region, unless the following condition on
region-specific academic preparedness CDF’s is satisfied:

max
q∈[0,∞)

F (rich)(q)

F (poor)(q)
≥

(n
(poor)
a′ + n

(rich)
a′ )ηquota

(n
(poor)
a + n

(rich)
a )(1− ηquota) + (n

(poor)
a′ + n

(rich)
a′ ) .

(B.1)

Proof. Quota-based admission reserves certain number of selective admission spots for the URM
group, weighted by a coefficient ηquota > 1 over natural proportion of URM applicants, i.e.,

ηquota · (n
(poor)
a +n(rich)

a

n g). Then, the available selective admission spots for the non-URM group is

g − ηquota · (n
(poor)
a +n(rich)

a

n g).

For the convenience of notation, let us denote η′quota the weight coefficients for the non-URM group
over the natural proportion of non-URM applicants in the population, such that:

η′quota · (
n
(poor)
a′ + n

(rich)
a′

n
g) = g − ηquota · (

n
(poor)
a + n

(rich)
a

n
g), (B.2)

Notice that η′quota ∈ [0, 1] since ηquota ∈
[
1, n

n
(poor)
a +n

(rich)
a

]
. Additionally, η′quota is not an additional

parameter whose value can vary freely, and it is fully determined by the numeric relation specified in
Equation (B.2).

Because of the limited availability of selective admissions g, when employing the quota-based
admission strategy, the score thresholds for each group will change as a result of the introduced quota
requirements specified by weighting factors ηquota and η′quota. In particular, under Assumptions 4.1–
4.4, the number of selective admissions for each group is calculated by the weighted sum (according
to the probability of getting admitted to the selective college) of applicants from the group across
regions, and the selective admission counts need to satisfy the quota requirements:

n(poor)
a · F (poor)

(
q(poor)
a

)
+ n(rich)

a · F (rich)
(
q(rich)
a

)
= ηquota · (

n
(poor)
a + n

(rich)
a

n
g),

n
(poor)
a′ · F (poor)

(
q

(poor)
a′

)
+ n

(rich)
a′ · F (rich)

(
q

(rich)
a′

)
= η′quota · (

n
(poor)
a′ + n

(rich)
a′

n
g).

(B.3)

Since the quota-based admission strategy ensures Equation (B.3) is satisfied given the region-specific
demographic makeup (Assumption 4.1), we have:

F (poor)
(
q(poor)
a

)
=

g · ηquota
n

= F (rich)
(
q(rich)
a

)
, (B.4)

F (poor)
(
q

(poor)
a′

)
=

g · η′quota
n

= F (rich)
(
q

(rich)
a′

)
. (B.5)

Let us consider the left-hand-side (LHS) and right-hand-side (RHS) of each equation.

• LHS equals to RHS of Equation (B.4): since F (rich) dominates F (poor) (Assumption 4.3), we have
q

(poor)
a > q

(rich)
a , i.e., among URM applicants, the threshold for the raw score in the poor region is

lower than that for the rich region.
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• LHS equals to RHS of Equation (B.5): for the same reason as above, we have q
(poor)
a′ > q

(rich)
a′ ,

i.e., among non-URM applicants, the threshold for the raw score in the poor region is lower than
that for the rich region.

• LHS of Equation (B.4) and LHS of Equation (B.5): since η′quota < 1 < ηquota, we have q
(poor)
a >

q
(poor)
a′ , i.e., for the poor region, the threshold for the raw score of URM applicants is lower than

that for non-URM applicants.

• RHS of Equation (B.4) and RHS of Equation (B.5): for the same reason as above, we have
q

(rich)
a > q

(rich)
a′ , i.e., for the rich region, the threshold for the raw score of URM applicants is

lower than that for non-URM applicants.

However, the relative magnitude relation between q
(poor)
a′ (for non-URM applicants residing in

the poor region) and q
(rich)
a (for URM applicants residing in the rich region) can go either way.

Specifically, we can show that if maxq∈[0,∞)
F (rich)(q)
F (poor)(q)

<
ηquota

η′
quota

, then q
(poor)
a′ < q

(rich)
a , i.e., the

threshold at the raw score for non-URM applicants in the poor region is higher than that for URM
applicants from the rich region:

when max
q∈[0,∞)

F (rich)(q)

F (poor)(q)
<

ηquota
η′quota

, we have
ηquota
η′quota

· F (poor)(q
(poor)
a′ ) > F (rich)(q

(poor)
a′ ), (B.6)

and at the same time
ηquota
η′quota

· F (poor)(q
(poor)
a′ )

(i)
= F (poor)(q(poor)

a )
(ii)
= F (rich)(q(rich)

a ), (B.7)

where (i) results from Equations B.4 and B.5, and (ii) follows Equation (B.4).

Because F (rich)(q
(rich)
a ) > F (rich)(q

(poor)
a′ ) and the CDF function F (rich)(·) is non-decreasing, we

have q
(poor)
a′ < q

(rich)
a . In other words, as a necessary condition to prevent this, we need

max
q∈[0,∞)

F (rich)(q)

F (poor)(q)
≥ ηquota

η′quota
, (B.8)

after re-arranging, and incorporating Equation (B.2), gives us

max
q∈[0,∞)

F (rich)(q)

F (poor)(q)
≥

(n
(poor)
a′ + n

(rich)
a′ )ηquota

(n
(poor)
a + n

(rich)
a )(1− ηquota) + (n

(poor)
a′ + n

(rich)
a′ ) .

B.2 PROOF OF THEOREM 4.6 IN SECTION 4.3

Theorem (Holistic Review with Plus Factors Benefits URM in Rich Region More). Under Assump-
tions 4.1–4.4, let us denote with η† < 1 the multiplicative coefficient on the scale parameter of
Gamma distributions for URM applicants’ academic index scores, such that the perceived scores
of URM applicants shift more probability density towards the high-score end. Let us denote with
qo the default threshold for selective admission, and with q† the threshold if the admission proce-
dure is a holistic review with plus factors. Further assume that region-specific shape parameters
satisfy k(poor) = k(rich) = ko. Then, the increase in the probability of selective admission for URM
applicants from the rich region, is larger than that for URM applicants from the poor region:

if the selective admission is limited in availability such that qo <
ko ln(θ

(poor)/θ(rich))

1/θ(rich) − 1/θ(poor)
, then

∀η† ∈
[
qo(1/θ

(rich) − 1/θ(poor))

ko ln(θ(poor)/θ(rich))
, 1

)
, F (rich)

( q†
η†

)
− F (rich)(qo) > F (poor)

( q†
η†

)
− F (poor)(qo).

Proof. The holistic review with plus factors changes the scale parameter of the Gamma distribution
corresponding to URM applicants’ academic index scores, from the original scale, i.e., Γ(ko, θ(r)),
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to the plus-factor scale, i.e., Γ(ko, η† · θ(r)), where r ∈ {poor, rich}. The admission procedure does
not change how non-URM applicants’ scores are perceived, i.e., it remains at the original scale,
Γ(ko, θ

(r)).

Then, we can calculate the default threshold qo and that when the admission strategy is employed, q†,
as follows:

(n(poor)
a + n

(poor)
a′ ) · F (poor)(qo) + (n(rich)

a + n
(rich)
a′ ) · F (rich)(qo) = g, (B.9)

n(poor)
a ·F (poor)

† (q†)+n(rich)
a ·F (rich)

† (q†)+n
(poor)
a′ ·F (poor)(q†)+n

(rich)
a′ ·F (rich)(q†) = g, (B.10)

where F (r)(·) is the CDF of Γ(ko, θ(r)), and F
(r)
† (·) is that of Γ(ko, η† · θ(r)).

Because of the numerical property of Gamma CDF’s, we have:

∀q ∈ [0,∞), F
(r)
† (q) =

1

Γ(k)
γ
(
ko,

q

η† · θ(r)
)
=

1

Γ(k)
γ
(
ko,

q/η†

θ(r)
)
= F (r)

( q

η†

)
, (B.11)

where γ(·, ·) is the incomplete gamma function. In other words, when employing holistic review
with plus factors, having the same threshold q† operating on F

(r)
† (·) for URM applicants and F (r)(·)

for non-URM applicants, is equivalent to having a threshold q†/η† for URM applicants and q† for
non-URM applicants but operating only on F (r)(·), where q†/η† > qo > q†.

Since k(poor) = k(rich) = ko, the two PDF curves only have one intersecting point:

1

Γ(ko)(θ(poor))ko
qko−1e−q/θ(poor)

=
1

Γ(ko)(θ(rich))ko
qko−1e−q/θ(rich)

=⇒ q =
ko ln(θ

(poor)/θ(rich))

1/θ(rich) − 1/θ(poor)
.

(B.12)

Then, when the selective admission availability is limited such that qo < ko ln(θ(poor)/θ(rich))
1/θ(rich)−1/θ(poor) , because

of the CDF dominance of the rich region over the poor region (Assumption 4.3), and that we can
equivalently compare thresholds q†/η† > qo > q† at the original-scale CDF F (r)(·), we have:

∀η† ∈
[
qo(1/θ

(rich) − 1/θ(poor))

ko ln(θ(poor)/θ(rich))
, 1

)
, F (rich)

( q†
η†

)
− F (rich)(qo) > F (poor)

( q†
η†

)
− F (poor)(qo).

B.3 PROOF OF THEOREM 4.7 IN SECTION 4.4

Theorem (Top-Percentage Plans Reallocate Spots from Rich Region to Poor Region). Under As-
sumptions 4.1–4.4, let us denote with qo the default threshold for selective admission, and with
q(poor) and q(rich) the thresholds for poor and rich regions, respectively, if top-percentage plans are
employed. Then, the increase in selective admissions (in terms of counts) for applicants from the
poor region, comes from spots reallocated out of the rich region. This redistribution is a result of the
top-percentage plans, and is not relevant to applicants’ demographic group:(
n(poor)
a +n

(poor)

a′
)[
F (poor)(q(poor))−F (poor)(q(o))

]
=

(
n(rich)
a +n

(rich)

a′
)[
F (rich)(q(o))−F (rich)(q(rich))

]
.

Furthermore, if region-specific shape parameters satisfy k(poor) = k(rich), we additionally have:

q(poor)/q(rich) = θ(poor)/θ(rich).

Proof. Top-percentage plans distribute the limited availability of selective admissions in a way that
guarantee admissions to top-percentage applicants in their regions, and the resulting thresholds are
region-specific. Then, we can calculate the default threshold qo and the region-specific thresholds
when top-percentage plans are employed:

(n(poor)
a + n

(poor)
a′ ) · F (poor)(qo) + (n(rich)

a + n
(rich)
a′ ) · F (rich)(qo) = g, (B.13)
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(n(poor)
a + n

(poor)
a′ ) · F (poor)(q(poor)) + (n(rich)

a + n
(rich)
a′ ) · F (rich)(q(rich)) = g,

where F (poor)(q(poor)) = F (rich)(q(rich)) =
g

n
(poor)
a + n

(rich)
a + n

(poor)
a′ + n

(rich)
a′

.
(B.14)

Compare Equations B.13 and B.14, we have:(
n(poor)
a +n

(poor)

a′
)[
F (poor)(q(poor))−F (poor)(q(o))

]
=

(
n(rich)
a +n

(rich)

a′
)[
F (rich)(q(o))−F (rich)(q(rich))

]
.

Because of the numerical property of Gamma CDF’s (as we have seen in the proof for Theorem 4.6),
when region-specific shape parameters satisfy k(poor) = k(rich) = k, we have:

F (poor)(q(poor)) =
1

Γ(k)
γ
(
k,

q(poor)

θ(poor)
)
,

F (rich)(q(rich)) =
1

Γ(k)
γ
(
k,

q(rich)

θ(rich)
)
,

together with Equation (B.14), and we have:

F (poor)(q(poor)) = F (rich)(q(rich)) =⇒ q(poor)

θ(poor)
=

q(rich)

θ(rich)
, i.e.,

q(poor)

q(rich)
=

θ(poor)

θ(rich)
.

C ADDITIONAL RESULTS AND DISCUSSIONS ON EMPIRICAL ANALYSES

In this section, we present additional results and discussions on empirical experiments. In Section C.1,
we provide experimental details on University of California undergrad admission data, as well as
further discussions of the empirical results. Then in Section C.2, we present additional empirical
analyses based on the US Census data.

C.1 EMPIRICAL ANALYSES ON UNIVERSITY OF CALIFORNIA UNDERGRAD ADMISSION

We provide description of the data, clarification of the Gamma parameterization for score distribution,
and further discussions on the empirical results presented in Section 5. Reviewer h9Xa: C1

We include the data
description for UC
summary statistics, and
further discussions of
the empirical results.

C.1.1 DESCRIPTION OF THE DATA

The University of California (UC) system is a public university system in the US. The UC Information
Center provide summary statistics of undergrad admissions each year, including the undergraduate
admissions summary, and the freshmen fall admissions summary. Because of legal and ethical
considerations, the detailed data points at the individual level are not publicly available.

In the empirical analyses presented in Section 5, we utilize the university-wide (i.e., across the UC
system) summary statistics of undergraduate admissions. Specifically, among the data for applicants
(those who applied to at least one colleges in UC system), admissions (those who got offers from at
least one college in UC), and enrollments (those who accepted the offers and enrolled in a specific
college in UC), we utilize the application and admission statistics.

The undergraduate admissions summary provides the number of applicants and admitted students.9
For a specific year and campus, the data takes a form of breakdown-counts across different demo-
graphic groups, including African American, American Indian, Asian, Hispanic/Latino(a), Pacific
Islander, White, Unknown, International. The freshmen fall admissions summary provides the
proportion of applicants and admitted students whose characteristics satisfy certain conditions.10

For instance, the quantile statistics for high school weighted cumulative grade point average can be
retrieved with the “HS weighted, capped GPA” option. All summary statistics are de-duplicated to
avoid multiple-counting of students who applied to or admitted by multiple colleges at UC.

9https://www.universityofcalifornia.edu/about-us/information-center/ad
missions-residency-and-ethnicity

10https://www.universityofcalifornia.edu/about-us/information-center/fr
eshman-admissions-summary
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Figure 4: Recapitulation of Figures 3(a) and 3(b) in appendix, enlarged for better readability. Panel
(a): region-specific and overall densities of academic preparedness. Panel (b): for each group, the
region-specific compositions of application and admission proportions (left four subplots); for each
region, the demographic composition of applicants (right subplot).

C.1.2 GAMMA PARAMETERIZATION FOR SCORE DISTRIBUTION

Previous literature in educational research found that the distribution of student scores is roughly
bell-shaped but is often not perfectly Gaussian (see, e.g., Arthurs et al. 2019). The distribution tends
to skew towards the low-score end, and the support is often bounded (e.g., falls in [SMIN, SMAX]).
Therefore, we use Gamma distributions to parameterize the score distribution, and utilize the shape
and scale parameters to model the skewness and long-tail behaviors of the score distribution. This is
consistent to Assumption 4.3 utilized in our theoretical analyses.

Reviewer g5W4: Q6
The Gamma parameter-
ization is not arbitrary.

C.1.3 FURTHER DISCUSSIONS ON EMPIRICAL RESULTS

We provide further discussions on empirical results, especially Figures 3(a) and 3(b), enlarged and
recapitulated in Figure 4 for better readability. Here, the regions may not correspond to real geograph-
ical locations due to the the under-constrained nature of the optimization problem (Section 5.1), and
we focus on the interpretation of the results in terms of the relation among characteristics of regions,
demographic groups, and academic preparedness. In Section C.2, we will present data analyses based Reviewer h9Xa: C3

We provide further dis-
cussions on Figure 3,
enlarged and recapit-
ulated in Figure 4 for
better readability.

on the US Census data, where more detailed geographical information is available.

Figure 4(a) presents the region-specific densities of academic preparedness of applicants, as well as
the overall density if we consider all applicants. We consider the pool of applicants, instead of that
of admitted or enrolled students, since the application data is not yet “selected” by the university
through the admission decision-making process, and therefore, more closely represents the underlying
distribution of academic preparedness. Since the mean of a variable that follows Gamma distribution
Γ(k, θ) is k · θ, the average score is 3.34 (6 ∗ 0.03 = 0.18 converted back to the original scale) for
Region 0 (blue), 2.82 for Region 1 (orange), and 3.34 for Region 2 (green). On average, the applicants
in Region 0 and Region 2 have higher scores compared to those in Region 1, indicating the relative
lack of educational resource in Region 1 (which results in overall insufficient academic preparedness).
While the mean score is roughly the same for Region 0 and Region 2, the density of Region 0 is
more concentrated at the high-score end compared to Region 2. From the resulting thresholds for the
selective admissions, we can see that the threshold for Region 0 is more competitive than that for
Region 2, which is further more competitive than that for Region 1.

In order to see the race-specific compositions of admissions indicated by the color-shaded areas under
region-specific curves in Figure 4(a), we present Figure 4(b). We use the height of color-coded bars
to denote the proportion of applicants that reside in specific regions, and the color-shaded part to
indicate the proportion of admissions. For instance, for the African American group, the majority of
applicants are from Region 1 (since the orange bar is highest in the upper-left subplot of Figure 4(b),
corresponding to Region 1). Although more applications come from Region 1 (36.06% among all
applicants), Region 1 appears to be the area where the educational resource is most scarce, and
the relative concentration of African American applicants is more pronounced compared to other
groups. The fact that the overall admission rate (53%) is lowest for the African American group also
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Figure 5: Age distribution in different PUMA regions in California based on US Census data.

corroborates with the previous observation. In other words, there is a correlation between region’s
ethnicity composition and the state-of-affairs of social determinants of opportunity, as indicated by
the academic preparedness of applicants and the admission outcomes.

C.2 ADDITIONAL ANALYSES ON US CENSUS DATA

In this section, we present additional analyses on the US Census data (Census Bureau, 2009; 2014;
2022) to further illustrate the importance of considering the social determinants of opportunity in
procedural fairness. We retrieve the public use microdata sample (PUMS) data from the US Census

Reviewer h9Xa: C2
Following your sugges-
tion, we have provided
additional analyses on
the US Census data.Bureau (Census Bureau, 2021), and provide visualizations of the age structure, racial composition,

and occupation distribution in different Public Use Microdata Areas (PUMAs) in California based
on the 2021 US Census PUMS data. PUMA is a geographical region smaller than counties, and the
PUMA region is a strict subset of the corresponding state. Each PUMA contains at least 100, 000 Reviewer 8F2j: Q2

The region information
is available in the US
Census data.

residents and provides reliable, detailed demographic, economic, and housing statistics at a sub-state
level while also protecting the confidentiality of respondents (Census Bureau, 2021).

C.2.1 AGE STRUCTURE OF POPULATION IN PUMAS

In Figure 5, we present age distributions in different PUMAs. For instance, PUMAs 3729, 7503,
11300 show noticeable concentrations of younger individuals, particularly in the 20–40 age range,
suggesting a potentially more dynamic, working-age population which may affect local labor markets
and educational demands. In contrast, PUMAs 7318 and 11106 exhibit a more balanced distribution
across age groups, but with a slight skew towards middle-aged populations, which could indicate
stable, established communities possibly with higher home ownership and lower school enrollment
rates. For PUMA 8512, there are peaks in the 20s and again in the 50s, represent a mix of young
adults possibly associated with entry-level professional work, and also senior adults in established
careers or nearing retirement. The age distribution for PUMA 300 shows a peak around the age of
70s, reflecting a demographic profile with a substantial proportion of senior adults. Each area’s age
distribution can profoundly impact local policies, economic conditions, and community services
tailored to the dominant age groups’ needs. Therefore, the residents will be positioned differently in
terms of social determinants of opportunity such as educational resources, employment opportunities,
and healthcare providers.

C.2.2 RACIAL COMPOSITION IN PUMAS

In Figure 6, we present racial compositions across PUMAs. In the context of US Census data,
“Hispanic or Latino(a)” origin is considered an ethnicity, not a race. Individuals of Hispanic or
Latino(a) origin can be of any race and are often asked to identify both their race and their ethnicity
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Figure 6: Racial composition in various PUMA regions in California based on US Census data.

during the data collection. Therefore, the racial composition does not contain a separate category for
Hispanic or Latino(a) individuals.

As we can see, for historical and cultural reasons, the racial compositions vary quite a bit across
different regions. For instance, PUMA 5700 predominantly consists of White individuals, making
up 84.1% of its population, indicating a less racially diverse area compared to others. Similarly,
PUMA 8504 displays a vast majority of Asian residents, accounting for 70.7% of the population. In
contrast, PUMA 7318 offers a more balanced racial mix with no single group exceeding more than
30%, suggesting a more racially integrated community. These variations in racial composition can
impact community needs, including educational services, cultural programs, and language services,
and may influence local policy-making and resource allocation. Therefore, the association between
social determinants of opportunity and racial composition of the population can differ significantly
across regions.

C.2.3 OCCUPATION DISTRIBUTION IN PUMAS

In Figure 7, we present distribution of occupations from certain categories in various PUMAs. The
diverse workforce compositions reflect varying regional economic profiles and potential educational
infrastructures. For instance, PUMAs 101 and 8503 display a strong presence of occupations related
to science, engineering, education, and so on. In contrast, PUMA 6712 shows a more balanced
distribution across different occupation categories (except for primary industries), suggesting a
balanced mix of professional services and healthcare employment sectors. In terms of the category of
farming, fishing, and forestry occupations, PUMAs 1901 and 8301 differ from other PUMAs (e.g.,
101 and 8503). This category forms a significant part of the workforce (more than a third in both
1901 and 8301), reflecting an economy heavily reliant on primary industries. These patterns highlight
how local natural and industrial resources, as well as economies, can significantly influence the
occupational structures and, by extension, the training and education needed to support these sectors.
Therefore, the social determinants of opportunity in different regions can be shaped differently.

C.2.4 COMBINATION OF FACTORS IN PUMA

In Figure 8, we present how PUMAs can have very different profiles in terms of residents’ age
structure, race decomposition, and occupation distribution. In terms of the age structure, PUMAs
3749 and 8504 show more concentrations in the 20–40 age range, while PUMA 1700 has a high
proportion of senior adults. In terms of the race decomposition, the majority of residents are white
(75.9%) for PUMA 1700, African American (41.5%), and Asian (70.7%) for PUMA 8504. In terms
of the occupation distribution, while the proportion of medical and healthcare practitioners is similar
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Figure 7: Occupational structure in various PUMA regions in California based on US Census data.

across the three regions, the occupational structures are very different. For instance, nearly one half of
the working force in PUMA 8504 is within the category of computer and mathematical occupations,
while the number is significantly lower in PUMAs 1700 and 3749, with a proportion of 18.4% and
5.8%, respectively. The comprehensive understanding of the social determinants of opportunity in
different regions can help inform policy-making and resource allocation decisions, so that we can
achieve procedural fairness in a more principled and transparent way.
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(a) PUMA 1700: racial decomposition, occupation distribution, and age structure.

(b) PUMA 3749: racial decomposition, occupation distribution, and age structure.

(c) PUMA 8504: racial decomposition, occupation distribution, and age structure.

Figure 8: PUMAs with different profiles in terms of residents’ age, race, and occupation.
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