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ABSTRACT

Selecting efficient routes for data packets is an essential task in computer network-
ing. Given the dynamic of today’s network traffic, the optimal route varies greatly
with the current network state. Despite the wealth of existing techniques, Traf-
fic Engineering in networks with changing conditions is still a largely unsolved
problem. Recent work aims at replacing Traffic Engineering heuristics with Re-
inforcement Learning but does not provide a formalism that covers all challenges
of Traffic Engineering, or a reference framework for training and evaluating under
realistic network conditions in a reproducible manner. We fill these two gaps by
casting distributed Traffic Engineering as a Swarm Markov Decision Process, and
introducing a training and evaluation framework powered by a faithful network
simulation engine that implements it. Using our framework, we further train and
evaluate two policies on a large variety of scenarios to showcase the effectiveness
and versatility of our framework. Our experiment results expose the weaknesses
of existing routing protocols and highlight the difficulty of this open problem.

1 INTRODUCTION

In computer networks, Routing Protocols (RPs) find paths between nodes. These paths can be opti-
mized for, e.g., high throughput, low latency, low packet loss rate, or low resource utilization, and
thus Routing Optimization (RO) plays a key role in Traffic Engineering (TE) (Wang et al., 2008).
The heuristics of existing RPs such as Open Shortest-Path First (OSPF) (Moy, 1997) or Enhanced
Interior Gateway Routing Protocol (EIGRP) (Savage et al., 2016) work well in static scenarios, but
computer networks often are unpredictable and dynamic. Erratic traffic demands, failing hardware
and constantly changing user requirements may require route re-optimization within a few millisec-
onds to prevent sharp drops in performance (Gay et al., 2017a). Particularly for previously unseen
network situations, heuristics have to be manually adjusted, which takes time and often manual la-
bor. One naive solution is to sweepingly increase network capacity in regions where congestion is
regularly observed, but network over-provisioning is costly and highly inefficient because network
components by design stay far below their capability limits for the majority of the time. Instead, an
ideal RP provides optimal routing paths at any point in time, and regardless of the network topology
as well as current utilization and traffic situation (Avin & Schmid, 2019). For the RO mechanism of
such RPs (which we call general-purpose RO), we identify the following requirements:

1. Timeliness: Network performance issues like congestion cause packet delays and drops
if no counter-measure is taken. As the loss of data and service quality increases over time,
routing decisions become weaker the longer it takes to calculate and install them on the
network. This qualifies RO for TE as a soft real-time system (Marchand et al., 2004).

2. Compatibility: Protocol extensions like ECMP or MPLS (Iselt et al., 2004) or overlay
techniques like Segment Routing (SR) (Filsfils et al., 2018) can complement RPs to meet
performance requirements, but add extra complexity and interference effects to the overall
network setup. Drop-in replacements for RPs can serve as an alternative that is easier to
deploy (Bernárdez et al., 2023).

3. Generality: Real networks vary greatly in topology and configuration (e.g. link data rates,
processing delays, buffer sizes). The learned model should be able to optimize the routing
of any network, no matter its topology or configuration.
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4. Robustness and Resilience: In the face of expected and unexpected events such as a
planned change of network topology/configuration or local/regional network failures, the
learned model should be able to adapt the routing if necessary.

5. Scalability: With increasing network scale, centralized RO approaches become less and
less useful due to longer communication pathways. While it can be beneficial to logically
divide networks into smaller units for some tasks, locally optimal routing is not guaranteed
to be globally optimal (Dietterich, 2000). Decentralized and distributed RO approaches can
be designed to deal with large networks, but require efficient communication strategies.

6. Realism: Evaluation settings that rely on analytical paradigms like network calcu-
lus (Le Boudec & Thiran, 2001) or queueing theory (Newell, 2013) work with a greatly
simplified network model that rules out the complex system dynamics caused by protocol
and component interplay. On the other hand, the required variety and amount of train-
ing data make training complex models entirely on real networks prohibitively expensive.
Discrete-event simulators like ns-3 (Henderson et al., 2008) can provide a middle-ground,
combining affordable and repeatable evaluation with versatile and faithful network model-
ing.

Figure 1: Situation-aware routing re-optimizes packet routes based on the network topology and
current utilization and load observations to avoid congestion, delay and packet drops. Here, the
longer but higher-capacity path is preferred to the shorter path when traffic spikes for the orange
(top) and purple (bottom) node, causing the algorithm to re-route traffic over the blue (left) node.

As a step towards general-purpose RO, additional network information obtained via In-Band Net-
work Telemetry (Kim et al., 2015; Tan et al., 2021) is poised to play a central yet unknown role,
because the importance of individual metrics might vary between scenarios and points in time. In
such scenarios, Reinforcement Learning (RL) can be used to learn a function taking as input the
current network state and outputting routing decisions, by collecting data obtained via interacting
with a simulator. The resulting policies are applicable in a wide range of scenarios and can improve
the routing capabilities of a network compared to existing classical heuristic RPs, while requir-
ing less manual configuration. Nevertheless, we note that related work does not fully cater to the
requirements for general-purpose RO stated above (c.f. Section 2), not least because many of the ap-
proaches are evaluated on environments that oversimplify the complex dynamics of real networks.
In fact, we further note that there exist no tools for extensive and reproducible evaluation for RO
approaches in realistic environments.

We thus continue this important line of work by framing RL-based RO as a Swarm Markov Deci-
sion Process (SwarMDP), where a group of homogeneous agents, in this case the routing nodes in
a network graph, collaborate to optimize a complex objective, in this case TEs. This formulation
is the first that fulfills all requirements for general-purpose RO, and it crucially allows the resulting
policies to generalize to different network topologies and load scenarios during inference. Moreover,
we close the aforementioned tooling gap with eleganTE, a novel framework for efficiently training
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and evaluating learned RO techniques for TE that leverages the ns-3 discrete-event network simula-
tor (Henderson et al., 2008) 1. Using this framework, we provide various benchmark scenarios that
include randomly generated graphs and traffic, and showcase scenarios where OSPF and EIGRP, two
of the most widely used RPs, perform subpar. Finally, we provide both a topology-dependent Multi-
layer Perceptron (MLP) routing policy, and one using Graph Neural Networks (GNNs) (Veličković,
2023) that can generalize to previously unseen topologies (Section 5). While for small network
topologies these policies rival the performance of OSPF and EIGRP, their results on larger networks
highlight the combinatorial nature and resulting difficulty of the TE problem.2

2 RELATED WORK

Conventional Traffic-Aware Routing Optimization. Potential-based routing generalizes shortest-
path routing by incorporating packet queue sizes into the weight computation (Basu et al., 2003).
Moreover, routing configuration generation has been formulated as a constraint programming prob-
lem (Hartert et al., 2015) and extended via Local Search (LS) for sub-second re-optimization (Gay
et al., 2017a). Some approaches (Jadin et al., 2019; Gay et al., 2017a) use SR as a network overlay
technology for fine-grained routing control (Wu & Cui, 2023) which makes them hard to employ in
new networks due to reduced compatibility (c.f. Section 1). Moreover, aforementioned SR-based
TE approaches take multiple seconds or even minutes to provide a solution for larger networks (ą 50
nodes).

Non-Reinforcement Learning for Routing Optimization. Some approaches attempt to learn to
route without employing RL (Geyer & Carle, 2018; Rusek et al., 2022). They employ supervised
learning on traffic data that corresponds to fixed routing schemes, and therefore the learned models
are not guaranteed to generalize to previously unseen network situations.

Reinforcement Learning for Routing Optimization. Many RL approaches for RO choose to
learn link weight generators for shortest-path algorithms (Stampa et al., 2017; Pham et al., 2019;
Bernárdez et al., 2021; Sun et al., 2021; Chen et al., 2022; Bernárdez et al., 2023; He et al., 2023),
while others use RL for direct next-hop selection (Boyan & Littman, 1993; Choi & Yeung, 1995;
Ding et al., 2019; Pinyoanuntapong et al., 2019; Mai et al., 2021; Bhavanasi et al., 2022; Guo et al.,
2022; You et al., 2022). Some approaches employ a middle ground, e.g. via outputting edge weights
for destination-dependent next-hop forwarding forwarding (Valadarsky et al., 2017), split ratios per
end-to-end communication session (Xu et al., 2018), or link weights for multi-path routing (Huang
et al., 2022). Further RL approaches on RO restrict their optimization efforts to a few so-called
critical paths (Zhang et al., 2020; Ye et al., 2022; Almasan et al., 2022), or to selection by hop count
from a few candidate paths (Almasan et al., 2020).

The aforementioned approaches are insufficient with respect to the requirements stated in section 1:
Many approaches lack a formalism and model architecture that permits generalization to arbitrary
topologies, either because they fix input and output dimensions and thus limit the space of supported
network topologies (Mai et al., 2021; Bhavanasi et al., 2022), because they rely on a particular
ordering of the network state’s features (Stampa et al., 2017; Valadarsky et al., 2017; Xu et al., 2018;
Pham et al., 2019; Pinyoanuntapong et al., 2019; Ding et al., 2019; Sun et al., 2021; Guo et al., 2022;
You et al., 2022), or because they lack a formalism altogether (Stampa et al., 2017; Valadarsky et al.,
2017; Pham et al., 2019; Chen et al., 2022). Furthermore, He et al. (2023) includes the upcoming
traffic demand into the formalism’s state, which in our view is an unrealistic assumption, and the
approaches of Bernárdez et al. (2021; 2023) need multiple model inference steps to re-optimize for
a single network state, which prevents sub-second responsiveness in large networks. As these three
works also lack a clear formalism on the sequential decision making nature of general-purpose RO,
we indeed close a gap by providing the first clear Markov Decision Process (MDP) formulation for
TE that fulfills all requirements stated in section 1.

Tools and Frameworks. There exist several popular datasets for network topologies (Orlowski
et al., 2010; Knight et al., 2011; Spring et al., 2002), as well as random topology generators (Medina
et al., 2001), of which Orlowski et al. (2010) includes traffic demands. Concerning evaluation
frameworks, REPETITA (Gay et al., 2017b), which is used by Jadin et al. (2019); Bernárdez et al.

1Code and documentation will be released upon acceptance.
2In fact, optimal TE via link weight adjustment in link-state RPs is an NP-hard problem (Xu et al., 2011).
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(2023); Almasan et al. (2022), facilitates the comparison of TE solvers by unifying the solver input
and output process. A few methods evaluate on a small but real testbed network in addition to
synthetic experiments (Guo et al., 2022; Huang et al., 2022), while others use custom emulator
setups (Pinyoanuntapong et al., 2019; Fu et al., 2020; Huang et al., 2022) or custom simulator
setups (Stampa et al., 2017; Sun et al., 2021; Chen et al., 2022; Xu et al., 2018; Pham et al., 2019).
Of these, only Stampa et al. (2017) discloses its implementation, which however does not support
multiple network topologies and traffic patterns.

The only publicly available training and evaluation framework for TE experiments, REPETITA (Gay
et al., 2017b), assesses routing performance via computations on the abstract network graph. It does
not install routing decisions on a real, emulated or simulated network, which disregards real-world
interference effects caused by traffic variations, network configuration and protocol interplay. We
provide a framework leveraging faithful simulation capabilities to close this gap and facilitate future
research on RL for TE on a wide variety of network scenarios. Our framework also establishes the
first public set of RO baselines across a diverse array of network scenarios.

3 DISTRIBUTED TRAFFIC ENGINEERING AS A MARKOV DECISION PROCESS

We assume that routing is single-path and unicast, meaning that for each packet at every intermediate
routing node and at any point in time, there exists exactly one neighbor it is forwarded to. To
formulate TE as a MDP, we split the continuous-time network operation process into time slices
of length τsim, after which we obtain the network state and choose the actions for the next timestep
before resuming network operation.

As each node is fully defined by its current features and relation to its neighbors, we view TE as
a multi-agent system of simple collaborating homogeneous agents. In contrast to existing work
that employs central network views or lacks a thorough formalism (c.f. Section 2), this distributed
perspective creates a robust and scalable framework for TE that works well across and general-
izes to arbitrary network topologies. We consider the SwarMDP framework (Šošić et al., 2017;
Hüttenrauch et al., 2019; Freymuth et al., 2023), which is a special case of decentralized partially
observable MDPs designed for swarm systems, i.e., multi-agent systems with homogeneous agents.
The actions represent the gateway preference choices per potential packet destination, and we extend
the SwarMDP framework to variable-sized action spaces per node because nodes in computer net-
works may have varying numbers of neighbors. This accounts for variable agent counts in between
episodes as well as permutation invariant agents, allowing for generalization to arbitrary network
topologies and sizes when combined with permutation-equivariant model architectures like GNNs.

Formally, we define the TE SwarMDP as a tuple xS,O,A, T,R, ξ, y. S is the state space of the
complete system, which in our case contains all monitoring graphs M with global and local per-
formance and load values (c.f. Sections 4, A.3). From this, the function ξ : S Ñ O obtains an
observation via feature selection and normalization (c.f. Section A.3), which we model as a directed
graph Gt “ pVt, Et,XVt,t,XEt,t,xu,tq with nodes Vt and edges Et at step t. Node and edge fea-
tures are given by XVt,t “ txv,t P RdVt | v P Vtu and XEt,t “ txe,t P RdEt | e P Etu respectively,
and xu,t P RdU denotes optional global features. See section B.2 for further information on how ξ
obtains Gt from Mt. From here, let Nu “ tv P Vt|pu, vq P Etu be the neighborhood of u and ∆k

denote the k-simplex. We define the action space as a distribution over gateway preferences for each
pair of current node u and destination v as

A “
␣

pu, vq ÞÑ Du,v | u, v P V,Du,v P ∆|Nu|´1

(

. (1)

In other words, each routing node v P V represents an agent that specifies a distribution over its
neighbors per possible destination node. This preserves the homogeneous nature of agents while
allowing for varying neighborhood sizes, since the agents specify their routing preferences in the
same way. The transition function T : S ˆ A Ñ S is unknown in practice, since the decision model
does not have access to the upcoming traffic demands. R : S ˆ A Ñ R is a global reward function.

Related work has optimized for multiple commonly used performance markers like maximizing
throughput (Fu et al., 2020), or minimizing maximum link utilization (Bernárdez et al., 2023; Chen
et al., 2022), packet delay/latency Guo et al. (2022); Sun et al. (2021) or drop counts (Fu et al.,
2020). In our experiments, we use the composite reward function Rpst,atq “ ´pρwdR

wd `ρdrR
drq,
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where

Rwdpst,atq “
1

|P
p`q

t | ` |P
p´q

t |

¨

˝

ÿ

pPP
p`q
t

dppq ` λP p´qdmax
t |P

p´q

t |

˛

‚

is the weighted delay of packets in which each dropped packet p P P
p´q

t is penalized with the
maximum delay dmax

t that occurred in timestep tweighted by λP p´q , while received packets p P P
p`q

t
are penalized with their delay values dppq, and

Rdrpst,atq “
|P

p´q

t |

|P
p`q

t | ` |P
p´q

t |

is the drop ratio at timestep t. The values used in our experiments for the hyperparameters ρwd, ρdr
and λP p´q can be found in Section B.4. Also, see Section D.2 for ablations on reward functions.

Our goal is to find a policy π : S ˆ A Ñ r0, 1s that maximizes the return, i.e., the expected
discounted cumulative future reward J t :“ Eπpa|sq

“
ř8

k“0 γ
kRpst`k,at`kq

‰

. Here, an optimal
policy jointly minimizes the weighted delay of packets and their drop ratio over the course of a
simulation depending on the current monitoring graph. Note that this is different from the way that
heuristics like OSPF usually do routing, in that there is a principled objective that is optimized.

4 A WORKBENCH FOR TRAFFIC ENGINEERING EXPERIMENTS

Figure 2: Left: Structural overview of eleganTE. Right: Example 3-node network setup in ns-3 incl.
applications (red boxes) and Internet Stack (blue boxes).

eleganTE is an RL framework that interfaces the discrete-event network simulator ns-3 (Henderson
et al., 2008) for repeatable and highly configurable RO experiments with realistic network models
(see Section A.1 for details on simulation in ns-3). The rl-routing component is eleganTE’s core
component and implements the TE SwarMDP of Section 3 (see Section A.2 for further details). It
uses the shared memory module of ns3-ai (Yin et al., 2020) to facilitate communication between
learning algorithm, data generator and simulation modules. It uses three custom ns-3 extension
modules to obtain the required simulation and telemetry capabilities:

• The monitoring-graph module provides the network monitoring graphs Mt via in-band
telemetry (Kim et al., 2015). In monitoring graphs, each Point-to-Point (P2P) connection
between nodes u and v is modeled as two directed edges pu, vq and pv, uq to incorporate
utilization statistics of the respective sender network device into the edge. See Section A.3
for further details on how the values for Mt are obtained.

• The demand-driven-application module provides source and sink applications that can be
filled with new Traffic Matrix (TM) demands at the start of each timestep. Each source
application then employs a constant-bitrate sending rate so that they, over the course of
τsim, send data volumes corresponding to the TM entries to the specified receivers. By
default data is sent as UDP traffic, however at installation time each source application is
converted into a TCP sender with a configurable simulation-wide probability of pTCP.
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• The odd-routing module is a drop-in replacement for other routing protocols like OSPF
that allows the installation of routing actions At P A onto the network nodes (see Section
A.4 for further details on action installation).

4.1 VERSATILE NETWORK TOPOLOGIES AND TRAFFIC MATRICES

We strive for versatile simulation conditions in our framework and have created synnet as a stan-
dalone module that provides suitable network scenarios for our purpose. Network scenarios consist
of the network topology (i.e. the routing nodes and links between them, as well as parameters such
as link datarate and delay) and traffic dynamics over the course of the episode, modeled as a TM
per timestep. We currently support both a small range of pre-defined topologies (Figure 8), as well
as random topology graphs of arbitrary node counts (Figures 9 and 10). We use the gravity model
(Roughan, 2005) to generate TMs, scale them by timestep-dependent coefficients and introduce
small random perturbations to increase the variety of covered traffic dynamics. See Section A.5 for
further details on scenario generation.
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Figure 3: Performance statistics for the three topologies predef3, predef5 and predef10. Each data
point represents an evaluation. Left: Packet delay values per approach for 3, 5 and 10 nodes. Right:
Dropped packet counts per approach for 3, 5 and 10 nodes.

5 EXPERIMENTS

5.1 LEARNED ROUTING OPTIMIZATION

In the following, we discuss and design policies that are compatible with the action space of Equa-
tion 1. In general, each policy consists of an actor module and an assignment module. The actor
module ϕ : O Ñ R|V |ˆ|E| provides an unnormalized value for each combination of destinations
and gateways given the current monitoring graph. Intuitively, this module describes how well each
graph edge is suited as a next-hop route for packets with a given destination. The assignment mod-
ule ψ : E ˆ R|V |ˆ|E| Ñ A then maps these values to gateway probabilities. To efficiently explore
the action space, we model the actor component as an isotropic Gaussian ϕpsq “ N pµpsq, Iσq for a
learnable standard deviation σ. We compare this to other exploration schemes in Appendix D.3.

Since the nodes of the network graph are permutation invariant, one option is to parameterize the
actor module as a GNN (Bronstein et al., 2021; Veličković, 2023). Here, we use Message Passing
Networks (MPNs) Sanchez-Gonzalez et al. (2020); Pfaff et al. (2021); Linkerhägner et al. (2023) as
they are the most general form of GNNs (Bronstein et al., 2021). Our MPN consists of L Message
Passing Steps, where each step l updates latent node and edge features of a given graph using infor-
mation from the previous step. Using MLPs f l and initial node and edge features x0

v and x0
e, the

l-th step is given as
xl`1
e “ f lEpxl

v,x
l
u,x

l
eq,
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xl`1
v “ f lV pxl

v,
1

|tpv, uqu|

ÿ

e“pv,uq

xl`1
e q, with e “ pv, uq P E.

The network’s final output is a learned representation xL
v for each node v P V that encodes infor-

mation about the graph topology and the current local monitoring state of each node and edge. As
this encoding does not provide information about pairs of gateways and destinations, we combine
it with an auxiliary distance measure over pairs of nodes and feed both into a readout layer that is
shared across edges to yield the desired action. Crucially, this parameterization is independent of
the topology and size of the network graph, allowing a single learned policy to generalize to novel
topologies during inference.

As an alternative, we model the actor module as a simple MLP that gets as input a concatenated
vector of the current of the current observation. This variant fully relies on a fixed ordering and size
of the nodes and edges, and thus cannot generalize beyond the specific network topology graph it is
designed for and trained on. Additional details for the modules are given in Section B.5. We train the
policies using Proximal Policy Optimization (PPO) (Schulman et al., 2017) with scalar continuous
actions per edge. See Section B.4 for PPO hyperparameter details.

We compare these policies to classical RO heuristics, namely OSPF (Moy, 1997) and EIGRP (Sav-
age et al., 2016). Both use standard reference values for datarate and delay as detailed in Section
B.3. Additionally, we provide an untrained random policy for reference.
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Figure 4: Evaluation results on predef4s in flat (top) and peak (bottom) traffic mode. Left: Average
(full boxes) and maximum (shaded boxes) packet delay. Right: ratio of dropped to sent packets.

5.2 BENCHMARKS

We define a non-exhaustive list of benchmarks using eleganTE in increasing order of difficulty (c.f.
Figures 8, 9, 10). All benchmarks consider network topologies that stay constant within an episode,
and unless mentioned otherwise we use the peak traffic mode which invariably introduces short
periods of fully utilized links (i.e. the maximum Link Utilization (LU) per episode is always 1).

• predef3s and predef4s are predefined topologies designed to highlight the shortcomings of
shortest-path algorithms. Only nodes 0 and 1 are equipped with sending and receiving
applications.

• predef3, predef5 and predef10 are predefined topologies of 3, 5, or 10 nodes. Each node is
equipped with sending and receiving applications which results in dense generated TMs.

• The nxN series consists of randomly generated topologies with arbitrary node counts N. We
report evaluation results on nx10, nx25 and nx50.
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Figure 5: Performance statistics for random topologies of 10, 25 and 50 nodes for different baseline
heuristics and a GNN policy trained on random topologies with 10 nodes. Each data point represents
an evaluation. Left: Average packet delay values per approach for 10, 25 and 50 nodes. Right:
Dropped packet counts per approach for 10, 25 and 50 nodes.

6 RESULTS

We train all learned methods for 20000 episodes and use the hyperparameters of Section B unless
mentioned otherwise. The episode length is T “ 32, consisting of 24 TMs generated with synnet
followed by 8 timesteps in which no new traffic is ingested into the network. This results in 640000
training steps, equaling roughly 17.8 hours of simulated network time given τsim, and 1250 training
iterations. Each model is trained on 5 cores of an Intel Xeon Platinum 8358 CPU for up to two
days. We evaluate the trained policies and baselines on 10 randomly generated evaluation episodes.
We report the performance of the tested approaches based on the optimization criteria mentioned in
Section 3, showing minimum, maximum and interquartile means of the evaluated metrics across 5
random seeds (Agarwal et al., 2021) for each method.

6.1 PREDEFINED NETWORK TOPOLOGIES

Figure 3 shows results on the predefined topologies predef3, predef5 and predef10. The learned
policies geberally perform on par with OSPF and EIGRP for most episodes, but are overall less
stable. The performance for learned methods degrades with increasing network size, indicating
a more complex learning problem for larger network graphs. Further, we provide results for the
predef4s scenario in Figure 4. The learned policies are able to achieve lower delay values than both
OSPF and EIGRP in some cases for both low and high traffic scenarios, showing the potential of
learned TE compared to traditional methods. The GNN policy however exhibits a very high variance
in its results, hinting at unstable convergence properties.

6.2 RANDOM NETWORK TOPOLOGIES

Figure 6 shows the performance of the baselines as well as the GNN policy on random network
topologies of 10 nodes. While the GNN policy achieves strong performance on several topologies,
we again note a very high variance. We further evaluate the generalization capabilities of our GNN
policy. Section C shows the performance on random 10 node graphs when trained only on predef10.
Furthermore, Figure 5 highlights the generalization capabilities of the proposed GNN policy to
larger networks.

6.3 TCP TRAFFIC

We report results on the predef5 topology when sending TCP traffic instead of UDP, which is char-
acterized by the additional congestion control mechanism that throttles the application sending rate
if packet queues build up. Moreover packet drops are much more severe since data packets have
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Figure 6: Results for random topologies of 10 nodes. Left: Average (full boxes) and maximum
(shaded boxes) packet delay. Right: ratio of dropped to sent packets.
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Figure 7: Results per episode for experiments on predef5 with TCP traffic. Left: Sent packets.
Right: Dropped packet counts.

to be recieved in order. We can thus assess RP performance via the amount of sent and dropped
packets. Figure 7 shows that both policies can perform on par with the baseline RPs, although not
reliably.

7 CONCLUSION

We formulate distributed TE as a SwarMDP and thus provide the first formalism that fulfills all
requirements for general-purpose RO as stated in Section 1. Also, we provide the implementa-
tion of this formalism via eleganTE, a flexible and powerful framework for training and evaluating
RL agents for realistic RO settings. As shown by the range of presented experiments, eleganTE
facilitates repeatable experiments on network scenarios with a large variety in topology and traf-
fic patterns. Our presented policies rival popular shortest-path RPs in many scenarios and expose
their weaknesses, but also leave room for improvement concerning performance and stability. This
motivates the need for and potential of further research on RL algorithms for general-purpose ROs.

7.1 LIMITATIONS AND FUTURE WORK

While our framework eleganTE and the policies presented in Section 5 cater to the requirements of
Section 1, we leave the evaluation of scenarios with changing topologies and corresponding policies
for future work. The training stability of our policies is an issue that we partly attribute to the stability
issues PPO is known for (Engstrom et al., 2020), but it is conceivable that adjustments policy and
hyperparameters bring further performance improvements. Furthermore, for truly distributed TE a
decentralized training and execution paradigm is necessary and requires adjustments to the presented
policies as well as novel approaches for router information exchange. Finally, the usefulness of
eleganTE as a training and evaluation platform can be further extended via experiments on real
traffic and topology data (Orlowski et al., 2010; Knight et al., 2011; Spring et al., 2002), or by
adding support for traffic flows and flow completion times to our traffic generation and evaluation
capabilities (Dukkipati & McKeown, 2006).
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ETHICS STATEMENT

Distributed TE with RL is an essential step towards automating computer networks, which can
greatly increase operational efficiency and save costs through over-provisioning or manual config-
uration. Other domains such as transport networks or power grids might benefit from progress in
distributed TE too, due to their structural similarity. Our work opens the door for future research on
this exciting and challenging research problem via the proposed training and evaluation framework
and the presented policies. While we highlight the value and potential benefits of our research, like
most research on RL misuse for malicious intents is conceivable. Specifically for RL approaches in
computer networks, the black-box nature of policy architectures can potentially be used to infiltrate
the network’s decision making, causing disturbances if appropriate security measures are not taken.
Furthermore, it is conceivable that different traffic demands are not treated equally by the routing
policy, putting certain kinds of traffic at an unnatural disadvantage. Concerning the legal aspects of
our work, we do not use any proprietary datasets or code for our work, nor do we collect or process
personal data. No affiliations or financial interests exist that might compromise the objectivity and
integrity of this work.

REPRODUCIBILITY STATEMENT

In order to facilitate the replication of our experiments and the validation of our results, we will pro-
vide the complete source code as well as extensive documentation upon acceptance. Furthermore,
we provide a comprehensive description of the experimental setup, proposed framework, hyperpa-
rameters, data generation, training and evaluation procedures in Sections 4 to 6 of the main paper,
and Sections A to D of the appendix. We also provide a clear explanation of the proposed SwarMDP
framework in Section 3.
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A ELEGANTE: FRAMEWORK DETAILS

A.1 NETWORK SIMULATIONS IN NS-3

Networks in ns-3, by default, consist of nodes and links/connections between nodes (see Figure 2,
right side). For modeling simplicity, we limit ourselves to full-duplex P2P connections that trans-
mit data error-free and at a constant pre-specified datarate. Nodes themselves do not generate or
consume data; Instead, applications are installed on nodes that generate data destined for other ap-
plications, or consume the data that is destined for them (red boxes in example network nodes in
Figure 2). To transport data between nodes we install an Internet Stack on top of each node, adding
IP and TCP/UDP components in a way that mimics the OSI reference model (Zimmermann, 1980).
Also, nodes do not put data on the P2P link themselves, or read data from it. This is done by the
network devices that belong to a P2P connection, which are installed as interfaces on the two nodes
that are being connected. Upon installation of the Internet Stack, the P2P connection between two
nodes is assigned an IP address space, with concrete IP addresses given to the incident network
devices. After topology creation and application installation, a Simulator is started: the installed
source applications send data to the specified destination nodes as configured, which passes the OSI
layers as usual and gets wrapped into IP packets as they enter the routing plane. The RP that has
been installed with the Internet Stack fills each node’s routing table and performs lookups when
outgoing or incoming IP packets arrive, forwarding these packets to the specified next-hop neighbor
or locally delivering them to the sink applications.

A.2 IMPLEMENTING THE TE SWARMDP

At the start of a new episode, the learning loop starts a new rl-routing instance in a subprocess and
provides a network scenario generated with synnet (Sections 4.1, A.5) which comprises the network
topology as well as a series of TMs that cause data traffic at each time step. rl-routing first installs
the contained network topology in ns-3 and configures nodes, links and network devices accord-
ingly. Thereafter, each node installs demand-driven source and sink applications. The initial state
S0 is converted from of an initial monitoring M0 (Section A.3). The learning side processes the cur-
rent monitoring and communicates a routing action At to rl-routing alongside the upcoming traffic
requirements. The routing actions are installed as described in Section A.4, then rl-routing simu-
lates the installed network for a duration of τsim and pauses the simulation. The network monitoring
results Mt`1 for timestep t are used to calculate rt and converted into the new state St`1. After
rl-routing has simulated the last provided TM in timestep T , the learning loop sends a termination
signal to the rl-routing subprocess which in turn terminates the simulation.

A.3 PACKET MONITORING IN NS-3

The monitoring-graph module keeps track of the network performance during simulation. After
each timestep as well as after start of a new episode, it builds a clone of the network topology
graph where, as opposed to the undirected topology graph, each P2P connection between nodes
u and v is modeled as two directed edges pu, vq and pv, uq to incorporate utilization statistics of
the respective transmitter network device into the edge. In order to acquire detailed utilization
information from the simulation steps, we trace the circulating packets and log the following event
types during simulation:

• E1: packets leaving sender applications/arriving at sink applications,

• E2: packets getting enqueued/dequeued in network device buffers,

• E3: packets getting dropped (incl. drop reason),

• E4: packets getting passed downward to the routing layer at the sender node (once per
packet),

• E5: packets getting passed upward from the routing layer for local delivery at the receiver
node (up to once per packet).

• E6: packets getting put on a P2P connection from the outbound network device for trans-
mission/read from a P2P connection from the inbound network device.
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Using these event categories, we calculate the following performance metrics and store them in the
directed monitoring graph:

• The amount of sent and received packets (globally and per node) per timestep is calculated
from events of type E1.

• For each network device, its buffer load is tracked using events of type E2 and the maximum
and latest buffer load values are stored at the end of a timestep.

• The amount of globally dropped packets for the current timestep is obtained using events
of type E3.

• By packet delay, we denote the total routing delay between the first time the packet enters
the IP layer, and the time it leaves it for local delivery (obtained from events of type E4 and
E5). We track the global average and maximum packet delay per timestep.

• The amount of sent/received/dropped packets per P2P connection per timestep is obtained
from events of type E3 and E6.

At the end of a timestep t, Mt holds global, node and edge features that reflect the overall network
performance and utilization during timestep t, as well as its load state at the end of timestep t. For
the initial monitoring M0, these values are set to zero.

A.4 ON-DEMAND DISTRIBUTED ROUTING IN NS-3

As indicated in section 3, for each routing node in the network we communicate a vector of next-hop
neighbor selections per conceivable destination node. The odd-routing module closely resembles the
other IPv4 RP modules implemented in ns-3, leveraging the line-speed capability of the forwarding
plane by using routing table lookups and thus fulfilling the "compatibility" requirement stated in
section 1. But since usually not all node pairs in a network communicate with each other, it stores
the received routing actions in a separate location on the routing node, and only fills the node routing
table on-demand once a packet arrives for which no suitable routing rule is found in the routing table.
All subsequent packets destined for the same target node will have access to the newly installed table
entry until the start of a new timestep, when new routing actions will be stored in the node and its
routing table will be flushed.

A.5 SCENARIO GENERATION

Network topologies vary greatly depending on the scope and use case of the network. For this
work, we orientate our scenario generation towards the topologies spanned by the edge routers that
connect datacenters in typical Inter-Datacenter Wide Area Networks (Inter-DC WANs). These are
usually characterized by loosely meshed powerful edge routers and high-datarate medium-latency
links that connect two datacenters each. While we also employ link delay values in the low ms
range, we scale down typical datarate values for Inter-DC WANs to lie in the high Mbps range, to
speed up simulation times under stress situations without loss of generality of the simulation results.
For simplicity, we set the packet buffer sizes of network devices incident to P2P connections to the
product of link datarate and delay, which is common throughout the networking literature (Spang
et al., 2022).

Figure 8 shows the pre-defined topologies used for our experiments. To generate random network
topology graphs, we use the BA (Barabási & Albert, 1999), the ER model (Erdős et al., 1960) and
the WS (Watts & Strogatz, 1998), all available via NetworkX graph analysis package (Hagberg et al.,
2008). Figures 9 and 10 show examples for such random topology graphs. In any case, nodes and
edges are assigned unique integer IDs for identification purposes. To add the missing datarate and
delay values to the links, we follow the following steps:

• We first embed the random graph into a two-dimensional plane using the Fruchterman-
Reingold force-directed algorithm (Fruchterman & Reingold, 1991) to create synthetic
positional information for the random graph’s nodes, similar to the position information
provided for nodes in related network datasets (Orlowski et al., 2010; Knight et al., 2011;
Spring et al., 2002).
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Figure 8: Pre-defined network topologies used for this paper. Upper row from left to right: predef3,
predef3s, predef4s; Lower row: predef5 and predef10

.
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Figure 9: Examples of 10-node network topologies generated with NetworkX. Bigger nodes indicate
higher node weights, thicker edges indicate higher edge weights. Columns from left to right (2
examples each): Barabási-Albert (BA), Erdős-Rényi (ER), Watts-Strogatz (WS).

Figure 10: Examples of 25-node network topologies generated with NetworkX. Bigger nodes indi-
cate higher node weights, thicker edges indicate higher edge weights. Columns from left to right (2
examples each): BA, ER, WS.
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• The resulting positional layout is centered around the two-dimensional point of origin,
which we use to obtain location weights per node that are inversely proportional to its
distance to the origin. We scale the location weight of each node with its degree and use
the scaled and normalized weights to obtain a node weight between in the pre-specified
interval rcmin, cmaxs.

• The node weights are randomly perturbed by factors between 2´δnode and 2δnode .

• Next we set the edge weights,which are used to obtain the link datarates, to be the maximum
of the corresponding incident nodes’ weights. We rescale them to lie in the pre-specified
interval of minimum and maximum datarates rvmin, vmaxs.

• We obtain delay weights per edge from the euclidean distance of the incident nodes’ em-
beddings and normalize them so that the average edge weight is equal to a pre-specified
value vmean.

• The edge datarate and delay values are randomly perturbed by factors between 2´δedge and
2δedge , ensuring that two successively generated scenarios will not be the same.

In order to generate different types of traffic for both predefined and randomly generated network
graphs, we first specify different modes of traffic intensity progression. They are implemented by
calculating a fill coefficient ft per timestep t which scales the generated TMs.

• The flat traffic mode aims at keeping the average traffic demand at a constant value by
setting ft to a pre-defined constant value fflat.

• The peak traffic mode models a single spike in traffic values and is designed as a stress-test
scenario that invariably introduces some amount of congestion. For T timesteps, starting
from fmin for t “ 0, the coefficient linearly increases to fmax at t “ T

2 and linearly decreases
back to fmin for t “ T .

Finally, the TMs are generated according to the gravity model (Roughan, 2005):

TMt “ v_meanpGq ¨ ft ¨ τsim ¨ a_hcpGq ¨ n_acpGq
2

¨ pinp
T
out (2)

where v_meanpGq denotes the average datarate of edges in G, ft denotes the flow fill coefficient at
timestep t, a_hcpGq denotes the average hop count between nodes in G, and n_acpGq denotes the
number of active sender/receiver nodes in G. The vector c of node weights ci is used for both pin
and pout in the TM generation of the gravity model.

B HYPERPARAMETERS AND DEFAULTS

The listed default hyperparameters and settings are used in all our experiments unless mentioned
otherwise.

B.1 SIMULATION IN NS-3

We set up the applications to send data packets of 1472 bytes, which accounts for the commonly
used IP packet maximum transmission unit of 1500 bytes and the sizes for the IP (20 bytes) and
ICMP (8 bytes) packet header. UDP packets thus are 1500 bytes large, whereas TCP may split up
data units received from the upper layer as required. We set the simulation step duration τsim to
100ms and pTCP “ 0, meaning that by default we experiment on UDP traffic only (see section 6.3
for experiments on traffic that is partly or fully TCP).

B.2 MONITORING FEATURES

We implement the observation function ξ by using the values of monitoring graph Mt (Section A.3)
as features in its corresponding state graph Gt as follows:

• global: none
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• node: global maximum link utilization (maxLU P r0, 1s), global average datarate utiliza-
tion avgTDU P r0, 1s, global average packet delay avgPacketDelay P R` and global
maximum packet delay maxPacketDelay P R`.

• edge (ϕGNN): link utilization LU P r0, 1s, maximum relative packet buffer fill
txQueueMaxLoad P r0, 1s, relative packet buffer fill at end of simulation step
txQueueLastLoad P r0, 1s.

• edge (ϕMLP): all the above edge features, plus packet buffer capacity (relative to the max-
imum packet buffer capacity of all edges) capacity P r0, 1s and channel delay (relative to
the highest delay values of all edges) delay P r0, 1s.

Consequently, we have dU “ 0, dV = 4, dE,GNN “ 3 and dE,MLP “ 5.

B.3 OSPF AND EIGRP WEIGHT CALCULATION

The default calculation formula for OSPF link weights is

weightpeq “
vOSPF

ref

vpeq

where vpeq denotes the datarate value of link e and the reference datarate value vOSPF
ref is set to 108

(Moy, 1997). We use the classic formulation for EIGRP link weights with default K-values, which
yields

weightpeq “ 256 ˚

ˆ

vEIGRP
ref

vpeq
`

dpeq

dEIGRP
ref

˙

where dpeq denote the delay value of link e, the reference datarate value vEIGRP
ref is set to 107 and the

reference delay value dEIGRP
ref is set to 10 (Savage et al., 2016).

B.4 PPO

Each training iteration uses 512 sampled environment transitions to do 10 update epochs with a
minibatch size of 128. We multiply the value loss function with a factor of 0.5, clip the gradient norm
to 0.5 and use policy and value clip ratios of 0.2 as per Schulman et al. (2018). We use a discount
factor of γ “ 0.97 and use λGAE “ 0.95 for Generalized Advantage Estimation (Andrychowicz
et al., 2020). We set the reward scaling factors ρdr “ 0.2, ρloop “ 1, ρLU “ 0.2, ρwd “ ρad “

ρmd “ 10 and λP p´q “ 2. These scaling factors have been selected so that the expected average
values for the individual scaled reward components lie in the same order of magnitude (and thus each
corresponding objective is valued roughly equally), except for Rloop which can range considerably
higher the more loops have been introduced to the routing. We model the value function baseline
that PPO uses for variance reduction as separate network that is defined analogous to the respective
policy, but uses a mean over all outputs to provide a value estimate of the global state.

B.5 POLICY IMPLEMENTATION

We implement our Neural Network (NN) modules in PyTorch (Paszke et al., 2019) and use the
Adam optimizer with a learning rate of α “ 1e-4 (Kingma & Ba, 2014). For our MLPs we use
2 layers with a latent dimension of 32, and likewise use 2 message passing layers with a latent
dimension of 32 in our MPNs. Both modules use LeakyReLU activation functions. We apply layer
normalization (Ba et al., 2016) and residual connections (He et al., 2016) to node and edge features
independently after each message passing step. The actor’s standard deviation is parameterized as
σ “ eε, where ε is initially set to ´1 and learned alongside the other policy parameters. Concerning
the assignment module ψ, we choose the argmax operator to obtain gateway preferences: Ai “

xargmaxe“pu,vq A
1
ej | j P V, v P Niy. In our experiments, the auxiliary distance measure provided

to the readout of the GNN actor module is the sum of EIGRP link weights for the shortest path from
i to j.
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B.6 SCENARIO GENERATION

For the BA and ER models we choose the attachment count m P t2, 4u uniformly, for the rewiring
probability in the WS model we choose prewire P t0.2, 0.3, 0.4u uniformly and for the ER model we
choose an average node degree of degavg P t2, 3, 4u uniformly and use it to set an according edge
creation probability.

Concerning traffic generation, we use node weight interval borders of cmin “ 50 ¨ 106 and cmax “

200¨106, node weight perturbation factors of δnode “ 1. For the edge weights we use interval borders
of vmin “ 50 ¨ 106 and vmax “ 200 ¨ 106, an average weight vmean “ 100 ¨ 106 and an edge weight
perturbation factor of δedge “ 0.5. We we use the peak traffic mode and set the traffic fill coefficients
to fmin “ 0.5 and fmax “ 5.0.

C ADDITIONAL RESULTS

C.1 GENERALIZING FROM A SINGLE TRAINING TOPOLOGY

Figures 11 shows evaluation results on random graphs of 10 nodes, where the GNN policy has been
trained only on the pre-defined topology predef10. While the learned policy performs favorably
for a small set of random topologies and even achieves lower delay values then OSPF and EIGRP
on some topologies, its performance collapses on others, indicating that training on a versatile of
network topologies is crucial for performance.
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Figure 11: Average and maximum packet delay (left) and dropped packet ratio (right) per evaluation
episode on random graphs of 10 nodes, where the policies have been trained only on the pre-defined
topology predef10.

C.2 ROUTE CHOICE

Figure 12 shows the results for training runs on predef3s using both the peak traffic mode as well as
the flat traffic mode. In predef3s there are only two path options between nodes 0 and 1: the direct
lower-delay path preferred by EIGRP that results in higher drop counts, and the higher-datarate path
traversing node 2 preferred by OSPF that results in higher delay values. While the GNN policy
learns to imitate EIGRP, the MLP learns to imitate both.

C.3 INDIVIDUAL RANDOM GRAPH GENERATORS

Figures 13, 14 and 15 show the results of learning runs on random 10-node graphs (i.e. scenario
nx10) obtained only on one of the three mentioned random graph models (BA, ER, WS). While the
GNN policy performs somewhat similarly on all three graph generators, there is a higher ratio of
seemingly "hard" instances among the WS graphs.
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Figure 12: Average and maximum packet delay (left) and dropped packet ratio (right) per episode
for experiments on predef3s in flat (top) and peak (bottom) traffic mode.
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Figure 13: Average and maximum packet delay (left) and dropped packet ratio (right) per episode
for experiments on 10-node BA graphs.

23



Under review as a conference paper at ICLR 2024

EIGRP OSPF Random GNN

10´2

10´1

Pa
ck

et
D

el
ay

EIGRP OSPF Random GNN

0

0.2

0.4

0.6

0.8

D
ro

p
R

at
io

Figure 14: Average and maximum packet delay (left) and dropped packet ratio (right) per episode
for experiments on 10-node ER graphs.
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Figure 15: Average and maximum packet delay (left) and dropped packet ratio (right) per episode
for experiments on 10-node WS graphs.
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D ABLATION STUDIES

We report results for additional experiments that represent ablation studies. All experiments are run
on the predefined 5-node network predef5. For default hyperparameter values, see B.

D.1 ARCHITECTURAL ABLATIONS

In addition to the two policy variants introduced in section 5.1 we implemented additional policy
variants ϕMLP+, ϕGNN- and ϕAtt. For ϕMLP+, we split the output of ϕMLP per (destination) node
and feed each output part into a shared additional component consisting of two dimensionality-
preserving linear layers and LeakyReLU activations after each. The GNN ablation ϕGNN- equals
ϕGNN except that no auxiliary node features containing relative distances are provided. Finally, ϕAtt
implements an attention-like mechanism loosely inspired by Vaswani et al. (2017). For each com-
bination of edge e and destination node j, it applies an MLP to the concatenated features vectors of
e, j and the global features, followed by a readout layer to obtain |V | ¨ |E| scalar score values. Fur-
thermore, ϕGNNOSPF is a GNN policy that uses OSPF instead of EIGRP for obtaining auxiliary node
features. Finally, ϕMLPedge and ϕGNNedge utilize baseline variants without the final mean operation,
yielding an individual value estimate for each edge.

Figures 16 and 17 show the results for these policy architecture ablations. ϕGNNOSPF can perform
similarly well than the default GNN policy, however its average performance is worse due to a
higher number of episodes on which it is performing poorly. The architecture ablations ϕMLP+ and
ϕAtt perform better than the random policy but far worse than the other NN policies. Interestingly,
ϕGNN- performs competitively in terms of delay, but does to by learning to drop even more packets
than the random policy.
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Figure 16: Average and maximum packet delay per episode for architecture ablations on predef5.
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Figure 17: Drop ratio per episode for architecture ablations on predef5
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D.2 REWARD FUNCTIONS

In addition to the weighted delay Rwd and the drop ratio Rdr, we implemented four other reward
functions that are evaluated in this section:

RLU
t ps, aq “ max

e
LUpeq

is the maximum link utilization,

Rad
t ps, aq “

1

| Pt |

˜

ÿ

pPPt

dppq

¸

is the unweighted average delay,
Rmd

t ps, aq “ max
pPPt

dppq

is the maximum delay,

Rloop
t ps, aq “

cyclespaq

| V |

is the average routing loop count per node. These reward functions come with their own scaling
coefficients ρLU, ρad, ρmd and ρloop for which the default values can be found in section B.4.

Figures 18 and 19 show the results for learning setups using ϕMLP that each utilize only a single
reward component, as well as a setup that uses Rcomp “ ρwdR

wd ` ρdrR
dr ` ρloopR

loop. Besides the
default setup R “ ρwdR

wd ` ρdrR
dr, only Rwd, Rdr and Rcomp show comparable performance, with

Rdr improving on the drop ratio metric. However, we note that the default function R yields the
most consistent results on both metrics.
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Figure 18: Average and maximum packet delay per episode for reward function ablations on predef5.
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Figure 19: Drop ratio per episode for reward function ablations on predef5.
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D.3 EXPLORATION MECHANISMS

We experiment with a deterministic actor component that directly outputs A1
t instead of the mean

for a diagonal Gaussian (we denote this variant by ϕdet while the original probabilistic actor is called
ϕprob. Also, we implement an alternative to the argmax-based assignment of ψ by instead treating
the values tA1

ej | e “ pu, vq, j P V, v P Niu per routing node i per destination j as probabilities of a
categorical distribution, and obtaining the gateway preferences Ai from sampling these categorical
distributions (we denote this variant by ψcat as opposed to ψargmax. Figures 20 and 21 show the
results for learning setups with alternative exploration mechanisms, indicating that the ablations do
not improve the performance of our policies.
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Figure 20: Average and maximum packet delay per episode for exploration mechanism ablations on
predef5.
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Figure 21: Drop ratio per episode for exploration mechanism ablations on predef5.

D.4 PPO PARAMETERS

Figures 22 and 23 show the results of learning runs using ϕMLP with deviating PPO hyperparameters,
namely γ P t0.90, 0.99u and α “ 3e-4. While a higher learning rate introduces training instability,
variations in the discount factor lead to slightly higher worst-case performances.
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Figure 22: Average and maximum packet delay per episode for PPO ablations on predef5.
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Figure 23: Drop ratio per episode for PPO ablations on predef5.
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