

A TALE OF TWO PROBLEMS: MULTI-OBJECTIVE BILEVEL LEARNING MEETS EQUALITY CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 In recent years, bilevel optimization (BLO) has attracted significant attention for
 014 its broad applications in machine learning. However, most existing works on BLO
 015 remain confined to the single-objective setting and rely on the lower-level strong
 016 convexity assumption, which significantly restricts their applicability to modern
 017 machine learning problems of growing complexity. In this paper, we make the
 018 first attempt to extend BLO to the multi-objective setting under a relaxed lower-
 019 level general convexity (LLGC) assumption. To this end, we reformulate the
 020 multi-objective bilevel learning (MOBL) problem with LLGC into an equality
 021 constrained multi-objective optimization (ECMO) problem. This transformation
 022 yields a single-level formulation that is more amenable to algorithm design while
 023 preserving the optimal solutions of the original MOBL problem. However, ECMO
 024 itself is a new problem that has not yet been studied in the literature, with no
 025 existing results on its algorithmic design or theoretical analysis, and without a
 026 formally established convergence metric. To address this gap, we first establish
 027 a new Karush–Kuhn–Tucker (KKT)-based Pareto stationarity as the convergence
 028 criterion for ECMO algorithm design. Based on this foundation, we propose a
 029 weighted Chebyshev (WC)-penalty algorithm that achieves a finite-time conver-
 030 gence rate of $\mathcal{O}(ST^{-\frac{1}{2}})$ to KKT-based Pareto stationarity in both deterministic
 031 and stochastic settings, where S denotes the number of objectives, and T is the to-
 032 tal iterations. Moreover, by varying the preference vector over the S -dimensional
 033 simplex, our WC-penalty method systematically explores the Pareto front. Finally,
 034 solutions to the ECMO problem translate directly into solutions for the original
 035 MOBL problem, thereby closing the loop between these two foundational opti-
 036 mization frameworks. We verify the efficacy of our approach through experiments
 037 on multi-objective data weighting in reinforcement learning from human feedback
 038 (RLHF) reward model training and large language model (LLM) alignment.

1 INTRODUCTION

040 **1) Background and Motivation:** As machine learning frameworks have grown increasingly com-
 041 plex in recent years, the demand for addressing learning problems with nested structures has become
 042 ever more compelling. Such demands typically arise from two distinct perspectives: 1) multiple, po-
 043 tentially conflicting objectives often need to be considered, and 2) the learning of some tasks often
 044 depend on the outcome(s) of other tasks. For instance, when aligning pre-trained large language
 045 models (LLMs) with human feedback, one needs to consider various human-aligned criteria on the
 046 one hand; on the other hand, many tasks, such as policy parameter optimization of LLM alignments
 047 and the actor-critic framework in reinforcement learning, often contain a subtask on reward model
 048 learning. As a result, recent years have seen growing interests in the Multi-Objective Bilevel Learn-
 049 ing (MOBL) problems in the following form: (Ye et al., 2021; Fernando et al., 2023; Gu et al., 2023;
 050 Li et al., 2024; Wang et al., 2024; Yang et al., 2024b; Ye et al., 2024):

$$\begin{aligned} \min_{x,y} F(x,y) &= [f_1(x,y), \dots, f_S(x,y)]^\top \\ \text{s.t. } y &\in \mathcal{M}(x) := \arg \min_y g(x,y), \end{aligned} \tag{MOBL}$$

054 where S denotes the number of objectives, and $x \in \mathbb{R}^p, y \in \mathbb{R}^q$. For example, in the aforementioned
 055 LLM alignment, the upper-level (UL) problem corresponds to minimizing the validation loss with
 056 respect to multiple human-aligned metrics, such as *helpfulness* and *toxicity*, while the lower-level
 057 (LL) problem corresponds to a data weighting task, aiming to curate a high-quality training dataset.
 058

059 Despite its significance, solving the MOBL problem is highly challenging due to the complex cou-
 060 plings between upper and lower levels and the trade-offs among multiple objectives. So far, most
 061 existing works on bilevel optimization (BLO) in the literature rely on the lower-level strong convex-
 062 ity (LLSC) assumption (see, e.g., Ghadimi & Wang (2018); Arbel & Mairal (2021); Ji et al. (2021);
 063 Dagréou et al. (2022)). Specifically, this widely adopted LLSC assumption requires that, for any
 064 given x , $g(x, \cdot)$ is strongly convex with respect to y . It is worth noting that the LLSC assumption ren-
 065 ders a much simplified and tractable BLO algorithm design and analysis, since the LLSC assumption
 066 i) ensures the existence of a unique solution $y^*(x)$ of the LL problem, and ii) implies a well-defined
 067 hyper-gradient $\nabla F(x, y^*(x))$ that requires non-singular Hessian $\nabla_y^2 g(x, y^*(x))$ (Ghadimi & Wang,
 068 2018; Ji et al., 2021). However, the LLSC assumption significantly restricts the applicability of BLO
 069 to modern machine learning problems of growing complexity.

070 While several recent works in the BLO literature have attempted to relax the LLSC assumption to
 071 the lower-level general convexity (LLGC) assumption (i.e., the LL function $g(x, \cdot)$ is convex but
 072 may not be strongly convex with respect to y for any x) (Sabach & Shtern, 2017; Liu et al., 2023a;
 073 Cao et al., 2023; Jiang et al., 2023; Yao et al., 2024; Chen et al., 2024a; Lu & Mei, 2024), all existing
 074 works remain confined to the single-objective setting, while the *multi-objective* bilevel optimization
 075 problem under the LLGC assumption has yet to be explored. A key challenge in solving MOBL
 076 problems under the LLGC assumption stems from the fact that, not only does the hyper-gradients of
 077 the MOBL problem become ill-defined due to the lack of LLSC condition, the optimality of the UL
 078 subproblem also needs to be re-interpreted in the Pareto equilibrium sense due to the trade-off among
 079 multiple objectives. This renders most of the algorithmic techniques developed for single-objective
 080 LLGC-BLO problems inapplicable. The widening gap between the rapidly growing demand for
 081 addressing more general MOBL problems and the inherent limitations of existing BLO techniques
 082 motivates us, in this work, to investigate MOBL under the LLGC assumption.

083 **2) Overview of Our Proposed Approach:** To address
 084 the ill-defined hyper-gradient challenge in the MOBL
 085 problem under the LLGC assumption, our key idea is to
 086 *indirectly* solve the MOBL problem by transforming this
 087 problem into an equivalent *single-level constrained* multi-
 088 objective optimization that shares the same optimal solu-
 089 tions as the original problem. To this end, we note that
 090 solving the lower-level problem in MOBL with $g(x, y)$
 091 being convex for any x is equivalent to solving its first-
 092 order stationarity condition $\nabla_y g(x, y) = 0$, which is both
 093 necessary and sufficient. This implies that we can refor-
 094 mulate the LLGC-MOBL problem as an equality con-
 095 strained multi-objective (ECMO) optimization problem
 096 as follows (also see Step ① in Fig. 1):
 097

$$\begin{aligned} \min_{z \in \mathbb{R}^k} F(z) &= [f_1(z), \dots, f_S(z)]^\top \\ \text{s.t. } h_i(z) &= 0, i = 1, \dots, q, \end{aligned} \tag{ECMO}$$

098 where $k := p + q$, $z := [x^\top, y^\top]^\top$ and $h_i(z) := \nabla_{y_i} g(x, y) = 0$. However, even after the ECMO
 099 reformulation, we remain far from resolving the MOBL problem, as the ECMO problem itself con-
 100 stitutes a *new* formulation that has not yet been examined in the literature. Specifically, while multi-
 101 objective optimization (MOO) problems have been extensively studied (see, e.g., Sawaragi et al.
 102 (1985); Ehrgott (2005); Désidéri (2012); Sener & Koltun (2018); Momma et al. (2022); Fernando
 103 et al. (2023)), the majority of existing works only considered unconstrained MOO. Meanwhile,
 104 constrained MOO problems, including ECMO, are still in their infancy. To date, although several
 105 heuristic algorithms have been proposed for ECMO and empirically validated (Qu & Suganthan,
 106 2011; Yang et al., 2019; Cuate et al., 2020; García et al., 2021), none of these existing works of-
 107 fers theoretical performance guarantees in terms of finite-time convergence rate or sample/iteration
 108 complexity. To establish the theoretical foundation for solving ECMO (and thus for the LLGC-

Figure 1: Roadmap of our proposed approach for solving the MOBL problem under the LLGC assumption.

MOBL problem), there are two main technical challenges: (1) **Lack of Pareto Optimality Condition Characterizations and Appropriate Convergence Metrics**: Unlike unconstrained MOO problems, where the Pareto stationarity can be conveniently employed as the necessary condition of the Pareto optimality for algorithm design, the characterization of Pareto stationarity for ECMO remains unclear. Consequently, the current literature lacks appropriate convergence metrics for solving the ECMO problem; (2) **Algorithm Design and Theoretical Analysis**: Even with the Pareto stationarity characterization and convergence metrics established for ECMO, developing algorithms that can handle the equality constraints in ECMO and enable convergence analysis remains highly nontrivial. We address these challenges through the following contributions:

- To rigorously characterize the Pareto stationarity for ECMO problems, we leverage the weighted-Chebyshev (WC) scalarization technique by exploiting the one-to-one correspondence between the Pareto front of the ECMO problem and the set of solutions to the WC-scalarized problem under varying preference weights. This establishes a direct connection between the WC-scalarized problem and the original ECMO problem (cf. Step ② in Figure 1). Subsequently, this one-to-one correspondence allows us to employ the Karush–Kuhn–Tucker (KKT) conditions of the WC-scalarized problem as the necessary and sufficient condition of the Pareto stationarity for the ECMO problem, thereby resolving the challenge of characterizing the Pareto stationarity for ECMO. (cf. Step ③ in Figure 1).
- Based on the KKT-based Pareto stationarity for ECMO, we proposed a WC-Penalty algorithm to solve the ECMO problem, and establish its finite-time convergence rate guarantee (cf. Step ④ in Figure 1). Specifically, our WC-Penalty method achieves the KKT-based Pareto stationarity at a rate of $\mathcal{O}(ST^{-\frac{1}{2}})$, where T denotes the total number of iteration steps. In addition, by varying the preference vector over the S -dimensional simplex, our WC-Penalty method systematically explores the Pareto front.
- Finally, solutions to the ECMO problem translate directly into solutions for the original MOBL problem, thereby closing the loop between these two foundational optimization frameworks (cf. Step ⑤ in Figure 1). In addition, we evaluate our approach on two multi-objective data weighting tasks: reward model training for RLHF, and LLM alignment. Extensive numerical experiments further validate the efficiency of our proposed algorithms across diverse settings.

The remainder of this paper is organized as follows. In Section 2, we provide an overview of closely related works. In Section 3, we focus on characterizing the Pareto stationarity and establishing convergence metrics for ECMO. In Section 4, we will present our WC-Penalty method for ECMO and its convergence rate analysis. In Section 5, we will close the loop between ECMO and MOBL by solving two MOBL problems through the lens of ECMO, and Section 6 concludes this paper.

2 RELATED WORK

In this section, we provide a brief overview of two lines of research that are closely related to this work, thereby placing our contributions into a comparative perspective.

1) Multi-Objective Bilevel Learning (MOBL): MOBL problems have received increasing attention in recent years (Ye et al., 2021; Gu et al., 2023; Fernando et al., 2023; Li et al., 2024; Wang et al., 2024; Yang et al., 2024b; Ye et al., 2024). However, in contrast to the more mature bodies of work on MOO and BLO, the theoretical foundations of MOBL remain largely underdeveloped. Among these works, Yang et al. (2024b); Ye et al. (2021) demonstrated that their proposed algorithms converge asymptotically, but without providing theoretical guarantees of finite-time convergence rate. In contrast, Fernando et al. (2023); Ye et al. (2024) proposed algorithms with a finite-time convergence rate of $\mathcal{O}(ST^{-\frac{1}{2}})$ and $\mathcal{O}(ST^{-\frac{1}{4}})$, respectively. However, all of these works heavily depend on the LLSC assumption: not only is the algorithmic framework built upon the LLSC assumption, but the optimality criterion also relies on it. Therefore, this significantly limits their applicability to complex real-world scenarios where the LLSC assumption is usually violated.

2) Equality Constrained Multi-Objective (ECMO): ECMO problems have found many applications across various fields, including resource allocation, scheduling optimization, and path planning, just to name a few (Liang et al., 2022; Hao et al., 2024). The most closely related works on ECMO problems are (Cuadra et al., 2020; García et al., 2021). Both works proposed algorithmic solutions for ECMO and conduct numerical experiments to validate their methods. However, neither

162 work provided any finite-time convergence guarantees, highlighting that the theoretical foundations
 163 for ECMO remain missing. Due to space limitation, we relegate additional detailed comparison and
 164 other related work on closely related topics to Appendix B.
 165

166 3 ECMO: CHARACTERIZING PARETO STATIONARITY AND ESTABLISHING 167 CONVERGENCE METRICS 168

169 In this section, we will characterize the Pareto stationarity and establish the convergence metrics for
 170 the ECMO problem, which lays the theoretical foundation for the algorithmic design of ECMO and
 171 eventually solving MOBL in later sections.
 172

173 3.1 PARETO STATIONARITY FOR ECMO 174

175 As in other multi-objective optimization problems, multiple objectives in an ECMO problem could
 176 be conflicting with each other. Thus, in general, there does not exist a unique minimizer z^* that
 177 simultaneously minimizes all S objectives $f_s(z)$ in ECMO. As a result, an optimal solution to the
 178 ECMO problem needs to be interpreted in the Pareto sense as follows:

179 **Definition 1** (Pareto Optimality). A solution z dominates another solution z' if and only if $f_s(z) \leq$
 180 $f_s(z')$, $\forall s \in [S]$, and there exists at least one $s \in [S]$ such that the inequality holds strictly. A
 181 feasible \tilde{z} is Pareto optimal if and only if no other feasible \tilde{z} dominates \tilde{z} .

182 Intuitively, Pareto optimality means that no objective can be improved without sacrificing at least
 183 one other objective. A weaker, yet useful, notion is the weak Pareto optimality:

184 **Definition 2** (Weak Pareto Optimality). A feasible \tilde{z} is called weakly Pareto optimal if and only if
 185 no other feasible \tilde{z} satisfies: $f_s(\tilde{z}) < f_s(\tilde{z})$, $\forall s \in [S]$.

186 Clearly, Pareto optimality implies weak Pareto optimality, whereas the converse is not always true.
 187 In addition, the set of all (resp. weakly) Pareto optimal points is referred to as the (resp. weak) Pareto
 188 set and denoted as X_P (resp. X_{WP}), and the (resp. weak) Pareto front is defined as $\{F(x) : x \in X_P\}$
 189 (resp. $\{F(x) : x \in X_{WP}\}$). Further, the (weak) Pareto optimality in ECMO is subject to feasibility,
 190 i.e., under the constraint $h(z) = \mathbf{0}$ ($h(z) := [h_1(z), \dots, h_q(z)]^\top$).

191 However, for nonconvex multi-objective optimization problems, finding (weakly) Pareto optimal
 192 solutions is NP-hard in general. Thus, it is often of practical interest to find a Pareto-stationary
 193 solution instead, which is the necessary condition of a (weakly) Pareto optimal solution. Intuitively,
 194 Pareto stationarity can be interpreted as no common descent direction exists locally. Note that for
 195 unconstrained MOO problems, Pareto stationarity can be defined as follows:

196 **Definition 3** (Pareto Stationarity for Unconstrained MOO). For the unconstrained MOO problem
 197 $\min_z F(z)^\top = (f_1(z), \dots, f_S(z))$, \tilde{z} is a Pareto stationary point if and only if there does not exist
 198 a direction $d \in \mathbb{R}^k$, such that $\nabla f_s(\tilde{z})^\top d < 0$, $\forall s \in [S]$.

199 Moreover, the following equivalent Pareto stationarity characterization for unconstrained MOO is often used in practice,
 200 which is more amenable for algorithm design: \tilde{z} is a Pareto stationary point if and only if $\exists \alpha \in \Delta_S^+$ (S -simplex) such
 201 that, $(\nabla f_1(\tilde{z}), \dots, \nabla f_S(\tilde{z})) \alpha = \mathbf{0}$ (Sener & Koltun, 2018;
 202 Lin et al., 2024). As a result, $\|\nabla F(z)\|_2^2$ can be regarded as
 203 a natural metric for Pareto stationarity in unconstrained MOO
 204 problems, i.e., if $\|\nabla F(\tilde{z})\|_2^2 \leq \epsilon$ for some $\epsilon > 0$, then \tilde{z} is
 205 called an ϵ -Pareto stationary solution.

206 Given the multi-objective nature of ECMO, one might be
 207 tempted to adopt the same Pareto stationarity definition as in
 208 unconstrained MOO. However, as we demonstrate through a
 209 counterexample, the Pareto stationarity definition for uncon-
 210 strained MOO do not hold in the ECMO setting, thereby necessitating a **new** characterization of
 211 Pareto stationarity. Consider a two-objective ECMO problem as shown in Figure 2. On the one
 212 hand, based on the notion of “common descent direction”, the point \tilde{z} is Pareto stationary since any
 213 deviation from \tilde{z} to another feasible point \hat{z} on $h(z) = 0$ in the local neighborhood must result in
 214 an increase in either $f_1(z)$ or $f_2(z)$. On the other hand, both Definition 3 and its equivalent defi-
 215 nition suggest that \tilde{z} is not Pareto stationary, since the vector $-(\alpha \nabla f_1(\tilde{z}) + (1 - \alpha) \nabla f_2(\tilde{z}))$ for

Figure 2: \tilde{z} is Pareto stationary but violates Definition 3.

any $\alpha \in \Delta_2^+$, which can be represented by a point in the red line segment in Figure 2, is a nonzero vector. A key reason that Definition 3 fails under ECMO is primarily due to a lack of feasibility consideration in Definition 3. To address the limitation of Definition 3, we extend the definition of Pareto stationarity to ECMO problems as follows:

Definition 4 (Pareto Stationarity for ECMO). For an ECMO problem with a feasible set $\mathcal{D} = \{z \in \mathbb{R}^k : h(z) = \mathbf{0}\}$, a direction d at a solution z is feasible if $z + \epsilon d \in \mathcal{D}$ for small enough $\epsilon > 0$. In ECMO, a feasible point \tilde{z} is Pareto stationary if and only if there does not exist a feasible direction $d \in \mathbb{R}^k$ such that $\nabla f_s(\tilde{z})^\top d < 0, \forall s \in [S]$.

It is clear that, under ECMO, the Pareto stationary point \tilde{z} in Fig. 2 satisfies Definition 4. To our knowledge, Definition 3 is a **new** result in the literature.

Although Definition 4 is a proper Pareto stationarity definition for ECMO problems, it turns out that deriving an equivalent Pareto stationarity characterization similar to that under unconstrained MOO and more amenable for algorithm design remains nontrivial. An intuitive guess of Pareto stationarity characterization for ECMO is to check if $\nabla F(\tilde{z})\alpha + \nabla h(\tilde{z})v = \mathbf{0}$ and $h(\tilde{z}) = \mathbf{0}$ hold simultaneously for some $\alpha \in \Delta_S^+, v \in \mathbb{R}^q$. However, although this may appear plausible and aligns with the example shown in Fig. 2, it can be invalidated by the following counterexamples:

Example 1: Consider a 1-dimensional bi-objective problem with 1 constraint as follows:

$$\min_z F(z)^\top = \left(-\frac{1}{2}z^2, -z\right) \quad \text{s.t. } h(z) = \begin{cases} 0 & \text{if } -1 \leq z \leq 1 \\ (|z| - 1)^2 = 0 & \text{otherwise.} \end{cases}$$

Obviously, $\tilde{z} = 1$ is a Pareto stationary point in *Example 1*, as both $f_1(z) = -\frac{1}{2}z^2$ and $f_2(z) = -z$ achieve the minimum value in the feasible region $[-1, 1]$ at this point \tilde{z} . However, since $\nabla F(\tilde{z})\alpha = -1$ for any $\alpha \in \Delta_2^+$, and $\nabla h(\tilde{z}) = 0$, we have $\nabla F(\tilde{z})\alpha + \nabla h(\tilde{z})v = -1 \neq 0$, indicating its non-stationarity, which leads to a contradiction.

Although the *Example 1* is carefully constructed, one might wonder whether the failure arises from the lack of second-order differentiability of $h(z)$? To answer this, the following *Example 2* employs more general functions to refute this hypothesis, thereby indicating that the irrationality comes from the previous guesswork of Pareto stationarity itself.

Example 2: We consider a 3-dimensional bi-objective problem with 2 constraints as follows:

$$\min_z F(z)^\top = (z_1 + z_2, z_1 - z_2) \quad \text{s.t. } h(z) = \begin{cases} z_1^2 + z_2^2 - 1 = 0, \\ z_3 - 1 = 0. \end{cases}$$

In *Example 2*, the feasible region is given by $\mathcal{D} = \{0\} \times \mathbb{R} \times \{1\}$. We consider $\tilde{z} = (0, 0, 1)^\top \in \mathcal{D}$. Obviously, \tilde{z} is Pareto stationary according to the definition. However, the gradients of the objective functions and constraints at this point \tilde{z} are $\nabla f_1(\tilde{z}) = (1, 1, 0)^\top$, $\nabla f_2(\tilde{z}) = (1, -1, 0)^\top$, and $\nabla h_1(\tilde{z}) = (0, 0, 2)^\top$, $\nabla h_2(\tilde{z}) = (0, 0, 1)^\top$, respectively. Therefore, $(\nabla F(\tilde{z})\alpha)_1 = 1, \forall \alpha \in \Delta_2^+$ and $(\nabla h(\tilde{z})v)_1 = 0, \forall v \in \mathbb{R}^2$ implies that $\nabla F(\tilde{z})\alpha + \nabla h(\tilde{z})v \neq 0$ for any $\alpha \in \Delta_2^+$, and $v \in \mathbb{R}^2$. This, again, prevents us from naively using $\nabla F(\tilde{z})\alpha + \nabla h(\tilde{z})v$ and $h(\tilde{z})$ to characterize Pareto stationarity for ECMO problems.

These counterexamples **motivate us to consider adopting constraint qualification conditions in Section 4**, which are not only important for characterizing the Pareto stationarity, but also critical for avoiding corner cases caused by a degenerate Jacobian matrix. More detailed discussions can be found in Appendix C.

This indicates that the characterization of Pareto stationarity for ECMO must be derived through a rigorous and systematic approach rather than relying on intuitive “guesswork”. To this end, we first present the following theorem, which reveals an important insight that Pareto stationarity in the ECMO setting can be implied by the *locally weak Pareto optimality*, which paves the way to derive our Pareto stationarity characterization for subsequent algorithmic design for solving ECMO (see Appendix C for proofs).

Theorem 1. *For ECMO, a solution \tilde{z} is a locally weakly Pareto optimal point if and only if there exists some $\delta > 0$, such that \tilde{z} is weakly Pareto optimal with feasible region $\mathcal{D}(\tilde{z}, \delta) := \mathcal{D} \cap N_\delta(\tilde{z})$, where $\mathcal{D} = \{z \in \mathbb{R}^k : h(z) = \mathbf{0}\}$ and $N_\delta(\tilde{z}) = \{z \in \mathbb{R}^k : \|z - \tilde{z}\|_2 \leq \delta\}$. Then, if \tilde{z} is locally*

weakly Pareto optimal, then it's Pareto stationary. Besides, if \tilde{z} is Pareto stationary, and it also satisfies: for any $s \in [S]$, there exists $\mu_s \in \mathbb{R}^q$ such that 1) $\nabla f_s(\tilde{z}) + \sum_{i=1}^q \mu_{s,i} \nabla h_i(\tilde{z}) = 0$, and 2) $\sum_{i=1}^q \mu_{s,i} \nabla h_i(\tilde{z})^\top d \neq 0$ for any feasible direction d , then \tilde{z} is locally weakly Pareto optimal.

Later, we will leverage Theorem 1 to derive the Pareto stationarity characterization for ECMO via the one-to-one mapping between ECMO and its WC-scalarization (see Step ② in Figure 3).

3.2 ONE-TO-ONE MAPPING BETWEEN ECMO AND ITS WEIGHTED-CHEBYSHEV SCALARIZATION

Weighted-Chebyshev (WC)-scalarization is a technique to convert a vector-valued MOO problem into a conventional scalar-valued optimization problem. Specifically, WC minimizes a weighted ℓ_∞ -norm of the vector-valued objective of an MOO problem (i.e., improving the worst-performing objective). Let Δ_S^{++} denote the strictly positive S -dimensional simplex. For ECMO problems, WC can be written as: $\min_z \|\lambda \odot F(z)\|_\infty$, s.t. $h_i(z) = 0, i = 1, \dots, q$, where $\lambda \in \Delta_S^{++}$ is a given preference vector. Further, to address the non-smoothness of “min-max” operation introduced by the ℓ_∞ -norm minimization, we can further reformulate the WC-scalarization for the ECMO problem as follows:

$$\min_{\rho, z} \rho, \text{ subject to } h_i(z) = 0, i = 1, \dots, q, \lambda_s f_s(z) \leq \rho, s = 1, \dots, S. \quad (\text{WC})$$

It is well known in the MOO literature that there exists a one-to-one mapping between the solutions of WC-scalarization and the Pareto front of the original MOO problem, which implies that one can systematically explore the entire weak Pareto front X_{WP} by varying the preference vector over the S -dimensional simplex Δ_S^{++} (Ehrgott, 2005; Lin et al., 2024; Qiu et al., 2024). However, this one-to-one mapping result depends on solving the WC-scalarized problem to optimality, which is challenging due to potential non-convexity of the MOO problem. Fortunately, in the following theorem, we show that the locally optimal WC-solution and locally weak Pareto optimal solution (or equivalently, the Pareto stationary solution by Theorem 1) of ECMO are also one-to-one mapped.

Theorem 2. Suppose that $f_s(z) > 0, \forall s \in [S]^1$. Then, \tilde{z} is a locally weak Pareto optimal solution of ECMO if and only if $(\tilde{\rho}, \tilde{z})$ is a locally optimal WC-solution for some $\tilde{\rho} \in \mathbb{R}$ and $\lambda \in \Delta_S^{++}$.

With Theorem 2, we are now ready to characterize the Pareto stationarity and derive convergence metrics for ECMO using the Karush-Kuhn-Tucker (KKT) system of the WC-scalarized problem.

3.3 PARETO STATIONARITY CHARACTERIZATION AND CONVERGENCE METRIC DERIVATIONS FOR ECMO

Note that the WC-scalarized problem is a single-level single-objective optimization problem. Following from (Bazaraa et al., 2006), the locally optimal solution of the WC-scalarized problem can be characterized by its KKT system (see Fig. 4) and an appropriate constraint qualification as follows (see details in Appendix C.4 due to space limitation):

Lemma 1. For the WC-scalarized problem, the following results hold:

1. **(Necessity)** Suppose that $(\tilde{\rho}, \tilde{z})$ is a locally optimal WC-solution, and the linearly independent constraint qualification (LICQ)² holds at \tilde{z} , i.e., $\{\nabla h_i(\tilde{z}), \nabla f_s(\tilde{z})\}$ are linearly independent, where $i \in [q], s \in [S] : \lambda_s f_s(\tilde{z}) = \tilde{\rho}$. Then, the KKT condition is satisfied at $(\tilde{\rho}, \tilde{z})$.
2. **(Sufficiency)** Suppose the KKT condition and the second-order condition (SOC) hold at $(\tilde{\rho}, \tilde{z})$. Then, $(\tilde{\rho}, \tilde{z})$ is a locally optimal WC-solution.

¹Without loss generality, if the original ECMO problem is non-degenerate, i.e., all $f_s(z)$ are bounded from below, we can add a sufficiently large constant to all $f_s(\cdot)$ to construct S positive-valued functions. The Pareto front of the newly constructed problem has a one-to-one mapping with the Pareto front of the original problem.

²It is worth noting that there are multiple constraint qualifications (CQs), and all of them (including LICQ) guarantee the necessity in Lemma 1.

Figure 3: One-to-one mapping between ECMO and its WC-scalarized problem.

Lemma 1 suggests that the KKT condition is both necessary and sufficient for characterizing the locally optimal WC-solutions under some additional conditions. Collectively, Theorems 1 and 2 and Lemma 1 provide a rigorous way to characterize the local optimality of the WC-scalarized problem, which further enables us to characterize the Pareto stationarity of the ECMO problem. Further, by using the KKT condition of the WC-scalarized problem, we define the following KKT system:

Definition 5 (KKT System). For ECMO with a given $\lambda \in \Delta_S^{++}$, we define the KKT system:³:

$$\mathcal{K}(\rho, z, \omega, \nu, \lambda) = \begin{pmatrix} \sum_{s=1}^S \omega_s - 1 \\ \sum_{s=1}^S \omega_s \lambda_s \nabla f_s(z) + \sum_{i=1}^q \nu_i \nabla h_i(z) \\ \min\{\omega_s, \rho - \lambda_s f_s(z)\}_{s \in [S]} \end{pmatrix}_{(1+k+q+S) \times 1},$$

where $\omega = (\omega_1, \dots, \omega_S)^\top$, and $\nu = (\nu_1, \dots, \nu_q)^\top$ are the Lagrange dual multipliers associated with inequality and equality constraints in WC, respectively.

Clearly, the KKT condition holds if and only if $\mathcal{K}(\rho, z, \omega, \nu, \lambda) = 0$. Also, we can measure how far a point deviates from the KKT condition, thereby quantifying its distance to optimality for the ECMO problems and providing a rigorous **convergence metric**. Specifically, according to Theorems 1 and 2 and Lemma 1, for any $\epsilon > 0$, we define a point \tilde{z} to be an ϵ -Pareto stationary solution of ECMO if and only if there exist some $\rho \in \mathbb{R}$, $\omega \in \mathbb{R}^S$, $\nu \in \mathbb{R}^q$, $\lambda \in \Delta_S^{++}$ such that $\|\mathcal{K}(\rho, z, \omega, \nu, \lambda)\|_2^2 \leq \epsilon$. This indicates that $\|\mathcal{K}(\rho, z, \omega, \nu, \lambda)\|_2^2$ can be served as a convergence metric for our ECMO algorithm design in the next section. [More details about the KKT system are in Appendix F](#).

4 ALGORITHM DESIGN FOR THE ECMO PROBLEM

In this section, we first present our proposed WC-Penalty algorithm for solving the ECMO problem. We then provide its finite-time convergence analysis results and discuss their further insights. Due to space limitation, all proofs for this section are relegated to Appendix D.

4.1 THE WC-PENALTY ALGORITHM

In Section 3, we have established the equivalence between the ECMO problem and its WC-scalarized problem. We have also characterized the Pareto stationarity of ECMO using the KKT system of the WC-scalarized problem, based on which we further established the KKT-based convergence metric to an ϵ -Pareto stationary solution of the ECMO problem. Note that in the KKT-based Pareto stationarity convergence metric, the term $[\min\{\omega_s, \rho - \lambda_s f_s(z)\}]_{s \in [S]}$ is more difficult to control. This motivates us to reformulate the WC-scalarized problem by adding this term as an equality constraint with slack variables:

$$\min_{\rho, z, \delta} \rho \text{ s.t. } h_i(z) = 0, i = 1, \dots, q, \lambda_s f_s(z) + \delta_s = \rho, s = 1, \dots, S, \delta_s \geq 0, s = 1, \dots, S,$$

where $\delta := [\delta_1, \dots, \delta_S]^\top \in \mathbb{R}^S$ contains all slack variables. Let $\mathcal{C} := \mathbb{R} \times \mathbb{R}^k \times \mathbb{R}_+^S$, where $\mathbb{R}_+^S = \{\delta \in \mathbb{R}^S : \delta \geq \mathbf{0}\}$. Then, the reformulated problem above can be viewed as an equality-constrained single-objective problem with a convex feasible region \mathcal{C} . To solve this reformulated problem, a natural idea is to incorporate all equality constraints as penalty terms in the objective function, which leads to the following formulation:

$$\begin{aligned} \min_{\rho, z, \delta} P(\rho, z, \delta) &= \rho + \frac{u}{2} \sum_{i=1}^q h_i(z)^2 + \frac{v}{2} \sum_{s=1}^S (\lambda_s f_s(z) + \delta_s - \rho)^2 \\ \text{s.t. } \delta_s &\geq 0, s = 1, \dots, S, \end{aligned} \tag{1}$$

³The dual feasibility and complementary slackness are implied by the last term in the KKT system.

Figure 4: Characterize a locally optimal WC-solution by its KKT system.

378 where $u, v > 0$ are sufficiently large hyper-parameters to be chosen. For notational convenience, we
 379 let $\theta := [\rho^\top, z^\top, \delta^\top]^\top$, so that Eq. (1) can be written as $\min_{\theta \in \mathcal{C}} P(\theta)$.
 380

381 Thanks to the convex and simple box constraints, one can solve Problem (1) using a projected
 382 gradient descent (GD) approach as shown in Algorithm 1. Specifically, in each iteration t , we com-
 383 pute the gradient $\nabla P(\theta_t)$, take a GD step with
 384 some step-size η , and then project the obtained
 385 solution back onto the feasible domain \mathcal{C} .
 386

387 In Algorithm 1, the gradient $\nabla P(\theta) = [\nabla_\rho P(\theta)^\top, \nabla_z P(\theta)^\top, \nabla_\delta P(\theta)^\top]^\top$ can be computed as:

$$\begin{aligned} \nabla_\rho P(\theta) &= 1 - v \sum_{s=1}^S (\lambda_s f_s(z) + \delta_s - \rho), \\ \nabla_z P(\theta) &= u \sum_{i=1}^q h_i(z) \nabla h_i(z) + v \sum_{s=1}^S (\lambda_s f_s(z) + \delta_s - \rho) \lambda_s \nabla f_s(z), \\ \nabla_\delta P(\theta) &= v(\lambda_s f_s(z) + \delta_s - \rho), \quad s \in [S]. \end{aligned} \quad (2)$$

388 **Remark 1.** We can generalize Algorithm 1 to stochastic ECMO problems, where the objectives and
 389 constraints are in the form of $f_s(z) = \mathbb{E}_\xi[f_s(z; \xi)]$, $\forall s \in [S]$, and $h_i(z) = \mathbb{E}_\zeta[h_i(z; \zeta)]$, $\forall i \in [q]$.
 390 The basic idea remains the same, with the key distinction being the use of stochastic gradients. Due
 391 to space limitation, we provide the stochastic WC-Penalty algorithm and its analysis in Appendix D.
 392

393 **Remark 2.** Even though Algorithm 1 does not require the maintenance or updating of the *dual*
 394 *variables*, ω and ν do play an significant role in analyzing the convergence rate. As detailed in
 395 Appendix D, we select $\omega_{t,s} = v(\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t)$, $\nu_{t,i} = u h_i(z_t)$, where $\omega_t = (\omega_{t,1}, \dots, \omega_{t,S})^\top$,
 396 $\nu_t = (\nu_{t,1}, \dots, \nu_{t,q})^\top$ at each iteration t to control the KKT system and, in turn, to ensure the finite-
 397 time convergence.

4.2 THEORETICAL CONVERGENCE ANALYSIS

404 To analyze the convergence of the proposed WC-Penalty algorithm, we first state several useful
 405 assumptions, and then establish the finite-time convergence rate guarantee and iteration complexity
 406 results for our WC-Penalty algorithm. Unless noted otherwise, we use $\|\cdot\|$ to denote the ℓ_2 -norm.

407 **Assumption 1** (Smoothness). There exist some constants $M, L > 0$ such that for any $z_1, z_2 \in \mathbb{R}^k$,
 408 and for any $s \in [S], i \in [q]$, we have: (1) $|f_s(z_1) - f_s(z_2)| \leq M\|z_1 - z_2\|$, (2) $|h_i(z_1) - h_i(z_2)| \leq$
 409 $M\|z_1 - z_2\|$, (3) $\|\nabla f_s(z_1) - \nabla f_s(z_2)\| \leq L\|z_1 - z_2\|$, (4) $\|\nabla h_i(z_1) - \nabla h_i(z_2)\| \leq L\|z_1 - z_2\|$.
 410

411 Assumption 1 is standard and widely adopted in the literature (Ghadimi & Wang, 2018; Ji et al.,
 412 2021; Qiu et al., 2023; Lin et al., 2024). We note that, from Eq. (2), there must exist an $L_P > 0$
 413 such that $\|\nabla P(\theta_1) - \nabla P(\theta_2)\| \leq L_P \|\theta_1 - \theta_2\|$, implying that $P(\theta)$ is L_P -smooth. However,
 414 $L_P = \Theta(u + v)$ could be large since the chosen penalty coefficients u, v are typically large.
 415

416 **Assumption 2** (Regularity). For any $z \in \mathbb{R}^k$, there exists a constant $\sigma > 0$, such that the minimum
 417 singular value of $\nabla h(z)$ satisfies: $\sigma_{\min}(\nabla h(z)) \geq \sigma > 0$.

418 Assumption 2 can be guaranteed by the LICQ condition at every $z \in \mathbb{R}^k$. To see this, suppose that
 419 LICQ holds. Then, $\{\nabla h_1(z), \dots, \nabla h_q(z)\}$ is linearly independent, which implies $\text{rank}(\nabla h(z)) =$
 420 q . As a result, $\nabla h(z)^\top \nabla h(z)$ is positive definite. Hence, σ_{\min} (equal to the square root of the
 421 minimum eigenvalue of $\nabla h(z)^\top \nabla h(z)$) can be lower bounded by some strictly positive σ .

422 Also, without loss of generality, we suppose that $f_s(z) > 0, \forall s \in [S]$ (see the justification in
 423 Theorem 2) and that $\{z \in \mathbb{R}^k : h(z) = 0\}$ is nonempty, to ensure the ECMO problem is nontrivial.
 424 We are now ready to present the main theoretical convergence rate result as follows.

425 **Theorem 3** (Finite-Time Convergence Rate of Algorithm 1). *Under Assumptions 1 and 2, for any*
 426 *preference $\lambda \in \Delta_S^{++}$, selecting $\eta = \Theta(T^{-\frac{1}{4}})$ and $u = v = \Theta(T^{\frac{1}{4}})$, Algorithm 1 achieves the*
 427 *following convergence result: $\frac{1}{T} \sum_{t=0}^{T-1} \|\mathcal{K}(\rho_t, z_t, \omega_t, \nu_t, \lambda)\|^2 = \mathcal{O}(S/T^{\frac{1}{2}})$.*

428 In addition to the finite-time convergence rate, *iteration complexity* also serves as another key metric
 429 for evaluating the efficiency of algorithms. Specifically, ensuring $\frac{1}{T} \sum_{t=0}^{T-1} \|\mathcal{K}(\rho_t, z_t, \omega_t, \nu_t, \lambda)\|^2 <$
 430 ϵ for any $\epsilon > 0$ indicates that the obtained sequence achieves an ϵ -Pareto stationary solution for the
 431 ECMO problem. The iteration complexity result below immediately follows from Theorem 3:

432 **Corollary 1.** To achieve an ϵ -Pareto stationary solution for any $\epsilon > 0$, Algorithm 1 requires
 433 $\mathcal{O}(S^2\epsilon^{-2})$ evaluations of $\nabla f_s(z)$ for each $s \in [S]$, and $\mathcal{O}(S^2\epsilon^{-2})$ evaluations of $\nabla h_i(z)$ for $i \in [q]$.
 434

435 **Remark 3.** Theorem 3 is established in two key steps. In the
 436 first step, we consider the dynamics of $P(\theta_t)$ generated by
 437 Algorithm 1, which is designed to solve $\min_{\theta \in \mathcal{C}} P(\theta)$, and hence
 438 solving the WC-scalarized problem. In the second step, we
 439 judiciously select the parameters, which, according to The-
 440 rem 2 and Lemma 1, allow us to control each term in the KKT
 441 system defined in Definition 5. Collectively, these two key
 442 steps establish the theoretical guarantees for solving ECMO
 443 as shown in Figure 5. Due to space limitation, the proof of
 444 Theorem 3 is relegated to Appendix D.

445 **Remark 4.** To our knowledge, Theorem 3 establishes the first
 446 finite-time convergence guarantee in the literature of ECMO.
 447 This result ensures that Algorithm 1 can achieve Pareto sta-
 448 tionarity for any given preference weight vector λ . Moreover,
 449 according to the previous discussions on WC-scalarization, by
 450 varying λ over Δ_S^{++} , Algorithm 1 can systematically explore
 451 the entire Pareto stationary front.

452 5 RETURNING TO MOBL PROBLEMS THROUGH THE LENS OF ECMO

453 Finally, we can easily solve the MOBL problem as a special case of the ECMO problem: we first
 454 specialize Eq. (1) in this scenario by splitting the variable z explicitly into x and y :

$$455 \min_{\rho, x, y, \delta} P(\rho, x, y, \delta) = \rho + \frac{u}{2} \sum_{i=1}^q (\nabla_y g(x, y))_i^2 + \frac{v}{2} \sum_{s=1}^S (\lambda_s f_s(x, y) + \delta_s - \rho)^2$$

$$456 \text{ s.t. } \delta_s \geq 0, s = 1, \dots, S.$$

457 For convenience, we still denote 1) the combined variable as $\theta = (\rho^\top, x^\top, y^\top, \delta^\top)^\top$, and 2) the
 458 feasible region as $\mathcal{C} = \mathbb{R} \times \mathbb{R}^p \times \mathbb{R}^q \times \mathbb{R}_+^S$. Under this change of variables, we can follow Algorithm 1
 459 exactly to solve the MOBL problem, and the theoretical results in Section 4 naturally translate to
 460 the MOBL setting. Next, to validate the effectiveness of our proposed algorithm, we apply it to two
 461 MOBL tasks and present the corresponding numerical results.

462 5.1 DATA WEIGHTING FOR MULTI-OBJECTIVE RLHF REWARD MODEL TRAINING

463 **1) Experimental Setup:** The multi-objective data weighting task aims to determine optimal propor-
 464 tion in mixing training datasets for training a reward model to maximize multiple validation metrics
 465 in the Pareto sense. This task is important in reinforcement learning with human feedback (RLHF),
 466 where: 1) large-scale training data often has unknown origins, varied tendencies, and mixed qual-
 467 ities, and 2) human preferences (e.g., *helpfulness*, *verbosity*) may conflict with each other. Here,
 468 we train the reward model for RLHF on the HelpSteer dataset (Wang et al., 2023), and consider all
 469 of the 5 provided criteria, *helpfulness*, *correctness*, *coherence*, *complexity*, and *verbosity*, as valida-
 470 tion metrics. We evaluate three MOBL algorithms, MoML (Ye et al., 2021), MoCo (Fernando et al.,
 471 2023), FORUM (Ye et al., 2024), as our baselines. The detailed setup can be found in Appendix E.1.

472 **2) Experimental Results:** In Fig. 6, we set the preference vector λ as
 473 $\lambda_s = 0.96$ for some $s \in [S]$ and $\lambda_{s'} = 0.01, \forall s' \neq s$, using 1/loss
 474 as our metric for each objective. As shown in Fig. 6a, by varying the
 475 preference vectors, Algorithm 1 can efficiently explore a diverse set of
 476 Pareto stationary solutions, enabling our algorithm to recover a large por-
 477 tion of the Pareto front. Moreover, Fig. 6b further demonstrates that our
 478 Fig. 6b further demonstrates that our

450 Figure 5: Steps to prove Theorem 3.

479 Figure 6: Data weighting for RLHF reward model training.

486 proposed algorithm outperforms existing methods in recovering the Pareto front, highlighting its effectiveness in Pareto front exploration. Due to space limitation, additional numerical results on 487 convergence performances and comparisons with several bilevel algorithms using linear scalarization 488 that demonstrate the strengths of our algorithm are relegated to Appendix E.1. 489

491 5.2 DATA WEIGHTING IN MULTI-OBJECTIVE LLM ALIGNMENT

493 **1) Experimental Setup:** We consider the data weighting task on multi-objective LLM alignment, 494 where the goal is to determine the proportion weights of dataset to minimize multiple human-aligned 495 losses in validation. The dataset used here is still HelpSteer (Wang et al., 2023), which contains 5 496 potentially conflicting criteria, and the base LLM model is Llama-3.2-1B-Instruct (Meta, 2024). 497 More setup details can be found in Appendix E.2.

498 **2) Experimental Results:** As 499 shown in Fig. 7, we set the preference vector λ as $\lambda_s = 0.96$ for 500 some $s \in [S]$ and $\lambda_{s'} = 0.01$, 501 $\forall s' \neq s$, using 1/loss as our metric 502 for each objective. Fig. 7a shows 503 that Algorithm 1 is able to achieve 504 Pareto stationary points with better 505 performance on specific objectives 506 when larger weights are assigned 507 to them, again verifying the Pareto 508 exploration capability of our algo- 509 rithm. Moreover, Fig. 7b compares our 510 algorithm with two bilevel baselines 511 adapted from (Ji et al., 2021; Dagréou 512 et al., 2022), where we extend them 513 with linear scalarization technique for 514 solving MOBL problems. Again, our WC-Penalty 515 algorithm explores a larger portion of the 516 Pareto front.

517 Table 1: Hypervolume results in LLM alignment.

Alg.	Ours	Helpfulness	Correctness	Coherence	Complexity	Verbosity	MoML	MoCo
HV (\uparrow)	2.47e-2	1.11e-2	1.16e-2	1.40e-2	7.22e-4	9.45e-3	7.02e-7	1.66e-5

517 In addition, we also compare our Alg. 1 with MOBL 518 baselines (Ye et al., 2021; Fernando et al., 2023) 519 using two important metrics, Hypervolume and ϵ - 520 metric. Table 1 demonstrates that our method 521 outperforms the baselines even before completing full 522 Pareto exploration (labeled as Helpfulness, etc.), and 523 as the preferences vary, the Hypervolume (labeled as 524 **Ours**) is significantly larger than that of the 525 baselines. Moreover, Fig. 8 further confirms that, in 526 terms of ϵ -metric: 1) our method consistently 527 outperforms the baselines, and 2) with varying 528 preference vectors, our method converges to the 529 desired solutions. Due to space limitation, additional 530 results are provided in Appendix E.2.

531 6 CONCLUDING REMARKS

533 In this paper, we studied the LLGC-MOBL problems 534 through the lens of ECMO. We first extended 535 the notion of Pareto stationarity to ECMO and 536 proposed a KKT-based Pareto stationarity 537 convergence metric, based on which we 538 developed a WC-Penalty algorithm for ECMO. 539 Next, we established the finite-time convergence 540 rate of our WC-Penalty algorithm. To our 541 knowledge, this convergence result is the first of 542 its kind in the literature. Lastly, we showed that 543 our WC-Penalty algorithm can be used to solve 544 the LLGC-MOBL problems not only with 545 theoretical convergence guarantee but also 546 effectively in practice as evidenced by our 547 extensive numerical results.

517 Figure 7: Data weighting task in LLM alignment.

517 Figure 8: ϵ -metric in LLM alignment.

540 ETHICS STATEMENT
541542 We confirm that The Code of Ethics has been thoroughly reviewed, and this paper fully adheres to
543 the ICLR Code of Ethics. This work presents no potential societal consequences, and therefore, we
544 deem it unnecessary to highlight any specific aspects herein.
545546 REPRODUCIBILITY STATEMENT
547548 We confirm the reproducibility of this work. Specifically, the theories presented in this paper are
549 clearly stated with necessary assumptions and detailed proofs. Besides, the experimental setups and
550 datasets utilized are thoroughly detailed in the appendix.
551552 REFERENCES
553554 Hamid Afshari, Warren Hare, and Solomon Tesfamariam. Constrained multi-objective optimization
555 algorithms: Review and comparison with application in reinforced concrete structures. *Applied*
556 *Soft Computing*, 83:105631, 2019.557 Abhay Kumar Alok, Sriparna Saha, and Asif Ekbal. A new semi-supervised clustering technique
558 using multi-objective optimization. *Applied Intelligence*, 43(3):633–661, 2015.559 Michael Arbel and Julien Mairal. Amortized implicit differentiation for stochastic bilevel optimization.
560 *arXiv preprint arXiv:2111.14580*, 2021.561 Mokhtar S Bazaraa, Hanif D Sherali, and Chitharanjan M Shetty. *Nonlinear programming: theory*
562 *and algorithms*. John wiley & sons, 2006.563 Leyla Belaiche, Laid Kahloul, Maroua Grid, Nedjma Abidallah, and Saber Benharzallah. Parallel
564 multi-objective evolutionary algorithm for constrained multi-objective optimization. In *2023 24th*
565 *International Arab Conference on Information Technology (ACIT)*, pp. 1–6. IEEE, 2023.566 Jerome Bracken and James T McGill. Mathematical programs with optimization problems in the
567 constraints. *Operations research*, 21(1):37–44, 1973.568 Jincheng Cao, Ruichen Jiang, Nazanin Abolfazli, Erfan Yazdandoost Hamedani, and Aryan
569 Mokhtari. Projection-free methods for stochastic simple bilevel optimization with convex lower-
570 level problem. *Advances in Neural Information Processing Systems*, 36:6105–6131, 2023.571 Souradip Chakraborty, Amrit Singh Bedi, Alec Koppel, Dinesh Manocha, Huazheng Wang, Mengdi
572 Wang, and Furong Huang. Parl: A unified framework for policy alignment in reinforcement
573 learning from human feedback. *arXiv preprint arXiv:2308.02585*, 2023.574 Vira Chankong and Yacov Y Haimes. *Multiobjective decision making: theory and methodology*.
575 Courier Dover Publications, 2008.576 Lesi Chen, Jing Xu, and Jingzhao Zhang. On finding small hyper-gradients in bilevel optimization:
577 Hardness results and improved analysis. In *The Thirty Seventh Annual Conference on Learning*
578 *Theory*, pp. 947–980. PMLR, 2024a.579 Lisha Chen, A Saif, Yanning Shen, and Tianyi Chen. Ferero: A flexible framework for preference-
580 guided multi-objective learning. *Advances in Neural Information Processing Systems*, 37:18758–
581 18805, 2024b.582 Oliver Cuate, Lourdes Uribe, Adriana Lara, and Oliver Schütze. A benchmark for equality con-
583 strained multi-objective optimization. *Swarm and Evolutionary Computation*, 52:100619, 2020.584 Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. A framework for bilevel
585 optimization that enables stochastic and global variance reduction algorithms. *Advances in Neural*
586 *Information Processing Systems*, 35:26698–26710, 2022.587 Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimization.
588 *Comptes Rendus Mathematique*, 350(5-6):313–318, 2012.

594 Matthias Ehrgott. *Multicriteria optimization*, volume 491. Springer Science & Business Media,
 595 2005.

596

597 Zhun Fan, Yi Fang, Wenji Li, Jiewei Lu, Xinye Cai, and Caimin Wei. A comparative study of
 598 constrained multi-objective evolutionary algorithms on constrained multi-objective optimization
 599 problems. In *2017 IEEE congress on evolutionary computation (CEC)*, pp. 209–216. IEEE, 2017.

600 Zhun Fan, Wenji Li, Xinye Cai, Hui Li, Caimin Wei, Qingfu Zhang, Kalyanmoy Deb, and Erik
 601 Goodman. Push and pull search for solving constrained multi-objective optimization problems.
 602 *Swarm and evolutionary computation*, 44:665–679, 2019.

603

604 Heshan Fernando, Han Shen, Miao Liu, Subhajit Chaudhury, Keerthiram Murugesan, and Tianyi
 605 Chen. Mitigating gradient bias in multi-objective learning: A provably convergent approach. In
 606 *International Conference on Learning Representations*. OpenReview, 2023.

607 Jesús L Llano García, Raúl Monroy, Víctor Adrián Sosa Hernández, and Carlos A Coello Coello.
 608 Coarse-emoa: An indicator-based evolutionary algorithm for solving equality constrained multi-
 609 objective optimization problems. *Swarm and Evolutionary Computation*, 67:100983, 2021.

610 Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. *arXiv preprint*
 611 *arXiv:1802.02246*, 2018.

612

613 Germán González-Almagro, Alejandro Rosales-Pérez, Julián Luengo, José-Ramón Cano, and Sal-
 614 vador García. Improving constrained clustering via decomposition-based multiobjective opti-
 615 mization with memetic elitism. In *Proceedings of the 2020 Genetic and Evolutionary Compu-
 616 tation Conference*, pp. 333–341, 2020.

617 Alex Gu, Songtao Lu, Parikshit Ram, and Tsui-Wei Weng. Min-max multi-objective bilevel opti-
 618 mization with applications in robust machine learning. In *The Eleventh International Conference
 619 on Learning Representations*, 2023.

620

621 Nyoman Gunantara. A review of multi-objective optimization: Methods and its applications. *Cogent
 622 Engineering*, 5(1):1502242, 2018.

623

624 Yuanyuan Hao, Chunliang Zhao, Yiqin Zhang, Yuanze Cao, and Zhong Li. Constrained multi-
 625 objective optimization problems: Methodologies, algorithms and applications. *Knowledge-Based
 626 Systems*, pp. 111998, 2024.

627

628 Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
 629 pre-training with gradient-disentangled embedding sharing. *arXiv preprint arXiv:2111.09543*,
 2021.

630

631 Minhui Huang, Dewei Zhang, and Kaiyi Ji. Achieving linear speedup in non-iid federated bilevel
 learning. In *International conference on machine learning*, pp. 14039–14059. PMLR, 2023.

632

633 C-L Hwang and Abu Syed Md Masud. *Multiple objective decision making—methods and applica-
 634 tions: a state-of-the-art survey*, volume 164. Springer Science & Business Media, 2012.

635

636 Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced
 design. In *International conference on machine learning*, pp. 4882–4892. PMLR, 2021.

637

638 Ruichen Jiang, Nazanin Abolfazli, Aryan Mokhtari, and Erfan Yazdandoost Hamedani. A condi-
 639 tional gradient-based method for simple bilevel optimization with convex lower-level problem.
 640 In *International Conference on Artificial Intelligence and Statistics*, pp. 10305–10323. PMLR,
 2023.

641

642 Xiaotian Jiang, Jiaxiang Li, Mingyi Hong, and Shuzhong Zhang. A correspondence-driven
 643 approach for bilevel decision-making with nonconvex lower-level problems. *arXiv preprint*
 644 *arXiv:2509.01148*, 2025.

645

646 Fernando Jimenez, Antonio F Gómez-Skarmeta, Gracia Sánchez, and Kalyanmoy Deb. An evo-
 647 lutionary algorithm for constrained multi-objective optimization. In *Proceedings of the 2002
 648 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600)*, volume 2, pp. 1133–
 1138. IEEE, 2002.

648 Yaochu Jin, Ruojing Wen, and Bernhard Sendhoff. Evolutionary multi-objective optimization of
 649 spiking neural networks. In *International Conference on Artificial Neural Networks*, pp. 370–
 650 379. Springer, 2007.

651

652 Fei Li, Yujie Yang, Yuhao Liu, Yuanchao Liu, and Muyun Qian. Bi-level model management strat-
 653 egy for solving expensive multi-objective optimization problems. *IEEE Transactions on Emerg-
 654 ing Topics in Computational Intelligence*, 2024.

655 Wenji Li, Ruitao Mai, Pengxiang Ren, Zhaojun Wang, Qinchang Zhang, Ning Xu, Biao Xu, Zhun
 656 Fan, and Zhifeng Hao. A surrogate-ensemble assisted coevolutionary algorithm for expensive
 657 constrained multi-objective optimization problems. In *2023 IEEE Congress on Evolutionary
 658 Computation (CEC)*, pp. 1–7. IEEE, 2023.

659

660 Jing Liang, Xuanxuan Ban, Kunjie Yu, Boyang Qu, Kangjia Qiao, Caitong Yue, Ke Chen, and
 661 Kay Chen Tan. A survey on evolutionary constrained multiobjective optimization. *IEEE Trans-
 662 actions on Evolutionary Computation*, 27(2):201–221, 2022.

663 Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong. Pareto multi-task learning.
 664 *Advances in neural information processing systems*, 32, 2019.

665

666 Xi Lin, Xiaoyuan Zhang, Zhiyuan Yang, Fei Liu, Zhenkun Wang, and Qingfu Zhang. Smooth
 667 tchebycheff scalarization for multi-objective optimization. In *International Conference on Ma-
 668 chine Learning*, pp. 30479–30509. PMLR, 2024.

669

670 Risheng Liu, Yaohua Liu, Wei Yao, Shangzhi Zeng, and Jin Zhang. Averaged method of multipliers
 671 for bi-level optimization without lower-level strong convexity. In *International Conference on
 672 Machine Learning*, pp. 21839–21866. PMLR, 2023a.

673 Zhuqing Liu, Xin Zhang, Prashant Khanduri, Songtao Lu, and Jia Liu. Prometheus: taming sam-
 674 ple and communication complexities in constrained decentralized stochastic bilevel learning. In
 675 *International conference on machine learning*, pp. 22420–22453. PMLR, 2023b.

676

677 Wenyi Long, Huachao Dong, Peng Wang, Yan Huang, Jinglu Li, Xubo Yang, and Chongbo Fu.
 678 A constrained multi-objective optimization algorithm using an efficient global diversity strategy.
 679 *Complex & Intelligent Systems*, 9(2):1455–1478, 2023.

680

681 Zhaosong Lu and Sanyou Mei. First-order penalty methods for bilevel optimization. *SIAM Journal
 682 on Optimization*, 34(2):1937–1969, 2024.

683

684 Quentin Mercier, Fabrice Poirion, and Jean-Antoine Désidéri. A stochastic multiple gradient descent
 685 algorithm. *European Journal of Operational Research*, 271(3):808–817, 2018.

686

687 Meta. meta-llama/llama-3.2-1b-instruct, 2024. URL [https://huggingface.co/
 688 meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct).

689

690 K Miettinen and MM Mäkelä. Interactive bundle-based method for nondifferentiable multiobjec-
 691 tive optimization: Nimbus. *Optimization*, 34(3):231–246, 1995.

692

693 Fei Ming, Wenyin Gong, Ling Wang, and Liang Gao. Constrained multiobjective optimization via
 694 multitasking and knowledge transfer. *IEEE Transactions on Evolutionary Computation*, 28(1):
 695 77–89, 2022.

696

697 Michinari Momma, Chaosheng Dong, and Jia Liu. A multi-objective/multi-task learning framework
 698 induced by pareto stationarity. In *International Conference on Machine Learning*, pp. 15895–
 699 15907. PMLR, 2022.

700

701 Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon Whiteson. Multi-objective
 702 deep reinforcement learning. *arXiv preprint arXiv:1610.02707*, 2016.

703

Rui Pan, Dylan Zhang, Hanning Zhang, Xingyuan Pan, Minrui Xu, Jipeng Zhang, Renjie Pi, Xiaoyu
 704 Wang, and Tong Zhang. Scalebio: Scalable bilevel optimization for llm data reweighting. *arXiv
 705 preprint arXiv:2406.19976*, 2024.

702 Kangjia Qiao, Jing Liang, Kunjie Yu, Weifeng Guo, Caitong Yue, Boyang Qu, and Ponnuthurai N
 703 Suganthan. Benchmark problems for large-scale constrained multi-objective optimization with
 704 baseline results. *Swarm and Evolutionary Computation*, 86:101504, 2024.

705

706 Zhen Qin, Zhuqing Liu, Songtao Lu, Yingbin Liang, and Jia Liu. DUET: Decentralized bilevel
 707 optimization without lower-level strong convexity. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=jxMAPMqNr5>.

708

709

710 Peiwen Qiu, Yining Li, Zhuqing Liu, Prashant Khanduri, Jia Liu, Ness B Shroff, Elizabeth Serena
 711 Bentley, and Kurt Turck. Diamond: Taming sample and communication complexities in decen-
 712 tralized bilevel optimization. In *IEEE INFOCOM 2023-IEEE conference on computer communi-
 713 cations*, pp. 1–10. IEEE, 2023.

714

715 Shuang Qiu, Dake Zhang, Rui Yang, Boxiang Lyu, and Tong Zhang. Traversing pareto optimal poli-
 716 cies: Provably efficient multi-objective reinforcement learning. *arXiv preprint arXiv:2407.17466*,
 717 2024.

718

719 Bo Yang Qu and Ponnuthurai Nagarathnam Suganthan. Constrained multi-objective optimization
 720 algorithm with an ensemble of constraint handling methods. *Engineering Optimization*, 43(4):
 721 403–416, 2011.

722

723 Shoham Sabach and Shimrit Shtern. A first order method for solving convex bilevel optimization
 724 problems. *SIAM Journal on Optimization*, 27(2):640–660, 2017.

725

726 Yoshikazu Sawaragi, HIROTAKA NAKAYAMA, and TETSUZO TANINO. *Theory of multiobjec-
 727 tive optimization*, volume 176. Elsevier, 1985.

728

729 Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. *Advances in
 730 neural information processing systems*, 31, 2018.

731

732 Han Shen, Pin-Yu Chen, Payel Das, and Tianyi Chen. Seal: Safety-enhanced aligned l1lm fine-tuning
 733 via bilevel data selection. *arXiv preprint arXiv:2410.07471*, 2024a.

734

735 Han Shen, Zhuoran Yang, and Tianyi Chen. Principled penalty-based methods for bilevel reinforce-
 736 ment learning and rlhf. *arXiv preprint arXiv:2402.06886*, 2024b.

737

738 Shiquan Song, Kai Zhang, Ling Zhang, and Ni Wu. A dual-population algorithm based on self-
 739 adaptive epsilon method for constrained multi-objective optimization. *Information Sciences*, 655:
 740 119906, 2024.

741

742 Ryoji Tanabe and Akira Oyama. A note on constrained multi-objective optimization benchmark
 743 problems. In *2017 IEEE congress on evolutionary computation (CEC)*, pp. 1127–1134. IEEE,
 744 2017.

745

746 Davoud Ataee Tarzanagh, Mingchen Li, Christos Thrampoulidis, and Samet Oymak. Fednest: Fed-
 747 erated bilevel, minimax, and compositional optimization. In *International Conference on Machine
 748 Learning*, pp. 21146–21179. PMLR, 2022.

749

750 Bing Wang, Hemant K Singh, and Tapabrata Ray. Pareto set prediction assisted bilevel multi-
 751 objective optimization. *arXiv preprint arXiv:2409.03328*, 2024.

752

753 Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narsimhan Sreedhar, Daniel Egert,
 754 Olivier Delalleau, Jane Polak Scowcroft, Neel Kant, Aidan Swope, et al. Helpsteer: Multi-
 755 attribute helpfulness dataset for steerlm. *arXiv preprint arXiv:2311.09528*, 2023.

756

757 Lei Yang, Jinglin Tian, Jiale Cao, Kangshun Li, and Chaoda Peng. An evolutionary algorithm with
 758 feasibility tracking strategy for constrained multi-objective optimization problems. In *2024 IEEE
 759 Congress on Evolutionary Computation (CEC)*, pp. 1–8. IEEE, 2024a.

760

761 Xinmin Yang, Wei Yao, Haian Yin, Shangzhi Zeng, and Jin Zhang. Gradient-based algorithms for
 762 multi-objective bi-level optimization. *Science China Mathematics*, pp. 1–20, 2024b.

756 Yongkuan Yang, Jianchang Liu, Shubin Tan, and Honghai Wang. A multi-objective differential
757 evolutionary algorithm for constrained multi-objective optimization problems with low feasible
758 ratio. *Applied Soft Computing*, 80:42–56, 2019.

759

760 Wei Yao, Chengming Yu, Shangzhi Zeng, and Jin Zhang. Constrained bi-level optimization: Proxi-
761 mal lagrangian value function approach and hessian-free algorithm. In *The Twelfth International*
762 *Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=xJ5N8qrEP1>.

763

764 Feiyang Ye, Baijiong Lin, Zhixiong Yue, Pengxin Guo, Qiao Xiao, and Yu Zhang. Multi-objective
765 meta learning. *Advances in Neural Information Processing Systems*, 34:21338–21351, 2021.

766

767 Feiyang Ye, Baijiong Lin, Xiaofeng Cao, Yu Zhang, and Ivor W Tsang. A first-order multi-gradient
768 algorithm for multi-objective bi-level optimization. In *ECAI 2024*, pp. 2621–2628. IOS Press,
769 2024.

770 Yihua Zhang, Prashant Khanduri, Ioannis Tsaknakis, Yuguang Yao, Mingyi Hong, and Sijia Liu.
771 An introduction to bilevel optimization: Foundations and applications in signal processing and
772 machine learning. *IEEE Signal Processing Magazine*, 41(1):38–59, 2024.

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

CONTENTS	
810	1
811	
812	1
813	Introduction
814	3
815	2
816	Related Work
817	3
818	ECMO: Characterizing Pareto Stationarity and Establishing Convergence Metrics
819	4
820	3.1 Pareto Stationarity for ECMO
821	4
822	3.2 One-to-One Mapping between ECMO and Its Weighted-Chebyshev Scalarization .
823	6
824	3.3 Pareto Stationarity Characterization and Convergence Metric Derivations for ECMO
825	6
826	4
827	Algorithm Design for the ECMO Problem
828	7
829	4.1 The WC-Penalty Algorithm
830	7
831	4.2 Theoretical Convergence Analysis
832	8
833	5
834	Returning to MOBL Problems through the Lens of ECMO
835	9
836	5.1 Data Weighting for Multi-Objective RLHF Reward Model Training
837	9
838	5.2 Data Weighting in Multi-Objective LLM Alignment
839	10
840	6
841	Concluding Remarks
842	10
843	Appendix
844	
845	A
846	Notations
847	17
848	B
849	Additional Related Work on Closely Related Topics
850	17
851	C
852	Discussions and Proofs of Section 3
853	18
854	C.1 Discussion about Pareto Stationarity in ECMO
855	18
856	C.2 Proof of Theorem 1
857	19
858	C.3 Proof of Theorem 2
859	20
860	C.4 KKT Condition of WC
861	21
862	D
863	Additional Results and Proofs of Section 4
864	21
865	D.1 Linear Scalarization Method for Convex ECMO Problems
866	21
867	D.2 Proof of Theorem 3
868	24
869	D.3 Stochastic WC-Penalty Algorithm
870	28
871	E
872	Setups and Additional Results of Numerical Experiments
873	36
874	E.1 Data Weighting for Multi-Objective RLHF Reward Model Training
875	36
876	E.2 Data Weighting in Multi-Objective LLM Alignment
877	39
878	E.3 Multi-Objective Meta-Learning Task
879	42
880	F
881	More Discussions on KKT System
882	44

APPENDIX

A NOTATIONS

We summarize the notations throughout this paper in Table 2.

Notations	Definitions
$P_{\mathcal{E}}(\cdot)$	Projection the point onto a convex set \mathcal{E}
\mathcal{D}	Feasible region $\{z \in \mathbb{R}^k : h(z) = \mathbf{0}\}$
$N_{\delta}(\tilde{z})$	δ -neighborhood of \tilde{z} , i.e., $\{z \in \mathcal{R}^k : \ z - \tilde{z}\ _2 \leq \delta\}$
Δ_S^+	Simplex in S dimension
Δ_S^{++}	Strictly positive simplex in S dimension
X_P	The set of Pareto optimal points
X_{WP}	The set of weakly Pareto optimal points
$\{F(x) : x \in X_P\}$	Pareto Front
$\{F(x) : x \in X_{WP}\}$	Weak Pareto front
ρ	Additional variable for WC problem
ω, ν	Dual variables for KKT system
λ	Preference vector

Table 2: Summarized notation table in the paper.

B ADDITIONAL RELATED WORK ON CLOSELY RELATED TOPICS

In this section, we review existing literature in the areas of Multi-Objective Optimization (MOO), Bilevel Optimization (BLO), Multi-Objective Bilevel Learning (MOBL), and Equality Constrained Multi-Objective (ECMO) problems. Notably, to put our work in comparative perspectives, we also provide the comparison of our approach with the existing MOBL methods in Table 3.

Multi-Objective Optimization (MOO). Research on MOO dates back to (Sawaragi et al., 1985), and continues to attract significant attention in recent years (Ehrgott, 2005; Chankong & Haimes, 2008; Hwang & Masud, 2012; Gunantara, 2018). Methods for unconstrained MOO can be broadly categorized into scalarization approaches and adaptive gradient methods. Scalarization approaches transform the MOO problems to single-objective problems. Among them, the most widely used are linear scalarization (Ehrgott, 2005; Lin et al., 2024; Qiu et al., 2024) and Weighted-Chebyshev method (Momma et al., 2022; Lin et al., 2024; Qiu et al., 2024). Adaptive gradient methods, on the other hand, aim to find Pareto optimal solutions through iterative updates and gradient descent schemes, and have been explored in works such as Miettinen & Mäkelä (1995); Désidéri (2012); Mercier et al. (2018); Fernando et al. (2023); Chen et al. (2024b). The applications of MOO span a variety of domains, including but not limited to multi-task learning (Sener & Koltun, 2018; Lin et al., 2019; Momma et al., 2022), multi-objective training and clustering (Mossalam et al., 2016; Alok et al., 2015; González-Almagro et al., 2020), architecture search (Jin et al., 2007). Although these works extensively studied MOO literature, most results and techniques rely heavily on the absence of constraints. This leaves the foundation of ECMO problems still in its infancy.

Bilevel Optimization (BLO). BLO also has a long-standing history, with early foundational work such as Bracken & McGill (1973). In recent years, its importance has surged in machine learning, particularly in applications involving large-scale models and (LLMs), where variable coupling across different optimization levels demands sophisticated BLO frameworks (Chakraborty et al., 2023; Shen et al., 2024a;b). Over the past decade, significant progress has been made in the development of BLO methods (Zhang et al., 2024). Works like Ghadimi & Wang (2018); Arbel & Mairal (2021); Ji et al. (2021); Dagréou et al. (2022) provided a wide range of techniques and paradigms. Moreover, Tarzanagh et al. (2022); Huang et al. (2023); Qiu et al. (2023); Liu et al. (2023b) also extended BLO to federated learning, decentralized learning, etc. While the lower-level strongly convex (LLSC) assumption is quite restrictive, it is widely adopted in the aforementioned works. Although several recent efforts have been made to relax it by considering only convexity (LLGC)

918
919 Table 3: Comparison of Different MOBL Algorithms.
920

Algorithm	Scenario	Convergence	Exploration
gMOBA (Yang et al., 2024b)	Deterministic	Asymptotic	✗
MoML (Ye et al., 2021)	Deterministic	Asymptotic	✗
FORUM (Ye et al., 2024)	Deterministic	$\mathcal{O}(ST^{-\frac{1}{4}})^\dagger$	✗
MoCo (Fernando et al., 2023)	Stochastic	$\mathcal{O}(ST^{-\frac{1}{2}})$	✗
WC-Penalty (This Work)	Deterministic	$\mathcal{O}(ST^{-\frac{1}{2}})$	✓
WC-Penalty (This Work)	Stochastic	$\mathcal{O}(ST^{-\frac{1}{2}})$	✓

927 \dagger : Note that even though the number of objectives S is not explicitly stated in their main theorem, a closer
928 examination of the proof reveals that the S is hidden in the $\mathcal{O}(\cdot)$ notation implicitly.
929

930 (Sabach & Shtern, 2017; Liu et al., 2023a; Cao et al., 2023; Jiang et al., 2023; Yao et al., 2024; Chen
931 et al., 2024a; Lu & Mei, 2024; Qin et al., 2025; Jiang et al., 2025), such results remain confined
932 to the basic BLO scenario only. Their applicability to general scenarios, such as federated BLO,
933 decentralized BLO, and MOBL, remains largely unexplored, as the different setups and optimality
934 evaluation metrics lead to distinct challenges and require specific methodologies.
935

936 **Multi-Objective Bilevel Learning (MOBL).** MOBL problem has gained increasing attention in re-
937 cent years (Ye et al., 2021; Gu et al., 2023; Fernando et al., 2023; Li et al., 2024; Wang et al., 2024;
938 Yang et al., 2024b; Ye et al., 2024). Compared to more mature literature on MOO and BLO, existing
939 theoretical results for MOBL remain quite limiting. Among these works, Yang et al. (2024b); Ye
940 et al. (2021) demonstrate that their proposed algorithms converge asymptotically, without providing
941 any finite-time convergence guarantees. In contrast, Fernando et al. (2023); Ye et al. (2024) provide
942 algorithms with a convergence rate of $\mathcal{O}(ST^{-\frac{1}{2}})$ and $\mathcal{O}(ST^{-\frac{1}{4}})$, respectively. However, all of these
943 works heavily depend on the LLSC condition: not only is the algorithmic framework built upon the
944 LLSC condition, but the optimality criterion also relies on it. Therefore, this strong assumption sig-
945 nificantly limits their applicability to complex real-world scenarios where this assumption is usually
946 violated.
947

948 **Equality Constrained Multi-Objective (ECMO).** ECMO problems have found wide applications
949 across various fields, including resource allocation, scheduling optimization, and path planning,
950 just to name a few Liang et al. (2022); Hao et al. (2024). The most closely related works on ECMO
951 problems are Cuate et al. (2020); García et al. (2021). Both studies propose algorithmic solutions for
952 ECMO and conduct numerical experiments to validate their methods. However, neither provides any
953 finite-time convergence guarantees, highlighting that the theoretical foundations for ECMO remain
954 in their infancy. A closely related and important extension of ECMO is the Inequality Constrained
955 Multi-Objective (ICMO) problem, where inequality constraints are also incorporated (Fan et al.,
956 2017; Afshari et al., 2019; Liang et al., 2022; Hao et al., 2024). As with ECMO, the theoretical
957 understanding of ICMO remains limited. Numerous heuristic algorithms have been proposed in the
958 literature (Jimenez et al., 2002; Tanabe & Oyama, 2017; Fan et al., 2019; Yang et al., 2019; Ming
959 et al., 2022; Belaiche et al., 2023; Li et al., 2023; Long et al., 2023; Yang et al., 2024a; Song et al.,
960 2024; Qiao et al., 2024), offering a variety of algorithmic frameworks accompanied by experimental
961 evaluations. However, these works do not establish convergence guarantees, underscoring the lack
962 of rigorous theoretical foundations for ICMO (and ECMO) problems.
963

964 C DISCUSSIONS AND PROOFS OF SECTION 3

965 C.1 DISCUSSION ABOUT PARETO STATIONARITY IN ECMO

966 In unconstrained MOO problems, \tilde{z} is a Pareto stationary point if and only if $\exists \alpha \in \Delta_S^+$ (S -simplex)
967 such that, $(\nabla f_1(\tilde{z}), \dots, \nabla f_S(\tilde{z})) \alpha = \mathbf{0}$ (Sener & Koltun, 2018; Lin et al., 2024). Accordingly, for
968 any $\epsilon > 0$, an ϵ -Pareto stationary solution \tilde{z} can be defined as $\|F(\tilde{z})\alpha\| \leq \epsilon$ for some $\alpha \in \Delta_S^+$.
969 Nevertheless, we now demonstrate that, this (ϵ) -Pareto stationarity definition becomes irrational in
970 ECMO problems.
971

972 By considering the KKT condition for each objective $f_s(z), s \in [S]$, we can construct Lagrangian
973 as: $\mathbb{L}_s(z, v) = f_s(z) + v^\top h(z)$. Then, for each $s \in [S]$, the KKT condition can be written as:
974 $\nabla f_s(z) + \nabla h(z)v = 0$ and $h(z) = 0$. Therefore, similar to the equivalent definition of Definition 3

Figure 9: Pareto stationary and nonstationary examples in ECMO problems.

shown in Section 3, we can define the following system to consider Pareto stationarity:

$$\text{PS}(z, v, \alpha) = \left(\begin{pmatrix} \nabla \mathbb{L}_1(z, v) \\ h(z) \end{pmatrix}, \dots, \begin{pmatrix} \nabla \mathbb{L}_S(z, v) \\ h(z) \end{pmatrix} \right) \alpha = \begin{pmatrix} \nabla F(z)\alpha + \nabla h(z)v \\ h(z) \end{pmatrix} = \mathbf{0},$$

where $\alpha \in \Delta_S^+$, and $v \in \mathbb{R}^q$. PS not only takes the feasible direction into account, but also enforces the feasibility directly. It precisely captures both the Pareto stationary and nonstationary scenarios depicted in Figure 9. To see this, $\alpha_1 \nabla f_1(\tilde{z}) + \alpha_2 \nabla f_2(\tilde{z})$ is represented by the red line. For the left example, where \tilde{z} is Pareto stationary, we can select α such that $\nabla F(\tilde{z})\alpha$ is collinear with $\nabla h(\tilde{z})$, allowing the existence of $v \in \mathbb{R}$ to achieve $\text{PS}(\tilde{z}, v, \alpha) = 0$. In contrast, for the right example, $v \nabla h(\tilde{z})$ does not lie in the convex hull of $\{\nabla f_1(\tilde{z}), \nabla f_2(\tilde{z})\}$ for any $v \in \mathbb{R}$, indicating the first term in PS can never achieve $\mathbf{0}$, correctly aligning with the Pareto nonstationarity of \tilde{z} .

However, we can construct some scenarios where 1) \tilde{z} is Pareto stationary, i.e., no feasible movement can simultaneously improve, or at least not hurt, all objectives, but 2) $\text{PS}(\tilde{z}, v, \alpha) \neq 0$ for any $\alpha \in \Delta_2^+$, and $v \in \mathbb{R}$. The following two concrete examples illustrate such cases, highlighting limitations of the PS formulation in fully capturing Pareto stationarity for ECMO problems.

Example 1. Consider a 1-dimensional bi-objective problem with 1 constraint as follows:

$$\min_z F(z)^\top = \left(-\frac{1}{2}z^2, -z \right) \quad \text{s.t. } h(z) = \begin{cases} 0 & \text{if } -1 \leq z \leq 1 \\ (|z| - 1)^2 = 0 & \text{otherwise,} \end{cases}$$

Obviously, $\tilde{z} = 1$ is a Pareto stationary point. However, since $\nabla F(\tilde{z})\alpha = -1$ for any $\alpha \in \Delta_2^+$, and $\nabla h(\tilde{z}) = 0$, we know that $\text{PS}(\tilde{z}, v, \alpha) = -1 \neq 0$.

Example 2. Although the previous example is carefully constructed, one might wonder whether the failure arises from the lack of second-order differentiability of $h(z)$? To address that, this example employs more general functions to refute this hypothesis, thereby indicating the intrinsic irrationality of PS system itself. To this end, we consider a 3-dimensional bi-objective problem with 2 constraints as follows:

$$\min_z F(z)^\top = (z_1 + z_2, z_1 - z_2) \quad \text{s.t. } h(z) = \begin{cases} z_1^2 + z_3^2 - 1 = 0, \\ z_3 - 1 = 0. \end{cases}$$

In this example, the feasible region is given by $\mathcal{D} = \{0\} \times \mathbb{R} \times \{1\}$. We consider $\tilde{z} = (0, 0, 1)^\top \in \mathcal{D}$. Obviously, \tilde{z} is Pareto stationary. However, $(\nabla F(\tilde{z})\alpha)_1 = 1, \forall \alpha \in \Delta_2^+$ and $(\nabla h(\tilde{z})v)_1 = 0, \forall v \in \mathbb{R}^2$ implies that $\text{PS}(\tilde{z}, v, \alpha) \neq 0$ for any $\alpha \in \Delta_2^+$, and $v \in \mathbb{R}^2$. This, again, contradicts the idea that PS characterizes Pareto stationarity.

It is also worth mentioning that these counterexamples indirectly **inspire us to consider adopting constraint qualification conditions (like LICQ) in Section 4**, which are not only crucial for characterizing the Pareto stationarity, but also important for avoiding corner cases caused by a degenerate Jacobian matrix. More detailed discussions can be found in Appendix C.

C.2 PROOF OF THEOREM 1

Proof. 1) We first assume that \tilde{z} is locally weakly Pareto optimal in $\mathcal{D}(\tilde{z}, \delta)$ for some positive δ . Suppose it's not Pareto stationary, then, there exists some feasible direction $d \in \mathbb{R}^k$, such that

1026 $\nabla f_s(\tilde{z})^\top d < 0, \forall s \in [S]$. We can select a positive and sufficiently small ϵ , such that $\hat{z} = \tilde{z} + \epsilon d \in$
 1027 $\mathcal{D}(\tilde{z}, \delta)$, where $\epsilon > 0$. Then, we have:
 1028

$$1029 \quad f_s(\hat{z}) = f_s(\tilde{z}) + \epsilon \nabla f_s(\tilde{z})^\top d + o(\epsilon), \forall s \in [S], \\ 1030 \quad \implies \frac{f_s(\hat{z}) - f_s(\tilde{z})}{\epsilon} = \nabla f_s(\tilde{z})^\top d + \frac{o(\epsilon)}{\epsilon} < 0, \forall s \in [S], \\ 1032$$

1033 where $o(\cdot)$ denotes the higher-order terms. Thus, $f_s(\hat{z}) < f_s(\tilde{z}), \forall s \in [S]$. This is contradicted with
 1034 the definition of locally weak Pareto optimality. Hence, \tilde{z} is Pareto stationary.

1035 **2) On the other hand, we assume \tilde{z} is Pareto stationary. Suppose it's not locally weakly Pareto
 1036 optimal in $\mathcal{D}(\tilde{z}, \delta)$ for all positive δ . Then, for any $\delta > 0$, there exists some $\hat{z} = \tilde{z} + \epsilon d \in \mathcal{D}(\tilde{z}, \delta)$,
 1037 where $\epsilon > 0, d \neq \mathbf{0}$ is a feasible direction, such that $f_s(\hat{z}) < f_s(\tilde{z}), \forall s \in [S]$. Then, we have:**

$$1039 \quad f_s(\hat{z}) = f_s(\tilde{z}) + \epsilon \nabla f_s(\tilde{z})^\top d + o(\epsilon) < f_s(\tilde{z}), \forall s \in [S] \implies \nabla f_s(\tilde{z})^\top d \leq 0, \forall s \in [S].$$

1040 Since \tilde{z} satisfies that, for any $s \in [S]$, there exists μ_s such that 1) $\nabla f_s(\tilde{z}) + \sum_{i=1}^q \mu_{s,i} \nabla h_i(\tilde{z}) = 0$,
 1041 and 2) $\sum_{i=1}^q \mu_{s,i} \nabla h_i(\tilde{z})^\top d \neq 0$, we have:
 1042

$$1043 \quad \nabla f_s(\tilde{z})^\top d = - \sum_{i=1}^q \mu_{s,i} \nabla h_i(\tilde{z})^\top d \neq 0,$$

1044 for any $s \in [S]$. Therefore, $\nabla f_s(\tilde{z})^\top d < 0, \forall s \in [S]$. This contradicts with the Pareto stationarity
 1045 of \tilde{z} . Hence, \tilde{z} is locally weakly Pareto optimal. \square
 1046

1047 C.3 PROOF OF THEOREM 2

1048 *Proof.* **1) We assume that (ρ, \tilde{z}) is a local solution of WC for some $\lambda \in \Delta_S^{++}$, then there exists some
 1049 $\delta > 0$, such that (ρ, \tilde{z}) is the minimizer of WC in $\mathcal{D}(\tilde{z}, \delta)$. Therefore, according to the definition of
 1050 ℓ_∞ -norm operation in WC, we have:**

$$1056 \quad \max_s \lambda_s f_s(\tilde{z}) \leq \max_s \lambda_s f_s(z), \forall z \in \mathcal{D}(\tilde{z}, \delta).$$

1057 Suppose \tilde{z} is not a locally weak Pareto optimal solution of ECMO. Then, there exists some $\hat{z} \in$
 1058 $\mathcal{D}(\tilde{z}, \delta)$, such that $f_s(\hat{z}) < f_s(\tilde{z}), \forall s \in [S]$. Therefore, we have $\lambda_s f_s(\hat{z}) < \lambda_s f_s(\tilde{z}), \forall s \in [S]$, thus:
 1059

$$1061 \quad \max_s \lambda_s f_s(\hat{z}) < \max_s \lambda_s f_s(\tilde{z}),$$

1062 which leads to contradiction. Thus, \tilde{z} is a locally weak Pareto optimal solution of ECMO.
 1063

1064 **2) Conversely, we assume that \tilde{z} is a locally weak Pareto optimal solution of ECMO, then there
 1065 exists some $\delta > 0$, such that $f_s(\tilde{z}) < f_s(z), \forall s \in [S], z \in \mathcal{D}(\tilde{z}, \delta)$. We set λ as follows:**
 1066

$$1067 \quad \lambda_s = \frac{(f_s(\tilde{z}))^{-1}}{\sum_{s'} (f_{s'}(\tilde{z}))^{-1}},$$

1069 which implies $\lambda \in \Delta_S^{++}$ and:

$$1071 \quad \|\lambda \odot F(\tilde{z})\|_\infty = \frac{1}{\sum_{s'} (f_{s'}(\tilde{z}))^{-1}} = \lambda_s f_s(\tilde{z}), \forall s \in [S].$$

1074 Suppose (ρ, \tilde{z}) is not a local solution of WC for any $\rho \in \mathbb{R}$. Then, there exists some $\hat{z} \in \mathcal{D}(\tilde{z}, \delta)$,
 1075 satisfying:

$$1076 \quad \max_s \lambda_s f_s(\hat{z}) < \max_s \lambda_s f_s(\tilde{z}) = \frac{1}{\sum_{s'} (f_{s'}(\tilde{z}))^{-1}}.$$

1079 Therefore, $\lambda_s f_s(\hat{z}) < \lambda_s f_s(\tilde{z}), \forall s \in [S]$. Since λ is positive, we know $f_s(\hat{z}) < f_s(\tilde{z}), \forall s \in [S]$,
 which contradicts with the assumption. Thus, \tilde{z} is a local solution of WC. \square

1080 C.4 KKT CONDITION OF WC
10811082 For completeness, we state the KKT condition of WC in this section. To begin with, the Lagrangian
1083 of WC is:

1084
$$\mathbb{L}(\rho, z, \omega, \nu, \lambda) = \rho + \sum_{s=1}^S \omega_s (\lambda_s f_s(z) - \rho) + \sum_{i=1}^q \nu_i h_i(z),$$

1085

1086 where $\omega = (\omega_1, \dots, \omega_S)^\top$, and $\nu = (\nu_1, \dots, \nu_q)^\top$ are the multipliers associated with inequality
1087 and equality constraints in WC, respectively. For a point (ρ, z) , its KKT condition contains four
1088 parts: stationarity, primal feasibility, dual feasibility, and complementary slackness. The stationary
1089 condition requires the gradients of ρ and z vanish:

1090
$$1 - \sum_{s=1}^S \omega_s = 0, \quad \sum_{s=1}^S \omega_s \lambda_s \nabla f_s(z) + \sum_{i=1}^q \nu_i \nabla h_i(z) = 0.$$

1091
1092

1093 The primal and dual feasibility requires 1) the constraints are satisfied, and 2) the multiplier associated
1094 with inequality is positive:

1095
$$h_i(z) = 0, i = 1, \dots, m, \quad \lambda_s f_s(z) - \rho \leq 0, s = 1, \dots, S, \quad \omega_s \geq 0, s = 1, \dots, S.$$

1096

1097 In the end, the complementary slackness condition is:

1098
$$\omega_s (\lambda_s f_s(z) - \rho) = 0, s = 1, \dots, S.$$

1099

1100 D ADDITIONAL RESULTS AND PROOFS OF SECTION 4
11011102 D.1 LINEAR SCALARIZATION METHOD FOR CONVEX ECMO PROBLEMS
11031104 For the special case of convex ECMO problems, we also propose a linear scalarization (LS)-based
1105 algorithm along with its finite-time convergence guarantee. In this subsection, we first introduce
1106 Linear Scalarization method, and propose a simple algorithm for convex ECMO problems along
1107 with its performance guarantee. We then prove this theoretical result, and clarify how it relates to
1108 the KKT system and ECMO problems.1109 **Linear Scalarization (LS)**, or weighted sum method, is one of the most straightforward MOO
1110 methods. Intuitively, we assign a weight to each of the objective function, and minimize their
1111 weighted sum, i.e., solve a corresponding single-objective problem. For ECMO problems, LS can
1112 be represented as:

1113
$$\min_{z \in \mathbb{R}^k} \sum_{s=1}^S \lambda_s f_s(z)$$

1114
1115 s.t. $h_i(z) = 0, i = 1, \dots, q,$
1116

1117 where $\lambda \in \Delta_S^+$ is the given preference vector. While LS is extremely simple, it cannot, in general,
1118 recover the entire weak Pareto front unless all objective functions are convex and the feasible region
1119 is a convex set (Ehrhart, 2005). This suggests that, LS is not sufficient to generally solve the ECMO
1120 problems, and alternative techniques are needed to handle such general (nonconvex) cases.1121 Although LS method can only recover the entire weak Pareto front in some special cases, we can
1122 still apply this simple method to solve the convex ECMO problems. Specifically, in this subsection,
1123 we assume that upper level objective functions $f_1(z), \dots, f_S(z)$ are convex functions, and lower
1124 level constraints $h_1(z), \dots, h_q(z)$ are affine functions. Then, LS method transforms ECMO into a
1125 corresponding single-objective convex problem as follows:

1126
$$\min_{z \in \mathbb{R}^k} \mathcal{L}_\lambda(z) = \sum_{s=1}^S \lambda_s f_s(z) \quad (3)$$

1127
1128 s.t. $Az = b,$
1129

1130 where $\lambda \in \Delta_S^+$, $A \in \mathbb{R}^{q \times k}$, $b \in \mathbb{R}^q$ and $\text{rank}(A) = m$. We denote the feasible set as $\mathcal{D} := \{z \in$
1131 $\mathbb{R}^k : Az = b\}$, which is a closed and convex set since it's the intersection of $2m$ half-spaces.

1134

Algorithm 2 LS Algorithm

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

```

1: Input: Iteration rounds  $T$ , initialization  $z_0 \in \mathcal{D}$ , and step-size  $\eta$ .
2: for  $t = 0, 1, \dots, T-1$  do
3:   Compute  $z_t^+ = z_t - \eta \nabla \mathcal{L}_\lambda(z_t)$ .
4:   Update  $z_{t+1} = \mathcal{P}_{\mathcal{D}}(z_t^+)$ .

```

1148

Generally speaking, Algorithm 2 follows a simple projected gradient descent paradigm, where the convexity of the feasible region allows well-defined projection operation. Specifically, we denote the projection as $\mathcal{P}_{\mathcal{E}}(z) = \arg \min_{z' \in \mathcal{E}} \|z - z'\|_2^2$, where \mathcal{E} can be any convex set. In each step t , we compute the gradient of $\mathcal{L}_\lambda(z_t)$, update z_t^+ according to gradient descent method, and project the obtained z_t^+ back to the feasible region \mathcal{D} to get z_{t+1} . As shown later, this extremely simple method is effective in addressing the convex ECMO problem.

1149

Now, we are ready to state the theoretical results for Algorithm 2.

1150

1151

Theorem 4 (Finite-Time Convergence Rate of Algorithm 2). *Suppose that $f_1(z), \dots, f_S(z)$ are convex functions, and $h_1(z), \dots, h_q(z)$ are affine functions. Under Assumption 1, for any preference $\lambda \in \Delta_S^+$, selecting $\eta = \frac{1}{L}$, Algorithm 2 has the following convergence result:*

1152

1153

$$\mathcal{L}_\lambda(z_T) - \mathcal{L}_\lambda(z^*) \leq \frac{L}{2T} \|z_0 - z^*\|_2^2,$$

1154

where z^* is the solution (global minimizer) of Equation (3).

1155

1156

Proof. On the one hand, since $f_1(z), \dots, f_S(z)$ are convex and L -smooth, so is \mathcal{L}_λ for any $\lambda \in \Delta_S^+$. According to the descent lemma, we have:

1157

1158

$$\mathcal{L}_\lambda(z_{t+1}) \leq \mathcal{L}_\lambda(z_t) + \nabla \mathcal{L}_\lambda(z_t)^\top (z_{t+1} - z_t) + \frac{L}{2} \|z_{t+1} - z_t\|_2^2, \quad (4)$$

1159

where $t = 0, 1, \dots, T-1$.

1160

On the other hand, due to the convexity of \mathcal{D} , we have the following result:

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

$$\begin{aligned}
& \|z_{t+1} - z^*\|_2^2 \\
& \leq \|z_t^+ - z^*\|_2^2 - \|z_{t+1} - z_t^+\|_2^2 \\
& = \|z_t - \eta \nabla \mathcal{L}_\lambda(z_t) - z^*\|_2^2 - \|z_{t+1} - z_t + \eta \nabla \mathcal{L}_\lambda(z_t)\|_2^2 \\
& = \|z_t - z^*\|_2^2 - 2\eta \nabla \mathcal{L}_\lambda(z_t)^\top (z_t - z^*) - \|z_{t+1} - z_t\|_2^2 - 2\eta \nabla \mathcal{L}_\lambda(z_t)^\top (z_{t+1} - z_t) \\
& = \|z_t - z^*\|_2^2 - \frac{2}{L} \nabla \mathcal{L}_\lambda(z_t)^\top (z_t - z^*) - \|z_{t+1} - z_t\|_2^2 - \frac{2}{L} \nabla \mathcal{L}_\lambda(z_t)^\top (z_{t+1} - z_t),
\end{aligned} \quad (5)$$

1171

where the first inequality is derived from the convexity of \mathcal{D} :

1172

1173

1174

$$\begin{aligned}
\|z_t^+ - z^*\|_2^2 & = \|z_t^+ - z_{t+1}\|_2^2 + \|z_{t+1} - z^*\|_2^2 + 2\langle z_t^+ - z_{t+1}, z_{t+1} - z^* \rangle \\
& \geq \|z_t^+ - z_{t+1}\|_2^2 + \|z_{t+1} - z^*\|_2^2.
\end{aligned}$$

1175

1176

Combining Equations (4) and (5), we have the following result given the convexity of \mathcal{L}_λ :

1177

1178

1179

1180

$$\begin{aligned}
\mathcal{L}_\lambda(z_{t+1}) & \leq \mathcal{L}_\lambda(z_t) + \frac{L}{2} (\|z_t - z^*\|_2^2 - \|z_{t+1} - z^*\|_2^2) - \nabla \mathcal{L}_\lambda(z_t)^\top (z_t - z^*) \\
& \leq \mathcal{L}_\lambda(z^*) + \frac{L}{2} (\|z_t - z^*\|_2^2 - \|z_{t+1} - z^*\|_2^2),
\end{aligned}$$

1181

which implies

1182

1183

1184

1185

1186

1187

$$\begin{aligned}
\mathcal{L}_\lambda(z_T) - \mathcal{L}_\lambda(z^*) & \leq \frac{1}{T} \sum_{t=0}^{T-1} (\mathcal{L}_\lambda(z_{t+1}) - \mathcal{L}_\lambda(z^*)) \\
& \leq \frac{L}{2T} (\|z_0 - z^*\|_2^2 - \|z_T - z^*\|_2^2) \\
& \leq \frac{L}{2T} \|z_0 - z^*\|_2^2,
\end{aligned}$$

1188 where the first inequality is due to the decreasing property, i.e., for $t = 0, 1, \dots, T - 1$, we have:
1189

$$\begin{aligned} 1190 \quad \mathcal{L}_\lambda(z_{t+1}) &\leq \mathcal{L}_\lambda(z_t) + \nabla \mathcal{L}_\lambda(z_t)^\top (z_{t+1} - z_t) + \frac{L}{2} \|z_{t+1} - z_t\|_2^2 \\ 1191 &= \mathcal{L}_\lambda(z_t) - \frac{1}{L} \|\nabla \mathcal{L}_\lambda(z_t)\|_2^2 + \frac{1}{2L} \|\nabla \mathcal{L}_\lambda(z_t)\|_2^2 \\ 1192 &\leq \mathcal{L}_\lambda(z_t). \\ 1193 \\ 1194 \end{aligned}$$

□

1197 Theorem 4 illustrates that Algorithm 2 has a convergence rate of $\mathcal{O}(T^{-1})$ to global optima for
1198 Equation (3). This reveals that we can recover the whole Pareto front of the original ECMO problem
1199 by traversing λ over the simplex Δ_S^+ . Next, we show that this result can also be interpreted through
1200 the lens of the KKT system, providing consistency with the analysis of Algorithm 1.

1201 Theorem 4 demonstrates that the sequence generated by Algorithm 2 converges to the global opti-
1202 mum of Equation (3). Since it's a convex problem without inequality constraints, we know that its
1203 KKT condition holds at some feasible point \tilde{z} if and only if \tilde{z} is the solution of Equation (3) (and the
1204 solution is the global minimizer due to the convexity of the problem). Therefore, we can establish
1205 the KKT system $\mathcal{K}(z, v, \lambda)$ as follows:
1206

$$1207 \quad \mathcal{K}(z, v, \lambda) = \begin{pmatrix} \nabla F(z)\lambda + \nabla h(z)v \\ h(z) \end{pmatrix}_{(k+m) \times 1} = \begin{pmatrix} \nabla F(z)\lambda + A^\top v \\ Az - b \end{pmatrix}_{(k+m) \times 1},$$

1209 where $\lambda \in \Delta_S^+$, and $v \in \mathbb{R}^q$. While this KKT system for Equation (3) is quite different from the one
1210 defined in Definition 5, it completely characterizes the optimality of any point z . In other words,
1211 given some $\lambda \in \Delta_S^+$, $\tilde{z} \in \mathcal{D}$ is the optimal point for Equation (3) if and only if $\mathcal{K}(\tilde{z}, v, \lambda) = 0$ for
1212 some $v \in \mathbb{R}^q$.
1213

1214 The following lemma ensures the optimality characterized by the KKT system can be adopted for
1215 evaluating the optimality of ECMO problems:
1216

Lemma 2 (Ehrgott (2005)). *Suppose $f_s(z), \forall s \in [S]$ are convex, and nonempty set \mathcal{D} is convex
1217 and closed. Then, $\{z \in \mathcal{D} : z = \arg \min_{z'} \mathcal{L}_\lambda(z'), \forall \lambda \in \Delta_S^+\}$ is exactly the weak Pareto front of
1218 ECMO.*

1219 Now, we are ready to bridge Theorem 4 with ECMO problems. According to Algorithm 2, z_t is
1220 feasible for any t . Hence, for any $\lambda \in \Delta_S^+$, we have:
1221

$$1222 \quad \min_v \|\mathcal{K}(z_T, v, \lambda)\|_2^2 \leq \|\mathcal{K}(z_T, 0, \lambda)\|_2^2 = \|\mathcal{L}_\lambda(z_T)\|_2^2.$$

1224 By Theorem 4, we have:
1225

$$1226 \quad \|\mathcal{L}_\lambda(z_T)\|_2^2 \leq 2L(\mathcal{L}_\lambda(z_T) - \mathcal{L}_\lambda(z^*)) \leq \frac{L^2}{T} \|z_0 - z^*\|_2^2.$$

1228 Therefore, we obtain $\min_v \|\mathcal{K}(z_T, v, \lambda)\|_2^2 \leq \frac{L^2}{T} \|z_0 - z^*\|_2^2$. According to the argument about KKT
1229 system and Lemma 2, we know that Algorithm 2 converges to weakly Pareto optimal solutions at
1230 a rate of $\mathcal{O}(T^{-1})$. In addition, we can also traverse λ over Δ_S^+ to let Algorithm 2 reconstruct the
1231 entire weak Pareto front.
1232

1233 To give a more concrete example, we provide a concrete example to
1234 show the performance of our proposed algorithms. We consider a bi-
1235 objective problem, with objective functions $f_1(z) = z_1^2 + 4z_2^2$ and
1236 $f_2(z) = 4(z_1 - 2)^2 + (z_2 - 2)^2$, and constraint $h(z) = 0.5z_1 - z_2 - 0.1 = 0$.
1237 Besides, we consider two preference vectors $\lambda = (0.25, 0.75)^\top$ and
1238 $\lambda' = (0.75, 0.25)^\top$. Figure 10 demonstrates the convergence perfor-
1239 mances of Algorithms 1 and 2. Specifically, the *deep-sky-blue* and *light-
1240 coral* dashed curves are contour plots of two objective functions $f_1(z)$
1241 and $f_2(z)$. The *gray* line is the equality constraint $h(z) = 0$, and the *red* part
1242 on it is the Pareto front. The *rosy-brown* curve is the Pareto front
1243 when no constraints are included. The *black* point is the initial point for
1244

1245 Figure 10: A toy exam-
1246 ple.
1247

1242 all sequences. Four curves in *blue*, *green*, *purple*, and *orange* are the
 1243 sequences of proposed algorithms under different preference vectors.
 1244

1245 We can clearly observe in Figure 10 that all of the four sequences con-
 1246 verge to the Pareto front. Moreover, under the guidance of different preference vectors, the conver-
 1247 gence points show distinct directional tendencies along the front.

1248 D.2 PROOF OF THEOREM 3

1250 *Proof.* We prove Theorem 3 in three steps as follows. To begin with, we first denote the update
 1251 direction $d_t = (d_{t,\rho}^\top, d_{t,z}^\top, d_{t,\delta}^\top)^\top$ by $\theta_{t+1} = \theta_t - \eta d_t, \forall t = 0, \dots, T-1$.
 1252

1253 Step A: General Control.

1254 According to Assumption 1 and the descent lemma, for $t = 0, \dots, T-1$, we have:

$$\begin{aligned} 1255 \quad P(\theta_{t+1}) &\leq P(\theta_t) + \langle \nabla P(\theta_t), \theta_{t+1} - \theta_t \rangle + \frac{L_P}{2} \|\theta_{t+1} - \theta_t\|^2 \\ 1256 \quad &= P(\theta_t) - \eta \langle \nabla P(\theta_t), d_t \rangle + \frac{L_P \eta^2}{2} \|d_t\|^2. \end{aligned}$$

1260 The property of projection $\langle \mathcal{P}_C(\theta_1) - \mathcal{P}_C(\theta_2), \theta_1 - \theta_2 \rangle \geq \|\mathcal{P}_C(\theta_1) - \mathcal{P}_C(\theta_2)\|^2$ implies:
 1261

$$\begin{aligned} 1262 \quad \langle \theta_{t+1} - \theta_t, (\theta_t - \eta \nabla P(\theta_t)) - \theta_t \rangle &\geq \|\theta_{t+1} - \theta_t\|^2, \\ 1263 \quad \implies \langle -\eta d_t, -\eta \nabla P(\theta_t) \rangle &\geq \eta^2 \|d_t\|^2, \\ 1264 \quad \implies \|d_t\|^2 &\leq \langle \nabla P(\theta_t), d_t \rangle. \end{aligned}$$

1266 Therefore, we have:

$$\begin{aligned} 1267 \quad P(\theta_{t+1}) &\leq P(\theta_t) + \langle \nabla P(\theta_t), \theta_{t+1} - \theta_t \rangle + \frac{L_P}{2} \|\theta_{t+1} - \theta_t\|^2 \\ 1268 \quad &= P(\theta_t) - \eta \|d_t\|^2 + \frac{L_P \eta^2}{2} \|d_t\|^2, \end{aligned}$$

1272 which implies:

$$1273 \quad \eta \left(1 - \frac{L_P \eta}{2}\right) \|d_t\|^2 \leq P(\theta_t) - P(\theta_{t+1}).$$

1275 Telescoping from $t = 0$ to $T-1$, we obtain:

$$1277 \quad \eta \left(1 - \frac{L_P \eta}{2}\right) \cdot \frac{1}{T} \sum_{t=0}^{T-1} \|d_t\|^2 \leq \frac{1}{T} (P(\theta_0) - P(\theta_T)). \quad (6)$$

1280 Step B: KKT system.

1281 In this step, we control each term in the KKT system defined in Definition 5.

1283 **Step B.1: Stationarity Terms.** According to Equation (6), we know that all of $d_{t,\rho}$, $d_{t,z}$, and $d_{t,\delta}$
 1284 can be well controlled, since $\|d_t\|^2 = \|d_{t,\rho}\|^2 + \|d_{t,z}\|^2 + \|d_{t,\delta}\|^2$. We first note the expression of
 1285 $d_{t,z}$ as follows:

$$1287 \quad d_{t,z} = u \sum_{i=1}^q h_i(z_t) \nabla h_i(z_t) + v \sum_{s=1}^S (\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t) \lambda_s \nabla f_s(z_t),$$

1289 where $\delta_{t,s}$ is the s -th element of δ_t . Then, to select ω and ν defined in Definition 5, we set
 1290 $\omega_{t,s} = v(\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t)$, $\nu_{t,i} = u h_i(z_t)$ to be the dual variables at iteration t , where
 1291 $\omega_t = (\omega_{t,1}, \dots, \omega_{t,S})^\top$, $\nu_t = (\nu_{t,1}, \dots, \nu_{t,q})^\top$. Therefore, since $\|d_{t,z}\|^2$ is controlled by $\|d_t\|^2$,
 1292 the stationarity term for z_t can also be well characterized. In addition, by the selection of ω_t , we
 1293 know:

$$1294 \quad 1 - \sum_{s=1}^S \omega_{t,s} = 1 - \sum_{s=1}^S v(\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t) = d_{t,\rho},$$

1296 implying that the stationarity term for ρ_t in Definition 5 is also controlled.
1297

1298 **Step B.2: Primal Feasibility Term.** We next consider the primal feasibility term, i.e., $h(z_t)$. We
1299 first introduce the following notation for convenience: $c_{t,s} = \lambda_s f_s(z_t) + \delta_{t,s} - \rho_t$. Then, according
1300 to the update direction for z , we have:

$$1301 \quad d_{t,z} = u \nabla h(z_t) h(z_t) + v \sum_{s=1}^S c_{t,s} \lambda_s \nabla f_s(z_t),$$

1304 which, along with Assumption 2, implies:

$$1305 \quad u \sigma \|h(z_t)\| \leq \|u \nabla h(z_t) h(z_t)\| = \|d_{t,z} - v \sum_{s=1}^S c_{t,s} \lambda_s \nabla f_s(z_t)\| \leq \|d_{t,z}\| + v M \sum_{s=1}^S |c_{t,s}|,$$

1308 where the last term can be derived as follows:

$$1310 \quad v \left\| \sum_{s=1}^S c_{t,s} \lambda_s \nabla f_s(z_t) \right\| \leq v \sum_{s=1}^S |c_{t,s}| \cdot \|\lambda_s \nabla f_s(z_t)\| \leq v M \sum_{s=1}^S |c_{t,s}|.$$

1313 To further control $\sum_{s=1}^S |c_{t,s}|$, we consider the following two index sets:

$$1314 \quad \mathcal{I}_t = \{s \in [S] : v c_{t,s} \leq \frac{\delta_{t,s}}{\eta}\}, \quad \mathcal{J}_t = \{s \in [S] : v c_{t,s} > \frac{\delta_{t,s}}{\eta}\}.$$

1317 If $s \in \mathcal{I}_t$, then the corresponding component $\delta_{t,s}$ is not projected in step t , indicating $(d_{t,\delta})_s =$
1318 $\nabla_{\delta_s} P(\theta_t)$. By Cauchy–Schwarz inequality, we get:

$$1319 \quad \sum_{s \in \mathcal{I}_t} |c_{t,s}| \leq \sqrt{|\mathcal{I}_t|} \frac{\|d_{t,\delta}\|}{v}.$$

1322 If $s \in \mathcal{J}_t$, then 1) the corresponding component is projected in step t , 2) $c_{t,s}$ is nonnegative (since
1323 $\delta_{t,s} \geq 0$). Then, we have:

$$1324 \quad \begin{aligned} \sum_{s \in \mathcal{J}_t} |c_{t,s}| &= \sum_{s \in \mathcal{J}_t} c_{t,s} \\ &= \sum_{s \in [S]} c_{t,s} - \sum_{s \in \mathcal{I}_t} c_{t,s} \\ &\leq \sum_{s \in [S]} c_{t,s} + \sum_{s \in \mathcal{I}_t} |c_{t,s}| \\ &\leq \frac{|d_{t,\rho}| + 1}{v} + \sqrt{|\mathcal{I}_t|} \frac{\|d_{t,\delta}\|}{v} \\ &\leq \frac{2\sqrt{S} \|d_t\| + 1}{v}, \end{aligned}$$

1336 where the second last inequality is due to the definition of $d_{t,\rho}$. Combining the aforementioned
1337 results together, we can obtain:

$$1338 \quad \begin{aligned} u \sigma \|h(z_t)\| &\leq \|d_{t,z}\| + v M \frac{3\sqrt{S} \|d_t\| + 1}{v} \leq (3\sqrt{S} M + 1) \|d_t\| + M, \\ 1339 \quad \implies \|h(z_t)\| &\leq \frac{3\sqrt{S} M + 1}{u \sigma} \|d_t\| + \frac{M}{u \sigma}, \\ 1340 \quad \implies \frac{1}{T} \sum_{t=0}^{T-1} \|h(z_t)\|^2 &\leq \frac{2(3\sqrt{S} M + 1)^2}{u^2 \sigma^2} \cdot \frac{1}{T} \sum_{t=0}^{T-1} \|d_t\|^2 + \frac{2M^2}{u^2 \sigma^2}. \end{aligned}$$

1346 We can select u to be sufficiently large such that the coefficient of the first term $\frac{1}{T} \sum_{t=0}^{T-1} \|d_t\|^2$ is
1347 smaller than $\frac{1}{2}$.

1348 **Step B.3: Dual Feasibility and Complementary Slackness Term.** Now, we consider the last term
1349 in the KKT system: $r_{t,s} = \min\{\omega_{t,s}, \rho_t - \lambda_s f_s(z_t)\}, \forall s \in [S]$. We denote $a_{t,s} = \rho_t - \lambda_s f_s(z_t)$,

1350 $b_{t,s} = \omega_{t,s} = v(\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t)$ for convenience. We note that $b_{t,s} = v(\delta_{t,s} - a_{t,s})$. Besides,
 1351 we also note the following fact:
 1352

$$\begin{aligned} 1353 \quad (d_{t,\delta})_s &= \frac{1}{\eta}(\delta_{t,s} - \delta_{t+1,s}) \\ 1354 \quad &= \frac{1}{\eta}(\delta_{t,s} - \max\{\delta_{t,s} - \eta \nabla_{\delta_s} P(\theta_t), 0\}) \\ 1355 \quad &= \min\{b_{t,s}, \frac{\delta_{t,s}}{\eta}\}, \\ 1356 \quad & \\ 1357 \quad & \\ 1358 \quad & \\ 1359 \quad & \end{aligned}$$

1360 where the second equality is due to the projection operation. Now, we discuss $r_{t,s}^2$ in two cases.
 1361

1362 In the first case, we suppose that $s \in \mathcal{I}_t$, i.e., $b_{t,s} \leq \frac{\delta_{t,s}}{\eta}$. If $b_{t,s} \leq a_{t,s}$, then $r_{t,s}^2 = b_{t,s}^2$. If
 1363 $b_{t,s} > a_{t,s}$, then, combining with $b_{t,s} = v(\delta_{t,s} - a_{t,s}) \geq -va_{t,s}$, we know $r_{t,s}^2 = a_{t,s}^2 \leq b_{t,s}^2$.
 1364 Therefore, $r_{t,s}^2$ can be controlled by $b_{t,s}^2 = |(d_{t,\delta})_s|^2$.
 1365

1366 In the second case, we suppose that $s \in \mathcal{J}_t$, i.e., $b_{t,s} > \frac{\delta_{t,s}}{\eta}$. There are two subclasses: 1) If $a_{t,s} \geq 0$,
 1367 we have:

$$1368 \quad r_{t,s}^2 \leq \left(\frac{vat_s + b_{t,s}}{v+1} \right)^2 = \left(\frac{v}{v+1} \right)^2 \delta_{t,s}^2 \leq \eta^2 \left(\frac{\delta_{t,s}}{\eta} \right)^2 \leq |(d_{t,\delta})_s|^2. \\ 1369 \\ 1370$$

1371 2) If $a_{t,s} < 0 \leq b_{t,s}$, then $r_{t,s}^2 = a_{t,s}^2 \leq b_{t,s}^2/v^2 = c_{t,s}^2$, and we have $s \in \mathcal{J}_t$. We can follow Step
 1372 B.2 to obtain:

$$1373 \quad \sum_{s \in \mathcal{J}_t} c_{t,s}^2 \leq \left(\sum_{s \in \mathcal{J}_t} c_{t,s} \right)^2 \leq \left(\frac{2\sqrt{S}\|d_t\| + 1}{v} \right)^2. \\ 1374 \\ 1375 \\ 1376$$

1377 Here, we note that for each $s \in [S]$, only one of the cases holds. Therefore, we combine these results
 1378 to get:
 1379

$$1380 \quad \sum_{s=1}^S r_{t,s}^2 \leq \|d_{t,\delta}\|^2 + \frac{4S\|d_t\|^2 + 2}{v^2}, \\ 1381 \\ 1382$$

1383 which implies:

$$1384 \quad \frac{1}{T} \sum_{t=0}^{T-1} \sum_{s=1}^S r_{t,s}^2 \leq \frac{1}{T} \sum_{t=0}^{T-1} \|d_{t,\delta}\|^2 + \frac{2}{v^2} + \frac{4S}{v^2} \cdot \frac{1}{T} \sum_{t=0}^{T-1} \|d_t\|^2. \\ 1385 \\ 1386 \\ 1387$$

1388 We can select v to be sufficiently large such that the coefficient of the last term $\frac{1}{T} \sum_{t=0}^{T-1} \|d_t\|^2$ is
 1389 smaller than $\frac{1}{2}$.
 1390

1391 Step C: Combination and Parameter Selection.

1392 Finally, we can combine the all the results we obtained from Steps A and B to get the following
 1393 convergence performance guarantee:
 1394

$$\begin{aligned} 1395 \quad & \|\mathcal{K}(\rho_t, z_t, \omega_t, \nu_t, \lambda)\|^2 \\ 1396 \quad &= (1 - \sum_{s=1}^S \omega_{t,s})^2 + \left\| \sum_{s=1}^S \omega_{t,s} \lambda_s \nabla f_s(z_t) + \sum_{i=1}^q \nu_{t,i} \nabla h_i(z_t) \right\|^2 \\ 1397 \quad &+ \|h(z_t)\|^2 + \sum_{s=1}^S [\min\{\omega_{t,s}, \rho_t - \lambda_s f_s(z_t)\}]^2 \\ 1398 \quad & \\ 1399 \quad & \\ 1400 \quad & \\ 1401 \quad & \\ 1402 \quad & \\ 1403 \quad &= \|d_{t,\rho}\|^2 + \|d_{t,z}\|^2 + \|h(z_t)\|^2 + \sum_{s=1}^S r_{t,s}^2, \end{aligned}$$

1404 which implies:
1405

$$\begin{aligned}
& \frac{1}{T} \sum_{t=0}^{T-1} \|\mathcal{K}(\rho_t, z_t, \omega_t, \nu_t, \lambda)\|^2 \\
&= \frac{1}{T} \sum_{t=0}^{T-1} \left(\|d_{t,\rho}\|^2 + \|d_{t,z}\|^2 + \|h(z_t)\|^2 + \sum_{s=1}^S r_{t,s}^2 \right) \\
&\leq \frac{1}{T} \sum_{t=0}^{T-1} (\|d_{t,\rho}\|^2 + \|d_{t,z}\|^2 + \|d_{t,\delta}\|^2) \\
&\quad + \frac{2(3\sqrt{SM} + 1)^2}{u^2\sigma^2} \cdot \frac{1}{T} \sum_{t=0}^{T-1} \|d_t\|^2 + \frac{2M^2}{u^2\sigma^2} + \frac{2}{v^2} + \frac{4S}{v^2} \cdot \frac{1}{T} \sum_{t=0}^{T-1} \|d_t\|^2 \\
&\leq \frac{2}{T} \sum_{t=0}^{T-1} \|d_t\|^2 + \frac{2M^2}{u^2\sigma^2} + \frac{2}{v^2} \\
&\leq \frac{2(P(\theta_0) - P(\theta_T))}{\eta T(2 - L_P\eta)} + \frac{2M^2}{u^2\sigma^2} + \frac{2}{v^2} \\
&\leq \frac{2(\rho_0 - \rho_T + \frac{u}{2}(\|h(z_0)\|^2 - \|h(z_T)\|^2) + \frac{v}{2} \sum_{s=1}^S (c_{0,s}^2 - c_{T,s}^2))}{\eta T(2 - L_P\eta)} + \frac{2M^2}{u^2\sigma^2} + \frac{2}{v^2} \\
&\leq \frac{2\rho_0 + 4 + u\|h(z_0)\|^2 + v \sum_{s=1}^S (\lambda_s f_s(z_0) + \delta_{0,s} - \rho_0)^2}{\eta T(2 - L_P\eta)} + \frac{2M^2}{u^2\sigma^2} + \frac{2}{v^2},
\end{aligned} \tag{7}$$

1428 where the last inequality is derived from the fact that ρ_t has a trivial lower bound, which can be
1429 argued as follows. On the one hand, by letting $\eta \leq \frac{1}{L_P}$, we can get $P(\theta_{t+1}) \leq P(\theta_t), \forall t =$
1430 $0, \dots, T-1$. On the other hand, since $f_s(z) > 0, \forall s \in [S]$, we have $\nabla_\rho P(\theta_t) \leq 0$ when:

$$\rho_t \leq -\frac{1}{vS} \leq \frac{1}{S} \left(\sum_{s=1}^S (\lambda_s f_s(z_t) + \delta_{t,s}) - \frac{1}{v} \right),$$

1434 which implies $\rho_{t+1} \geq \rho_t, \forall t = 0, \dots, T-1$ if $\rho_t \leq -\frac{1}{vS}$. Therefore, we can further obtain:

$$\begin{aligned}
\rho_t &\geq -\frac{1}{vS} - \eta \nabla_\rho P(\theta_t), \\
&\implies \rho_t \geq -\frac{1}{vS} - \eta + \eta v \left(\sum_{s=1}^S \lambda_s f_s(z_t) + \delta_{t,s} - \rho_t \right), \\
&\implies \rho_t \geq -\frac{1}{vS} - \eta - \eta v S \rho_t, \\
&\implies \rho_t \geq -2,
\end{aligned}$$

1445 To finish the analysis, we select parameters such that Equation (7) converges. Let $u = \Theta(T^\xi)$,
1446 $v = \Theta(T^\xi)$, and $\eta = \Theta(T^{-\gamma})$. It is also worth noting that L_P has the same order with u and v .
1447 Thus, we maximize an order o , such that:

$$\begin{aligned}
1 - \gamma - \xi &\geq o, \\
2\xi &\geq o, \\
\gamma &\geq \xi.
\end{aligned}$$

1452 Thus, we select $\gamma = \xi = \frac{1}{4}$, then $o = \frac{1}{2}$, i.e., the convergence rate is $\mathcal{O}(S/T^{\frac{1}{2}})$. \square
1453

1454 **Remark 5.** For hyperparameter selection, we also provide the following practical guidance, based
1455 on the insights from our theoretical analysis. (1) In practice, the total number of iterations T is
1456 usually known beforehand or can be set. Therefore, the $\Theta(\cdot)$ -scaling results indicate that we only
1457 need to choose the u , v , and η parameters following the correct scaling order in terms of T . (2)
From the analysis, we find that the hidden constants in these $\Theta(\cdot)$ -scaling results only depend on

1458 Lipschitz continuity coefficient M and the minimum singular value σ , both of which are relatively
 1459 easy to estimate historically from the dataset or online through the warm-up stage in training. (3) In
 1460 additional to the above quantitative characterizations for choosing u , v , and η , one can additionally
 1461 pick these parameters following some practical rules of thumb. since u and v are the coefficients
 1462 of the penalty terms, one can pick larger u - and v -values if ensuring small constraint violations is
 1463 more preferred. On the other hand, if minimizing the objective is more preferred, one can choose
 1464 relatively small u - and v -values.

D.3 STOCHASTIC WC-PENALTY ALGORITHM

Now, we consider the ECMO problem in its stochastic form as follows:

$$\begin{aligned} \min_{z \in \mathbb{R}^k} F(z)^\top &= (f_1(z), \dots, f_S(z)) \\ \text{s.t. } h_i(z) &= 0, i = 1, \dots, q, \end{aligned}$$

where $f_s(z) = \mathbb{E}_\xi[f_s(z; \xi)]$, $\forall s \in [S]$, and $h_i(z) = \mathbb{E}_\zeta[h_i(z; \zeta)]$, $\forall i \in [q]$. Since this problem shares exactly the same form as ECMO, differing only in the specific $f_s(z)$ and $h_i(z)$, the KKT system defined in Definition 5 remains applicable. Consequently, it is still irrational to apply the penalty method, specifically, Equation (1), to address this problem.

Hence, we adopt a similar algorithmic framework, i.e., Algorithm 3, to deal with this stochastic ECMO problem. Note that we keep the aforementioned notation $\mathcal{C} = \mathbb{R} \times \mathbb{R}^k \times \mathbb{R}_+^S$ as the feasible region, and $\theta = (\rho^\top, z^\top, \delta^\top)^\top$ for simplicity. The stochastic gradients can be computed as follows:

$$\begin{aligned} \hat{\nabla}_\rho P(\theta_t) &= 1 - v \sum_{s=1}^S (\lambda_s f_s(z_t; \mathcal{B}_t^s) + \delta_{t,s} - \rho_t), \\ \hat{\nabla}_z P(\theta_t) &= u \sum_{i=1}^q h_i(z_t; \mathcal{T}_t^i) \nabla h_i(z_t; \mathcal{T}_t^i) + v \sum_{s=1}^S (\lambda_s f_s(z_t; \mathcal{B}_t^s) + \delta_{t,s} - \rho_t) \lambda_s \nabla f_s(z_t; \mathcal{B}_t^s), \\ \hat{\nabla}_{\delta_s} P(\theta_t) &= v (\lambda_s f_s(z_t; \mathcal{B}_t^s) + \delta_{t,s} - \rho_t), \end{aligned} \tag{8}$$

where \mathcal{B}_t^s and \mathcal{T}_t^i denote the mini-batches of sampled data at iteration with batch-sizes $\mathcal{B}(t)$ and $\mathcal{T}(t)$, respectively, for each t, s, i . Before giving the theoretical results and the analysis, we need an additional assumption stated as follows:

Assumption 3 (Variance). There exist some constants σ_f and σ_h , such that $\mathbb{E}(f_s(z; \xi) - f_s(z))^2 \leq \sigma_f^2$, $\forall z \in \mathbb{R}^k$, $s \in [S]$, and $\mathbb{E}(h_i(z; \zeta) - h_i(z))^2 \leq \sigma_h^2$, $\forall z \in \mathbb{R}^k$, $i \in [q]$.

Now, we are ready to present the theoretical results for Algorithm 3.

Theorem 5 (Finite-Time Convergence Rate of Algorithm 3). *Under Assumptions 1, 2 and 3, for any $\kappa \in (0, 1)$, preference $\lambda \in \Delta_S^{++}$, selecting $\eta = \Theta(T^{-\frac{1}{4}})$, $u = v = \Theta(T^{\frac{1}{4}})$, and $\mathcal{B}(t) = \mathcal{T}(t) = \Theta(T^{\frac{5}{4}})$, $\forall t$, Algorithm 3 has the following convergence result with probability at least $1 - \kappa$:*

$$\frac{1}{T} \sum_{t=0}^{T-1} \|\mathcal{K}(\rho_t, z_t, \omega_t, \nu_t, \lambda)\|^2 = \mathcal{O}\left(\frac{S}{T^{\frac{1}{2}}}\right).$$

Proof. To begin with, we define $\theta_{t+1} = \theta_t - \eta d_t$, which is different from the previous definition in deterministic scenario due to the stochastic nature of gradients. We split the analysis into three main steps here.

Algorithm 3 Stochastic WC-Penalty Algorithm

- 1: **Input:** Iteration rounds T , initialization $\theta_0 \in \mathcal{C}$, where $\rho_0 \geq 0$, and step-size η .
- 2: **for** $t = 0, 1, \dots, T - 1$ **do**
- 3: Draw sample batches $\mathcal{B}_t^1, \dots, \mathcal{B}_t^S$ and $\mathcal{T}_t^1, \dots, \mathcal{T}_t^q$.
- 4: Compute stochastic gradients: $\hat{\nabla}P(\theta_t)$ by Equation (8).
- 5: Update $\theta_{t+1} = \mathcal{P}_{\mathcal{C}}(\theta_t - \eta \hat{\nabla}P(\theta_t))$.

1512 **Step A: General Control.**1513 **Step A.1: Applying Descent Lemma.** According to the descent lemma, we have:

$$\begin{aligned}
1516 \quad P(\theta_{t+1}) &\leq P(\theta_t) + \langle \nabla P(\theta_t), \theta_{t+1} - \theta_t \rangle + \frac{L_P}{2} \|\theta_{t+1} - \theta_t\|^2 \\
1517 \quad &= P(\theta_t) - \eta \langle \nabla P(\theta_t), d_t \rangle + \frac{L_P \eta^2}{2} \|d_t\|^2 \\
1518 \quad &= P(\theta_t) - \eta \langle \nabla P(\theta_t) - \hat{\nabla} P(\theta_t) + \hat{\nabla} P(\theta_t), d_t \rangle + \frac{L_P \eta^2}{2} \|d_t\|^2 \\
1519 \quad &\leq P(\theta_t) - \eta \|d_t\|^2 - \eta \langle \nabla P(\theta_t) - \hat{\nabla} P(\theta_t), d_t \rangle + \frac{L_P \eta^2}{2} \|d_t\|^2 \\
1520 \quad &\leq P(\theta_t) - \eta \|d_t\|^2 + \frac{L_P \eta^2}{2} \|d_t\|^2 + \frac{\eta^2}{2} \|d_t\|^2 + \frac{1}{2} \|\nabla P(\theta_t) - \hat{\nabla} P(\theta_t)\|^2,
\end{aligned}$$

1521 where the second inequality is due to the property of projection, and the last inequality is due to
1522 Cauchy–Schwarz inequality. Then, we have:

$$1523 \quad \eta \left(1 - \frac{\eta}{2} - \frac{L_P \eta}{2} \right) \mathbb{E} \|d_t\|^2 \leq P(\theta_t) - P(\theta_{t+1}) + \frac{1}{2} \mathbb{E} \|\nabla P(\theta_t) - \hat{\nabla} P(\theta_t)\|^2.$$

1524 **Step A.2: Stochastic Gradient Control.** Then, we control:

$$\begin{aligned}
1525 \quad &\mathbb{E} \|\nabla P(\theta_t) - \hat{\nabla} P(\theta_t)\|^2 \\
1526 \quad &= \underbrace{\mathbb{E} \|\nabla_{\rho} P(\theta_t) - \hat{\nabla}_{\rho} P(\theta_t)\|^2}_{A_t} + \underbrace{\mathbb{E} \|\nabla_z P(\theta_t) - \hat{\nabla}_z P(\theta_t)\|^2}_{B_t} + \underbrace{\mathbb{E} \|\nabla_{\delta} P(\theta_t) - \hat{\nabla}_{\delta} P(\theta_t)\|^2}_{C_t}.
\end{aligned}$$

1527 According to Assumption 3, we have the following results: First,

$$\begin{aligned}
1528 \quad A_t &= \mathbb{E} \left(1 - v \sum_{s=1}^S (\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t) - (1 - v \sum_{s=1}^S (\lambda_s f_s(z_t; \mathcal{B}_t^s) + \delta_{t,s} - \rho_t)) \right)^2 \\
1529 \quad &= \mathbb{E} \left(v \sum_{s=1}^S (\lambda_s f_s(z_t; \mathcal{B}_t^s) - \lambda_s f_s(z_t)) \right)^2 \\
1530 \quad &\leq v^2 S \sum_{s=1}^S \lambda_s \mathbb{E} (f_s(z_t; \mathcal{B}_t^s) - f_s(z_t))^2 \\
1531 \quad &\leq \frac{v^2 S \sigma_f^2}{\mathcal{B}(t)},
\end{aligned}$$

1532 where the first inequality is due to the linearity of expectation, and the second inequality is due to
1533 $|\mathcal{B}_t^s| = \mathcal{B}(t)$, $\forall s \in [S]$ and $\lambda \in \Delta_S^{++}$. Second, according to the similar argument, we have:

$$\begin{aligned}
1534 \quad C_t &= \mathbb{E} \left(\sum_{s=1}^S (v(\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t) - v(\lambda_s f_s(z_t; \mathcal{B}_t^s) + \delta_{t,s} - \rho_t))^2 \right) \\
1535 \quad &= v^2 \mathbb{E} \left(\sum_{s=1}^S (\lambda_s f_s(z_t) - \lambda_s f_s(z_t; \mathcal{B}_t^s))^2 \right) \\
1536 \quad &= v^2 \sum_{s=1}^S \mathbb{E} (\lambda_s f_s(z_t) - \lambda_s f_s(z_t; \mathcal{B}_t^s))^2 \\
1537 \quad &\leq \frac{v^2 \sigma_f^2}{\mathcal{B}(t)}.
\end{aligned}$$

1566 Lastly, for B_t , we add and subtract a term to get:
 1567

$$\begin{aligned}
 1568 \quad B_t &\leq 2\mathbb{E}\underbrace{\|u \sum_{i=1}^q h_i(z_t) \nabla h_i(z_t) - u \sum_{i=1}^q h_i(z_t; \mathcal{T}_t^i) \nabla h_i(z_t; \mathcal{T}_t^i)\|^2}_{B_{t,1}} \\
 1569 \\
 1570 \\
 1571 \\
 1572 \quad &+ 2\mathbb{E}\underbrace{\|v \sum_{s=1}^S (\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t) \lambda_s \nabla f_s(z_t) - v \sum_{s=1}^S (\lambda_s f_s(z_t; \mathcal{B}_t^s) + \delta_{t,s} - \rho_t) \lambda_s \nabla f_s(z_t; \mathcal{B}_t^s)\|^2}_{B_{t,2}}.
 \end{aligned}$$

1576 Therefore, due to the bounded variance and the smoothness assumption, we can get:
 1577

$$\begin{aligned}
 1578 \quad B_{t,1} &\leq 4\mathbb{E}\|u \sum_{i=1}^q h_i(z_t) \nabla h_i(z_t) - u \sum_{i=1}^q h_i(z_t) \nabla h_i(z_t; \mathcal{T}_t^i)\|^2 \\
 1579 \\
 1580 \quad &+ 4\mathbb{E}\|u \sum_{i=1}^q h_i(z_t) \nabla h_i(z_t; \mathcal{T}_t^i) - u \sum_{i=1}^q h_i(z_t; \mathcal{T}_t^i) \nabla h_i(z_t; \mathcal{T}_t^i)\|^2 \\
 1581 \\
 1582 \quad &\leq 4u^2 m \sum_{i=1}^q \mathbb{E}\|h_i(z_t)(\nabla h_i(z_t) - \nabla h_i(z_t; \mathcal{T}_t^i))\|^2 \\
 1583 \\
 1584 \quad &+ 4u^2 m \sum_{i=1}^q \mathbb{E}\|(h_i(z_t) - h_i(z_t; \mathcal{T}_t^i)) \nabla h_i(z_t; \mathcal{T}_t^i)\|^2 \\
 1585 \\
 1586 \quad &\leq \frac{4u^2 m M^2}{\mathcal{T}(t)} \sum_{i=1}^q h_i(z_t)^2 + \frac{4u^2 m^2 M^2 \sigma_h^2}{\mathcal{T}(t)},
 \end{aligned}$$

1592 and:

$$\begin{aligned}
 1593 \quad B_{t,2} &\leq 4\mathbb{E}\|v \sum_{s=1}^S (\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t) (\lambda_s \nabla f_s(z_t) - \lambda_s \nabla f_s(z_t; \mathcal{B}_t^s))\|^2 \\
 1594 \\
 1595 \quad &+ 4\mathbb{E}\|v \sum_{s=1}^S (\lambda_s f_s(z_t) - \lambda_s f_s(z_t; \mathcal{B}_t^s)) \lambda_s \nabla f_s(z_t; \mathcal{B}_t^s)\|^2 \\
 1596 \\
 1597 \quad &\leq 4v^2 S \sum_{s=1}^S (\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t)^2 \mathbb{E}\|\lambda_s \nabla f_s(z_t) - \lambda_s \nabla f_s(z_t; \mathcal{B}_t^s)\|^2 \\
 1598 \\
 1599 \quad &+ 4v^2 S \sum_{s=1}^S \mathbb{E}\|(\lambda_s f_s(z_t) - \lambda_s f_s(z_t; \mathcal{B}_t^s)) \lambda_s \nabla f_s(z_t; \mathcal{B}_t^s)\|^2 \\
 1600 \\
 1601 \quad &\leq \frac{4v^2 S M^2}{\mathcal{B}(t)} \sum_{s=1}^S (\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t)^2 + \frac{4v^2 S^2 M^2 \sigma_f^2}{\mathcal{B}(t)}.
 \end{aligned}$$

1607 **Step A.3: Combination.** Hence, we can combine the results obtained in the last two sub-steps to
 1608 get:
 1609

$$\begin{aligned}
 1610 \quad &\eta \left(1 - \frac{\eta}{2} - \frac{L_P \eta}{2} \right) \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\|d_t\|^2 \\
 1611 \\
 1612 \quad &\leq \frac{1}{T} (P(\theta_0) - P(\theta_T)) + \frac{1}{T} \sum_{t=0}^{T-1} \left(\frac{v^2 S \sigma_f^2}{\mathcal{B}(t)} + \frac{2u^2 m^2 M^2 \sigma_h^2}{\mathcal{T}(t)} + \frac{2v^2 S^2 M^2 \sigma_f^2}{\mathcal{B}(t)} \right. \\
 1613 \\
 1614 \quad &\quad \left. + \frac{2u^2 m M^2}{\mathcal{T}(t)} \sum_{i=1}^q h_i(z_t)^2 + \frac{2v^2 S M^2}{\mathcal{B}(t)} \sum_{s=1}^S (\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t)^2 \right).
 \end{aligned}$$

1618 Therefore, we almost bound $\sum_{t=0}^{T-1} \mathbb{E}\|d_t\|^2$. Later, we select proper $\mathcal{B}(t)$, $\mathcal{T}(t)$, and u, v to complete
 1619 this process.

1620 **Step B: KKT System.**
 1621

1622 In this step, we consider the KKT system defined in Definition 5, and aim to control each term of
 1623 $\|\mathcal{K}\|^2$. Before diving deep into the detailed analysis, we introduce some necessary notations here.
 1624 We denote $\bar{d}_t, \forall t = 0, \dots, T-1$, as the expected version of update direction. In other words, let
 1625 $\bar{\theta}_{t+1} = \mathcal{P}_{\mathcal{C}}(\theta_t - \eta \nabla P(\theta_t))$, then we have $\bar{\theta}_{t+1} = \theta_t - \eta \bar{d}_t$. Since the KKT system is related to \bar{d}_t ,
 1626 we need to find the relationship between d_t , which has been controlled in Step A, and \bar{d}_t .

1627 **Step B.1: Stationarity Terms.** We now consider the first two terms in the KKT system, i.e., the
 1628 stationarity terms for ρ and z , respectively. We consider z first. On the one hand, we have:

$$1629 \bar{d}_{t,z} = u \sum_{i=1}^q h_i(z_t) \nabla h_i(z_t) + v \sum_{s=1}^S (\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t) \lambda_s \nabla f_s(z_t),$$

1630 implying that in Definition 5, by setting $\omega_{t,s} = v(\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t)$, $\nu_{t,i} = u h_i(z_t)$, and
 1631 $\omega_t = (\omega_{t,1}, \dots, \omega_{t,S})^\top$, $\nu_t = (\nu_{t,1}, \dots, \nu_{t,q})^\top$, we can bound the corresponding stationarity term
 1632 for z as long as $\|\bar{d}_{t,z}\|^2$ can be controlled. On the other hand, we follow the argument in Step A.2 to
 1633 obtain the following result:

$$1634 \begin{aligned} \|\bar{d}_{t,z}\|^2 &= \mathbb{E} \|\bar{d}_{t,z}\|^2 \\ 1635 &\leq 2\mathbb{E} \|d_{t,z}\|^2 + 2\mathbb{E} \|\bar{d}_{t,z} - d_{t,z}\|^2 \\ 1636 &\leq 2\mathbb{E} \|d_{t,z}\|^2 + 8 \left(\frac{u^2 m^2 M^2 \sigma_h^2}{\mathcal{T}(t)} + \frac{v^2 S^2 M^2 \sigma_f^2}{\mathcal{B}(t)} \right. \\ 1637 &\quad \left. + \frac{u^2 m M^2}{\mathcal{T}(t)} \sum_{i=1}^q h_i(z_t)^2 + \frac{v^2 S M^2}{\mathcal{B}(t)} \sum_{s=1}^S (\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t)^2 \right), \end{aligned}$$

1638 where $\mathbb{E} \|d_{t,z}\|^2$ is already characterized previously. As for the stationarity term for ρ , we note that:

$$1639 1 - \sum_{s=1}^S \omega_{t,s} = 1 - \sum_{s=1}^S v(\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t) = \bar{d}_{t,\rho},$$

1640 and:

$$1641 \|\bar{d}_{t,\rho}\|^2 = \mathbb{E} \|\bar{d}_{t,\rho}\|^2 \leq 2\mathbb{E} \|d_{t,\rho}\|^2 + 2\mathbb{E} \|\bar{d}_{t,\rho} - d_{t,\rho}\|^2 \leq 2\mathbb{E} \|d_{t,\rho}\|^2 + \frac{2v^2 S \sigma_f^2}{\mathcal{B}(t)},$$

1642 which indicates that the stationarity terms are well controlled.

1643 **Step B.2: Primal Feasibility Term.** Then, we consider the primal feasibility, i.e., $\|h(z)\|^2$.
 1644 Similar to the deterministic ECMO problem, we first define some notations as follows: Let
 1645 $c_{t,s} = \lambda_s f_s(z_t; \mathcal{B}_t^s) + \delta_{t,s} - \rho_t$, and $\bar{c}_{t,s} = \lambda_s f_s(z_t) + \delta_{t,s} - \rho_t$. Besides, we also denote the
 1646 following index sets:

$$1647 \mathcal{I}_t = \{s \in [S] : v c_{t,s} \leq \frac{\delta_{t,s}}{\eta}\}, \quad \mathcal{J}_t = \{s \in [S] : v c_{t,s} > \frac{\delta_{t,s}}{\eta}\}.$$

1648 Therefore, we have:

$$1649 u \sigma \|h(z_t)\| \leq \|u \nabla h(z_t) h(z_t)\| = \|\bar{d}_{t,z} - v \sum_{s=1}^S \bar{c}_{t,s} \lambda_s \nabla f_s(z_t)\| \leq \|\bar{d}_{t,z}\| + v M \sum_{s=1}^S |\bar{c}_{t,s}|,$$

1650 which further implies:

$$1651 \begin{aligned} \|\bar{h}(z_t)\| &\leq \frac{1}{u \sigma} \|\bar{d}_{t,z}\| + \frac{v M}{u \sigma} \sum_{s=1}^S |\bar{c}_{t,s}|, \\ 1652 \implies \|\bar{h}(z_t)\|^2 &\leq \frac{2}{u^2 \sigma^2} \|\bar{d}_{t,z}\|^2 + \frac{2v^2 M^2}{u^2 \sigma^2} \left(\sum_{s=1}^S |\bar{c}_{t,s}| \right)^2. \end{aligned}$$

1674 Hence, we need to control:
 1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

$$\left(\sum_{s=1}^S |\bar{c}_{t,s}| \right)^2 \leq 2 \underbrace{\left(\sum_{s \in \mathcal{I}_t} |\bar{c}_{t,s}| \right)^2}_{C(\mathcal{I}_t)} + 2 \underbrace{\left(\sum_{s \in \mathcal{J}_t} |\bar{c}_{t,s}| \right)^2}_{C(\mathcal{J}_t)}.$$

To this end, we can obtain the following two results:

1685

1686

1687

1688

$$\begin{aligned} C(\mathcal{I}_t) &= 2\mathbb{E} \left(\sum_{s \in \mathcal{I}_t} |\bar{c}_{t,s}| \right)^2 \\ &\leq 2\mathbb{E} \left[\sum_{s \in \mathcal{I}_t} (|\bar{c}_{t,s} - c_{t,s}| + |c_{t,s}|) \right]^2 \\ &\leq 4\mathbb{E} \left[\sum_{s \in \mathcal{I}_t} |\bar{c}_{t,s} - c_{t,s}| \right]^2 + 4\mathbb{E} \left[\sum_{s \in \mathcal{I}_t} |c_{t,s}| \right]^2 \\ &\leq 4\mathbb{E} \left[\sum_{s \in \mathcal{I}_t} |\lambda_s(f_s(z_t) - f_s(z_t; \mathcal{B}_t^s))| \right]^2 + 4\mathbb{E} \left[\sqrt{|\mathcal{I}_t|} \frac{\|d_{t,\delta}\|}{v} \right]^2 \\ &\leq \frac{4|\mathcal{I}_t|\sigma_f^2}{\mathcal{B}(t)} + \frac{4|\mathcal{I}_t|}{v^2} \mathbb{E} \|d_{t,\delta}\|^2, \end{aligned}$$

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705 and further:

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

Therefore, we can obtain:

1724

1725

1726

1727

$$\begin{aligned} C(\mathcal{J}_t) &= 2 \left(\sum_{s \in \mathcal{J}_t} |\bar{c}_{t,s}| \right)^2 \\ &\leq 4 \left(\sum_{s \in [S]} |\bar{c}_{t,s}| \right)^2 + 4 \left(\sum_{s \in \mathcal{I}_t} |\bar{c}_{t,s}| \right)^2 \\ &\leq \frac{8|\mathcal{I}_t|\sigma_f^2}{\mathcal{B}(t)} + \frac{8|\mathcal{I}_t|}{v^2} \mathbb{E} \|d_{t,\delta}\|^2 + 4 \left(\frac{1 - \bar{d}_{t,\rho}}{v} \right)^2 \\ &\leq \frac{8|\mathcal{I}_t|\sigma_f^2}{\mathcal{B}(t)} + \frac{8|\mathcal{I}_t|}{v^2} \mathbb{E} \|d_{t,\delta}\|^2 + \frac{8}{v^2} + \frac{16}{v^2} \left(\mathbb{E} \|d_{t,\rho}\|^2 + \frac{v^2 S \sigma_f^2}{\mathcal{B}(t)} \right). \end{aligned}$$

$$\left(\sum_{s=1}^S |\bar{c}_{t,s}| \right)^2 \leq \frac{12|\mathcal{I}_t|\sigma_f^2}{\mathcal{B}(t)} + \frac{12|\mathcal{I}_t|}{v^2} \mathbb{E} \|d_{t,\delta}\|^2 + \frac{8}{v^2} + \frac{16}{v^2} \mathbb{E} \|d_{t,\rho}\|^2 + \frac{16S\sigma_f^2}{\mathcal{B}(t)}.$$

1728 Finally, substituting it back, we can get:
 1729

$$\begin{aligned}
 1730 \quad \|h(z_t)\|^2 &\leq \frac{2}{u^2\sigma^2} \|\bar{d}_{t,z}\|^2 + \frac{2v^2M^2}{u^2\sigma^2} \left(\sum_{s=1}^S |\bar{c}_{t,s}| \right)^2 \\
 1731 &\leq \frac{4}{u^2\sigma^2} \mathbb{E} \|d_{t,z}\|^2 + \frac{16}{u^2\sigma^2} \left(\frac{u^2m^2M^2\sigma_h^2}{\mathcal{T}(t)} + \frac{v^2S^2M^2\sigma_f^2}{\mathcal{B}(t)} \right. \\
 1732 &\quad \left. + \frac{u^2mM^2}{\mathcal{T}(t)} \sum_{i=1}^q h_i(z_t)^2 + \frac{v^2SM^2}{\mathcal{B}(t)} \sum_{s=1}^S (\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t)^2 \right) \\
 1733 &\quad + \frac{2v^2M^2}{u^2\sigma^2} \left(\frac{12|\mathcal{I}_t|\sigma_f^2}{\mathcal{B}(t)} + \frac{12|\mathcal{I}_t|}{v^2} \mathbb{E} \|d_{t,\delta}\|^2 + \frac{8}{v^2} + \frac{16}{v^2} \mathbb{E} \|d_{t,\rho}\|^2 + \frac{16S\sigma_f^2}{\mathcal{B}(t)} \right) \\
 1734 &\leq \frac{4}{u^2\sigma^2} \mathbb{E} \|d_{t,z}\|^2 + \frac{32M^2}{u^2\sigma^2} \mathbb{E} \|d_{t,\rho}\|^2 + \frac{24SM^2}{u^2\sigma^2} \mathbb{E} \|d_{t,\delta}\|^2 + \frac{16M^2}{u^2\sigma^2} + \frac{56Sv^2M^2\sigma_f^2}{u^2\sigma^2\mathcal{B}(t)} \\
 1735 &\quad + \frac{16}{u^2\sigma^2} \left(\frac{u^2m^2M^2\sigma_h^2}{\mathcal{T}(t)} + \frac{v^2S^2M^2\sigma_f^2}{\mathcal{B}(t)} \right. \\
 1736 &\quad \left. + \frac{u^2mM^2}{\mathcal{T}(t)} \sum_{i=1}^q h_i(z_t)^2 + \frac{v^2SM^2}{\mathcal{B}(t)} \sum_{s=1}^S (\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t)^2 \right).
 \end{aligned}$$

1750 Thus, we can select $\mathcal{T}(t)$ to be sufficiently large such that:
 1751

$$\begin{aligned}
 1752 \quad \|h(z_t)\|^2 &\leq \frac{8}{u^2\sigma^2} \mathbb{E} \|d_{t,z}\|^2 + \frac{64M^2}{u^2\sigma^2} \mathbb{E} \|d_{t,\rho}\|^2 + \frac{48SM^2}{u^2\sigma^2} \mathbb{E} \|d_{t,\delta}\|^2 + \frac{32M^2}{u^2\sigma^2} + \frac{112Sv^2M^2\sigma_f^2}{u^2\sigma^2\mathcal{B}(t)} \\
 1753 &\quad + \frac{32}{u^2\sigma^2} \left(\frac{u^2m^2M^2\sigma_h^2}{\mathcal{T}(t)} + \frac{v^2S^2M^2\sigma_f^2}{\mathcal{B}(t)} + \frac{v^2SM^2}{\mathcal{B}(t)} \sum_{s=1}^S (\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t)^2 \right).
 \end{aligned}$$

1758 Then, we can select u to be sufficiently large such that the sum of the first three terms in RHS is no
 1759 larger than $\mathbb{E} \|d_t\|^2$. Besides, we let $\mathcal{B}(t)$ and $\mathcal{T}(t)$ be some T -dependent constant (but independent
 1760 with t). Then, we have:

$$\begin{aligned}
 1761 \quad \frac{1}{T} \sum_{t=0}^{T-1} \|h(z_t)\|^2 &\leq \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|d_t\|^2 + \frac{32M^2}{u^2\sigma^2} + \frac{112Sv^2M^2\sigma_f^2}{u^2\sigma^2\mathcal{B}(t)} + \frac{32}{u^2\sigma^2T} \sum_{t=0}^{T-1} \left(\frac{u^2m^2M^2\sigma_h^2}{\mathcal{T}(t)} \right. \\
 1762 &\quad \left. + \frac{v^2S^2M^2\sigma_f^2}{\mathcal{B}(t)} + \frac{v^2SM^2}{\mathcal{B}(t)} \sum_{s=1}^S (\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t)^2 \right).
 \end{aligned}$$

1768 **Step B.3: Dual Feasibility and Complementary Slackness Term.** Now, we consider the last term
 1769 in the KKT system: $\bar{r}_{t,s} = \min\{\omega_{t,s}, \rho_t - \lambda_s f_s(z_t)\}$.
 1770

1771 To begin with, we first introduce some notations here: let $\bar{a}_{t,s} = \rho_t - \lambda_s f_s(z_t)$, $\bar{b}_{t,s} = \omega_{t,s} =$
 1772 $v(\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t)$, and $a_{t,s} = \rho_t - \lambda_s f_s(z_t; \mathcal{B}_t^s)$, $b_{t,s} = v(\lambda_s f_s(z_t; \mathcal{B}_t^s) + \delta_{t,s} - \rho_t)$. We also
 1773 note the following fact:

$$\begin{aligned}
 1774 \quad (d_{t,\delta})_s &= \frac{1}{\eta} (\delta_{t,s} - \delta_{t+1,s}) \\
 1775 &= \frac{1}{\eta} (\delta_{t,s} - \max\{\delta_{t,s} - \eta \nabla_\delta P(\theta_t), 0\}) \\
 1776 &= \min\{b_{t,s}, \frac{\delta_{t,s}}{\eta}\},
 \end{aligned}$$

1777 and discuss $\bar{r}_{t,s}^2$ in two different cases.
 1778
 1779
 1780
 1781

1782 In the first case, we suppose $s \in \mathcal{I}_t$, i.e., $b_{t,s} \leq \frac{\delta_{t,s}}{\eta}$. No matter what the orders among $b_{t,s}$, $\bar{b}_{t,s}$, and
 1783 $\frac{\delta_{t,s}}{\eta}$ are, we can obtain:
 1784

$$1785 \bar{r}_{t,s}^2 \leq \bar{b}_{t,s}^2 \leq 2\mathbb{E}(b_{t,s}^2) + 2\mathbb{E}(\bar{b}_{t,s} - b_{t,s})^2 \leq 2\mathbb{E}(d_{t,\delta})_s^2 + \frac{2v^2\lambda_s^2\sigma_f^2}{\mathcal{B}(t)}.$$

1789 In the second case, we suppose $s \in \mathcal{J}_t$, i.e., $\frac{\delta_{t,s}}{\eta} < b_{t,s}$. If $\bar{b}_{t,s} > \frac{\delta_{t,s}}{\eta}$, following the same argument
 1790 in the deterministic scenario, if $\bar{a}_{t,s} \geq 0$, we have: $\bar{r}_{t,s}^2 \leq \mathbb{E}(d_{t,\delta})_s^2$. If $\bar{a}_{t,s} < 0$, we have:
 1791

$$1793 \bar{r}_{t,s}^2 = \bar{a}_{t,s}^2 \leq \frac{\bar{b}_{t,s}^2}{v^2} = \bar{c}_{t,s}^2.$$

1796 Thus, we have:
 1797

$$1798 \sum_{s \in \mathcal{J}_t, \bar{a}_{t,s} < 0} \bar{c}_{t,s}^2 \leq \sum_{s \in \mathcal{J}_t} \bar{c}_{t,s}^2 \\ 1799 \leq \left(\sum_{s \in \mathcal{J}_t} \bar{c}_{t,s} \right)^2 \\ 1800 \leq \frac{4|\mathcal{J}_t|\sigma_f^2}{\mathcal{B}(t)} + \frac{4|\mathcal{J}_t|}{v^2} \mathbb{E}\|d_{t,\delta}\|^2 + \frac{4}{v^2} + \frac{8}{v^2} \mathbb{E}\|d_{t,\rho}\|^2 + \frac{8S\sigma_f^2}{\mathcal{B}(t)}.$$

1807 Otherwise, $\bar{b}_{t,s} \leq \frac{\delta_{t,s}}{\eta}$, we have: $\bar{r}_{t,s}^2 \leq \mathbb{E}(d_{t,\delta})_s^2$ if $\bar{b}_{t,s} \geq -\frac{\delta_{t,s}}{\eta}$, and $\bar{r}_{t,s}^2 = \bar{b}_{t,s}^2 \leq (\bar{b}_{t,s} - b_{t,s})^2 \leq$
 1808 $\frac{v^2\lambda_s^2\sigma_f^2}{\kappa\mathcal{B}(t)}$ with probability at least $1 - \kappa$ if $\bar{b}_{t,s} < -\frac{\delta_{t,s}}{\eta}$ for any $\kappa \in (0, 1)$ according to Chebyshev
 1809 inequality.
 1810

1811 Combining aforementioned results together, with probability at least $1 - \kappa$, we can get:
 1812

$$1813 \sum_{s=1}^S \bar{r}_{t,s}^2 \leq 2 \sum_{s=1}^S \mathbb{E}(d_{t,\delta})_s^2 + \frac{2v^2\sigma_f^2}{\mathcal{B}(t)} + \frac{v^2\sigma_f^2}{\kappa\mathcal{B}(t)} \\ 1814 + \frac{4|\mathcal{J}_t|\sigma_f^2}{\mathcal{B}(t)} + \frac{4|\mathcal{J}_t|}{v^2} \mathbb{E}\|d_{t,\delta}\|^2 + \frac{4}{v^2} + \frac{8}{v^2} \mathbb{E}\|d_{t,\rho}\|^2 + \frac{8S\sigma_f^2}{\mathcal{B}(t)} \\ 1815 \leq 2\mathbb{E}\|d_{t,\delta}\|^2 + \frac{4S+8}{v^2} \mathbb{E}\|d_t\|^2 + \frac{4}{v^2} + \frac{12S\sigma_f^2}{\mathcal{B}(t)} + \frac{2v^2\sigma_f^2}{\mathcal{B}(t)} + \frac{v^2\sigma_f^2}{\kappa\mathcal{B}(t)},$$

1822 which further implies:
 1823

$$1824 \frac{1}{T} \sum_{t=0}^{T-1} \sum_{s=1}^S r_{t,s}^2 \leq \frac{2}{T} \sum_{t=0}^{T-1} \mathbb{E}\|d_{t,\delta}\|^2 + \frac{4S+8}{v^2} \cdot \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\|d_t\|^2 + \frac{4}{v^2} + \frac{12S\sigma_f^2}{\mathcal{B}(t)} + \frac{2v^2\sigma_f^2}{\mathcal{B}(t)} + \frac{v^2\sigma_f^2}{\kappa\mathcal{B}(t)},$$

1827 holds with probability at least $1 - \kappa$ according to Chebyshev inequality. We can select v to be
 1828 sufficiently large such that the coefficient of the second terms in RHS is no larger than 1. Then, with
 1829 probability at least $1 - \kappa$, we obtain:
 1830

$$1831 \frac{1}{T} \sum_{t=0}^{T-1} \sum_{s=1}^S r_{t,s}^2 \leq \frac{2}{T} \sum_{t=0}^{T-1} \mathbb{E}\|d_{t,\delta}\|^2 + \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\|d_t\|^2 + \frac{4}{v^2} + \frac{12S\sigma_f^2}{\mathcal{B}(t)} + \frac{2v^2\sigma_f^2}{\mathcal{B}(t)} + \frac{v^2\sigma_f^2}{\kappa\mathcal{B}(t)}.$$

1835 **Step C: Combination and Parameter Selection.**

1836 Finally, we can combine the all the results we obtained from Steps A and B to get the following
 1837 convergence performance guarantee:

$$\begin{aligned}
 & \|\mathcal{K}(\rho_t, z_t, \omega_t, \nu_t, \lambda)\|^2 \\
 &= (1 - \sum_{s=1}^S \omega_{t,s})^2 + \|\sum_{s=1}^S \omega_{t,s} \lambda_s \nabla f_s(z_t) + \sum_{i=1}^q \nu_{t,i} \nabla h_i(z_t)\|^2 \\
 &+ \|h(z_t)\|^2 + \sum_{s=1}^S [\min\{\omega_{t,s}, \rho_t - \lambda_s f_s(z_t)\}]^2 \\
 &= \|\bar{d}_{t,\rho}\|^2 + \|\bar{d}_{t,z}\|^2 + \|h(z_t)\|^2 + \sum_{s=1}^S \bar{r}_{t,s}^2,
 \end{aligned}$$

1848 which further implies:

$$\begin{aligned}
 & \|\mathcal{K}(\rho_t, z_t, \omega_t, \nu_t, \lambda)\|^2 \\
 &= \|\bar{d}_{t,\rho}\|^2 + \|\bar{d}_{t,z}\|^2 + \|h(z_t)\|^2 + \sum_{s=1}^S \bar{r}_{t,s}^2 \\
 &\leq 2\mathbb{E}\|d_{t,\rho}\|^2 + 2\mathbb{E}\|d_{t,z}\|^2 \\
 &+ \frac{2v^2S\sigma_f^2}{\mathcal{B}(t)} + 8\left(\frac{u^2m^2M^2\sigma_h^2}{\mathcal{T}(t)} + \frac{v^2S^2M^2\sigma_f^2}{\mathcal{B}(t)} + \frac{v^2SM^2}{\mathcal{B}(t)} \sum_{s=1}^S (\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t)^2\right) \\
 &+ 2\|h(z_t)\|^2 + \sum_{s=1}^S \bar{r}_{t,s}^2,
 \end{aligned}$$

1860 where we select large enough $\mathcal{T}(t) \geq 8u^2mM^2$ in the last inequality. Hence, we can further obtain
 1861 the following results with probability at least $1 - \kappa$:

$$\begin{aligned}
 & \frac{1}{T} \sum_{t=0}^{T-1} \|\mathcal{K}(\rho_t, z_t, \omega_t, \nu_t, \lambda)\|^2 \\
 &\leq \frac{6}{T} \sum_{t=0}^{T-1} \mathbb{E}\|d_t\|^2 + \frac{2v^2S\sigma_f^2}{\mathcal{B}(t)} + \frac{8u^2m^2M^2\sigma_h^2}{\mathcal{T}(t)} + \frac{8v^2S^2M^2\sigma_f^2}{\mathcal{B}(t)} \\
 &+ \frac{64M^2}{u^2\sigma^2} + \frac{224Sv^2M^2\sigma_f^2}{u^2\sigma^2\mathcal{B}(t)} + \frac{64}{u^2\sigma^2} \left(\frac{u^2m^2M^2\sigma_h^2}{\mathcal{T}(t)} + \frac{v^2S^2M^2\sigma_f^2}{\mathcal{B}(t)} \right) \\
 &+ \frac{4}{v^2} + \frac{12S\sigma_f^2}{\mathcal{B}(t)} + \frac{2v^2\sigma_f^2}{\mathcal{B}(t)} + \frac{v^2\sigma_f^2}{\kappa\mathcal{B}(t)} \\
 &+ \left(\frac{64v^2SM^2}{u^2\sigma^2\mathcal{B}(t)} + \frac{8v^2SM^2}{\mathcal{B}(t)} \right) \cdot \left(\frac{12S\sigma_f^2}{\mathcal{B}(t)} + \frac{8}{v^2} + \frac{16S\sigma_f^2}{\mathcal{B}(t)} \right),
 \end{aligned}$$

1877 where the last line uses the result of $\left(\sum_{s=1}^S |\bar{c}_{t,s}|\right)^2$. Therefore, we can use the $\mathcal{O}(\cdot)$ notations to
 1878 further organize this result as:

$$\begin{aligned}
 & \frac{1}{T} \sum_{t=0}^{T-1} \|\mathcal{K}(\rho_t, z_t, \omega_t, \nu_t, \lambda)\|^2 \\
 &= \mathcal{O}\left(\frac{S(u+v)}{\eta T}\right) + \mathcal{O}\left(\frac{Su^2}{\eta \mathcal{T}(t)}\right) + \mathcal{O}\left(\frac{Sv^2}{\eta \mathcal{B}(t)}\right) + \mathcal{O}\left(\frac{1}{u^2}\right) + \mathcal{O}\left(\frac{1}{v^2}\right),
 \end{aligned} \tag{9}$$

1885 with probability at least $1 - \kappa$. Thus, we can select parameters to ensure the convergence of Equation
 1886 (9). Specifically, let $u = \Theta(T^\gamma)$, $v = \Theta(T^\gamma)$, $\eta = \Theta(T^{-\gamma})$, and $\mathcal{B}(t) = \mathcal{T}(t) = \Theta(T^\mu)$.
 1887 Suppose the convergence order is o , then we maximize o , such that:

$$\begin{aligned}
 1 - 2\gamma &\geq o, \\
 \mu - 3\gamma &\geq o, \\
 2\gamma &\geq o,
 \end{aligned}$$

1890 Hence, we can set $\gamma = \frac{1}{4}$ and $\mu = \frac{5}{4}$, to obtain $o = \frac{1}{2}$. In other words, The convergence rate is
 1891 $\mathcal{O}(S/T^{\frac{1}{2}})$. \square
 1892

1893 **Remark 6.** By comparing Algorithm 1 and Algorithm 3, along with their respective analyses,
 1894 we identify that the key challenge in the stochastic scenario arises from the **stochastic gradients**.
 1895 Specifically, due to the gap between the full gradient and its stochastic estimator, the analysis for
 1896 Algorithm 3 becomes more complex, even though the overall structure of the analysis remains the
 1897 same. Specifically, to deal with the stochasticity, we 1) add and subtract several intermediate terms,
 1898 applying the triangle inequality to bridge the gap between the stochastic gradients and their full-
 1899 gradient counterparts; 2) use the Chebyshev Inequality to *accurately* bound the dual feasibility and
 1900 complementary slackness terms in the KKT system; and 3) carefully select the batch-sizes \mathcal{B} and \mathcal{T}
 1901 to ensure finite-time convergence.
 1902

1903 E SETUPS AND ADDITIONAL RESULTS OF NUMERICAL EXPERIMENTS

1905 In this section, we present the details of our experimental setups for two data weighting tasks in
 1906 MOBL problems stated in Section 5. In addition, we provide supplementary numerical results for
 1907 both tasks.
 1908

1909 E.1 DATA WEIGHTING FOR MULTI-OBJECTIVE RLHF REWARD MODEL TRAINING

1910 1) Detailed Setup.

1912 **Overview.** The reward model scores LLM-generated responses to prompts based on human-
 1913 aligned criteria in Reinforcement Learning from Human Feedback (RLHF). The multi-objective
 1914 data weighting task aims to determine optimal weights over training datasets for training a reward
 1915 model that maximize multiple validation metrics in Pareto sense. As shown in the literature, this
 1916 data weighting task is often considered using a bilevel framework (Pan et al., 2024; Shen et al.,
 1917 2024a). Moreover, potentially conflicting human preferences, such as *helpfulness*, *verbosity*, naturally
 1918 motivates a multi-objective formulation. Hence, we model this problem as an MOBL problem.
 1919

1920 **Training.** Specifically, there are N training sets $\mathcal{T}_1, \dots, \mathcal{T}_N$. Each training set $\mathcal{T}_n, n \in [N]$ contains
 1921 $|\mathcal{T}_n|$ prompt-response pairs $\{p_{n,i}, r_{n,i}\}, i = 1, \dots, |\mathcal{T}_n|$, and the corresponding scores $s_{n,i}$. The
 1922 derivation, quality, and tendency of these training sets may be unknown in practice, indicating that
 1923 our data weighting task aims to assign larger weights to datasets that are of higher quality and better
 1924 aligned with the target preference. To this end, we consider a weight vector $x = (x_1, \dots, x_N)^\top$,
 1925 where each element corresponds to a training set. These weights are normalized using a SoftMax
 1926 function. We denote the parameter of the reward model as y , then it is a function of the weight x .
 1927

1928 **Validation.** These trained weights are evaluated in the validation process, where M validation
 1929 sets $\mathcal{V}_1, \dots, \mathcal{V}_M$ are considered. Each $\mathcal{V}_m, m \in [M]$ contains $|\mathcal{V}_m|$ prompt-response pairs
 1930 $\{p_{m,j}, r_{m,j}\}, j = 1, \dots, |\mathcal{V}_m|$, and the corresponding scores $s_{m,j}$, where the scores are labeled
 1931 based on some specific and unique criteria such as *helpfulness*, *correctness*, and *verbosity*. In real-
 1932 world scenarios, these metrics may not be aligned with training sets, and can be inaccessible. In
 1933 other words, the M validation sets verify the capability of the reward model in M different direc-
 1934 tions.
 1935

1936 **Formulation and Setup.** To sum up, the formulation of this task is stated as follows:
 1937

$$\begin{aligned} \min_{x,y} & \left(\sum_{j=1}^{|\mathcal{V}_1|} \mathcal{L}(\tilde{s}_{1,j}(y(x)), s_{1,j}), \dots, \sum_{j=1}^{|\mathcal{V}_M|} \mathcal{L}(\tilde{s}_{M,j}(y(x)), s_{M,j}) \right) \\ \text{s.t. } & y(x) \in \arg \min_y \sum_{n=1}^N \frac{\exp(x_n)}{\sum_{n'} \exp(x_{n'})} \sum_{i=1}^{|\mathcal{T}_n|} \mathcal{L}(\tilde{s}_{n,i}(y), s_{n,i}), \end{aligned}$$

1941 where \mathcal{L} , set to mean squared error (MSE) here, denotes the loss evaluated by the true score label s
 1942 and the predicted score label \tilde{s} generated by the reward model. We use the HelpSteer dataset (Wang
 1943 et al., 2023) as the basic dataset. For training datasets, we select two sets with criteria *coherence*
 1944 and *verbosity*, and also construct a set with *random generated scores*, indicating $N = 3$. It is worth

Figure 11: Additional results for Pareto exploration.

noting that the prompt-response pairs in these 3 training sets are identical. For the validation sets, we consider all 5 validation sets, i.e., $M = 5$, each corresponding to a different evaluation criterion: *helpfulness*, *correctness*, *coherence*, *complexity*, and *verbosity*, respectively.

We utilize a multi-layer perceptron (MLP) with a depth of 500 and a width of 5 to represent the reward model. The input is encoded using He et al. (2021) and has a dimension of 500. For the parameters, we set the batch size to 256, the learning rate to $\eta = 10^{-8}$, and the total number of iterations to $T = 3,000$. Moreover, we change the preference vector $\lambda \in \Delta_5^{++}$ to explore the Pareto front. We evaluate three MOBL algorithms, MOML (Ye et al., 2021), MoCo (Fernando et al., 2023), FORUM (Ye et al., 2024), as our baselines. Specifically, the inner loop of each algorithm is set to 50, with learning rates for the UL and LL variables (x and y) set to $\alpha = 10^{-3}$ and $\beta = 10^{-8}$, respectively. Additionally, for MoCo, we set the extra parameters $\gamma = 10^{-3}$ and $\rho = 10^{-6}$; for FORUM, we set $\rho = 2$. Each experiment is repeated for 5 times. All numerical experiments for this reward model training task were conducted on a cluster of 4 NVIDIA H100 GPUs (94GB each) using PyTorch’s DistributedDataParallel.

The expected results are as follows: 1) WC-Penalty Algorithm achieves a low validation loss for each metric, demonstrating the convergence behavior of our algorithm. 2) When different preferences are chosen during the validation process, our algorithm covers a much larger portion of Pareto front compared to other baselines. Moreover, when weights are assigned to prioritize specific objectives, our algorithm yields a lower validation for those objectives compared to the case of using alternative preference vectors.

2) Additional Numerical Results.

We now provide more numerical results on this data weighting for reward model training task, accompanied by discussions to emphasize the advantages of Algorithm 1 in this subsection.

1. Pareto Exploration.

In addition to the results demonstrated in Section 5, we select 5 more additional preference vectors by setting λ as $\lambda_s = 0.84$ for some $s \in [S]$ and $\lambda_{s'} = 0.04$, $\forall s' \neq s$, referring to this as “slightly prefer” some objective in Figure 11a. This further verifies the Pareto exploration capability of Algorithm 1. Furthermore, to provide a clearer intuition of how our algorithm converges for each objective, Figure 11b illustrates the convergence behavior of each objective based on their loss and standard error over the 5 trials when the preference vector is set to $\lambda = [0.01, 0.01, 0.01, 0.01, 0.96]^\top$ (i.e., under preference “prefer verbosity”). We also compute the area ratios $\frac{S_{\text{ours}}}{S_{\text{baseline}}}$ for each baseline shown in Figure 6b, yielding the following results: $\frac{S_{\text{ours}}}{S_{\text{MOML}}} = 1.67$, $\frac{S_{\text{ours}}}{S_{\text{FORUM}}} = 1.36$, and $\frac{S_{\text{ours}}}{S_{\text{MoCo}}} = 1.56$. Our approach demonstrates at least a 36% improvement on this metric, quantifying the Pareto exploration capability of our algorithm.

Figure 6a and Figure 11 align with our expectations. Intuitively, the loss for each objective converges over time, as our algorithm takes all objectives into account and achieves a convergence rate of $\mathcal{O}(S/T^{\frac{1}{2}})$. What’s more, we also find that the performances on *complexity* and *verbosity* are similar, but significantly different from those of the other three metrics. This outcome, while not entirely surprising, is interesting, as it aligns with our expectations as well. These two criteria focus

Figure 12: Additional results for Convergence Performance.

on redundancy and response length, whereas the other metrics are more concerned with the content of the responses. Our algorithm captures this subtle distinction by selecting some specific preferences, while other baselines fail to consider this point. This strength becomes *particularly valuable* in practice when more objectives are introduced. Our approach enables a systematic exploration upfront, allowing the handling of these objectives, regardless of the complexity of their internal relationships.

2. Convergence Performance.

Except for the ability on Pareto exploration, we also highlight the good convergence behavior in Figure 12. Specifically, we compare the running time of our algorithm with that of all baselines over $T = 3,000$ steps in Figure 12a. We average the loss over 5 trials for each algorithm and include the standard error bars to ensure statistical significance. This result clearly illustrates that our algorithm converges to some weakly Pareto stationary solution in no more than than 70 seconds, while MoCo, MOML, and FORUM require over 5×10^2 , 2×10^3 , and 2×10^4 seconds, respectively, to complete this process. Similarly, Figure 12b shows how our algorithm and three baselines behave in $T = 3,000$ iterations, with the iteration axis shown on a logarithmic scale. It is evident that the slope of our method is the smallest (or the largest in absolute value sense).

The computational efficiency shown in Figure 12a can be attributed to the following two key factors. **First**, while other baselines follow a double-loop scheme to alternately update variables x and y , investing significant effort in the inner loop to optimize the LL function $g(x, y)$, our approach uses a simple projected gradient descent, employing a single-loop paradigm to handle the variables as a unified entirety. **Second**, since the ECMO problem inherently treats x and y as a unified entity, we omit the use of implicit gradient methods (Ghadimi & Wang, 2018; Ji et al., 2021) to compute the Hessian inverse, significantly reducing computational costs.

The best slope of our approach in Figure 12b further validates its convergence performance. Specifically, as illustrated in Theorem 3, our WC-Penalty algorithm achieves a convergence rate of $\mathcal{O}(S/T^{1/2})$ for general ECMO problems, which also applies to this MOBL setup. This rate matches the one obtained for MoCo in the context of MOBL problems under their strongest assumption. In contrast, 1) MOML lacks finite-time convergence guarantees, and 2) FORUM provides a rate of $\mathcal{O}(S/T^{1/4})$ (where the parameter S is omitted in the $\mathcal{O}(\cdot)$ notation in their work). In the end, we'd also like to point out that these convergence rates are based on different metrics. All of the baselines' setups require the strongly convex LL function $g(x, y)$ to ensure well-defined metrics. By contrast, our metric, $\|\mathcal{K}(\rho, z, \omega, \nu, \lambda)\|^2$, is more general, as it applies to general ECMO problems.

3. More Discussions.

Finally, we provide some additional discussion for this experiment, focusing on three main aspects as follows. **Dataset**: The dataset we use (HelpSteer, Wang et al. (2023)) is almost the “optimal” to validate our algorithm, as it contains 5 objectives, whereas most other existing datasets have no more than 3. This allows a more realistic simulation of how algorithms perform with multiple potentially conflicting objectives. Furthermore, it is well-known and widely adopted within the community, reflecting its high quality. **Model**: We consider an MLP as our reward model. It not only performs

Figure 13: Additional results on bilevel algorithms.

well during the learning process (according to the loss values) but also requires relatively short running time. Therefore, we argue that this MLP model is well-suited for our simulation. **Baselines:** Finally, the baselines we select are state-of-the-art methods in MOBL, while other approaches lack theoretical convergence guarantees. Having said that, we also compare our algorithm with some bilevel algorithms for completeness. Specifically, we consider ITD (Ji et al., 2021) and SOBA (Dagréou et al., 2022) with linear scalarization as our baselines (note that it's nontrivial to extend their approaches with WC method). Again, we set λ as $\lambda_s = 0.96$ for some $s \in [S]$ and $\lambda_{s'} = 0.01$, $\forall s' \neq s$ to evaluate their capabilities in exploring the Pareto front. Figure 13 compares our WC-Penalty Algorithm with bilevel algorithms. In particular, we highlight the following two points: 1) The LS method fails to guarantee a full exploration of the Pareto front in this highly nonconvex scenario, while our algorithm excels at covering a larger portion of the Pareto front, further validating our theoretical analysis. 2) The explorations of the two bilevel algorithms are “irregular” and do not reveal the relationships between different objectives. In contrast, our algorithm provides rational guidance in exploring the Pareto front, as demonstrated in Figures 6a and 11a.

E.2 DATA WEIGHTING IN MULTI-OBJECTIVE LLM ALIGNMENT

1) Detailed Setup.

Overview. In the Large Language Model (LLM) Alignment task, our goal is to align a pretrained LLM with human preferences. Instead of relying on a reward model to guide the LLM, we directly utilize the prompt-response data to finetune the language model. In this section, we introduce our data weighting task for multi-objective LLM alignment. Similarly, given that 1) multiplex human preferences necessitate the multi-objective formulation, and 2) the data weighting task is commonly framed as a bilevel problem, this problem can naturally be expressed as an MOBL problem.

Training. In the training process, there are N training sets $\mathcal{T}_1, \dots, \mathcal{T}_N$, where each $\mathcal{T}_n, n \in [N]$ contains $|\mathcal{T}_n|$ prompt-response pairs $(p_{n,i}, r_{p,i}), i = 1, \dots, |\mathcal{T}_n|$. Each $\mathcal{T}_n, n \in [N]$ represents the conversation pairs aligned with one human metric, but may perform poorly in other directions. However, the focus of each dataset is typically unknown in practice. Hence, our goal is to assign an appropriate weight for each dataset, ensuring that the LLM performs well across all metrics. To this end, we consider a weight vector $x = (x_1, \dots, x_N)^\top$, where each element corresponds to a training set. These weights are normalized using a SoftMax function. We denote the parameter of the base LLM as y , then it is a function of the weight x .

Validation. The trained weight x is evaluated during the validation process, where M validation sets $\mathcal{V}_1, \dots, \mathcal{V}_M$ are considered. Each $\mathcal{V}_m, m \in [M]$ contains $|\mathcal{V}_m|$ prompt-response pairs $\{p_{m,j}, r_{m,j}\}, j = 1, \dots, |\mathcal{V}_m|$. Similarly, each validation set represents high-quality conversation pairs based on a specific and unique criterion, such as *helpfulness*, *correctness*, or *verbosity*. In real-world scenarios, these metrics may not align with those used in the training sets (M may be not equal to N) and can often be inaccessible. The overall goal is to finetune the pre-trained LLM, i.e., y , such that the validation loss for all metrics is minimized in Pareto sense.

Figure 14: Additional results for Pareto exploration.

Formulation and Setup. Based on the previous introduction, we can formally model the problem as follows:

$$\begin{aligned} \min_{x,y} & \left(\sum_{j=1}^{|\mathcal{V}_1|} \mathcal{L}(\tilde{r}_{1,j}(p_{1,j}; y(x)), r_{1,j}), \dots, \sum_{j=1}^{|\mathcal{V}_M|} \mathcal{L}(\tilde{r}_{M,j}(p_{M,j}; y(x)), r_{M,j}) \right) \\ \text{s.t. } & y(x) \in \arg \min_y \sum_{n=1}^N \frac{\exp(x_n)}{\sum_{n'} \exp(x_{n'})} \sum_{i=1}^{|\mathcal{T}_n|} \mathcal{L}(\tilde{r}_{n,i}(p_{n,i}; y), r_{n,i}), \end{aligned}$$

where \mathcal{L} , set to cross-entropy in this task, measures the difference between the generated response \tilde{r} and the given response r . To incorporate more objectives, we continue to use HelpSteer (Wang et al., 2023) as our base dataset. However, HelpSteer does not provide separate datasets for each individual criterion. Hence, we construct the training and validation datasets as follows. For training sets, we calculate the average score \bar{s} across the five metrics for each prompt-response pair, and consider it to construct \mathcal{T}_1 for $\bar{s} \geq 2.5$ and \mathcal{T}_2 for $\bar{s} \leq 2$, respectively. In other words, we set $N = 2$ to represent data with different quality levels. For validation sets, we assign a prompt-response pair to a criterion-specific dataset if its corresponding score for that criterion is at least 3 (with scores ranging from $\{0, 1, 2, 3, 4\}$). Besides, we consider all 5 validation sets, i.e., $M = 5$, each corresponding to a different evaluation criterion: *helpfulness*, *correctness*, *coherence*, *complexity*, and *verbosity*, respectively.

We use Llama-3.2-1B-Instruct (Meta, 2024) as our pretrained LLM, and apply the LoRA technique with a rank of 8. For the parameters, we set batch size to 32, learning rate to $\eta = 10^{-5}$ and run the algorithm for $T = 3,000$ iterations. We also set different preference vectors $\lambda \in \Delta_5^{++}$ to explore the Pareto front. For the baselines with a double-loop structure, the inner-loop iteration is set to 40. Each experiment is repeated for 5 times. All numerical experiments were conducted on a cluster of 4 NVIDIA H100 GPUs (94GB each) using PyTorch’s DistributedDataParallel.

2) Additional Numerical Results.

Similarly, we provide more numerical results on this data weighting in LLM alignment task along with discussions in this subsection.

1. Pareto Exploration.

Figure 14 presents additional numerical results on Pareto exploration. In Figure 14a, “slightly prefer” refers to selecting $\lambda_s = 0.84$ for some s and $\lambda_{s'} = 0.04$ for $s' \neq s$. While these preferences do not yield improved performance, they still exhibit regular Pareto exploration behavior, as the loss on the focused objective remains relatively small.

Figure 14b illustrates the convergence performances of different objectives in Algorithm 1 when selecting $\lambda = [0.01, 0.01, 0.01, 0.01, 0.96]^\top$ (i.e., under preference “prefer verbosity”). The loss is averaged over 5 trials, and the standard error bars are also included. Notably, the preferred objective, *verbosity*, achieves relatively better performance, which aligns with the results shown in Figure 14a.

We also provide how bilevel algorithms (Dagréou et al., 2022; Ji et al., 2021) explore the Pareto front using linear scalarization technique in Figure 15. The basic setup remains the same: we set

Figure 15: Additional results on bilevel algorithms.

Figure 16: Additional results on MOBL algorithms.

$\lambda_s = 0.96$ for some s and $\lambda_{s'} = 0.01$ for all other s' . Notably, while both algorithms still exhibit some exploration behaviors with different preference vectors, this exploration is highly irregular. In other words, when certain objectives are preferred, the relative performance may not be dominant. This irregularity stems from the highly nonconvex nature of the LLM alignment problem, where the neural networks, with billions of parameters and highly nonlinear operations, can take unpredictable forms, rendering the linear scalarization method ineffective.

2. MOBL Baselines and Discussions.

We also consider the aforementioned MOBL algorithms (Ye et al., 2021; Fernando et al., 2023; Ye et al., 2024) as our baselines in Figure 16. Specifically, our algorithm still outperforms in Pareto exploration when compared with MOML and MoCo algorithms, since a larger portion of Pareto front is covered by our approach, as demonstrated in Figure 16a. The reason we do not include the FORUM algorithm here lies in its impractical memory cost in large scale problems. As mentioned in the setup, we set the inner-loop iterations (if applicable) as 40 for every algorithm. Nevertheless, this leads to “CUDA out of memory” error when implementing the FORUM algorithm, since 1) its workflows are overly complicated, and 2) its maintained values are extremely memory-consuming. In fact, in our GPUs with 94GB of memory each, the maximum number of inner-loop rounds for FORUM without causing an overflow is 2, which results in the performance shown in Figure 16b. Obviously, the validation loss does not decrease over time, thus, we exclude it from Figure 16a.

Finally, we also claim the rationale behind this experiment. **Dataset:** We still use HelpSteer as the basic dataset because it contains 5 potentially conflicting objectives, allowing us to intuitively demonstrate the performances on Pareto exploration. **Model:** The LLM model employed here is Llama-3.2-1B-Instruct, which has proven to generate reasonable responses and is relatively efficient to train. **Baselines:** For completeness, we consider both MOBL algorithms and bilevel algorithms with linear scalarization as baselines.

Figure 17: Data weighting task in larger-scale (3B & 8B) LLM alignment.

3. Larger-Scale Numerical Experiments and Results.

In order to further validate the capability of our Algorithm 1 in large-scale problems, we enlarge the pretrained LLM model from **Llama-3.2-1B-Instruct** to **Llama-3.2-3B-Instruct** and **Llama-3.1-8B-Instruct** in this subsection.

In Figure 17, we set the preference vector λ as $\lambda_s = 0.96$ for some $s \in [S]$ and $\lambda_{s'} = 0.01, \forall s' \neq s$, using 1/loss as our metric for each objective. Specifically, as shown in Figure 17a, by varying the preference vectors, Algorithm 1 can efficiently explore a diverse set of Pareto stationary solutions, enabling our algorithm to recover a large portion of the Pareto front. Also, Figure 17b further demonstrates that our proposed algorithm outperforms existing methods in recovering the Pareto front, highlighting its effectiveness in Pareto front exploration. Furthermore, in the 8B model, our algorithm consistently demonstrates its ability to perform systematic Pareto exploration, as shown in Figure 17c. All of these numerical results further confirm the excellent scalability of our developed algorithm.

Table 4: Hypervolume results in larger-scale (3B) LLM alignment.

Alg.	Ours	Helpfulness	Correctness	Coherence	Complexity	Verbosity	MoML	MoCo
HV (\uparrow)	4.87e0	3.53e0	3.04e0	3.44e0	2.43e0	3.67e0	8.48e-1	8.49e-4

Moreover, we also compare our Algorithm 1 with MOBL baselines (Ye et al., 2021; Fernando et al., 2023) with two important metrics, Hypervolume and ϵ -metric. Table 4 demonstrates that our algorithm dramatically outperforms the baselines even before completing full Pareto exploration (labeled as Helpfulness, etc.) in terms of Hypervolume, and the Pareto exploration still leads to better performances. Moreover, Figure 18 further confirms that, in terms of ϵ -metric: 1) our method consistently outperforms the baselines, and 2) with varying preference vectors, our method converges to the desired solutions. This is consistent with our theoretical analysis and the previous numerical results.

E.3 MULTI-OBJECTIVE META-LEARNING TASK

1) Experimental Setup.

Overview. We consider a multi-objective meta-learning problem (Ye et al., 2021; Ji et al., 2021; Qin et al., 2025), where the goal is to train a single model capable of addressing multiple objectives within the MOBL framework. This task is particularly useful for handling heterogeneous datasets using a relatively small-scale model. Specifically, the training process corresponds to our lower-level problem, where the model is expected to develop a universal representation capability. Conversely, the validation process corresponds to the upper-level problem, which aims to balance the trade-offs

Figure 18: ϵ -metric.

Figure 19: Results on multi-objective meta-learning.

among multiple potentially conflicting objectives. The overall objective is to enable the model to achieve superior performance in the Pareto sense.

Detailed formulation. We construct five heterogeneous MNIST tasks by assigning each task a distinct digit pair, resulting in different class distributions across tasks. In particular, for each task $s \in \{1, \dots, 5\}$, we create a mixed training subset \mathcal{T}_s containing 80% samples from its specific digit pair (0, 1), (2, 3), (4, 5), (6, 7), or (8, 9) and 20% from the remaining digits. The validation subsets \mathcal{V}_s are constructed analogously from the MNIST test split using the same five digit-pair tasks.

Our model consists of a shared multi-layer perceptron (MLP) parameterized by x and a final linear classifier parameterized by y . Each image is flattened and passed through two fully connected layers of width 512 with ReLU activation functions, followed by a linear layer producing a 256-dimensional representation. The classifier maps this representation to 10 logits.

The problem is formulated as follows:

$$\begin{aligned} \min_{x,y} F(x,y) &= \left(\sum_{d \in \mathcal{V}_1} \mathcal{L}(\mathcal{NN}(d; x, y), l(d)), \dots, \sum_{d \in \mathcal{V}_5} \mathcal{L}(\mathcal{NN}(d; x, y), l(d)) \right)^\top \\ \text{s.t. } y(x) &\in \arg \min_y g(x, y) = \sum_{s=1}^5 \sum_{d \in \mathcal{T}_s} \mathcal{L}(\mathcal{NN}(d; x, y), l(d)), \end{aligned}$$

where \mathcal{L} denotes the cross-entropy loss, d denotes the digit in the dataset, $\mathcal{NN}(\cdot)$ denotes the output of our MLP model, and $l(d)$ denotes the label of d . Note that the cross-entropy loss is a convex function, and the parameter y represents a linear layer. Therefore, the lower-level function $g(x, y)$ satisfies the LLGC condition with respect to y .

2) Numerical Results.

Figure 19 demonstrates the effectiveness of our Algorithm 1 in Pareto exploration and its superior performance compared to baselines. Specifically, in Figure 19a, in addition to the preference vectors used in the previous subsections, we also include the “Equally Prefer” preference, where $\lambda = [0.2, 0.2, 0.2, 0.2, 0.2]^\top$. The numerical results once again confirm the Pareto exploration capability of our approach, allowing it to effectively balance the trade-offs among multiple meta-learning objectives. Additionally, Figure 19b shows that our algorithm outperforms the baselines in this environment.

Table 5: Hypervolume results in multi-objective meta-learning.

Alg.	Ours	Ours - Equal	MOML	MoCo
HV (\uparrow)	1.14e-3	5.10e-4	1.19e-4	1.51e-4

In addition, we compare our Algorithm 1 with MOBL baselines using two important metrics, Hypervolume and ϵ -metric as well. Table 5 demonstrates that our method outperforms the baselines even before completing full Pareto exploration (which is the result under the “Equally Prefer” preference vector selection, and is labeled as “Ours - Equal”), and as the preferences vary, the Hypervolume

Figure 20: ϵ -metric in meta-learning.

(labeled as **Ours**) is significantly larger than that of the baselines. Moreover, Figure 20 further confirms that, in terms of ϵ -metric: 1) our method consistently outperforms the baselines, and 2) with varying preference vectors, our method converges to the desired solutions.

F MORE DISCUSSIONS ON KKT SYSTEM

Part A: To demonstrate that our KKT system defined in Definition 5 is rational, we first prove that: the KKT condition introduced in Appendix C.4 holds if and only if $\mathcal{K}(\rho, z, \omega, \nu, \lambda) = 0$.

Proof. We prove that both directions are correct.

(\Rightarrow)

We assume that KKT condition holds. Then, the stationary condition with respect to ρ and z exactly implies that the first two terms in $\mathcal{K}(\rho, z, \omega, \nu, \lambda)$ are $0 \in \mathbb{R}$ and $0 \in \mathbb{R}^k$. Besides, $h(z) = 0$ directly leads to the third term in $\mathcal{K}(\rho, z, \omega, \nu, \lambda)$ is $0 \in \mathbb{R}^q$. Finally, for any $s \in [S]$, according to $\lambda_s f_s(z) - \rho \leq 0$, $\omega_s \geq 0$, and $\omega_s(\lambda_s f_s(z) - \rho) = 0$, we have: $\min\{\omega_s, \rho - \lambda_s f_s(z)\} = 0$. Combining these arguments, we know $\mathcal{K}(\rho, z, \omega, \nu, \lambda) = 0$.

(\Leftarrow)

We assume $\mathcal{K}(\rho, z, \omega, \nu, \lambda) = 0$, then it's obvious that the stationary condition and the primal feasible condition for equality constraints are satisfied. We mainly focus on the last term in the KKT system.

For any $s \in [S]$, we have $\min\{\omega_s, \rho - \lambda_s f_s(z)\} = 0$. If $\omega_s \leq \rho - \lambda_s f_s(z)$, then we can get: $\omega_s = 0$ and $\rho \geq \lambda_s f_s(z)$. If $\omega_s > \rho - \lambda_s f_s(z)$, then we can get: $\rho - \lambda_s f_s(z) = 0$ and $\omega_s > 0$. Both scenario guarantee that (1) primal feasible condition for inequality constraints, (2) dual feasible condition, and (3) complementary slackness condition are satisfied. \square

Part B: Recall that, \tilde{z} is an ϵ -Pareto stationary solution of ECMO if and only if there exist some $\rho \in \mathbb{R}, \omega \in \mathbb{R}^S, \nu \in \mathbb{R}^q, \lambda \in \Delta_S^{++}$ such that $\|\mathcal{K}(\rho, z, \omega, \nu, \lambda)\|_2^2 \leq \epsilon$. According to this definition, when \tilde{z} is ϵ -Pareto stationary, we have:

$$|\min\{\omega_s, \rho - \lambda_s f_s(z)\}| \leq \|\mathcal{K}(\rho, z, \omega, \nu, \lambda)\|_2^2 \leq \epsilon,$$

for any $s \in [S]$.

From Part A, the primal difficulty of the understanding stems from the term $\min\{\omega_s, \rho - \lambda_s f_s(z)\}$, which is distinct from the counterparts of original KKT conditions, while the correspondences of other parts are trivial. This raises a natural but nontrivial question: *Can $|\min\{\omega_s, \rho - \lambda_s f_s(z)\}| \leq \epsilon$ really imply the complementary slackness condition $\omega_s(\lambda_s f_s(z) - \rho) \approx 0$?*

Even if the “accurate” scenario is already proved in Part A, the answer to this question still remains unclear. The primary issue is that: even though the minimum one is sufficiently close to 0, if the other one goes to infinity, then the multiplication of them cannot be directly concluded. To affirmatively

2376
2377
2378
answer this question, we prove the following proposition: In our Theorem 3, if $|\min\{\omega_{t,s}, \rho_t - \lambda_s f_s(z_t)\}| \leq \epsilon$ holds for any $s \in [S]$, then both $\omega_{t,s}$ and $\lambda_s f_s(z_t) - \rho_t$ are bounded for any $s \in [S]$.

2379
2380
Proof. The following arguments hold for any $s \in [S]$. If $\omega_{t,s} \leq \rho_t - \lambda_s f_s(z_t)$, then $|\omega_{t,s}| \leq \epsilon$.
According to the selection of dual variables, we have:

$$\begin{aligned} 2381 \quad \omega_{t,s} &= v(\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t) \\ 2382 \quad \implies |\rho_t - \lambda_s f_s(z_t)| &\leq |\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t| + |\delta_{t,s}| \leq \frac{\epsilon}{v} + |\delta_{t,s}|. \\ 2383 \end{aligned}$$

2385
2386
If $\omega_{t,s} > \rho_t - \lambda_s f_s(z_t)$, then $|\rho_t - \lambda_s f_s(z_t)| \leq \epsilon$. According to the selection of dual variables, we
have:

$$\begin{aligned} 2387 \quad \omega_{t,s} &= v(\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t) \\ 2388 \quad \implies |\omega_{t,s}| &\leq v|\lambda_s f_s(z_t) + \delta_{t,s} - \rho_t| + v|\delta_{t,s}| \leq v\epsilon + v|\delta_{t,s}|. \\ 2389 \end{aligned}$$

2390
2391
Therefore, in order to show the desired boundedness, we only need to show that $\delta_{t,s}$ is bounded.
2392
2393
Since $\delta_{0,s}$ is fixed, we prove the boundedness of $\delta_{t,s}$ by induction. First, we suppose $\delta_{t-1,s}$ is
bounded.

2394
2395
According to our WC-Penalty Algorithm, we know that $\delta_{t,s} \geq 0$ for any $t = 0, \dots, T-1$. Besides,
for any $t > 0$, we have:

$$2396 \quad \delta_{t,s} = \mathcal{P}_{\mathbb{R}_+} \left(\delta_{t-1,s} - \eta v(\lambda_s f_s(z_{t-1}) + \delta_{t-1,s} - \rho_{t-1}) \right).$$

2399
2400
If $\lambda_s f_s(z_{t-1}) + \delta_{t-1,s} - \rho_{t-1} \geq 0$, then $0 \leq \delta_{t,s} \leq \delta_{t-1,s}$. Thus, the boundedness of $\delta_{t,s}$ can be
derived from the boundedness of $\delta_{t-1,s}$.

2401
2402
If $\lambda_s f_s(z_{t-1}) + \delta_{t-1,s} - \rho_{t-1} < 0$, then we have:

$$2403 \quad 0 \leq \delta_{t,s} \leq \delta_{t-1,s} + \eta v \left(\rho_{t-1} - \lambda_s f_s(z_{t-1}) - \delta_{t-1,s} \right) \leq \delta_{t-1,s} + \eta v \rho_0,$$

2405
2406
where the last inequality is due to the non-increasing property of the sequence $\{\rho_t\}_{t=0}^{T-1}$ demonstrated in **Step C** of the analysis of Theorem 3. This ends our proof. \square

2408
2409
Therefore, by the boundedness, we can argue that $|\min\{\omega_s, \rho - \lambda_s f_s(z)\}| \leq \epsilon$ indeed implies the
complementary slackness condition $\omega_s(\lambda_s f_s(z) - \rho) \approx 0$.

2410
2411
Part C: From these analyses, we observe that (1) the KKT system defined in Definition 5 is not
2412
strictly equivalent to the conventional KKT condition, but (2) in our context, $\|\mathcal{K}(\rho, z, \omega, \nu, \lambda)\|_2^2 \leq \epsilon$
2413
still ensures that all of the four kinds of original KKT conditions are only ϵ -violated. The reason
2414
why we control this surrogate system primally lies in the difficulty of handling the inequality terms
2415
in the original KKT conditions, which are challenging to be quantified. Our newly defined KKT
2416
system not only forms the basis for the subsequent algorithmic design and theoretical analysis, but
2417
also constitutes a novel contribution in its own right.

2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429