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ABSTRACT

In recent years, bilevel optimization (BLO) has attracted significant attention for
its broad applications in machine learning. However, most existing works on BLO
remain confined to the single-objective setting and rely on the lower-level strong
convexity assumption, which significantly restricts their applicability to modern
machine learning problems of growing complexity. In this paper, we make the
first attempt to extend BLO to the multi-objective setting under a relaxed lower-
level general convexity (LLGC) assumption. To this end, we reformulate the
multi-objective bilevel learning (MOBL) problem with LLGC into an equality
constrained multi-objective optimization (ECMO) problem. This transformation
yields a single-level formulation that is more amenable to algorithm design while
preserving the optimal solutions of the original MOBL problem. However, ECMO
itself is a new problem that has not yet been studied in the literature, with no
existing results on its algorithmic design or theoretical analysis, and without a
formally established convergence metric. To address this gap, we first establish
a new Karush—Kuhn—Tucker (KKT)-based Pareto stationarity as the convergence
criterion for ECMO algorithm design. Based on this foundation, we propose a
weighted Chebyshev (WC)-penalty algorithm that achieves a finite-time conver-
gence rate of O(ST ’%) to KKT-based Pareto stationarity in both deterministic
and stochastic settings, where .S denotes the number of objectives, and 71" is the to-
tal iterations. Moreover, by varying the preference vector over the S-dimensional
simplex, our WC-penalty method systematically explores the Pareto front. Finally,
solutions to the ECMO problem translate directly into solutions for the original
MOBL problem, thereby closing the loop between these two foundational opti-
mization frameworks. We verify the efficacy of our approach through experiments
on multi-objective data weighting in reinforcement learning from human feedback
(RLHF) reward model training and large language model (LLM) alignment.

1 INTRODUCTION

1) Background and Motivation: As machine learning frameworks have grown increasingly com-
plex in recent years, the demand for addressing learning problems with nested structures has become
ever more compelling. Such demands typically arise from two distinct perspectives: 1) multiple, po-
tentially conflicting objectives often need to be considered, and 2) the learning of some tasks often
depend on the outcome(s) of other tasks. For instance, when aligning pre-trained large language
models (LLMs) with human feedback, one needs to consider various human-aligned criteria on the
one hand; on the other hand, many tasks, such as policy parameter optimization of LLM alignments
and the actor-critic framework in reinforcement learning, often contain a subtask on reward model
learning. As a result, recent years have seen growing interests in the Multi-Objective Bilevel Learn-
ing (MOBL) problems in the following form: (Ye et al.,[2021;|Fernando et al.|[2023;|Gu et al.,[2023;
Li et al.| 2024; Wang et al., [2024} [Yang et al., 2024b; |Ye et al., [ 2024):

Iil’inF(%y) = [fl(may)v"'va(x,y)]T

s.t.y € M(z) := argmin g(z, y),
y

(MOBL)
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where S denotes the number of objectives, and z € RP, y € R?. For example, in the aforementioned
LLM alignment, the upper-level (UL) problem corresponds to minimizing the validation loss with
respect to multiple human-aligned metrics, such as helpfulness and toxicity, while the lower-level
(LL) problem corresponds to a data weighting task, aiming to curate a high-quality training dataset.

Despite its significance, solving the MOBL problem is highly challenging due to the complex cou-
plings between upper and lower levels and the trade-offs among multiple objectives. So far, most
existing works on bilevel optimization (BLO) in the literature rely on the lower-level strong convex-
ity (LLSC) assumption (see, e.g.,/(Ghadimi & Wang|(2018)); |Arbel & Mairal|(2021); Ji et al.| (2021));
Dagréou et al. (2022)). Specifically, this widely adopted LLSC assumption requires that, for any
given z, g(x, -) is strongly convex with respect to y. It is worth noting that the LLSC assumption ren-
ders a much simplified and tractable BLO algorithm design and analysis, since the LLSC assumption
i) ensures the existence of a unique solution y* () of the LL problem, and ii) implies a well-defined
hyper-gradient VF (, y* (2)) that requires non-singular Hessian V2 g(z, y* (x)) (Ghadimi & Wang,
2018;Ji et al.l[2021). However, the LLSC assumption significantly restricts the applicability of BLO
to modern machine learning problems of growing complexity.

While several recent works in the BLO literature have attempted to relax the LLSC assumption to
the lower-level general convexity (LLGC) assumption (i.e., the LL function g(x,-) is convex but
may not be strongly convex with respect to y for any z) (Sabach & Shtern, |2017;|Liu et al.||2023aj
Cao et al., 2023 Jiang et al.,[2023}Yao et al., 2024;|Chen et al.,|2024a; Lu & Mei,,2024), all existing
works remain confined to the single-objective setting, while the multi-objective bilevel optimization
problem under the LLGC assumption has yet to be explored. A key challenge in solving MOBL
problems under the LLGC assumption stems from the fact that, not only does the hyper-gradients of
the MOBL problem become ill-defined due to the lack of LLSC condition, the optimality of the UL
subproblem also needs to be re-interpreted in the Pareto equilibrium sense due to the trade-off among
multiple objectives. This renders most of the algorithmic techniques developed for single-objective
LLGC-BLO problems inapplicable. The widening gap between the rapidly growing demand for
addressing more general MOBL problems and the inherent limitations of existing BLO techniques
motivates us, in this work, to investigate MOBL under the LLGC assumption.

2) Overview of Our Proposed Approach: To address
the ill-defined hyper-gradient challenge in the MOBL MOBL Problem |------- ->| MOBL Solution
problem under the LLGC assumption, our key idea is to
indirectly solve the MOBL problem by transforming this
problem into an equivalent single-level constrained multi-
objective optimization that shares the same optimal solu-
tions as the original problem. To this end, we note that
solving the lower-level problem in with g(z,y)
being convex for any z is equivalent to solving its first-
order stationarity condition V,g(z,y) = 0, which is both
necessary and sufficient. This implies that we can refor-
mulate the LLGC-MOBL problem as an equality con-
strained multi-objective (ECMO) optimization problem
as follows (also see Step (1) in Fig. |1):

. B T
mnin F(z) = [f1(2),-.., fs(2)] (ECMO)

s.t.hi(2) =0,i=1,...,q,

Ul

ECMO Problem [------- ECMO Solution

WC Problem KKT System

Figure 1: Roadmap of our proposed ap-
proach for solving the MOBL problem
under the LLGC assumption.

where k :=p+q, 2z := [z7,y"]" and h;(2) := V,,g(z,y) = 0. However, even after the ECMO
reformulation, we remain far from resolving the MOBL problem, as the ECMO problem itself con-
stitutes a new formulation that has not yet been examined in the literature. Specifically, while multi-
objective optimization (MOO) problems have been extensively studied (see, e.g., [Sawaragi et al.
(1985)); [Ehrgott (2005); |[Désidéri (2012); [Sener & Koltun| (2018)); Momma et al.| (2022); Fernando
et al.| (2023)), the majority of existing works only considered unconstrained MOO. Meanwhile,
constrained MOO problems, including ECMO, are still in their infancy. To date, although several
heuristic algorithms have been proposed for ECMO and empirically validated (Qu & Suganthan,
2011} [Yang et al.| [2019; |Cuate et al., [2020; |Garcia et al., 2021)), none of these existing works of-
fers theoretical performance guarantees in terms of finite-time convergence rate or sample/iteration
complexity. To establish the theoretical foundation for solving ECMO (and thus for the LLGC-
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MOBL problem), there are two main technical challenges: (1) Lack of Pareto Optimality Con-
dition Characterizations and Appropriate Convergence Metrics: Unlike unconstrained MOO
problems, where the Pareto stationarity can be conveniently employed as the necessary condition
of the Pareto optimality for algorithm design, the characterization of Pareto stationarity for ECMO
remains unclear. Consequently, the current literature lacks appropriate convergence metrics for solv-
ing the ECMO problem; (2) Algorithm Design and Theoretical Analysis: Even with the Pareto
stationarity characterization and convergence metrics established for ECMO, developing algorithms
that can handle the equality constraints in ECMO and enable convergence analysis remains highly
nontrivial. We address these challenges through the following contributions:

* To rigorously characterize the Pareto stationarity for ECMO problems, we leverage the
weighted-Chebyshev (WC) scalarization technique by exploiting the one-to-one correspondence
between the Pareto front of the ECMO problem and the set of solutions to the WC-scalarized
problem under varying preference weights. This establishes a direct connection between the
WC-scalarized problem and the original ECMO problem (cf. Step (2) in Figure . Subse-
quently, this one-to-one correspondence allows us to employ the Karush—Kuhn-Tucker (KKT)
conditions of the WC-scalarized problem as the necessary and sufficient condition of the Pareto
stationarity for the ECMO problem, thereby resolving the challenge of characterizing the Pareto
stationarity for ECMO. (cf. Step (3) in Figure .

* Based on the KKT-based Pareto stationarity for ECMO, we proposed a WC-Penalty algorithm to
solve the ECMO problem, and establish its finite-time convergence rate guarantee (cf. Step
in Figure[I)). Specifically, our WC-Penalty method achieves the KKT-based Pareto stationarity at
arate of O(ST~ B ), where T" denotes the total number of iteration steps. In addition, by varying
the preference vector over the S-dimensional simplex, our WC-Penalty method systematically
explores the Pareto front.

* Finally, solutions to the ECMO problem translate directly into solutions for the original MOBL
problem, thereby closing the loop between these two foundational optimization frameworks (cf.
Step (5) in Figure . In addition, we evaluate our approach on two multi-objective data weight-
ing tasks: reward model training for RLHF, and LLM alignment. Extensive numerical experi-
ments further validate the efficiency of our proposed algorithms across diverse settings.

The remainder of this paper is organized as follows. In Section[2] we provide an overview of closely
related works. In Section [3] we focus on characterizing the Pareto stationarity and establishing
convergence metrics for ECMO. In Section ] we will present our WC-Penalty method for ECMO
and its convergence rate analysis. In Section[5} we will close the loop between ECMO and MOBL
by solving two MOBL problems through the lens of ECMO, and Section [6] concludes this paper.

2 RELATED WORK

In this section, we provide a brief overview of two lines of research that are closely related to this
work, thereby placing our contributions into a comparative perspective.

1) Multi-Objective Bilevel Learning (MOBL): MOBL problems have received increasing atten-
tion in recent years (Ye et al.,[2021;|Gu et al.| 2023}, [Fernando et al., 2023} |Li et al., |2024; Wang et al.,
2024} [Yang et al., 2024b; |Ye et al.| [2024). However, in contrast to the more mature bodies of work
on MOO and BLO, the theoretical foundations of MOBL remain largely underdeveloped. Among
these works, |Yang et al.|(2024b); |Ye et al.| (2021) demonstrated that their proposed algorithms con-
verge asymptotically, but without providing theoretical guarantees of finite-time convergence rate.
In contrast, |Fernando et al.| (2023)); Ye et al.| (2024) proposed algorithms with a finite-time conver-
gence rate of O(ST~2) and O(ST 1), respectively. However, all of these works heavily depend
on the LLSC assumption: not only is the algorithmic framework built upon the LLSC assumption,
but the optimality criterion also relies on it. Therefore, this significantly limits their applicability to
complex real-world scenarios where the LLSC assumption is usually violated.

2) Equality Constrained Multi-Objective (ECMO): ECMO problems have found many applica-
tions across various fields, including resource allocation, scheduling optimization, and path plan-
ning, just to name a few (Liang et al., [2022; |[Hao et al.l [2024). The most closely related works on
ECMO problems are (Cuate et al., 2020; |Garcia et al.,[2021)). Both works proposed algorithmic so-
lutions for ECMO and conduct numerical experiments to validate their methods. However, neither
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work provided any finite-time convergence guarantees, highlighting that the theoretical foundations
for ECMO remain missing. Due to space limitation, we relegate additional detailed comparison and
other related work on closely related topics to Appendix

3 ECMO: CHARACTERIZING PARETO STATIONARITY AND ESTABLISHING
CONVERGENCE METRICS

In this section, we will characterize the Pareto stationarity and establish the convergence metrics for
the ECMO problem, which lays the theoretical foundation for the algorithmic design of ECMO and
eventually solving MOBL in later sections.

3.1 PARETO STATIONARITY FOR ECMO

As in other multi-objective optimization problems, multiple objectives in an ECMO problem could
be conflicting with each another. Thus, in general, there does not exist a unique minimizer z* that
simultaneously minimizes all S objectives f4(z) in As a result, an optimal solution to the
ECMO problem needs to be interpreted in the Pareto sense as follows:

Definition 1 (Pareto Optimality). A solution z dominates another solution 2’ if and only if f,(z) <
fs(2'),V¥s € [S], and there exists at least one s € [S] such that the inequality holds strictly. A
feasible Z is Pareto optimal if and only if no other feasible Z dominates Z.

Intuitively, Pareto optimality means that no objective can be improved without sacrificing at least
one other objective. A weaker, yet useful, notion is the weak Pareto optimality:

Definition 2 (Weak Pareto Optimality). A feasible Z is called weakly Pareto optimal if and only if
no other feasible 2 satisfies: f(2) < fs(2),Vs € [S].

Clearly, Pareto optimality implies weak Pareto optimality, whereas the converse is not always true.
In addition, the set of all (resp. weakly) Pareto optimal points is referred to as the (resp. weak) Pareto
set and denoted as Xp (resp. Xwp), and the (resp. weak) Pareto front is defined as { F(z) : € Xp}
(resp. {F(z) : © € Xwp}). Further, the (weak) Pareto optimality in ECMO is subject to feasibility,
i.e., under the constraint i(z) = 0 (h(2) := [h1(2), ..., he(2)] 7).

However, for nonconvex multi-objective optimization problems, finding (weakly) Pareto optimal
solutions is NP-hard in general. Thus, it is often of practical interest to find a Pareto-stationary
solution instead, which is the necessary condition of a (weakly) Pareto optimal solution. Intuitively,
Pareto stationarity can be interpreted as no common descent direction exists locally. Note that for
unconstrained MOO problems, Pareto stationarity can be defined as follows:

Definition 3 (Pareto Stationarity for Unconstrained MOO). For the unconstrained MOO problem
min, F(2)" = (f1(2),..., fs(z)), Z is a Pareto stationary point if and only if there does not exist
a direction d € R¥, such that V£,(2)"d < 0,Vs € [S].

Moreover, the following equivalent Pareto stationarity charac- p N
terization for unconstrained MOO is often used in practice, z2
which is more amenable for algorithm design: 2 is a Pareto
stationary point if and only if o € A}' (S-simplex) such
that, (Vf1(2),...,Vfs(Z))a = 0 (Sener & Koltun, 2018}
Lin et al, 2024). As aresult, ||[VF(z)al|5 can be regarded as [
a natural metric for Pareto stationarity in unconstrained MOO [
problems, i.e., if |[VEF(Z)al|3 < € for some € > 0, then Z is |
called an e-Pareto stationary solution.

Given the multi-objective nature of ECMO, one might be
tempted to adopt the same Pareto stationarity definition as in
unconstrained MOO. However, as we demonstrate through a
counterexample, the Pareto stationarity definition for uncon-
strained MOO do not hold in the ECMO setting, thereby necessitating a new characterization of
Pareto stationarity. Consider a two-objective ECMO problem as shown in Figure |2, On the one
hand, based on the notion of “common descent direction”, the point Z is Pareto stationary since any
deviation from Z to another feasible point Z on h(z) = 0 in the local neighborhood must result in
an increase in either fi(z) or f2(z). On the other hand, both Definition [3| and its equivalent defi-
nition suggest that Z is not Pareto stationary, since the vector —(aV f1(Z) + (1 — a)V f2(Z)) for

Figure 2: Z is Pareto stationary but
violates Definition 3]
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any o € Aj, which can be represented by a point in the red line segment in Figure is a nonzero
vector. A key reason that Definition [3 fails under ECMO is primarily due to a lack of feasibility
consideration in Definition 3] To address the limitation of Definition 3} we extend the definition of
Pareto stationarity to ECMO problems as follows:

Definition 4 (Pareto Stationarity for ECMO). For an[ECMO|problem with a feasible set D = {z €
R* : h(z) = 0}, a direction d at a solution z is feasible if z + ed € D for small enough ¢ > 0. In
ECMO, a feasible point Z is Pareto stationary if and only if there does not exist a feasible direction
d € R¥ such that Vf,(2) Td < 0,Vs € [9].

It is clear that, under ECMO, the Pareto stationary point z in Fig. |Z| satisfies Definition E} To our
knowledge, Definition |3| is a new result in the literature.

Although Definition [] is a proper Pareto stationarity definition for ECMO problems, it turns out
that deriving an equivalent Pareto stationarity characterization similar to that under unconstrained
MOO and more amenable for algorithm design remains nontrivial. An intuitive guess of Pareto
stationarity characterization for ECMO is to check if VF(Z)a + VA(Z)v = 0 and h(Z) = 0 hold
simultaneously for some o € A%, v € R?. However, although this may appear plausible and aligns
with the example shown in Fig. [2| it can be invalidated by the following counterexamples:

Example 1: Consider a 1-dimensional bi-objective problem with 1 constraint as follows:

1 0 if —1<2<1
W F()T = (=252 _ <zs
P (2) ( 2% ) 54 hl(z) { (]2l = 1)2 =0 otherwise.
Obviously, Z = 1 is a Pareto stationary point in Example 1, as both f1(z) = —32z% and fa(z) = —z

achieve the minimum value in the feasible region [—1, 1] at this point Z. However, since VF'(Z)a =
—1 for any a € AJ, and Vh(Z) = 0, we have VF(2)a + Vh(Z)v = —1 # 0, indicating its
non-stationarity, which leads to a contradiction.

Although the Example 1 is carefully constructed, one might wonder whether the failure arises from
the lack of second-order differentiability of i (z)? To answer this, the following Example 2 employs
more general functions to refute this hypothesis, thereby indicating that the irrationality comes from
the previous guesswork of Pareto stationarity itself.

Example 2: We consider a 3-dimensional bi-objective problem with 2 constraints as follows:

2+22-1=0,

min F(2) " = (21 + 22,21 — 22) st h(z) = { z3—1=0

z

In Example 2, the feasible region is given by D = {0} x R x {1}. We consider Z = (0,0,1)T € D.
Obviously, Z is Pareto stationary according to the definition. However, the gradients of the objective
functions and constraints at this point Z are Vf1(2) = (1,1,0)", Vf2(2) = (1,-1,0)", and
Vhi(Z) = (0,0,2)T, Vhy(2) = (0,0,1) 7, respectively. Therefore, (VF(2)a); = 1,YVa € AF
and (Vh(Z)v); = 0,Yv € R? implies that VF(2)a + Vh(Z)v # 0 for any o € AJ, and v € R2.
This, again, prevents us from naively using VF(Z)a + Vh(Z)v and h(Z) to characterize Pareto
stationarity for ECMO problems.

These counterexamples motivate us to consider adopting constraint qualification conditions in
Section @ which are not only important for characterizing the Pareto stationarity, but also critical
for avoiding corner cases caused by a degenerate Jacobian matrix. More detailed discussions can be
found in Appendix[C]

This indicates that the characterization of Pareto stationarity for ECMO must be derived through
a rigorous and systematic approach rather than relying on intuitive “guesswork”. To this end, we
first present the following theorem, which reveals an important insight that Pareto stationarity in the
ECMO setting can be implied by the locally weak Pareto optimality, which paves the way to derive
our Pareto stationarity characterization for subsequent algorithmic design for solving ECMO (see
Appendix [C] for proofs).

Theorem 1. For[ECMO] a solution % is a locally weakly Pareto optimal point if and only if there
exists some § > 0, such that % is weakly Pareto optimal with feasible region D(%,6) := D N Ns(2),
where D = {z € R¥ : h(z) = 0} and Ns(2) = {z € R¥ : ||z — Z||o < §}. Then, if 7 is locally
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weakly Pareto optimal, then it’s Pareto stationary. Besides, if Z is Pareto stationary, and it also
satisfies: for any s € [S), there exists jus € R? such that 1)V fs(Z) + > 1_, ps,iVhi(Z) =0, and 2)
. ps.iVhi(2)Td # 0 for any feasible direction d, then % is locally weakly Pareto optimal.

Later, we will leverage Theorem [I]to derive the Pareto stationarity characterization for ECMO via
the one-to-one mapping between ECMO and its WC-scalarization (see Step (2) in Figure .

3.2 ONE-TO-ONE MAPPING BETWEEN ECMO AND ITS WEIGHTED-CHEBYSHEV
SCALARIZATION

Weighted-Chebyshev (WC)-scalarization is a technique
to convert a vector-valued MOO problem into a conven-
tional scalar-valued optimization problem. Specifically,
WC minimizes a weighted ¢.,-norm of the vector-valued
objective of an MOO problem (i.e., improving the worst- || ECMO Problem
performing objective). Let AL denote the strictly pos- °

itive S-dimensional simplex. For ECMO problems, WC
can be written as: min,, ||A® F(2)]|co, s-t. hi(2) = 0,7 = WC Problem
1,...,q, where \ € A§+ is a given preference vector.
Further, to address the non-smoothness of “min-max” op- Figure 3: One-to-one mapping between
eration introduced by the ¢.,-norm minimization, we can ECMO and its WC-scalarized problem.
further reformulate the WC-scalarization for the ECMO

problem as follows:

J

min p, subjectto  h;(z) =0,i=1,...,q, Asfs(2) <p,s=1,...,8. (WC)
P,z

It is well known in the MOQO literature that there exists a one-to-one mapping between the solutions
of WC-scalarization and the Pareto front of the original MOO problem, which implies that one
can systematically explore the entire weak Pareto front Xwp by varying the preference vector over
the S-dimensional simplex A" (Ehrgott, 2005; Lin et al., 2024; Qiu et al.| 2024). However, this
one-to-one mapping result depends on solving the WC-scalarized problem to optimality, which is
challenging due to potential non-convexity of the MOO problem. Fortunately, in the following
theorem, we show that the locally optimal WC-solution and locally weak Pareto optimal solution
(or equivalently, the Pareto stationary solution by Theorem([T]) of are also one-to-one mapped.

Theorem 2. Suppose that fs(z) > 0,Vs € [S] Then, Z is a locally weak Pareto optimal solution
0 if and only if (p, Z) is a locally optimal WC-solution for some p € R and \ € A§+.

With Theorem [2} we are now ready to characterize the Pareto stationarity and derive convergence
metrics for ECMO using the Karush-Kuhn-Tucker (KKT) system of the WC-scalarized problem.

3.3 PARETO STATIONARITY CHARACTERIZATION AND CONVERGENCE METRIC
DERIVATIONS FOR ECMO

Note that the WC-scalarized problem is a single-level single-objective optimization problem. Fol-
lowing from (Bazaraa et al.,[2006)), the locally optimal solution of the WC-scalarized problem can be
characterized by its KKT system (see Fig.4) and an appropriate constraint qualification as follows
(see details in Appendix [C.4]due to space limitation):

Lemma 1. For the[WCtscalarized problem, the following results hold:

1. (Necessity) Suppose that (p, Z) is a locally optimal WC-solution, and the linearly independent
constraint qualification (LICQE] holds at z, i.e., {Vh;(2),Vfs(2)} are linearly independent,
where i € [q],s € {s € [S] : A\sfs(2) = p}. Then, the KKT condition is satisfied at (p, Z).

2. (Sufficiency) Suppose the KKT condition and the second-order condition (SOC) hold at (p, 2).
Then, (p, 2) is a locally optimal WC-solution.

"Without loss generality, if the original ECMO problem is non-degenerate, i.e., all f5(z) are bounded from
below, we can add a sufficiently large constant to all f5(-) to construct S positive-valued functions. The Pareto
front of the newly constructed problem has a one-to-one mapping with the Pareto front of the original problem.

1t is worth noting that there are multiple constraint qualifications (CQs), and all of them (including LICQ)
guarantee the necessity in LemmaE}
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Lemma [I] suggests that the KKT condition is both neces-
sary and sufficient for characterizing the locally optimal
WC-solutions under some additional conditions. Collec-
tively, Theorems [T] and 2] and Lemma [I] provide a rigor-
ous way to characterize the local optimality of the WC-
scalarized problem, which further enables us to character-
ize the Pareto stationarity of the ECMO problem. Further, ]
by using the KKT condition of the WC-scalarized prob-
lem, we define the following KKT system: Figure 4: Characterize a locally optimal
Definition 5 (KKT System). For with a given A\ € WC-solution by its KKT system.

ALT, we define the KKT system{’

Zle ws — 1
5
K(p,z,w,v,\) = PR ws/\svfs(i) + 251 viVhi(2)
z
[min{ws, p— )\sfs(z)}]se[S] (1+k+q+S) x1,
where w = (w1,...,ws)', and v = (v1,...,1,)" are the Lagrange dual multipliers associated

with inequality and equality constraints in[WC] respectively.

Clearly, the KKT condition holds if and only if K(p, z,w, v, A) = 0. Also, we can measure how far a
point deviates from the KKT condition, thereby quantifying its distance to optimality for the ECMO
problems and providing a rigorous convergence metric. Specifically, according to Theorems|I|and[2
and Lemmal[I] for any e > 0, we define a point Z to be an e-Pareto stationary solution of ECMO|
if and only if there exist some p € R,w € R, v € R, A € AL such that |K(p, z,w, v, A)[3 <
e. This indicates that ||KC(p, z,w, v, \)||3 can be served as a convergence metric for our ECMO
algorithm design in the next section. More details about the KKT system are in Appendix [F

4 ALGORITHM DESIGN FOR THE ECMO PROBLEM

In this section, we first present our proposed WC-Penalty algorithm for solving the ECMO problem.
We then provide its finite-time convergence analysis results and discuss their further insights. Due
to space limitation, all proofs for this section are relegated to Appendix

4.1 THE WC-PENALTY ALGORITHM

In Section 3] we have established the equivalence between the problem and its WC-
scalarized problem. We have also characterized the Pareto stationarity of ECMO using the KKT
system of the WC-scalarized problem, based on which we further established the KKT-based con-
vergence metric to an e-Pareto stationary solution of the ECMO problem. Note that in the KKT-
based Pareto stationarity convergence metric, the term [min{ws, p — As fs(2) }]sc[] is more difficult
to control. This motivates us to reformulate the WC-scalarized problem by adding this term as an
equality constraint with slack variables:

mirg pst.hi(z)=0,i=1,...,q, Asfs(2)+6s=p,s=1,...,S, §s>0,s=1,...,5,
22

where § = [01,...,05]" € R¥ contains all slack variables. Let C := R x R* x RY, where
Ri = {6 € RY : § > 0}. Then, the reformulated problem above can be viewed as an equality-
constrained single-objective problem with a convex feasible region C. To solve this reformulated
problem, a natural idea is to incorporate all equality constraints as penalty terms in the objective
function, which leads to the following formulation:

q S
min P(p,Z,(S) = p—|— %ZhL(Z)2 + gZ(Asfs(Z) + 63 - p)2

Py, i=1 s=1
st.ds >0,s=1,...,5,

(D

3The dual feasibility and complementary slackness are implied by the last term in the KKT system.
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where u, v > 0 are sufficiently large hyper-parameters to be chosen. For notational convenience, we
letd:=[p",27,67]", so that Eq. (1) can be written as mingec P(6).

Thanks to the convex and simple box constraints, Algorithm 1 The WC-Penalty algorithm.
one can solve Problem () using a projected gra-

dient descent (GD) approach as shown in Algo-
rithmm Specifically, in each iteration ¢, we com-
pute the gradient VP(6;), take a GD step with
some step-size 7, and then project the obtained
solution back onto the feasible domain C.

In Algorithm([l] the gradient VP(0) = [V,P(0)T,V.P(8)",VsP(0)"]" can be computed as:
s
VPP(G) =1- Uzszl()‘sfs(z) + 68 - p)a

q S
VoPO) =ud ) hi(2)Vhi(2) 40> (Aufol2) + 05— p)AV S (2), @
Vs.P(0) =v(Asfs(2) + 65 — p), s<€[5].
Remark 1. We can generalize Algorithm|[I]to stochastic ECMO problems, where the objectives and
constraints are in the form of f,(z) = E¢[fs(2;&)],Vs € [S], and hi(z) = E¢[hi(2;¢)],Vi € [q].
The basic idea remains the same, with the key distinction being the use of stochastic gradients. Due
to space limitation, we provide the stochastic WC-Penalty algorithm and its analysis in Appendix [D]

1: Input: Iteration rounds 7', initialization 8y =
(Po, 20, 00) € C, with pg > 0, and step-size 7).

2: fort=0,1,..., 7 —1do

3: Compute V P(6;) according to Eq. (2).

4: Update 9t+1 = PC (et — nVP(Qt))

Remark 2. Even though Algorithm (1| does not require the maintenance or updating of the dual
variables, w and v do play an significant role in analyzing the convergence rate. As detailed in
Appendix@ we select wy s = V(s fs(20) 401 s—pr)s i = uhi(2,), wherewy = (w1, ... L wis) s
v = (Vt1,...,14,)  ateachiteration ¢ to control the KKT system and, in turn, to ensure the finite-
time convergence.

4.2 THEORETICAL CONVERGENCE ANALYSIS

To analyze the convergence of the proposed WC-Penalty algorithm, we first state several useful
assumptions, and then establish the finite-time convergence rate guarantee and iteration complexity
results for our WC-Penalty algorithm. Unless noted otherwise, we use || - || to denote the ¢5-norm.

Assumption 1 (Smoothness). There exist some constants M, L > 0 such that for any 21, 20 € R”,
and for any s € [S],i € [g], we have: (1) |fs(21) — fs(22)| < M||z1 — z1]|, 2) |hi(2z1) — hi(22)| <
Mllz1 — 21, B) [V fs(21) = Vs(z2)|| < Lllz1 — 21l ) [[Vhi(21) = Vhi(22)[| < Llz1 — 2.

Assumption [1|is standard and widely adopted in the literature (Ghadimi & Wang, 2018; J1 et al.,
20215 Qiu et al.l 2023} [Lin et al., [2024). We note that, from Eq. , there must exist an Lp > 0
such that ||[VP(61) — VP(02)|| < Lpl||#; — 0], implying that P(6) is Lp-smooth. However,
Lp = ©(u + v) could be large since the chosen penalty coefficients u, v are typically large.
Assumption 2 (Regularity). For any z € R¥, there exists a constant ¢ > 0, such that the minimum
singular value of Vh(z) satisfies: omin(Vh(2)) > o > 0.

Assumption can be guaranteed by the LICQ condition at every z € R¥. To see this, suppose that
LICQ holds. Then, {Vh1(z),..., Vhe(2)} is linearly independent, which implies rank(Vh(z)) =
q. As aresult, Vh(z)T Vh(z) is positive definite. Hence, o, (equal to the square root of the
minimum eigenvalue of VA (z) T VA(2)) can be lower bounded by some strictly positive o.

Also, without loss of generality, we suppose that fs(z) > 0,Vs € [S] (see the justification in
Theorem and that {z € R¥ : h(z) = 0} is nonempty, to ensure the ECMO problem is nontrivial.
We are now ready to present the main theoretical convergence rate result as follows.

Theorem 3 (Finite-Time Convergence Rate of Algorithm[I). Under Assumptions[I|and 2} for any
preference A € ALT, selecting n = O(T~%) and u = v = O(T%), Algorithm |I| achieves the
following convergence result: 7 EtT:_Ol 1K (pe, 2, wi, v, N)||2 = O(S/T2).

In addition to the finite-time convergence rate, iteration complexity also serves as another key metric
for evaluating the efficiency of algorithms. Specifically, ensuring + ZtT;()l 1K (pt, 2, we, ve, N)||? <
e for any € > 0 indicates that the obtained sequence achieves an e-Pareto stationary solution for the
ECMO problem. The iteration complexity result below immediately follows from Theorem 3}
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Corollary 1. To achieve an e-Pareto stationary solution for any € > 0, Algorithm |l| requires
O(S?e72) evaluations of V f5(z) for each s € [S], and O(S?€¢~?) evaluations of Vh;(z) fori € [q].

r

Remark 3. Theorem[3]is established in two key steps. In the
first step, we consider the dynamics of P(6;) generated by Al-
gorithm([1] which is designed to solve mingec P(6), and hence
solving the WC-scalarized problem. In the second step, we
judiciously select the parameters, which, according to Theo-
rem[2]and Lemmal[T] allow us to control each term in the KKT
system defined in Definition 5} Collectively, these two key
steps establish the theoretical guarantees for solving ECMO
as shown in Figure @ Due to space limitation, the proof of [ WC Problem ] [ECMO Solution]
Theorem [3]is relegated to Appendix [D]

Remark 4. To our knowledge, Theorem@ establishes the first ——

finite-time convergence guarantee in the literature of ECMO. e PO) solve
This result ensures that Algorithm [I] can achieve Pareto sta- design
tionarity for any given preference weight vector A\. Moreover, control

according to the previous discussions on WC-scalarization, by [ wepenalty | [ KKT System_|

varying \ over Ag*, Algorithm can systematically explore
the entire Pareto stationary front. Figure 5: Steps to prove Theorem

ECMO Solution

KKT System

Ao
WC Problem N
.

convert

5 RETURNING TO MOBL PROBLEMS THROUGH THE LENS OF ECMO

Finally, we can easily solve the MOBL] problem as a special case of the ECMO problem: we first
specialize Eq. (I) in this scenario by splitting the variable z explicitly into = and y:

. U q v S
min Plp,z,y,0) = p+ 53 (Vyglwy)i+5> 0 (Aufol@,y) +ds —p)*

st.0g >0,s=1,...,85.

For convenience, we still denote 1) the combined variable as @ = (p', 2",y 7,57)7, and 2) the
feasible region as C = RxRP xRY x Ri. Under this change of variables, we can follow Algorithm
exactly to solve the MOBL problem, and the theoretical results in Section [ naturally translate to
the MOBL setting. Next, to validate the effectiveness of our proposed algorithm, we apply it to two
MOBL tasks and present the corresponding numerical results.

5.1 DATA WEIGHTING FOR MULTI-OBJECTIVE RLHF REWARD MODEL TRAINING

1) Experimental Setup: The multi-objective data weighting task aims to determine optimal propor-
tion in mixing training datasets for training a reward model to maximize multiple validation metrics
in the Pareto sense. This task is important in reinforcement learning with human feedback (RLHF),
where: 1) large-scale training data often has unknown origins, varied tendencies, and mixed qual-
ities, and 2) human preferences (e.g., helpfulness, verbosity) may conflict with each other. Here,
we train the reward model for RLHF on the HelpSteer dataset (Wang et al., 2023), and consider all
of the 5 provided criteria, helpfulness, correctness, coherence, complexity, and verbosity, as valida-
tion metrics. We evaluate three MOBL algorithms, MOML (Ye et al.,2021)), MoCo (Fernando et al.,
2023), FORUM (Ye et al.,2024), as our baselines. The detailed setup can be found in Appendix@

2) Experimental Results: In Fig.[6]
we set the preference vector A as
As = 0.96 for some s € [S] and "
As = 0.01, Vs’ # s, using 1/loss
as our metric for each objective. As Melpfulness
shown in Fig. [6a by varying the ‘
preference vectors, Algorithm [T]can
efficiently explore a diverse set of
Pareto stationary solutions, enabling
our algorithm to recover a large por-
tion of the Pareto front. Moreover,
Fig.[6b]further demonstrates that our

Correctness Correctness

Coherepice

Helpfulness

— Prefer Helpfulness

—— Prefer Correctness

—— Prefer Coherence  Complexity
Prefer Complexity

—— Prefer Verbosity
erbosi.,

— Ours

—— MOML
FORUM
MoCo

Complexity >

—Verbosity

(a) Pareto exploration. (b) Baseline comparison.

Figure 6: Data weighting for RLHF reward model training.
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proposed algorithm outperforms existing methods in recovering the Pareto front, highlighting its ef-
fectiveness in Pareto front exploration. Due to space limitation, additional numerical results on
convergence performances and comparisons with several bilevel algorithms using linear scalariza-
tion that demonstrate the strengths of our algorithm are relegated to Appendix [E1]

5.2 DATA WEIGHTING IN MULTI-OBJECTIVE LLM ALIGNMENT

1) Experimental Setup: We consider the data weighting task on multi-objective LLM alignment,
where the goal is to determine the proportion weights of dataset to minimize multiple human-aligned
losses in validation. The dataset used here is still HelpSteer (Wang et al, 2023)), which contains 5
potentially conflicting criteria, and the base LLM model is Llama-3.2-1B-Instruct 2024).
More setup details can be found in Appendix[E.2]

2) Experimental Results: As Comectness Correstness

shown in Fig. [7]] we set the pref- A

erence vector A as Ay = 0.96 for 7 ° o
some s € [S] and Ay = 0.01, \ DR\ |
Vs’ # s, using 1/loss as our met- : Witptness efulness
ric for each objective. Fig. [7a] shows !
that Algorithm [T is able to achieve
Pareto stationary points with better
performance on specific objectives
when larger weights are assigned
to them, again verifying the Pareto
exploration capability of our algo- Figure 7: Data weighting task in LLM alignment.
rithm. Moreover, Fig. [7b] compares our algorithm with two bilevel baselines adapted from (Ji et al.]
2021}, [Dagréou et all, 2022), where we extend them with linear scalarization technique for solving
MOBL problems. Again, our WC-Penalty algorithm explores a larger portion of the Pareto front.

—— Prefer Helpfulness
/' —— Prefer Correctness
Prefer Coherence Complexity —— Ours

Prefer Complexity SOBA-LS

—— Prefer Verbosity ITD-LS
erbosi.

ferbosity

(a) Pareto exploration. (b) Baseline comparison.

Table 1: Hypervolume results in LLM alignment.

Alg. Ours  Helpfulness Correctness Coherence Complexity Verbosity MOML  MoCo
HV (1) 2.47e-2 1.11e-2 1.16e-2 1.40e-2 7.22e-4 9.45¢-3  7.02¢e-7  1.66e-5

In addition, we also compare our Alg.[T|with MOBL

baselines ﬂ—l—lYe et al. |_|2021 lﬁ—l—lFernan ) et al. l_t2023 Ours- 1.000  1.000 1.000 1.000 1.000 1.000 0.935 0.954
using two important metrics, Hypervolume and e- Helpfulness- 1,029 1000 1015 1.009 1027 1029 0950 0.962
metric. Table [I] demonstrates that our method out-
performs the baselines even before completing full
Pareto exploration (labeled as Helpfulness, etc.), and
as the Pfeferences vary, the HYPCFVOIUIHG (labeled as é('mnplc\ll)‘ 1069 1060 1.069 1.059 1.000 1.062 0984 0.997
QOurs) is significantly larger than that of the base- <
lines. Moreover, Fig. |§| further confirms that, in
terms of e-metric: 1) our method consistently out- WA .77 L6 1136
performs the baselines, and 2) with varying prefer-
ence vectors, our method converges to the desired
solutions. Due to space limitation, additional results & &g
are provided in Appendix [E2] : Refernce Algortn

Correctness- 1.036  1.011  1.000  1.017 1.036 1.030 0.952 0.958

rence- 1,023 1.008  1.009 1.000 1.019 1.023 0.945 0.954

Verbosity- 1.036  1.021  1.029 1.020 1.036 1.000 0.953 0.972

WSS 1.161  1.131 1121

Figure 8: e-metric in LLM alignment.
6 CONCLUDING REMARKS

In this paper, we studied the LLGC-MOBL problems through the lens of ECMO. We first extended
the notion of Pareto stationarity to ECMO and proposed a KKT-based Pareto stationarity conver-
gence metric, based on which we developed a WC-Penalty algorithm for ECMO. Next, we es-
tablished the finite-time convergence rate of our WC-Penalty algorithm. To our knowledge, this
convergence result is the first of its kind in the literature. Lastly, we showed that our WC-Penalty
algorithm can be used to solve the LLGC-MOBL problems not only with theoretical convergence
guarantee but also effectively in practice as evidenced by our extensive numerical results.

10
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APPENDIX

A NOTATIONS

We summarize the notations throughout this paper in Table[2]

Notations Definitions

Pe () Projection the point onto a convex set £
D Feasible region {z € R¥ : h(z) = 0}
Ns(2) S-neighborhood of 2, i.e., {z € R* : ||z — Z||]2 < §}
AT Simplex in .S dimension

Ag"’ Strictly positive simplex in S dimension
Xp The set of Pareto optimal points

Xwp The set of weakly Pareto optimal points
{F(z):z € Xp} Pareto Front

{F(z):2 € Xwp} Weak Pareto front

p Additional variable for WC problem
W,V Dual variables for KKT system

A Preference vector

Table 2: Summarized notation table in the paper.

B ADDITIONAL RELATED WORK ON CLOSELY RELATED TOPICS

In this section, we review existing literature in the areas of Multi-Objective Optimization (MOO),
Bilevel Optimization (BLO), Multi-Objective Bilevel Learning (MOBL), and Equality Constrained
Multi-Objective (ECMO) problems. Notably, to put our work in comparative perspectives, we also
provide the comparison of our approach with the existing MOBL methods in Table 3]

Multi-Objective Optimization (MOQ). Research on MOO dates back to (Sawaragi et al., |1985),
and continues to attract significant attention in recent years (Ehrgott, 2005} (Chankong & Haimes,
2008; [Hwang & Masud, 2012; \Gunantara, 2018)). Methods for unconstrained MOO can be broadly
categorized into scalarization approaches and adaptive gradient methods. Scalarization approaches
transform the MOO problems to single-objective problems. Among them, the most widely used
are linear scalarization (Ehrgott, |2005; [Lin et al.l 2024} |Qiu et al.| 2024) and Weighted-Chebyshev
method (Momma et al.l |2022; [Lin et al) 2024} |Qiu et al.| [2024). Adaptive gradient methods, on
the other hand, aim to find Pareto optimal solutions through iterative updates and gradient descent
schemes, and have been explored in works such as Miettinen & Mikeld| (1995); |IDésidéri (2012);
Mercier et al.| (2018)); [Fernando et al.| (2023)); |Chen et al.| (2024b). The applications of MOO span
a variety of domains, including but not limited to multi-task learning (Sener & Koltun, 2018} |Lin
et al., |2019; Momma et al., 2022), multi-objective training and clustering (Mossalam et al., 2016;
Alok et al |2015; |Gonzalez-Almagro et al., 2020), architecture search (Jin et al., 2007). Although
these works extensively studied MOO literature, most results and techniques rely heavily on the
absence of constraints. This leaves the foundation of ECMO problems still in its infancy.

Bilevel Optimization (BLO). BLO also has a long-standing history, with early foundational work
such as |[Bracken & McGill| (1973). In recent years, its importance has surged in machine learn-
ing, particularly in applications involving large-scale models and (LLMs), where variable coupling
across different optimization levels demands sophisticated BLO frameworks (Chakraborty et al.,
2023; [Shen et al.l [2024ajb). Over the past decade, significant progress has been made in the devel-
opment of BLO methods (Zhang et al.,2024)). Works like|Ghadimi & Wang| (2018)); /Arbel & Mairal
(2021); J1 et al.| (2021); Dagréou et al.| (2022) provided a wide range of techniques and paradigms.
Moreover, [Tarzanagh et al.[ (2022); [Huang et al.| (2023); |Qiu et al.| (2023)); [Liu et al.| (2023b) also
extended BLO to federated learning, decentralized learning, etc. While the lower-level strongly
convex (LLSC) assumption is quite restrictive, it is widely adopted in the aforementioned works.
Although several recent efforts have been made to relax it by considering only convexity (LLGC)
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Table 3: Comparison of Different MOBL Algorithms.

Algorithm Scenario Convergence Exploration
gMOBA (Yang et al.,|2024b) Deterministic Asymptotic X
MOML (Ye et al., [2021)) Deterministic Asymptotic X
FORUM (Ye et al., [2024) Deterministic O(ST~ 1 )T X
MoCo (Fernando et al.,[2023) Stochastic O(ST~ %) X
WC-Penalty (This Work) Deterministic O(ST~2) v
WC-Penalty (This Work) Stochastic O(ST~2) v

t: Note that even though the number of objectives S is not explicitly stated in their main theorem, a closer
examination of the proof reveals that the S is hidden in the O(-) notation implicitly.

(Sabach & Shtern, 2017} Liu et al., [2023a;/Cao et al., 2023 |Jiang et al., 2023;|Yao et al., 2024;|Chen
et al.| [2024a; [Lu & Mei, 2024; [Qin et al.| [2025; Jiang et al.| [2025), such results remain confined
to the basic BLO scenario only. Their applicability to general scenarios, such as federated BLO,
decentralized BLO, and MOBL, remains largely unexplored, as the different setups and optimality
evaluation metrics lead to distinct challenges and require specific methodologies.

Multi-Objective Bilevel Learning (MOBL). MOBL problem has gained increasing attention in re-
cent years (Ye et al.| 2021; Gu et al., [2023} |[Fernando et al., 2023 [Li et al.,|2024; |Wang et al., 2024;
Yang et al.,[2024b; |Ye et al.,2024)). Compared to more mature literature on MOO and BLO, existing
theoretical results for MOBL remain quite limiting. Among these works, |Yang et al.[ (2024b); |Ye
et al.|(2021) demonstrate that their proposed algorithms converge asymptotically, without providing
any finite-time convergence guarantees. In contrast, Fernando et al.| (2023); Ye et al.|(2024) provide
algorithms with a convergence rate of O(ST~ 5) and O(ST~ ), respectively. However, all of these
works heavily depend on the LLSC condition: not only is the algorithmic framework built upon the
LLSC condition, but the optimality criterion also relies on it. Therefore, this strong assumption sig-
nificantly limits their applicability to complex real-world scenarios where this assumption is usually
violated.

Equality Constrained Multi-Objective (ECMO). ECMO problems have found wide applications
across various fields, including resource allocation, scheduling optimization, and path planning,
just to name a few Liang et al.|(2022); Hao et al.|(2024)). The most closely related works on ECMO
problems are|Cuate et al.| (2020)); |Garcia et al.|(2021)). Both studies propose algorithmic solutions for
ECMO and conduct numerical experiments to validate their methods. However, neither provides any
finite-time convergence guarantees, highlighting that the theoretical foundations for ECMO remain
in their infancy. A closely related and important extension of ECMO is the Inequality Constrained
Multi-Objective (ICMO) problem, where inequality constraints are also incorporated (Fan et al.,
20175 |Afshari et al., [2019; [Liang et al.l 2022; Hao et al., 2024). As with ECMO, the theoretical
understanding of ICMO remains limited. Numerous heuristic algorithms have been proposed in the
literature (Jimenez et al., 2002; [Tanabe & Oyamal [2017} [Fan et al., 2019; |Yang et al., 2019; Ming
et al., | 2022; Belaiche et al., [2023; |Li et al., [2023} [Long et al., [2023} |Yang et al.| 2024a; Song et al.,
2024;|Q1ao et al., 2024)), offering a variety of algorithmic frameworks accompanied by experimental
evaluations. However, these works do not establish convergence guarantees, underscoring the lack
of rigorous theoretical foundations for ICMO (and ECMO) problems.

C DISCUSSIONS AND PROOFS OF SECTION[3]

C.1 DISCUSSION ABOUT PARETO STATIONARITY IN ECMO

In unconstrained MOO problems, Z is a Pareto stationary point if and only if 3o € AJSF (S-simplex)
such that, (V f1(2),...,Vfs(2)) @ = 0 (Sener & Koltun, [2018} Lin et al.,2024). Accordingly, for
any € > 0, an e-Pareto stationary solution Z can be defined as ||F(?)a|| < € for some a € A{.
Nevertheless, we now demonstrate that, this (e-)Pareto stationarity definition becomes irrational in
ECMO problems.

By considering the KKT condition for each objective fs(z),s € [S], we can construct Lagrangian
as: Lg(z,v) = fs(2) + v h(2). Then, for each s € [S], the KKT condition can be written as:
Vfs(z) + Vh(z)v = 0 and h(z) = 0. Therefore, similar to the equivalent definition of Definition 3|
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N J - J

Figure 9: Pareto stationary and nonstationary examples in ECMO problems.

shown in Section 3] we can define the following system to consider Pareto stationarity:

PS(z,v,0) = <<VIL;L1((ZZ), v)) (VLhS((Zz), v)>) o (vm@ié)w(z)u) —o,

where e € A}, and v € RY. PS not only takes the feasible direction into account, but also enforces
the feasibility directly. It precisely captures both the Pareto stationary and nonstationary scenarios
depicted in Figure[9] To see this, a1 V f1(Z) + a2V f2(Z) is represented by the red line. For the left
example, where Z is Pareto stationary, we can select « such that VF(2)« is collinear with Vh(Z2),
allowing the existence of v € R to achieve PS(Z,v, @) = 0. In contrast, for the right example,
vVh(Z) does not lie in the convex hull of {V f1(Z), V f2(Z)} for any v € R, indicating the first term
in P S can never achieve 0, correctly aligning with the Pareto nonstationarity of Z.

However, we can construct some scenarios where 1) 2 is Pareto stationary, i.e., no feasible movement
can simultaneously improve, or at least not hurt, all objectives, but 2) PS(Z,v,«) # 0 for any
a € AJ, and v € R. The following two concrete examples illustrate such cases, highlighting
limitations of the P S formulation in fully capturing Pareto stationarity for ECMO problems.

Example 1. Consider a 1-dimensional bi-objective problem with 1 constraint as follows:

1 0 if —1<2<1
. T_(_t.2 _ _ SZs
min F(z)' =( 5% z) s.t. h(z) { (2| = 1)2=0 otherwise,
Obviously, Z = 1 is a Pareto stationary point. However, since VF(Z)a = —1 for any o € A7, and
Vh(%2) = 0, we know that PS(Z,v,a) = —1 # 0.

Example 2. Although the previous example is carefully constructed, one might wonder whether the
failure arises from the lack of second-order differentiability of h(z)? To address that, this example
employs more general functions to refute this hypothesis, thereby indicating the intrinsic irrationality
of PS system itself. To this end, we consider a 3-dimensional bi-objective problem with 2 constraints
as follows:

. 22422 -1=0,
mZmF(z)T = (21 + 22,21 — 22) s.t. h(z) = { z;, N 13: 0.
In this example, the feasible region is given by D = {0} x R x {1}. We consider Z = (0,0,1)" € D.
Obviously, Z is Pareto stationary. However, (VF(?)a); = 1,Va € A and (VA(Z)v); = 0,Yv €
R? implies that PS(Z, v, a) # 0 for any o € AJ, and v € R2. This, again, contradicts the idea that
P S characterizes Pareto stationarity.

It is also worth mentioning that these counterexamples indirectly inspire us to consider adopting
constraint qualification conditions (like LICQ) in Section EL which are not only crucial for char-
acterizing the Pareto stationarity, but also important for avoiding corner cases caused by a degenerate
Jacobian matrix. More detailed discussions can be found in Appendix [C]

C.2 PROOF OF THEOREM[I]

Proof. 1) We first assume that Z is locally weakly Pareto optimal in D(Z,d) for some positive .
Suppose it’s not Pareto stationary, then, there exists some feasible direction d € R, such that

19



Under review as a conference paper at ICLR 2026

Vfs(2)Td < 0,Vs € [S]. We can select a positive and sufficiently small ¢, such that 2 = Z + ed €
D(z,6), where € > 0. Then, we have:
fs(2) = fs(2) + eV fi(2)Td + o(e), Vs € [S],

. M = V() d+ @ <0,Vs € [S],

where o(+) denotes the higher-order terms. Thus, fs(£) < fs(2),Vs € [S]. This is contradicted with
the definition of locally weak Pareto optimality. Hence, Z is Pareto stationary.

2) On the other hand, we assume z is Pareto stationary. Suppose it’s not locally weakly Pareto
optimal in D(Z, §) for all positive 6. Then, for any § > 0, there exists some 2 = Z + ed € D(Z, ),
where € > 0,d # 0 is a feasible direction, such that f5(2) < fs(2),Vs € [S]. Then, we have:

FoB) = .(2) + V(D) Td+0(e) < fu(2).Vs €1S] — V(2)Td<0,Vs € [s].

Since Z satisfies that, for any s € [S], there exists s such that 1) V fo(2) + >°7_ | ps i Vhi(2) =0,
and 2) 37| ps ;Vhi(Z)Td # 0, we have:

q

Vi) Td == pa:Vhi(2) d #0,

i=1

for any s € [S]. Therefore, Vfs(2)"d < 0,Vs € [S]. This contradicts with the Pareto stationarity
of z. Hence, Z is locally weakly Pareto optimal. U

C.3 PROOF OF THEOREM[Z]

Proof. 1) We assume that (p, %) is a local solution of[WC|for some A € AL™, then there exists some
& > 0, such that (p, Z) is the minimizer ofWC|in D(Z, ). Therefore, according to the definition of
{~o-norm operation in WC, we have:

max A f5(2) < max As fs(2),Vz € D(Z,6).
Suppose Z is not a locally weak Pareto optimal solution of Then, there exists some 2 €
D(z,6), such that f5(2) < fs(2),Vs € [S]. Therefore, we have A, f5(2) < Asfs(2),Vs € [S], thus:

max A\ fs(2) < max g fs(Z),

which leads to contradiction. Thus, Z is a locally weak Pareto optimal solution of

2) Conversely, we assume that Z is a locally weak Pareto optimal solution of then there
exists some § > 0, such that f4(2) < fs(2),Vs € [S],z € D(Z,0). We set A as follows:

(fs(2) "

M)

which implies A € A% and:

1 -
m = A fs(2),Vs € [S]

Suppose (p, %) is not a local solution ofWC|for any p € R. Then, there exists some £ € D(Z, ),
satisfying:

AO F()le =

.
Yoo ()7

Therefore, Asfs(2) < Asfs(2),Vs € [S]. Since A is positive, we know f5(2) < fs(2),Vs € [9],
which contradicts with the assumption. Thus, Z is a local solution of[WC] O

max \s f5(2) < max \s fs(2) =
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C.4 KKT ConDITION OF[W({

For completeness, we state the KKT condition of[WC|in this section. To begin with, the Lagrangian
of W is: s

q

]L(p’ Z,W,V, A) =p+ Zwé()‘éfé(z) - p) + Z Vihi(z)7
s=1 i=1

where w = (wi,...,ws) ', and v = (v1,...,v,)" are the multipliers associated with inequality

and equality constraints in respectively. For a point (p, z), its KKT condition contains four

parts: stationarity, primal feasibility, dual feasibility, and complementary slackness. The stationary

condition requires the gradients of p and z vanish:

S S q
1- Zws =0, Zws)\Sst(z) + Z v;Vhi(z) = 0.
s=1 s=1 =1

The primal and dual feasibility requires 1) the constraints are satisfied, and 2) the multiplier associ-
ated with inequality is positive:

hi(z)=0,i=1,....m, Asfs(2)—p<0,s=1,...,5 ws>0,s=1,...,5
In the end, the complementary slackness condition is:

ws(Asfs(z) —p)=0,s=1,...,5.

D ADDITIONAL RESULTS AND PROOFS OF SECTION

D.1 LINEAR SCALARIZATION METHOD FOR CONVEX ECMO PROBLEMS

For the special case of convex ECMO problems, we also propose a linear scalarization (LS)-based
algorithm along with its finite-time convergence guarantee. In this subsection, we first introduce
Linear Scalarization method, and propose a simple algorithm for convex ECMO problems along
with its performance guarantee. We then prove this theoretical result, and clarify how it relates to
the KKT system and ECMO problems.

Linear Scalarization (LS), or weighted sum method, is one of the most straightforward MOO
methods. Intuitively, we assign a weight to each of the objective function, and minimize their
weighted sum, i.e., solve a corresponding single-objective problem. For ECMO problems, LS can

be represented as:
s

min Z Asfs(2)

z€Rk
s=1
st hi(z)=0,i=1,...,q,

where A € A; is the given preference vector. While LS is extremely simple, it cannot, in general,
recover the entire weak Pareto front unless all objective functions are convex and the feasible region
is a convex set (Ehrgott, |2005). This suggests that, LS is not sufficient to generally solve the ECMO
problems, and alternative techniques are needed to handle such general (nonconvex) cases.

Although LS method can only recover the entire weak Pareto front in some special cases, we can
still apply this simple method to solve the convex ECMO problems. Specifically, in this subsection,
we assume that upper level objective functions f1(z),..., fs(z) are convex functions, and lower
level constraints hy(z), ..., hq(z) are affine functions. Then, LS method transforms [ECMOQinto a
corresponding single-objective convex problem as follows:

3)

2€Rk

s
min £y(z) = Z Asfs(2)
s=1
s.t. Az = b,

where A € AL, A € R?*F b € R? and rank(A) = m. We denote the feasible set as D := {z €
R* : Az = b}, which is a closed and convex set since it’s the intersection of 2m half-spaces.
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Algorithm 2 LS Algorithm
1: Input: Iteration rounds 7', initialization zy € D, and step-size 7.
2: fort=0,1,..., 7T —1do
3:  Compute 2" = 2z, — NV Lx(2).
4: Update 21 = Pp(2;).

Generally speaking, Algorithm [2] follows a simple projected gradient descent paradigm, where the
convexity of the feasible region allows well-defined projection operation. Specifically, we denote
the projection as Pg(2) = argmin,, ¢ ||z — 2’||3, where € can be any convex set. In each step ¢, we

compute the gradient of £y (z;), update z;" according to gradient descent method, and project the
obtained z," back to the feasible region D to get z;1 1. As shown later, this extremely simple method
is effective in addressing the convex ECMO problem.

Now, we are ready to state the theoretical results for Algorithm[2]

Theorem 4 (Finite-Time Convergence Rate of Algorithm [2). Suppose that fi(2),..., fs(z) are
convex functions, and hy(z), . .., hq(2) are affine functions. Under Assumption|l| for any preference

A€ Ag, selecting n = %, Algorithmhas the following convergence result:

L
Lx(zr) — La(2") < ﬁ”zo - 2*13,

where z* is the solution (global minimizer) of Equation (3).

Proof. On the one hand, since f1(z), ..., fs(z) are convex and L-smooth, so is £ forany A € A¥.
According to the descent lemma, we have:

£a(z01) < £3(20) + VL) (et = 2) + 2llzeas — 23, @
wheret =0,1,...,7 — 1.
On the other hand, due to the convexity of D, we have the following result:
lze41 — 2*13

<l = 2713 = llzes — 217113

=[lze = nVLx(2) = 2*[15 = l|ze41 — 2t + 1V LA(20) 3 (5)

=llze = 2|3 = 20V LA(20) T (20 = 2%) = 2041 = 2213 — 20V La(20) T (2041 — 20)

e = 218~ 3 VL) (= ) = o = 23 = 3 VL) (s — 20),
where the first inequality is derived from the convexity of D:

Iz = 2*115 = Iz = 2e41ll3 + llzer1 — 27113 + 22 = 2641, 2041 — 27)
> N2 =z ll3 + 2641 — 27|13

Combining Equations () and (5)), we have the following result given the convexity of £:

L
Lx(zi41) < La(z) + BY (Hzt — 215 = 241 — Z*||§) - Vﬁ/\(zt)T(Zt —z")

* L * *
<L)+ 5 (2 = 2715 = llzeea = 27113)

which implies

£x(er) ~ £r(=) < 1 3 (EalGnn) — £3(7)
t=0

L

< o7 (Ilz0 — 2*[13 = llzr — 2*113)
L *

< ﬁ”zo - 2|3,
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where the first inequality is due to the decreasing property, i.e., fort = 0,1,...,7 — 1, we have:
L
Lx(z41) < La(20) + VLA(20) (2041 — 1) + §||Zt+1 - 23

1 1
= La(2t) — ZHVEA(Zt)Hg + EHVEA(%)H%
< Lx(z).
O

Theorem W] illustrates that Algorithm [2| has a convergence rate of O(7~!) to global optima for
Equation (3)). This reveals that we can recover the whole Pareto front of the original ECMO problem
by traversing A over the simplex A;. Next, we show that this result can also be interpreted through
the lens of the KKT system, providing consistency with the analysis of Algorithm T}

Theorem [] demonstrates that the sequence generated by Algorithm [2] converges to the global opti-
mum of Equation (3). Since it’s a convex problem without inequality constraints, we know that its
KKT condition holds at some feasible point Z if and only if Z is the solution of Equation (3)) (and the
solution is the global minimizer due to the convexity of the problem). Therefore, we can establish
the KKT system K(z, v, \) as follows:

_ (VF(2)A+ Vh(z)v ~_ (VF()A+ AT
K(z,0,4) = < h(z) - Az —b ’
(k+m)x1 (k+m)x1

where A € AL, and v € R?. While this KKT system for Equation H is quite different from the one
defined in Definition [3] it completely characterizes the optimality of any point z. In other words,
given some \ € A;, z € D is the optimal point for Equation (3)) if and only if /C(Z, v, A) = 0 for
some v € RY.

The following lemma ensures the optimality characterized by the KKT system can be adopted for
evaluating the optimality of ECMO problems:

Lemma 2 (Ehrgott (2005)). Suppose fs(z),Vs € [S] are convex, and nonempty set D is convex

and closed. Then, {z € D : z = argmin,, £,(z'),V\ € AL} is exactly the weak Pareto front of
IECMO)

Now, we are ready to bridge Theorem [4] with ECMO problems. According to Algorithm [2] z; is
feasible for any ¢. Hence, for any A € A, we have:

min [ K(zr, v, M3 < [K (27,0, VI3 = [£2(21)]13-

By Theorem[d] we have:

* L2 *
123 < 2L(Lx(27) = £2(27)) < =120 = 27[3-

Therefore, we obtain min, ||K(zr, v, \)||3 < %2 |20 — 2*||3. According to the argument about KKT
system and Lemma [2] we know that Algorithm [2] converges to weakly Pareto optimal solutions at
a rate of O(T~!). In addition, we can also traverse A over A to let Algorithm reconstruct the
entire weak Pareto front.

To give a more concrete example, we provide a concrete example to

show the performance of our proposed algorithms. We consider a bi-

objective problem, with objective functions fi(z) = 22 + 422 and

f2(2) = 4(21 —2)%+(22—2)?, and constraint h(2) = 0.521 —22—0.1 =

0. Besides, we consider two preference vectors A = (0.25,0.75)" and - \
f

N = (0.75,0.25)T. Figure demonstrates the convergence perfor-

mances of Algorithms|l|and pecifically, the deep-sky-blue and light- r

coral dashed curves are contour plots of two objective functions f1(2)

and f2(z). The gray line is the equality constraint 2(z) = 0, and the red

part on it is the Pareto front. The rosy-brown curve is the Pareto front

when no constraints are included. The black point is the initial point for Figure 10: A toy exam-
ple.
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all sequences. Four curves in blue, green, purple, and orange are the
sequences of proposed algorithms under different preference vectors.

We can clearly observe in Figure [I0] that all of the four sequences con-
verge to the Pareto front. Moreover, under the guidance of different preference vectors, the conver-
gence points show distinct directional tendencies along the front.

D.2 PROOF OF THEOREM[3]

Proof. We prove TheoremE] in three steps as follows. To begm with, we first denote the update
direction d; = (d} ,,d/ ,,d/s)" by 0441 = 0; —ndy,Vt =0,..., T — 1.

t,pr 'tz
Step A: General Control.
According to Assumption[IJand the descent lemma, fort = 0,...,7 — 1, we have:
L
P(8r41) < P(8) + (VP(6:). 6rs1 = 00) + = [|fr1 — 64
LPU

= P(0;) — (VP (0y),ds) + e 2.

The property of projection (Pc(01) — Pe(02), 61 — 02) > || Pe(61) — Pe(02)]|? implies:
(Or41 = Or, (0 =V P(0r)) = 01) > |01 — 0%,
= (—nds, —nVP(0;)) > n’||ds]|?,
= [|de]|* < (VP(6:), ds).

Therefore, we have:
L
P(8r41) < P(8) + (VP(6). 6ri1 = 00) + = [|fr1 — 61

LPU

= P(0) = nlld:||* + Ide[1?,

which implies:

L
Ui (1 - 12377> |d¢||* < P(0;) — P(0y41).

Telescoping from ¢ = 0 to T' — 1, we obtain:

o(1-51) antnkf P(00) - P(6r)). ©

Step B: KKT system.
In this step, we control each term in the KKT system defined in Definition [5]

Step B.1: Stationarity Terms. According to Equation @, we know that all of d; ,,, d¢ ., and d; s
can be well controlled, since ||d:|? = ||ds,,||? + ||d,s]|?. We first note the expression of
d;, . as follows:

q s
dt z = UZ hz(zt)th(Zt) +v Z()‘sfs(zt) + 615,5 - pt))\svfs<zt)7
i=1 s=1
where §; ; it the s-th element of §;. Then, to select w and v defined in Definition E}, we set
wrs = V(Asfs(2t) + 015 — pt), ei = uhi(z) to be the dual variables at iteration ¢, where
we = (W1, wes) s v = (Va,---,vq) " - Therefore, since ||d; . ||? is controlled by ||d;||%,

the stationarity term for z; can also be well characterized. In addition, by the selection of w;, we
know:

19))

s
1- Zwt,s =1- ZU(/\s.fs(Zt) +0t,6 — pt) = di,ps
s=1
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implying that the stationarity term for p; in Definition [5]is also controlled.

Step B.2: Primal Feasibility Term. We next consider the primal feasibility term, i.e., h(z;). We
first introduce the following notation for convenience: ¢; s = A fs(2¢) + ;s — p¢. Then, according
to the update direction for z, we have:

s
di. = uVh(ze)h(z) +v Z ct,sAsV fs(2t),
s=1
which, along with Assumption 2} implies:
S s
uo|h(z)|l < luVh(z)h(z)|| = lldiz = 0 et shsVEs(z)ll < Idisll +0M Y fers],
s=1 s=1

where the last term can be derived as follows:

S S S
ol D ctsA Vsl <0 lens] - AV Lz S oMY Jers].

s=1 s=1 s=1

To further control Zle |ct,s

, we consider the following two index sets:

Ot Ots
:7}, T ={s €[] :vers > :7}

I ={se[S):ves <

If s € 7, then the corresponding component J; s is not projected in step ¢, indicating (d; )s =
Vs.P(6;). By Cauchy—Schwarz inequality, we get:

d
3 fevel < %L,

s€Z,

If s € J;, then 1) the corresponding component is projected in step ¢, 2) ¢; s is nonnegative (since

d0t,s > 0). Then, we have:
D lensl =D cus

seTt sET:

=D =) s
se(S] s€L;

S | Z Ct,s| + Z |Ct,s
s€[S] s€TL;
dip| +1 d

<l t1 |l

_ 2V5]dy] +1

— v )

where the second last inequality is due to the definition of d; ,. Combining the aforementioned
results together, we can obtain:

3V/S|dy || + 1
o)l < o + 022D < (5807 1))+ 3
3vVSM +1 M
= 7zl £ ————ldell + —,
uo uoc
T-1 T-1
1 2(3V/SM +1)? 1 2M?
— =S )P < 22T N dy? .
T v || (Zt)” = w202 T tz:; || t” + w202

We can select u to be sufficiently large such that the coefficient of the first term Zz:ol |dy || is

smaller than % .

Step B.3: Dual Feasibility and Complementary Slackness Term. Now, we consider the last term
in the KKT system: 7, , = min{w; s, pr — Asfs(2¢)}, Vs € [S]. We denote a; s = pr — s fs(2t),
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be,s = wi,s = V(A5 fs(2t) + ¢,s — pi) for convenience. We note that by s = v(J;, s — a,s). Besides,
we also note the following fact:

(dt75)8 = (61&,5 - 6t+1,s)

=3 =

= ; (01,5 — max{d, s —nVs,P(0;),0})

Ot 5
= min{b; ,, —},
{ 7 }

where the second equality is due to the projection operation. Now, we discuss rf,s in two cases.

O¢,s

2 _
e If by s < ays, then 1y, =

. . B 2 _ 2 2

bt,s > ays, then, combining with b; s = v(0s,s — ars) > —vag s, we know i, = ai o < bj ..

Therefore, r7 , can be controlled by b7 , = |(dy,5)s|*.

In the first case, we suppose that s € 7y, i.e., by <

5’7‘7'5 . There are two subclasses: 1) If a; s > 0,

s\’ v \? 56\’
2 < Uat,s t,s 52 < 2 E < d 2'
rfe < <v+1 o) st () <l

2)If a;,s < 0 < by, then ris = ais < bfys/v2 = cfys, and we have s € J;. We can follow Step
B.2 to obtain:

d < (Z Cts>2 < <2\FS”dt||+1>2.

sET: s€ETt

In the second case, we suppose that s € 73, i.e., by s >
we have:

Here, we note that for each s € [S], only one of the cases holds. Therefore, we combine these results
to get:

s
45| de||* + 2
Sor2, < a2+ 2122
v
s=1
which implies:
T-1 T-1 T-1
1 1 2 45 1
T ZTES ST ||dt,6||2+ﬁ+v7'fz (Al
t=0 s=1 t= t=0

We can select v to be sufficiently large such that the coefficient of the last term ZtT;()l |y ||? is
smaller than 3.

Step C: Combination and Parameter Selection.

Finally, we can combine the all the results we obtained from Steps A and B to get the following
convergence performance guarantee:

||’C(Pt7 2ty Wty Vi, )‘)HQ

s s q
=(1 =Y wis)® + 1D wrsAsVfilz) + ) i Vhi(z) |
s=1 s=1 1=1

S

+ AP + Y minfwrs, pe = Asfo(z)})?

s=1

S
=llde,plI? + llde,: I + (o) [* + Y i,

s=1
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which implies:

1 T-1
T 1K (ps, 26, we, v, A2
t=0
1 T-1 5
=7 2 (ldt,pll2 + |lde 22+ [[A(z) |12 + Z@)
t=0 2
1 T-1
<7 2 (Ml + ezl + o)
t=0
My 1B e 2 as 1
2(3VSM +1)* 1 t 2 a5 1 |
w202 T = w202 2 2T 2 o
T-1
2 M2 9
<— A2+ 22
ST 2 || t|| + oy + =

2P(hy) - POr)  2M 2
nT(2 — Lpn) u?o? = w2

u v S
2(po — pr + 5([R(20) I = |h(=r)1?) + 5 301 (c5s — ¢7.,)) n 2M? | 2

< _
- nT(2 — Lpn) u?o? + v?
20t At G 0TS Oufule0) +00s o) 2ME 2
- nT(2 — Lpn) uo? 02’

where the last inequality is derived from the fact that p, has a trivial lower bound, which can be
argued as follows. On the one hand, by letting n < ﬁ, we can get P(0;41) < P(6y),Vt =
0,...,T — 1. On the other hand, since f,(z) > 0,Vs € [S], we have V,P(6;) < 0 when:

S

Pt S _% S %(Z(Asfs(zt) + 57&,5) - %)7

s=1

which implies psy1 > pt, Ve =0,..., T —1if p, < —%. Therefore, we can further obtain:

1
Pt = oS nV,P(0;),

s
1
= pt 2 Y *77+77”<Z)\sfs(zt) + ¢, *Pt)7

s=1
= pt = ——g — N —nUSpt,

épt Z _27

To finish the analysis, we select parameters such that Equation (7) converges. Let u = ©(T¢),
v =0(T%), and n = O(T~7). It is also worth noting that Lp has the same order with u and v.
Thus, we maximize an order o, such that:

1- Y= € Z o,

28 > o,

v =&

Thus, we select ¥ = { = 1, then 0 = 1, i.e., the convergence rate s O(S/Tz). O

Remark 5. For hyperparameter selection, we also provide the following practical guidance, based
on the insights from our theoretical analysis. (1) In practice, the total number of iterations 7" is
usually known beforehand or can be set. Therefore, the O(-)-scaling results indicate that we only
need to choose the u, v, and n parameters following the correct scaling order in terms of 7. (2)
From the analysis, we find that the hidden constants in these ©(-)-scaling results only depend on
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Lipschitz continuity coefficient M and the minimum singular value o, both of which are relatively
easy to estimate historically from the dataset or online through the warm-up stage in training. (3) In
additional to the above quantitative characterizations for choosing u, v, and 7, one can additionally
pick these parameters following some practical rules of thumb. since v and v are the coefficients
of the penalty terms, one can pick larger u- and v-values if ensuring small constraint violations is
more preferred. On the other hand, if minimizing the objective is more preferred, one can choose
relatively small u- and v-values.

D.3 STOCHASTIC WC-PENALTY ALGORITHM

Now, we consider the ECMO problem in its stochastic form as follows:
min F(z)T = (f1(2),..., fs(2))
zERF
S.t. hZ(Z) =0,i=1,...,q,

where f(z) = E¢[fs(2; )], Vs € [S], and h;(2) = E¢[hi(2; ()], Vi € [g]. Since this problem shares
exactly the same form as [ECMO] differing only in the specific fs(z) and h;(z), the KKT system
defined in Definition [5] remains applicable. Consequently, it is still irrational to apply the penalty
method, specifically, Equation (TJ), to address this problem.

Hence, we adopt a similar algorithmic framework, i.e., Algorithm [3] to deal with this stochastic
ECMO problem. Note that we keep the aforementioned notation C = R x R¥ x Rf_ as the feasible

region,and @ = (p', 27,0 ") 7 for simplicity. The stochastic gradients can be computed as follows:

S
VoP(0:) = 1 =0 (Aofs(z6B) + 8,6 — po),
s=1
. a , , S (8)
VoP(0) =ud hilzs T7)Vhizs T) + 0 Y (AafalzeB) + 8t — p)AY fal213 B,

i=1 s=1

Vs. P(60)) = v(Ae fs(20; BY) + 016 — p1),

where B; and 7,' denote the mini-batches of sampled data at iteration with batch-sizes B(t) and
T (t), respectively, for each ¢, s, 7. Before giving the theoretical results and the analysis, we need an
additional assumption stated as follows:

Assumption 3 (Variance). There exist some constants o and o, such that E(f(2;£) — fs(2))? <
0%,Vz € R* s € [S], and E(h;(2;¢) — hi(2))? < 02,Vz € R¥ i € [q].

Now, we are ready to present the theoretical results for Algorithm 3]

Theorem 5 (Finite-Time Convergence Rate of Algorithm ). Under Assumptions[I} ] and 3] for
any s € (0,1), preference A € AL™, selecting n = O(T~3), u=v=0(T3),and B(t) = T(t) =
o(T 1 ), Vt, Algorithmhas the following convergence result with probability at least 1 — k:

1= S
T ; ||K(,0t72t,wt7l/ta)\)||2 =0 (T§> .

Proof. To begin with, we define 6,1 = 6; — nd;, which is different from the previous definition in
deterministic scenario due to the stochastic nature of gradients. We split the analysis into three main
steps here.

Algorithm 3 Stochastic WC-Penalty Algorithm

1: Input: Iteration rounds 7', initialization 6y € C, where pg > 0, and step-size 7.
2: fort=0,1,..., 7T —1do

3: Draw sample batches B}, ..., B and T,*, ..., T,/

4 Compute stochastic gradients: ¥V P(6;) by Equation .

5 Update 9t+1 = Pc (9,5 — H@P(a,ﬂ)
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Step A: General Control.

Step A.1: Applying Descent Lemma. According to the descent lemma, we have:

L
P(Br41) < P(00) + (VP(01), 041 = 01) + =011 = 01

_ LP772 2
= P(6) ~n(VP(O0). ) + T i)

= P(0) = n(VP(O) — TP(0) + TP(0).di) + 22 a2

- L
P(O) ~ 0l = n(V P(8) — T P(B).di) + 2 a2
L 2 2 1 .
< P(6:) — nlde|? + =551 + L 1dil]? + SV P(6) = VP,

where the second inequality is due to the property of projection, and the last inequality is due to
Cauchy—Schwarz inequality. Then, we have:

L 1 A
0(1- 3= S5 BlI? < P6) - Po) + SEIVP6) - TPOII

Step A.2: Stochastic Gradient Control. Then, we control:

E[VP(6;) — VP(6,)|>
=E|V,P(8;) — V,P(0,)|> +E|V.P(0;) — V.P6,)|> +E|VsP(6;) — VsP(6,)]*.
Ag By Cy

According to Assumption [3] we have the following results: First,

s 2
At:E<1_UZ)\fszt>+6ts pt) 1—02/\st75, )+ 0¢s — )))

s=1
s 2
=E <U Z(Asfe(ztv Bf) - Agfg(zf))>

S
<SPS Y NE (folz: B7) = folr)?

s=1
UQSO'?
B(t) ’

where the first inequality is due to the linearity of expectation, and the second inequality is due to
|B;| = B(t),Vs € [S] and A € AT, Second, according to the similar argument, we have:

S
Ct =K (Z (U()‘sfs(zt) + 5t,s - Pt) - U()‘sfs(zt§ Bts) + 5t,s - Pt))2>

s=1
S

=0’E (Z /\ fs Zt /\sfs(zt;Bf))2>
: s=1

= ’U2 Z]E ()\st(zt) - )‘sfs(ZﬁBzf))?
s=1

’1)20')%
= B(t)"
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Lastly, for B;, we add and subtract a term to get:

q q
B, < 2E||uz hi(z:)Vhi(z) — UZ iz T )V hi(ze; TP

i=1 i=1

Bi1
S S
+ QEHU Z(/\SfS(Zt) + 01,5 — pt))‘svfs(zt) - v Z()‘SfS(Zt;B;) +0t,s — pt))‘sva(Zt; B:)HQ .

s=1 s=1

By,2

Therefore, due to the bounded variance and the smoothness assumption, we can get:

q q
Byy <AE[u  hi(z)Vhi(z) — Y hi(z) Vhi(z: T
=1 i=1
q ) q ) )
HAEu > hi(2)Vhi(z T) —w Y hi(z ) Vhi(zs )|

i=1 =1

<4u’m Z E|lhi(z)(Vhi(2e) — Vhi(ze; i) |12

i=1
q
+4uPmYy Bl (hi(ze) = hi(zs 7)) Vhi(zi T
i=1

4ulmM? < 4uPm?M?o?

SW ;hi(zt)z + W’

and: s
By <AE[[0 > (Aafe(2) + 0rs — p) AV Ful20) = AV ful22: B)) |2
s=1
S
HAEv Y (Asfa(2) = Ao falze: BNV fulzs BY) |
s=1
S
§4'U25 Z()‘sfs(zt) + 5t,s - Pt)2E||/\szs(2t) - )‘svfs(zt; Bf)”Q
s=1

S
+ 4’UQSZEH()\SJCS(Z1§) - )\sfs(zﬁ Bf)))‘svfs(zta BE)HQ

s=1
402SM? & 402 S2 M2 02
<7 AS S 5 s 2 7][
S0 Sz:;( fs(zt) + 06 — i)~ + Z0)
Step A.3: Combination. Hence, we can combine the results obtained in the last two sub-steps to
get:
T—1
n _ Lpn\1 2
l1—=——— | = E
0(1-3-5) 7 LBl
t=0
T—1 20,2 2027172 -2
1 1 v SO'f 2u2m2M?2o2 205 M CTf
<—(P(0o) — P(07)) + = + by
_T( (60) — P(6r)) T ; ( B(t) T(t) B(t)
2u2mM? < 2025 M? S
=y h’Z 2 Y )\S S 5 s 2

Therefore, we almost bound ZtT;Ol E||d;||?. Later, we select proper B(t), 7 (t), and u, v to complete
this process.
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Step B: KKT System.

In this step, we consider the KKT system defined in Definition [5} and aim to control each term of
| K||?. Before diving deep into the detailed analysis, we introduce some necessary notations here.
We denote d;,Vt = 0,...,T — 1, as the expected version of update direction. In other words, let
0141 = Pc(6, —nVP(6,)), then we have 6,41 = 6, — nd,. Since the KKT system is related to d;,
we need to find the relationship between d;, which has been controlled in Step A, and d;.

Step B.1: Stationarity Terms. We now consider the first two terms in the KKT system, i.e., the
stationarity terms for p and z, respectively. We consider z first. On the one hand, we have:

q S
iz =uY_ hi(z)Vhi(z) +0 Y (Aefs(z0) + 605 — po) AV fs(21),

i=1 s=1

implying that in Definition [5| by setting w; s = v(Asfs(2t) + Ors — pt)s Vei = uhi(z), and
wr = (We1,--- ,wtys)—'—, v = (1, I/t’q)T, we can bound the corresponding stationarity term
for z as long as ||d; . || can be controlled. On the other hand, we follow the argument in Step A.2 to
obtain the following result:

de,[I* =E[|de,- ||
§2E”dt’2”2 + 2E”dt,z - dt,ZH2
u2m2M20_}2L ’U2SQM2(7;

T B

SMW@AF+8<

S

w?mM? < v SM?
= hz 2t 2 Y >\s s\ %t 51‘,87 t 2 )
TS e+ S S 0 s

s=1

where E||d; .||? is already characterized previously. As for the stationarity term for p, we note that:

S
1= we=1-
s=1

V(Asfs(2t) + 00,6 — pt) = d_t,pa

hE

s=1

and:
2028 0]20

Ide,ol* = Ellde,p|I* < 2E|de,plI* + 2Ellde,p — dep]|* < 2Ellde]|* + B

which indicates that the stationarity terms are well controlled.

Step B.2: Primal Feasibility Term. Then, we consider the primal feasibility, i.e., ||h(2)|?
Similar to the deterministic ECMO problem, we first define some notations as follows: Let
Cts = Nsfs(21;BF) + s — pr, and G5 = Asfs(2t) + 05 — pi. Besides, we also denote the

following index sets:

It:{se[s]”wnsﬁ(zsh J;={S€[S}nmms>‘25}

Therefore, we have:

s s
uo||h(z)|| < [uVh(z)h(z)ll = lldiz — 0 e AV fo(zo)ll < [ldiz]l + oMY [er s,

s=1 s=1

which further implies:

s
1 - vM
h < —|di || + — Ct,s|s
a0l < el + 23

2
2 2w2M? (L
= [[h(z)|]* < l|de,- |1 + (j{:caA :

uZo? uZo?
s=1
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Hence, we need to control:

S 2 2 2
(Z |6t,s|> <2 (Z Iét,s|> +2 <Z ml)
s=1 s€T; se€Jt

C(Zv) C(Jt)

To this end, we can obtain the following two results:

2
== ]E <Z |Ct75|>
SET;

2
<2E | ) (|ens — sl + |Ct,s)]

Ls€Z;

- 2 2
SAE | Y lere —crsl| +4E Z|ct75|]
Ls€Z: seT,
— 2 2
<4 | 50 INfute) ~ )|+ a2 | VI
Ls€Z: v
4|It|a]% 4\It|
< E||d; |/
= B(t) || t5||
and further:
2
«7t = <Z Cts)
seJt
2 2
thé +4<Z|Ct’s|>
s€[S] s€Ly
8Tilo} 8|z 1-d,\°
< Elld: s||> +4 [ —2£
< gt + o Bla1? + ( e
8|Z¢|o? 8|It| 8 16 v2So?
< El|d, 5|12 + E||d; || + L.
= B(t) || t5|| 2 || tP” B(t)

Therefore, we can obtain:

s 2 2 2
12|Z;|o% 12\It| 8 16 16So

S leesl | < Elld; 4| + —E|ds,|2 !
(S_l |Ct, |> = B(t) + || t 5” 2 + 02 || t7p|| + B(t)
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Finally, substituting it back, we can get:

oy 20 (2 )

16 (u m2M20,21 U252M20]2c

Ih(z0)l* <——

4 2
w2t ™+ s | e T B

2mM2 2SM >
+%Zhi(zt)2 Z)‘fs Zt +5ts— ))
i=1 =

202 M2 (12|It|a]% N 12|L| 8 16 1650]%>

E||d:.s —+ =E 2
u2o2 B(t) H t,8 +U2 +’U2 Hdt,l?” + B(t)

32M2 24SM 16M2  56Sv?M?0?
S Ellde,|? + =5 Elldesl® + f
— || t p” H t 5” U20'2 + UQO'QB(t)
16 u2m2M2cr}2L U252M2a]2¢
22\ T T B
u mM2 1 v 2602 S )
g (t) Sz:;()\sfs<zt) +6t7s _pt) .

Thus, we can select 7 (¢) to be sufficiently large such that:

— 5 Elldes]* +

4M2 48S M2 oM2 112802 M?262
12+ S B P+ M v i
w202 w202B(t)

32 UQmQMQO'EL ,U2S2M20.2 QSM S
(A fs Ot
( T(t) + B(t) Zl f Zt "r t, )

Ih(z0)]* <

u2o?

Then, we can select u to be sufficiently large such that the sum of the first three terms in RHS is no
larger than E||d||?. Besides, we let B(t) and T (t) be some T-dependent constant (but independent
with t). Then, we have:

T-1 2 2 2 T—-1
1 2 2 32M 112Sv M=o 32 u?m?M?o?
T ; L Z el + u?02B(t) + u202T ; T(t)
,0252M20.2 025 s
+ ZAféthra“— )2>.

Step B.3: Dual Feasibility and Complementary Slackness Term. Now, we consider the last term
in the KKT system: 7, s = min{w; s, pr — As fs(20) }-

To begin with, we first introduce some notations here: let a; s = p — Asfs(2t), l_at’s = W =
U<)\sfs(zt) + 5t,8 - pt>’ and at.s = Pt — )\st(zt; B;ts)’ bt,s = U()\sfs(zt; Bf) + 61&,5 - Pt) We also
note the following fact:

1

(dt,é)s = *(575,5 - 5t+1,5)
n
1

= ((575 s —max{d; s — nVsP(6;),0})
. 675 s
= min{b; 5, —},
{0, " }

and discuss 77 , in two different cases.
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In the first case, we suppose s € 7, i.e., by s < 537’5 . No matter what the orders among b; , Bt’s, and

s are, we can obtain:
72 2 7 2 2, 20°Xi0%
rt < b s < 2]E(bt’5) +2E(bys — brs)” <2E(dys)s + W

Stn’s <bgs. If l_)t s Jt‘s , following the same argument
Ifat s < 0, we have:

In the second case, we suppose s € T3, i.e.,
in the deterministic scenario, if a; ; > 0, we have: rf s < E(dy, 5)

s o2 o B?,s _ =2
rt,s - a’t,s — U2 - Ct,s
Thus, we have:
Do @D A
s€J¢,a4,s<0 sETt
2
S (Z Ct,s>
seJt

A Ty|o% 4|It| 4 8502
desl)® + 5 + IE dy | + L
= B(t) 2 || t5|| H t7P|| B(t)

2, <E(dys)?if by > —22 and 72, = B2 < (brs — bro)? <

Otherwise, b; s <

2 2 2
B t) with probability at least 1 — x if by s < fdt—b for any k € (0, 1) according to Chebyshev
inequality.

Combining aforementioned results together, with probability at least 1 — x, we can get:

S 2 2
211 o2 v
P2 <2 E(d ! !
ot <23 Bt g+ i
47,02 4|7, 4 8502
lgzt)f | t‘EHdt 5||2+*+ ]E||dt oll> + W)f
4S+8 4 12Sof 2v 0]20 1120]20

<2FE 2+ E[|d:||” +
<2E||d: s]|* + lldelI* + -t B(t) + B(t) +/{B(t)’

which further implies:
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holds with probability at least 1 — x according to Chebyshev inequality. We can select v to be
sufficiently large such that the coefficient of the second terms in RHS is no larger than 1. Then, with

probability at least 1 — x, we obtain:
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Step C: Combination and Parameter Selection.
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Finally, we can combine the all the results we obtained from Steps A and B to get the following
convergence performance guarantee:

||IC(pt7 Zt, Wty Vi, )\)HQ

S S q
=(1 =3 w0 + Y wn AV fulz) + 3 v V(=) 2
s=1 s=1 =1

S
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=\ldipl* + e, |1* + 1a(z0) [P + D 7r s
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which further implies:
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where we select large enough 7 (t) > S8u?mM? in the last inequality. Hence, we can further obtain
the following results with probability at least 1 — k:
T—1
1

T Z ||K(pta 2ty Wty Vt, )‘)||2

t=0
202802 Su2m?2M?252 8v252M?252

<2 Elld, |12 f h f

_T; I+ 5o+ 7w T B

64M? 224SU2M20]20 64 <u2m2M20}2L U252M20J2£ >

2o T 2B T wel\ T T B
4 1250? 2@20]20 1120]20

+2 4 + +
v2 B(t) B(t)  kB(t)
6402SM?  8v2SM? 12807 8 1650}
2280 B ) \ By T2 By )

2
where the last line uses the result of (Zle |Et,s|) . Therefore, we can use the O(-) notations to

further organize this result as:
T-1

- Z 1K (pe, e, we, ve, N2
t=0 (9)

S(u+v)> (Suz) (Sv ) ( ) <1>
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with obability at least 1 — k. Thus, we can select parameters to ensure the convergence of Equa-
©)

tion (9). Specifically, let u = ©(T7), v = O(T7), n = O(T7), and B(t) = T(t) = ©(T").
Suppose the convergence order is o, then we maximize o, such that:

1—-2v>o,
/.t—3’)/20,
2y 2o,
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Hence, we can set v = % and 1 = 2, to obtain 0 = 3. In other words, The convergence rate is

O(S/T2). O

Remark 6. By comparing Algorithm [I| and Algorithm |3 along with their respective analyses,
we identify that the key challenge in the stochastic scenario arises from the stochastic gradients.
Specifically, due to the gap between the full gradient and its stochastic estimator, the analysis for
Algorithm [3] becomes more complex, even though the overall structure of the analysis remains the
same. Specifically, to deal with the stochasticity, we 1) add and subtract several intermediate terms,
applying the triangle inequality to bridge the gap between the stochastic gradients and their full-
gradient counterparts; 2) use the Chebyshev Inequality to accurately bound the dual feasibility and
complementary slackness terms in the KKT system; and 3) carefully select the batch-sizes B and T
to ensure finite-time convergence.

E SETUPS AND ADDITIONAL RESULTS OF NUMERICAL EXPERIMENTS

In this section, we present the details of our experimental setups for two data weighting tasks in
MOBL problems stated in Section [5] In addition, we provide supplementary numerical results for
both tasks.

E.1 DATA WEIGHTING FOR MULTI-OBJECTIVE RLHF REWARD MODEL TRAINING

1) Detailed Setup.

Overview. The reward model scores LLM-generated responses to prompts based on human-
aligned criteria in Reinforcement Learning from Human Feedback (RLHF). The multi-objective
data weighting task aims to determine optimal weights over training datasets for training a reward
model that maximize multiple validation metrics in Pareto sense. As shown in the literature, this
data weighting task is often considered using a bilevel framework (Pan et al., [2024; Shen et al.,
2024a). Moreover, potentially conflicting human preferences, such as helpfulness, verbosity, natu-
rally motivates a multi-objective formulation. Hence, we model this problem as an MOBL problem.

Training. Specifically, there are N training sets 71, ..., 7. Each training set 7,,, n € [N] contains
| 75| prompt-response pairs {pn i, Tn,i},¢ = 1,...,|Tn|, and the corresponding scores s,, ;. The
derivation, quality, and tendency of these training sets may be unknown in practice, indicating that
our data weighting task aims to assign larger weights to datasets that are of higher quality and better
aligned with the target preference. To this end, we consider a weight vector z = (x1,...,2x)"
where each element corresponds to a training set. These weights are normalized using a SoftMax
function. We denote the parameter of the reward model as y, then it is a function of the weight x.

bl

Validation. These trained weights are evaluated in the validation process, where M valida-
tion sets Vi, ..., V) are considered. Each V,,,,m € [M] contains |V,,| prompt-response pairs
{Pm,jsTm},7 = 1,...,|Vm], and the corresponding scores s, j, where the scores are labeled
based on some specific and unique criteria such as helpfulness, correctness, and verbosity. In real-
world scenarios, these metrics may not be aligned with training sets, and can be inaccessible. In
other words, the M validation sets verify the capability of the reward model in M different direc-
tions.

Formulation and Setup. To sum up, the formulation of this task is stated as follows:

il IVl
mln ZE (51,5(y(x)), s1,5), Z L(3n,5(y(x)), s01,5)
exp(z i
L. n) L( ,
s.t.y(z) € argmmz S exp(an) Zl 5n,i(Y), Sni)s

where L, set to mean squared error (MSE) here, denotes the loss evaluated by the true score label s
and the predicted score label § generated by the reward model. We use the HelpSteer dataset (Wang
et al., |2023) as the basic dataset. For training datasets, we select two sets with criteria coherence
and verbosity, and also construct a set with random generated scores, indicating N = 3. It is worth
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Figure 11: Additional results for Pareto exploration.

noting that the prompt-response pairs in these 3 training sets are identical. For the validation sets,
we consider all 5 validation sets, i.e., M = 5, each corresponding to a different evaluation criterion:
helpfulness, correctness, coherence, complexity, and verbosity, respectively.

We utilize a multi-layer perceptron (MLP) with a depth of 500 and a width of 5 to represent the
reward model. The input is encoded using He et al.| (2021) and has a dimension of 500. For the
parameters, we set the batch size to 256, the learning rate to = 1078, and the total number of
iterations to 7' = 3,000. Moreover, we change the preference vector A € AZ™ to explore the Pareto
front. We evaluate three MOBL algorithms, MOML (Ye et al., 2021)), MoCo (Fernando et al.,|2023),
FORUM (Ye et al., 2024)), as our baselines. Specifically, the inner loop of each algorithm is set to
50, with learning rates for the UL and LL variables (z and y) set to o = 10~3 and 8 = 108,
respectively. Additionally, for MoCo, we set the extra parameters v = 1072 and p = 1075; for
FORUM, we set p = 2. Each experiment is repeated for 5 times. All numerical experiments for
this reward model training task were conducted on a cluster of 4 NVIDIA H100 GPUs (94GB each)
using PyTorch’s DistributedDataParallel.

The expected results are as follows: 1) WC-Penalty Algorithm achieves a low validation loss for each
metric, demonstrating the convergence behavior of our algorithm. 2) When different preferences are
chosen during the validation process, our algorithm covers a much larger portion of Pareto front
compared to other baselines. Moreover, when weights are assigned to prioritize specific objectives,
our algorithm yields a lower validation for those objectives compared to the case of using alternative
preference vectors.

2) Additional Numerical Results.

We now provide more numerical results on this data weighting for reward model training task,
accompanied by discussions to emphasize the advantages of Algorithm|T]in this subsection.

1. Pareto Exploration.

In addition to the results demonstrated in Section [5] we select 5 more additional preference vec-
tors by setting A as Ay = 0.84 for some s € [S] and Ay = 0.04, Vs’ # s, referring to this as
“slightly prefer” some objective in Figure[TTa] This further verifies the Pareto exploration capability
of Algorithm|[I] Furthermore, to provide a clearer intuition of how our algorithm converges for each
objective, Figure [TTD]illustrates the convergence behavior of each objective based on their loss and
standard error over the 5 trials when the preference vector is set to A = [0.01,0.01, 0.01,0.01,0.96] "

(i.e., under preference “prefer verbosity”). We also compute the area ratios bsa’ for each baseline

shown in F1gure | yielding the following results: f;o;u =1.67, S — 1.36, and SSBZ:ZO = 1.56.

> Srorum
Our approach demonstrates at least a 36% improvement on this metric, quantifying the Pareto ex-

ploration capability of our algorithm.

Figure [6a and Figure [IT] align with our expectations. Intuitively, the loss for each objective con-
verges over time, as our algorithm takes all objectives into account and achieves a convergence rate
of O(S /T%). What’s more, we also find that the performances on complexity and verbosity are
similar, but significantly different from those of the other three metrics. This outcome, while not
entirely surprising, is interesting, as it aligns with our expectations as well. These two criteria focus
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Figure 12: Additional results for Convergence Performance.

on redundancy and response length, whereas the other metrics are more concerned with the content
of the responses. Our algorithm captures this subtle distinction by selecting some specific prefer-
ences, while other baselines fail to consider this point. This strength becomes particularly valuable
in practice when more objectives are introduced. Our approach enables a systematic exploration
upfront, allowing the handling of these objectives, regardless of the complexity of their internal
relationships.

2. Convergence Performance.

Except for the ability on Pareto exploration, we also highlight the good convergence behavior in
Figure [I2] Specifically, we compare the running time of our algorithm with that of all baselines
over T' = 3,000 steps in Figure We average the loss over 5 trials for each algorithm and
include the standard error bars to ensure statistical significance. This result clearly illustrates that
our algorithm converges to some weakly Pareto stationary solution in no more than than 70 seconds,
while MoCo, MOML, and FORUM require over 5 x 102, 2 x 103, and 2 x 10* seconds, respectively,
to complete this process. Similarly, Figure[I2b|shows how our algorithm and three baselines behave
in T' = 3,000 iterations, with the iteration axis shown on a logarithmic scale. It is evident that the
slope of our method is the smallest (or the largest in absolute value sense).

The computational efficiency shown in Figure[I2a]can be attributed to the following two key factors.
First, while other baselines follow a double-loop scheme to alternately update variables x and y,
investing significant effort in the inner loop to optimize the LL function g(z, y), our approach uses
a simple projected gradient descent, employing a single-loop paradigm to handle the variables as a
unified entirety. Second, since the ECMO problem inherently treats = and y as a unified entity, we
omit the use of implicit gradient methods (Ghadimi & Wang, |2018; [Ji et al.| [2021) to compute the
Hessian inverse, significantly reducing computational costs.

The best slope of our approach in Figure [I2b] further validates its convergence performance. Specif-
ically, as illustrated in Theorem [3] our WC-Penalty algorithm achieves a convergence rate of
oS/ T%) for general ECMO problems, which also applies to this MOBL setup. This rate matches
the one obtained for MoCo in the context of MOBL problems under their strongest assumption. In
contrast, 1) MOML lacks finite-time convergence guarantees, and 2) FORUM provides a rate of
O(S/T1) (where the parameter S is omitted in the O(-) notation in their work). In the end, we’d
also like to point out that these convergence rates are based on different metrics. All of the baselines’
setups require the strongly convex LL function g(z,y) to ensure well-defined metrics. By contrast,
our metric, || K(p, z,w, v, A)||2, is more general, as it applies to general ECMO problems.

3. More Discussions.

Finally, we provide some additional discussion for this experiment, focusing on three main aspects
as follows. Dataset: The dataset we use (HelpSteer, [Wang et al.|(2023)) is almost the “optimal” to
validate our algorithm, as it contains 5 objectives, whereas most other existing datasets have no more
than 3. This allows a more realistic simulation of how algorithms perform with multiple potentially
conflicting objectives. Furthermore, it is well-known and widely adopted within the community,
reflecting its high quality. Model: We consider an MLP as our reward model. It not only performs
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well during the learning process (according to the loss values) but also requires relatively short
running time. Therefore, we argue that this MLP model is well-suited for our simulation. Baselines:
Finally, the baselines we select are state-of-the-art methods in MOBL, while other approaches lack
theoretical convergence guarantees. Having said that, we also compare our algorithm with some
bilevel algorithms for completeness. Specifically, we consider ITD and SOBA
(Dagréou et al., [2022) with linear scalarization as our baselines (note that it’s nontrivial to extend
their approaches with WC method). Again, we set A as A\; = 0.96 for some s € [S] and Ay = 0.01,
Vs’ # s to evaluate their capabilities in exploring the Pareto front. Figure [13|compares our WC-
Penalty Algorithm with bilevel algorithms. In particular, we highlight the following two points:
1) The LS method fails to guarantee a full exploration of the Pareto front in this highly nonconvex
scenario, while our algorithm excels at covering a larger portion of the Pareto front, further validating
our theoretical analysis. 2) The explorations of the two bilevel algorithms are “irregular” and do not
reveal the relationships between different objectives. In contrast, our algorithm provides rational
guidance in exploring the Pareto front, as demonstrated in Figures [6a and [TTa]

E.2 DATA WEIGHTING IN MULTI-OBJECTIVE LLM ALIGNMENT

1) Detailed Setup.

Overview. In the Large Language Model (LLM) Alignment task, our goal is to align a pretrained
LLM with human preferences. Instead of relying on a reward model to guide the LLM, we directly
utilize the prompt-response data to finetune the language model. In this section, we introduce our
data weighting task for multi-objective LLM alignment. Similarly, given that 1) multiplex human
preferences necessitate the multi-objective formulation, and 2) the data weighting task is commonly
framed as a bilevel problem, this problem can naturally be expressed as an MOBL problem.

Training. In the training process, there are N training sets 71, ..., Ty, where each T,,,n € [N]
contains |7,,| prompt-response pairs (P i, 7p,i),¢ = 1,...,|Tn|. Each Ty, n € [N] represents the
conversation pairs aligned with one human metric, but may perform poorly in other directions.
However, the focus of each dataset is typically unknown in practice. Hence, our goal is to assign an
appropriate weight for each dataset, ensuring that the LLM performs well across all metrics. To this
end, we consider a weight vector z = (x1,...,7x) ", where each element corresponds to a training
set. These weights are normalized using a SoftMax function. We denote the parameter of the base
LLM as y, then it is a function of the weight x.

Validation. The trained weight = is evaluated during the validation process, where M valida-
tion sets Vy,..., V) are considered. Each V,,,,m € [M] contains |V,,| prompt-response pairs
{Pm,js"mj},7 = 1,...,|Vm|. Similarly, each validation set represents high-quality conversation
pairs based on a specific and unique criterion, such as helpfulness, correctness, or verbosity. In
real-world scenarios, these metrics may not align with those used in the training sets ()M may be not
equal to V) and can often be inaccessible. The overall goal is to finetune the pre-trained LLM, i.e.,
1, such that the validation loss for all metrics is minimized in Pareto sense.
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Figure 14: Additional results for Pareto exploration.

Formulation and Setup. Based on the previous introduction, we can formally model the problem

as follows:
(V1] [V |
min | > LG (P15 y(@)s 1) D LT (arg; y()s7ar )
Jj=1 Jj=1
[T

exp(zy,)

S.t. y( S argmlnz Z exp - ZE T pn zay) T'n 1)
’ n’ i=1

where L, set to cross-entropy in this task, measures the difference between the generated response 7
and the given response r. To incorporate more objectives, we continue to use HelpSteer
2023)) as our base dataset. However, HelpSteer does not provide separate datasets for each individual
criterion. Hence, we construct the training and validation datasets as follows. For training sets, we
calculate the average score § across the five metrics for each prompt-response pair, and consider
it to construct 7; for § > 2.5 and 73 for § < 2, respectively. In other words, we set N = 2 to
represent data with different quality levels. For validation sets, we assign a prompt-response pair to a
criterion-specific dataset if its corresponding score for that criterion is at least 3 (with scores ranging
from {0,1,2,3,4}). Besides, we consider all 5 validation sets, i.e., M = 5, each corresponding
to a different evaluation criterion: helpfulness, correctness, coherence, complexity, and verbosity,
respectively.

We use Llama-3.2-1B-Instruct (Meta, [2024) as our pretrained LLM, and apply the LoRA technique
with a rank of 8. For the parameters, we set batch size to 32, learning rate to 7 = 1075 and run the
algorithm for 7" = 3,000 iterations. We also set different preference vectors A € AJr+ to explore
the Pareto front. For the baselines with a double-loop structure, the inner-loop iteration is set to 40.
Each experiment is repeated for 5 times. All numerical experiments were conducted on a cluster of
4 NVIDIA H100 GPUs (94GB each) using PyTorch’s DistributedDataParallel.

2) Additional Numerical Results.

Similarly, we provide more numerical results on this data weighting in LLM alignment task along
with discussions in this subsection.

1. Pareto Exploration.

Figure [I4] presents additional numerical results on Pareto exploration. In Figure[I4a] “slightly pre-
fer” refers to selecting A\; = 0.84 for some s and Ay = 0.04 for s’ # s. While these preferences do
not yield improved performance, they still exhibit regular Pareto exploration behavior, as the loss on
the focused objective remains relatively small.

Figure [T4b] illustrates the convergence performances of different objectives in Algorithm [T] when
selecting A = [0.01,0.01,0.01,0.01,0.96] " (i.e., under preference “prefer verbosity™). The loss is
averaged over 5 trials, and the standard error bars are also included. Notably, the preferred objective,
verbosity, achieves relatively better performance, which aligns with the results shown in Figure[T4a]

We also provide how bilevel algorithms 2022} [Ii et al [2021) explore the Pareto

front using linear scalarization technique in Frgure 15} The basic setup remains the same: we set
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Figure 16: Additional results on MOBL algorithms.

As = 0.96 for some s and A\, = 0.01 for all other s’. Notably, while both algorithms still exhibit
some exploration behaviors with different preference vectors, this exploration is highly irregular. In
other words, when certain objectives are preferred, the relative performance may not be dominant.
This irregularity stems from the highly nonconvex nature of the LLM alignment problem, where the
neural networks, with billions of parameters and highly nonlinear operations, can take unpredictable
forms, rendering the linear scalarization method ineffective.

2. MOBL Baselines and Discussions.

We also consider the aforementioned MOBL algorithms (Ye et al., 2021}, [Fernando et al., 2023},
as our baselines in Figure Specifically, our algorithm still outperforms in Pareto
exploration when compared with MOML and MoCo algorithms, since a larger portion of Pareto
front is covered by our approach, as demonstrated in Figure[I6al The reason we do not include the
FORUM algorithm here lies in its impractical memory cost in large scale problems. As mentioned
in the setup, we set the inner-loop iterations (if applicable) as 40 for every algorithm. Nevertheless,
this leads to “CUDA out of memory” error when implementing the FORUM algorithm, since 1) its
workflows are overly complicated, and 2) its maintained values are extremely memory-consuming.
In fact, in our GPUs with 94GB of memory each, the maximum number of inner-loop rounds for
FORUM without causing an overflow is 2, which results in the performance shown in Figure [T6b]
Obviously, the validation loss does not decrease over time, thus, we exclude it from Figurel'lialr

Finally, we also claim the rationale behind this experiment. Dataset: We still use HelpSteer as
the basic dataset because it contains 5 potentially conflicting objectives, allowing us to intuitively
demonstrate the performances on Pareto exploration. Model: The LLM model employed here is
Llama-3.2-1B-Instruct, which has proven to generate reasonable responses and is relatively efficient
to train. Baselines: For completeness, we consider both MOBL algorithms and bilevel algorithms
with linear scalarization as baselines.
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Figure 17: Data weighting task in larger-scale (3B & 8B) LLM alignment.

3. Larger-Scale Numerical Experiments and Results.

In order to further validate the capability of our Algorithm|I]in large-scale problems, we enlarge the
pretrained LLM model from Llama-3.2-1B-Instruct to Llama-3.2-3B-Instruct and Llama-3.1-
8B-Instruct in this subsection.

In Figure[17] we set the preference vector A as A, = 0.96 for some s € [S] and Ay = 0.01, Vs # s,
using 1/loss as our metric for each objective. Specifically, as shown in Figure by varying the
preference vectors, Algorithm [T]can efficiently explore a diverse set of Pareto stationary solutions,
enabling our algorithm to recover a large portion of the Pareto front. Also, Figure further
demonstrates that our proposed algorithm outperforms existing methods in recovering the Pareto
front, highlighting its effectiveness in Pareto front exploration. Furthermore, in the 8B model, our
algorithm consistently demonstrates its ability to perform systematic Pareto exploration, as shown in
Figure All of these numerical results further confirm the excellent scalability of our developed
algorithm.

Table 4: Hypervolume results in larger-scale (3B) LLM alignment.

Alg. Ours  Helpfulness Correctness Coherence Complexity ~Verbosity MOML  MoCo
HV (1) 4.87¢0 3.53¢0 3.04e0 3.44e0 2.43e0 3.67¢0  8.48e-1 8.49e-4

Moreover, we also compare our Algorithm [T}
W]th MOBL baselines dYe et a]. m W Ours- 1.000  1.000 1.000 0.999 1.000 1.000 0.975 0.898
nando et al| 2023) with two important metrics, Hepfuness- 1035 1000 1016 1010 1035 1032 0976 089
Hypervolume and e-metric. Table f] demon-

strates that our algorithm dramatically Ol.ltpCI‘- Correctness- 1,056 1.021  1.000 1.015 1.056 1.042 0.990 0.913
forms the baselines even before completing full
Pareto exploration (labeled as Helpfulness, etc.)
in terms of Hypervolume, and the Pareto explo-
ration still leads to better performances. More-
over, Figure @ further confirms that, in terms
of e-metric: 1) our method consistently outper- MoML
forms the baselines, and 2) with varying prefer-
ence vectors, our method converges to the de-
sired solutions. This is consistent with our the-
oretical analysis and the previous numerical re-
sults.

Coherence- 1.044  1.009 1.006 1.000 1.044 1.038 0.981 ' 0.899

Complexity- 1.053  1.046 1.041 1.045 1.000 1.053 1.020 0.940

Evaluated Algorithm

Verbosity- 1.035  1.006 1.018 1.012 1.035 1.000 0.981 0.904

UEeE 1.239 1.206 1.210 1.203 1.239 1.221 1.169

Reference Algorithm

Figure 18: e-metric.

E.3 MULTI-OBJECTIVE META-LEARNING TASK

1) Experimental Setup.

Overview. We consider a multi-objective meta-learning problem (Ye et al., 2021} [Ji et al., 202T}
[2025), where the goal is to train a single model capable of addressing multiple objectives
within the MOBL framework. This task is particularly useful for handling heterogeneous datasets
using a relatively small-scale model. Specifically, the training process corresponds to our lower-level
problem, where the model is expected to develop a universal representation capability. Conversely,
the validation process corresponds to the upper-level problem, which aims to balance the trade-offs

42



Under review as a conference paper at ICLR 2026

Correctness

Prefer Obj1 Coherepce
Prefer Obj2
Prefer Obj3
Prefer Obj4
Prefer Obj5 Helpfulness
Slightly Prefer Obj1
Slightly Prefer Obj2
Slightly Prefer Obj3
Slightly Prefer Obj4  Complexity

Slightly Prefer Obj5
Equally Pref
Ob; 5 qually Prefer Verbosity MoCo
(a) Pareto Exploration in multi-objective meta-learning. (b) Comparison with baselines.

Figure 19: Results on multi-objective meta-learning.

among multiple potentially conflicting objectives. The overall objective is to enable the model to
achieve superior performance in the Pareto sense.

Detailed formulation. We construct five heterogeneous MNIST tasks by assigning each task a
distinct digit pair, resulting in different class distributions across tasks. In particular, for each task
s € {l,...,5}, we create a mixed training subset 7T containing 80% samples from its specific digit
pair (0,1),(2,3),(4,5),(6,7), or (8,9) and 20% from the remaining digits. The validation subsets
V), are constructed analogously from the MNIST test split using the same five digit-pair tasks.

Our model consists of a shared multi-layer perceptron (MLP) parameterized by = and a final linear
classifier parameterized by y. Each image is flattened and passed through two fully connected layers
of width 512 with ReL U activation functions, followed by a linear layer producing a 256-dimensional
representation. The the classifier maps this representation to 10 logits.

The problem is formulated as follows:

min F(z,y) = ( 3 LNN(z,y),1(d), .\ S L(/\W(d;:c,y),z(d)))T

x,Y
deVv: deVs

5
s.t.y(z) € argmying(x,y) = Z Z LNN(d;z,y),1(d)),

s=1deT,

where £ denotes the cross-entropy loss, d denotes the digit in the dataset, N’A/(-) denotes the output
of our MLP model, and [(d) denotes the label of d. Note that the cross-entropy loss is a convex
function, and the parameter y represents a linear layer. Therefore, the lower-level function g(z, y)
satisfies the LLGC condition with respective to .

2) Numerical Results.

Figure [I9] demonstrates the effectiveness of our Algorithm [I] in Pareto exploration and its supe-
rior performance compared to baselines. Specifically, in Figure [T9] in addition to the preference
vectors used in the previous subsections, we also include the “Equally Prefer” preference, where
A =1[0.2,0.2,0.2,0.2, O.Q]T. The numerical results once again confirm the Pareto exploration capa-
bility of out approach, allowing it to effectively balance the trade-offs among multiple meta-learning
objectives. Additionally, Figure [T9b] shows that our algorithm outperforms the baselines in this en-
vironment.

Table 5: Hypervolume results in multi-objective meta-learning.

Alg. Ours  Ours - Equal MOML  MoCo
HV (1) 1.14e-3 5.10e-4 1.19e-4 1.51e-4

In addition, we compare our Algorithm[T|with MOBL baselines using two important metrics, Hyper-
volume and e-metric as well. Table[5]demonstrates that our method outperforms the baselines even
before completing full Pareto exploration (which is the result under the “Equally Prefer” preference
vector selection, and is labeled as “Ours - Equal”), and as the preferences vary, the Hypervolume
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Figure 20: e-metric in meta-learning.

(labeled as Ours) is significantly larger than that of the baselines. Moreover, Figure 20| further con-
firms that, in terms of e-metric: 1) our method consistently outperforms the baselines, and 2) with
varying preference vectors, our method converges to the desired solutions.

F MORE DiScUSSIONS ON KKT SYSTEM

Part A: To demonstrate that our KKT system defined in Definition [5]is rational, we first prove that:
the KKT condition introduced in Appendlxnholds if and only if C(p, z,w, v, A) = 0.

Proof. We prove that both directions are correct.
(=)

We assume that KKT condition holds. Then, the stationary condition with respect to p and z exactly
implies that the first two terms in K(p, z,w, v, ) are 0 € R and 0 € RX. Besides, h(z) = 0
directly leads to the third term in K(p, z,w, v, A) is 0 € R9. Finally, for any s € [S], according
to Asfs(2) — p < 0, ws > 0, and ws(As fs(2) — p) = 0, we have: min{ws, p — A\sfs(2)} = 0.
Combining these arguments, we know K(p, z,w, v, \) = 0.

(=)

We assume K(p, z,w, v, \) = 0, then it’s obvious that the stationary condition and the primal fea-
sible condition for equality constraints are satisfied. We mainly focus on the last term in the KKT
system.

For any s € [S], we have min{ws, p — A;fs(2)} = 0. If ws < p — Asfs(2), then we can get:
ws = 0and p > A fs(2). fws > p— Asfs(2), then we can get: p — A\sf<(2z) = 0 and ws > 0.
Both scenario guarantee that (1) primal feasible condition for inequality constraints, (2) dual feasible
condition, and (3) complementary slackness condition are satisfied. ]

Part B: Recall that, Z is an e-Pareto stationary solution of |E_CEM_U| if and only if there exist some
pERweRS veR,Ne ALT such that |[K(p, 2, w, v, < €. According to this definition,
when Z is e- Pareto statlonary, we have

| min{w,, p— Asfs(2)} < IK(p, 2,0, M5 < e,
for any s € [S].

From Part A, the primal difficulty of the understanding stems from the term min{ws, p — As fs(2)},
which is distinct from the counterparts of original KKT conditions, while the correspondences of
other parts are trivial. This raises a natural but nontrivial question: Can | min{ws, p—Asfs(2)} < €
really imply the complementary slackness condition ws(As fs(2) — p) = 0?

Even if the “accurate” scenario is already proved in Part A, the answer to this question still remains
unclear. The primary issue is that: even though the minimum one is sufficiently close to 0, if the other
one goes to infinity, then the multiplication of them cannot be directly concluded. To affirmatively
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answer this question, we prove the following proposition: In our Theorem [3] if | min{w; s, pr —
Asfs(z)}| < e holds for any s € [S], then both w; s and A, fs(2;) — p; are bounded for any s € [S].

Proof. The following arguments hold for any s € [S]. If wy s < py — Asfs(2e), then |wy 5| < e
According to the selection of dual variables, we have:

wi,s = V(Asfs(2¢) + 01,5 — pr)
€
= |pr — Aofs(20)] < |Asfs(2e) + Ot,s — pe| + |§t78‘ < v + ‘5t,8|~

If wys > pr — Asfs(2), then |p, — As fs(2:)| < e. According to the selection of dual variables, we
have:

Wt s = U()\sfs(zt) + 5t,s - pt)
- |wt,s| S U|)\sfs(zt) + 61&,5 - Pt| + U|5t,s| § ve + U|5t,s|-

Therefore, in order to show the desired boundedness, we only need to show that d; s is bounded.
Since 4y, is fixed, we prove the boundedness of d; s by induction. First, we suppose d;—1 s is
bounded.

According to our WC-Penalty Algorithm, we know that §; s > Oforany ¢t =0,...,T — 1. Besides,
for any ¢ > 0, we have:

d¢,s = Pr, (51‘,—1,3 — u(Xs fo(2e—1) + 04—1,6 — Pt—l))-

If A\sfs(z4—1) + 01—1,5s — pr—1 > 0, then 0 < &, 5 < d;_1 5. Thus, the boundedness of d, 5 can be
derived from the boundedness of 6;_1 5.

If As fs(2t—1) 4+ 0t—1,s — pt—1 < 0, then we have:
0< 6t,s < 6:‘,—1,5 + UU(Pt—l - )\sfs(zt—l) - 6t—1~,5) < 675—175 + nvpo,

where the last inequality is due to the non-increasing property of the sequence { Pt}tT:_ol demon-
strated in Step C of the analysis of Theorem 3] This ends our proof.

Therefore, by the boundedness, we can argue that | min{ws, p — A5 fs(2)}| < € indeed implies the
complementary slackness condition ws (A fs(2) — p) = 0

Part C: From these analyses, we observe that (1) the KKT system defined in Definition [5] is not
strictly equivalent to the conventional KKT condition, but (2) in our context, [|K(p, z, w, v, A)||3 < €
still ensures that all of the four kinds of original KKT conditions are only e-violated. The reason
why we control this surrogate system primally lies in the difficulty of handling the inequality terms
in the original KKT conditions, which are challenging to be quantified. Our newly defined KKT
system not only forms the basis for the subsequent algorithmic design and theoretical analysis, but
also constitutes a novel contribution in its own right.
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